
Titel. Author(s)
Copyright c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-XXXXX-X

1

1
Can we recognize an innovation?: Perspective from an
evolving network model
Sanjay Jain and Sandeep Krishna

‘Innovations’ are central to the evolution of societies and the evolution of life.
But what constitutes an innovation? We can often agree after the event when
its consequences and impact over a long term are known whether something
was an innovation or not, and whether it was a ‘big’ innovation or a ‘minor’
one. But can we recognize an innovation ‘on the fly’ as it appears? Successful
entrepreneurs often can. Is it possible to formalize that intuition? We discuss
this question in the setting of a mathematical model of evolving networks. The
model exhibits self-organization, growth, stasis, and collapse of a complex
system with many interacting components, reminiscent of real world phe-
nomena. A notion of ‘innovation’ is formulated in terms of graph-theoretic
constructs and other dynamical variables of the model. A new node in the
graph gives rise to an innovation provided it links up ‘appropriately’ with
existing nodes; in this view innovation necessarily depends upon the exist-
ing context. We show that innovations, as defined by us, play a major role in
the birth, growth and destruction of organizational structures. Furthermore,
innovations can be categorized in terms of their graph-theoretic structure as
they appear. Different structural classes of innovation have potentially dif-
ferent qualitative consequences for the future evolution of the system, some
minor and some major. Possible general lessons from this specific model are
briefly discussed.

1.1
Introduction

In everyday language, the noun innovation stands for something new that
brings about a change; it has a positive connotation. Innovations occur in
all branches of human activity – in the world of ideas, in social organization,
in technology. Innovations may arise by conscious and purposeful activity,
or serendipitously; in either case, innovations by humans are a consequence
of cognitive processes. However, the word innovation does not always re-
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fer to a product of cognitive activity. In biology, we say, for example, that
photosynthesis, multicellularity, and the eye were evolutionary innovations.
These were products not of any cognitive activity, but of biological evolution.
It nevertheless seems fair to regard them as innovations; these novelties cer-
tainly transformed the way organisms made a living. The notion of innovation
seems to presuppose a context provided by a complex evolutionary dynamics;
for example, in everyday language the formation of the earth, or even the first
star, is not normally referred to as an innovation.

Innovations are a crucial driving force in chemical, biological and social sys-
tems, and it is useful to have an analytical framework to describe them. This
subject has a long history in the social sciences (see, e.g., [1, 2]). Here we
adopt a somewhat different approach. We give a mathematical example of a
complex system that seems to be rich enough to exhibit what one might in-
tuitively call innovation, and yet simple enough for the notion of innovation
to be mathematically defined and its consequences analytically studied. The
virtue of such a stylized example is that it might stimulate further discussion
about innovation, and possibly help clarify the notion in more realistic situa-
tions.

Innovations can have ‘constructive’ and ‘destructive’ consequences at the
same time. The advent of the automobile (widely regarded as a positive de-
velopment) was certainly traumatic for the horse drawn carriage industry and
several other industries that depended upon it. When aerobic organisms ap-
peared on the earth, their more efficient energy metabolism similarly caused a
large extinction of several anaerobic species [3]. The latter example has a dou-
ble irony. Over the first two billion years of life on earth, there was not much
oxygen in the earth’s environment. Anaerobic creatures (that did not use free
oxygen for their metabolism) survived, adapted, innovated new mechanisms
(e.g., photosynthesis) in this environment, and spread all over the earth. Oxy-
gen in the earth’s environment was largely a by-product of photosynthetic
anaerobic life, a consequence of anaerobic life’s ‘success’. However, once oxy-
gen was present in the environment in a substantial quantity, it set the stage
for another innovation, the emergence of aerobic organisms which used this
oxygen. Because of their greater metabolic efficiency the aerobic organisms
out-competed and decimated the anaerobic ones. In a very real sense, there-
fore, anaerobic organisms were victims of their own success. Innovation has
this dynamic relationship with ‘context’: what constitutes ‘successful’ inno-
vation depends upon the context, and successful innovation then alters the
context. Our mathematical example exhibits this dynamic and explicitly illus-
trates the two-faced nature of innovation. We show that the ups and downs
of our evolutionary system as a whole are also crucially related to innovation.
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1.2
A framework for modelling innovation: Graph theory and dynamical systems

Systems characterized by complex networks are often represented in terms of
a graph consisting of nodes and links. The nodes represent the basic com-
ponents of the system, and links between them their mutual interactions. A
graph representation is quite flexible and can represent a large variety of situa-
tions [4]. For a society, nodes can represent various agents such as individuals,
firms and institutions, as well as goods and processes. Links between nodes
can represent various kinds of interactions, such as kinship or communication
links between individuals, inclusion links (e.g., a directed link from a node
representing an individual to a node representing a firm implying that the in-
dividual is a member of the firm), production links (from a firm to a good that
it produces), links that specify the technological web (for every process node,
incoming links from all the goods it needs as input and outgoing links to every
good it produces), etc. In an ecological setting, nodes can represent biological
species, and links their predator-prey or other interactions. In cellular biology,
nodes might represent molecules such as metabolites and proteins as well as
genes, and links their biochemical interactions.

A graph representation is useful for describing several kinds of innovation.
Often, an innovation is a new good, process, firm, or institution. This is easily
represented by inserting a new node in the graph, together with its links to
existing nodes. Of course, not every such insertion can be called an innova-
tion; other conditions have to be imposed. The existing structure of the graph
provides one aspect of the ‘context’ in which a prospective innovation is to
be judged, reflecting its ‘location’ or relationship with other entities. In this
formulation it is clear that innovations such as the ones mentioned above are
necessarily a change in the graph structure. Thus a useful modelling frame-
work for innovations is one where graphs are not static but change with time.
In real systems graphs are always evolving: new nodes and links constantly
appear, and old ones often disappear as individuals, firms and institutions
die, goods lose their utility, species become extinct or any of these nodes lose
some of their former interactions. It is in such a scenario that certain kinds of
structures and events appear that earn the nomenclature ‘innovation’. We will
be interested in a model where a graph evolves by the deletion of nodes and
links as well as the insertion of new ones. Insertions will occasionally give rise
to innovations. We will show that innovations fall in different categories that
can be distinguished from each other by analysing the instantaneous change
in the graph structure caused by the insertion, locally as well as globally. We
will argue that these different ‘structural’ categories have different ‘dynami-
cal’ consequences for the ‘well-being’ of other nodes and the evolution of the
system as a whole in the short as well as long run.
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In addition to an evolving graph, another ingredient seems to be required
for modelling innovation in the present approach: a graph dependent dynam-
ics of some variables associated with nodes or links. In a society, for example,
there are flows of information, goods and money between individuals that
depend upon their mutual linkages, which affect node attributes such as in-
dividual wealth, power, etc. The structure of an ecological food web affects
the populations of its species. Thus, a change in the underlying graph struc-
ture has a direct impact on its ‘node variables’. Deciding whether a particular
graph change constitutes an innovation must necessarily involve an evalua-
tion of how variables such as individual wealth, populations, etc., are affected
by it. Changes in these variables in turn trigger further changes in the graph
itself, sometimes leading to a cascade of changes in the graph and other vari-
ables. E.g., the decline in wealth of a firm (node variable) may cause it to col-
lapse; the removal of the corresponding node from the market (graph change)
may cause a cascade of collapses. The invention of a new product (a new node
in the graph) which causes the wealth of the firm inventing it to rise (change
in a node variable) may be emulated by other firms causing new linkages and
further new products.

In order to ‘recognize an innovation on the fly’ it thus seems reasonable
to have a framework which has (a) a graph or graphs representing the net-
work of interactions of the components of the system, (b) the possibility of
graph evolution (the appearance and disappearance of nodes and links) and
(c) a graph dependent dynamics of node or link variables that in turn has a
feedback upon the graph evolution. The example discussed below has these
features. They are implemented in simple framework that has only one type
of node, one type of link and only one type of node variable.

1.3
Definition of the model system

The example is a mathematical model [5] motivated by the origin of life prob-
lem, in particular, the question of how complex molecular organizations could
have emerged through prebiotic chemical evolution [6, 7, 8, 9, 10]. There are
s interacting molecular species in a ‘prebiotic pond’, labelled by i ∈ S ≡
{1, 2, . . . , s}. Their interactions are represented by the links of a directed graph,
of which these species are nodes. The graph is defined by its s× s adjacency
matrix C = (cij), with cij = 1 if there exists a link from node j to node i (chemi-
cally that means that species j is a catalyst for the production of species i), and
cij = 0 otherwise. cii is assumed zero for all i: no species in the pond is self-
replicating. Initially the graph is chosen randomly, each cij for i 6= j is chosen
to be unity with a small probability p and zero with probability 1− p. p rep-
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resents the ‘catalytic probability’ that a given molecular species will catalyse
the production of another randomly chosen one [11].

The pond sits by the side of a large water body like a sea or river, and pe-
riodically experiences tides or floods which can flush out molecular species
from the pond and bring in new ones, changing the network. We use a sim-
ple graph update rule in which exactly one node is removed from the graph
(along with all its links) and one new node is added whose links with the re-
maining s − 1 nodes are chosen randomly with the same probability p. We
adopt the rule that the species with the least relative population (or, if several
species share the least relative population, one of them chosen randomly) is
removed. This is where selection enters the model: species with smaller pop-
ulations are punished. This is an example of ‘extremal’ selection [10] in that
the least populated species is removed; the results of the model are robust to
relaxing the extremality assumption [12, 13].

In order to determine which node will have the least population, we specify
a population dynamics which depends upon the network. The dynamics of
the relative populations, xi (0 ≤ xi ≤ 1, ∑s

i=1 xi = 1) is given by

ẋi =
s

∑
j=1

cijxj − xi

s

∑
k=1

s

∑
j=1

ckjxj. (1.1)

This is a set of rate equations for catalysed chemical reactions in a well stirred
chemical reactor1. They implement the approximate fact that under certain
simplifying assumptions a catalyst causes the population of whatever it catal-
yses to grow at a rate proportional to its own (i.e., the catalyst’s) population
[5, 14]. Between successive tides or floods the set of species and hence the
graph remains unchanged, and the model assumes that each xi reaches its at-
tractor configuration Xi under (1.1) before the next graph update. The species
with the least Xi is removed at the next graph update.

Starting from the initial random graph and random initial populations, the
relative populations are evolved according to (1.1) until they reach the at-
tractor X, and then the graph is updated according to the above rules. The
new incoming species is given a fixed relative population x0, all xi are per-
turbed about their existing values (and rescaled to restore normalization).
This process is iterated several times. Note that the model has two inbuilt
time scales, the population dynamics relaxes on a fast time scale, and graph
evolution on a slow time scale. The above model may be regarded as an evo-
lutionary model in non-equilibrium statistical mechanics.

1) See Derivation of equation 1.1 in Appendix A.
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1.4
Time evolution of the system

A sample run is depicted in Figs. 1 and 2. For concreteness, we will discuss
this run in detail, describing the important events, processes, and the graph
structures that arise, with an emphasis on the role of innovation. The same
qualitative behaviour is observed in hundreds of runs with the various para-
meter values. Quantitative estimates of average time scales, etc., as a function
of the parameters s and p are discussed in [5, 14] and Appendix A. The robust-
ness of the behaviour to various changes of the model is discussed in [12, 13].

Broadly, Figs. 1 and 2 exhibit the following features: Initially, the graph is
sparse and random (see Figs 2a-d), and remains so until an autocatalytic set
(ACS), defined below, arises by pure chance. On average the ACS arrives on
a time scale 1/(p2s) in units of graph update time2; in the exhibited run it ar-
rives at n = 2854 (Fig. 2e). In this initial regime, called the ‘random phase’,
the number of populated species, s1, remains small. The appearance of the
ACS transforms the population and network dynamics. The network self-
organizes, its density of links increases (Fig. 1a), and the ACS expands (Figs.
2e-n) until it spans the entire network (as evidenced by s1 becoming equal to s,
at n = 3880, Figs. 1b,2n). The ACS grows across the graph exponentially fast,
on a time scale 1/p [5]. This growth is punctuated by occasional drops (e.g.,
Fig. 1b at n = 3387, see also Figs. 2h,i). The period between the appearance of
a small ACS and its eventual spanning of the entire graph is called the ‘growth
phase’. After spanning, a new effective dynamics arises, which can cause the
previously robust ACS to become fragile, resulting in crashes (the first major
one is at n = 5041) in which s1 as well as the number of links drops drasti-
cally. The system experiences repeated rounds of crashes and recoveries (Figs.
2o-u, see [15, 12] for a longer time scale.) The period after a growth phase and
upto a major crash (more precisely, a major crash that is a ‘core-shift’, defined
below) is called the ‘organized phase’. After a crash, the system ends up in
the growth phase if an ACS still exists in the graph (as at n = 5042, Fig. 2r)
or the random phase if it does not (as at n = 8233, Fig. 2t). Below we argue
that most of the crucial events in the evolution of the system, including its
self-organization and collapse, are caused by ‘innovation’.

2) See Timescale for appearance and growth of the dominant ACS in Appen-
dix A.
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1.5
Innovation

The word ‘innovation’ certainly connotes something new. In the present model
at each graph update a new structure enters the graph: the new node and its
links with existing nodes. However not every new thing qualifies as an inno-
vation. In order for a novelty to bring about some change, it should confer
some measure of at least temporary ‘success’ to the new node. (A mutation
must endow the organism in which it appears some extra fitness, and a new
product must have some sale, in order to qualify as an innovation.) In the
present model, after a new node appears, the population dynamics takes the
system to a new attractor of (1.1), which depends upon the mutual interac-
tions of all the nodes. In the new attractor this node (denoted k) may go ex-
tinct, Xk = 0, or may be populated, Xk > 0. The only possible criterion of
individual ‘success’ in the present model is population. Thus we require the
following minimal ‘performance criterion’ for a new node k to give rise to an
innovation: Xk should be greater than zero in the attractor that follows after
that particular graph update. That is, the node should ‘survive’ at least till the
next graph update.

This is obviously a ‘minimal’ requirement, a necessary condition, and one
can argue that we should require of an innovation more than just this ‘minimal
performance’. A new node that brings about an innovation ought to transform
the system or its future evolution in a more dramatic way than merely surviv-
ing till the next graph update. Note, however, that this minimal performance
criterion nevertheless eliminates from consideration a large amount of nov-
elty that is even less consequential. Out of the 9999 new nodes that arise in
the run of Fig. 1, as many as 8929 have Xk = 0 in the next population attractor;
only 1070 have Xk > 0. Furthermore, the set of events with Xk > 0 can be sys-
tematically classified in the present model using a graph theoretic description.
Below we describe an exhaustive list of 6 categories of such events, each with
a different level of impact on the system (see Fig. 3, discussed in detail below).
One of these categories consists of nodes that disappear after a few graph up-
dates leaving no subsequent trace on the system. Another category consists
of nodes that have only an incremental impact. The remaining four categories
cause (or can potentially cause) more drastic changes in the structure of the
system, its population dynamics and its future evolution.

In view of this classification it is possible to exclude one or more of these cat-
egories from the definition of innovation and keep only the more ‘consequen-
tial’ ones. However, we have chosen to be more inclusive and will regard all
the above categories of events as innovations. In other words we will regard
the above ‘minimal’ performance criterion as a ‘sufficient’ one for innovation.
Thus we will call the introduction of a new node k and the graph structure so
formed an innovation if Xk > 0 in the population attractor that immediately
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follows the event. i.e., if the node ‘survives’ at least until the next graph up-
date. This definition then includes both ‘small’ and ‘big’ innovations that can
be recognized based on their graph theoretic structure upon appearance.

As will be seen below, it turns out that a new node generates an innovation
only if it links ‘appropriately’ to ‘suitable’ structures in the existing graph.
Thus the above definition makes the notion of innovation context dependent.
It also captures the idea that an innovation rests on new linkages between
structures.

1.6
Six categories of innovation

1.6.1
A shortlived innovation: Uncaring and unviable winners

There are situations where a node, say an agent in society or a species in an
ecosystem, acquires the ability to parasite off another, without giving the sys-
tem anything substantive in return. The parasite gains as long as the host
survives, but often this situation doesn’t last very long. The host dies, and
eventually so does the parasite that is dependent on it. It is debatable whether
the acquiring of such a parasitic ability should be termed an innovation, but
from the local vantage point of the parasite, while the going is still good, it
might seem like one.

Figs. 2b,c show an example of an innovation of such a type that appears
in the random phase of the model. Node 25 is the node which is replaced at
n = 78 (see Fig. 2b, where node 25 is coloured white, implying that X25 =
0 at n = 78.) The new node that replaces it (also numbered 25 in Fig. 2c)
receives a link from node 23 thus putting it at the end of a chain of length
2 at n = 79. This is an innovation according to the above definition, for, in
the attractor configuration corresponding to the graph of Fig. 2c, node 25 has
a non-zero relative population; X25 > 0. This is because for any graph that
does not contain a closed cycle, one can show that the attractor X of (1.1),
for generic initial conditions, has the property that only those Xi are non-zero
whose nodes i are the endpoints of the longest chains in the graph3. The Xi for
all other nodes is zero [16]. Since the longest chains in Fig. 2c are of length 2,
node 25 is populated. (This explains why a node is grey or white in Figs. 2a-d.)
Note that node 25 in Fig. 2c has become a parasite of node 23 in the sense that
there is a link from 23 to 25 but none from 25 to any other node. This means

3) See The attractor of equation 1.1 in Appendix A.
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that node 25 receives catalytic support for its own production from node 23,
but does not give support to any other node in the system.

However this innovation doesn’t last long. Nodes 20 and 23, on whom the
well being of node 25 depends, are unprotected. Since they have the least
possible value of Xi, namely, zero, they can be eliminated at subsquent graph
updates, and their replacements in general do not feed into node 25. Sooner
or later selection picks 23 for replacement, and then 25 also gets depopulated.
By n = 2853 (Fig. 2d) node 25 and all others that were populated at n = 79,
have joined the ranks of the unpopulated. Node 25 (and others of its ilk) are
doomed because they are ‘uncaring winners’: they do not feed into (i.e., do not
catalyse) the nodes upon whom their well being depends. That is why when
there are no closed cycles, all structures are transitory; the graph remains ran-
dom. Of the 1070 innovations, 115 were of this type.

1.6.2
Birth of an organization: Cooperation begets stability

At n = 2853 node 90 is an unpopulated node (Fig. 2d). It is eliminated at
n = 2854 and the new node 90 forms a 2-cycle with node 26 (Fig 2e). This
is the first time (and the only time in this run) an innovation forms a closed
cycle in a graph that previously had no cycles. A closed cycle between 2 nodes
is the simplest cooperative graph theoretical structure possible. Nodes 26 and
90 help each other’s population grow; together they form a self-replicating
system. Their populations grow much faster than other nodes in the graph;
it turns out that in the attractor for this graph only nodes 26 and 90 are pop-
ulated, with all other nodes having Xi = 0 ([16, 17]; see also Appendix A).
Because node 90 is populated in the new attractor this constitutes an innova-
tion. However, unlike the previous innovations, this one has a greater staying
power, because nodes 26 and 90 do well collectively. At the next graph update
both nodes 26 and 90 will be immune to removal since one of the other nodes
with zero Xi will be removed. Notice that nodes 26 and 90 do not depend
on nodes which are part of the least fit set (those with the least value of Xi).
The cycle has all the catalysts it needs for for the survival of each of its con-
stituents. This property is true not just for cyclic subgraphs but for a more
general cooperative structure, the autocatalytic set (ACS).

An ACS is a set of species which contains a catalyst for each species in the
set [18, 11, 19]. In the context of the present model we can define an ACS to be
a subgraph each of whose nodes has at least one incoming link from a node of
the same subgraph. While ACSs need not be cycles, they must contain at least
one cycle. If the graph has (one or more) ACSs, one can show that the set of
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populated nodes (Xi > 0) must be an ACS, which we call the dominant ACS4

[5, 16]. (In Figs. 2e-s, the subgraph of the grey and black nodes is the dominant
ACS.) Therefore none of the nodes of the dominant ACS can be hit in the next
graph update as long as there is any node outside it. In other words, the
collective well being of all the constituents of the dominant ACS, ensured by
cooperation inherent within its structure, is responsible for the ACS’s relative
robustness and hence longevity.

In societies, this kind of event is akin to the birth of an organization wherein
two or more agents improve upon their performance by entering into an ex-
plicit cooperation. A booming new township or industrial district perhaps can
be analysed in terms of a closure of certain feedback loops. In prehistory, the
appearance of tools that could be used to improve other tools may be regarded
as events of this kind which probably unleashed a lot of artifact building. On
the prebiotic earth one can speculate that the appearance of a small ACS might
have triggered processes that eventually led to the emergence of life [14].

If there is no ACS in the graph then the largest eigenvalue of the adjacency
matrix of the graph, λ1 is zero. If there is an ACS then λ1 ≥ 15 [5, 16]. In Fig
1b, λ1 jumped from zero to one when the first ACS was created at n = 2854.

1.6.3
Expansion of the organization at its periphery: Incremental innovations

Consider Figs. 2f and g. Node 3, which is unpopulated at n = 3021, gets
an incoming link from node 90 and an outgoing link to node 25 at n = 3022
which results in three nodes adding onto the dominant ACS. Node 3 is popu-
lated in the new attractor and hence this is an innovation. This innovation has
expanded the ‘periphery’ of the organization, defined below.

Every dominant ACS is a union of one or more ‘simple ACSs’ each of which
have a substructure consisting of a ‘core’ and ‘periphery’. E.g., the dominant
ACS in Fig. 1g has one simple ACS and in Fig. 1k it has two. For every simple
ACS there exists a maximal subgraph, called the core of that ACS, from each
of whose nodes there is a directed path to every node of that ACS. The rest
of that ACS is termed its periphery. In Figs. 2e-s, the core is coloured black,
and the periphery grey. Thus in Fig. 2g, the 2-cycle of nodes 26 and 90 is the
core of the dominant ACS, and the chain of nodes 3, 25 and 18 along with the
incoming link to node 3 from 26 constitutes its periphery. The core of a simple
ACS is necessarily an irreducible subgraph. An irreducible subgraph is one that
contains a directed path from each of its nodes to every other of its nodes
[20]. When the dominant ACS consists of more than one simple ACSs, its core
is the union of their cores, and its periphery the union of their peripheries.

4) See Dominant ACS of a graph in Appendix A.
5) See Graph-theoretic properties of ACSs in Appendix A.
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Note that the periphery nodes by definition do not feed back into the core; in
this sense they are parasites that draw sustenance from the core. The core, by
virtue of its irreducible property (positive feedback loops within its structure,
or cooperativity), is self-sustaining, and also supports the periphery. The λ1
of the ACS is determined solely by the structure of its core [15, 12].

The innovation at n = 3022, one of 907 such innovations in this run, is an
‘incremental’ one in the sense that it does not change the core (and hence does
not change λ1). However such incremental innovations set the stage for major
transformations later on. The ability of a core to tolerate parasites can be a
boon or a bane, as we will see below.

1.6.4
Growth of the core of the organization: Parasites become symbionts

Another kind of innovation that occurs in the growth phase is illustrated in
Figs 2l and m. In Fig. 2l, the dominant ACS has two disjoint components.
One component, consisting of nodes 41 and 98, is just a 2-cycle without any
periphery. The other component has a 2-cycle (nodes 26 and 90) as its core that
supports a large periphery. Node 39 in Fig. 2l is eliminated at n = 3489. The
new node 39 (Fig. 2m) gets an incoming link from the periphery of the larger
component of the dominant ACS and an outgoing link to the core of the same
ACS. This results in expansion of the core, with several nodes getting added
to it at once and λ1 increasing. This example illustrates two distinct processes:

(i) This innovation co-opts a portion of the parasitic periphery into the core.
This strengthens cooperation: 26 contributes to the well being of 90 (and
hence to its own well being) along two paths in Fig. 2m instead of only
one in Fig. 2l. This is reflected in the increase of λ1; λ1 = 1.15 and 1 for
Figs. 2m and 2l respectively. The larger the periphery, the greater is the
probability of such core-enhancing innovations. This innovation is an
example of how tolerance and support of a parasitic periphery pays off
for the ACS. Part of the parasitic periphery turns symbiont. Note that
this innovation builds upon the structure generated by previous incre-
mental innovations. In Fig 1b each rise in λ1 indicates an enlargement
of the core [15, 12]. There are 40 such events in this run. As a result of
a series of such innovations which add to the core and periphery, the
dominant ACS eventually grows to span the entire graph at n = 3880,
Fig 2n, and the system enters the ‘organized phase’.

(ii) This example also highlights the competition between different ACSs.
The 2-cycle of nodes 41 and 98 was populated in Fig. 2l, but is unpopu-
lated in Fig. 2m. Since the core of the other ACS becomes stronger than
this two cycle, the latter is driven out of business.
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1.6.5
Core-shift 1: Takeover by a new competitor

Interestingly, the same cycle of nodes 41 and 98 that is driven out of business
at n = 3489, had earlier (when it first arose at n = 3387) driven the 2-cycle of
nodes 26 and 90 out of business. Upto n = 3386 (Fig. 2h), the latter 2-cycle was
the only cycle in the graph. At n = 3387 node 41 was replaced and formed a
new 2-cycle with node 98 (Fig. 2i). Note that at n = 3387 only the new 2-cycle
is populated; all the nodes of the ACS that was dominant at the previous time
step (including its core) are unpopulated. We call such an event, where there is
no overlap between the old and the new cores, a core shift (a precise definition
is given in ref. [15]). This innovation is an example of how a new competitor
takes over.

Why does the new 2-cycle drive the old one to extinction? The reason is
that the new 2-cycle is downstream of the old one (node 41 has also acquired
an incoming link from node 39; thus there exists a directed path from the old
cycle to the new one, but none from the new to the old). Both 2-cycles have the
same intrinsic strength, but the new 2-cycle does better than the old because it
draws sustenance from the latter without feeding back. In general if the graph
contains two non-overlapping irreducible subgraphs A and B, let λ1(A) and
λ1(B) be the largest eigenvalues of the submatrices corresponding to A and
B. If λ1(A) > λ1(B), then A wins (i.e., in the attractor of (1.1), nodes of A
and all nodes downstream of A are populated), and nodes of B are populated
if B is downstream of A and unpopulated otherwise. When λ1(A) = λ1(B),
then if A and B are disconnected, both are populated, and if one of them is
downstream of the other, it wins and the other is unpopulated [15, 12]. At
n = 3387 the latter situation applies (the λ1 of both cycles is 1, but one is
downstream of the other; the downstream cycle wins at the expense of the
upstream one). Examples of new competitors taking over because their λ1 is
higher than that of the existing ACS are also seen in the model.

In the displayed run, two core shift of this kind occurred. The first was at
n = 3387 which has been discussed above. One more occurred at n = 6062
which was of an identical type with a new downstream 2-cycle driving the
old 2-cycle to extinction. Both these events resulted in a sharp drop in s1 (Fig.
1b). A core-shifting innovation is a traumatic event for the old core and its
periphery. This is reminiscent of the demise of the horse-drawn carriage in-
dustry upon the appearance of the automobile, or the decimation of anaerobic
species upon the advent of aerobic ones.

At n = 3403 (Fig 2k) an interesting event (that is not an innovation) hap-
pens. Node 38 is hit and the new node 38 has no incoming link. This cuts
the connection that existed earlier (see Fig. 2j) between the cycle 98-41 and
the cycle 26-90. The graph now has two disjoint ACSs with the same λ1 (see
Fig 2k). As mentioned above, in such a situation both ACSs coexist; the cycle
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26-90 and all nodes dependent on it once again become populated. Thus the
old core has staged a ‘come-back’ at n = 3402, levelling with its competitor.
As we saw in the previous subsection, at n = 3489 the descendant of this orga-
nization strengthens its core and in fact drives its competitor out of business
(this time permanently).

It is interesting that node 38, though unpopulated still plays an important
role in deciding the structure of the dominant ACS. It is purely a matter of
chance that the core of the old ACS, the cycle 26-90, did not get hit before node
38. (All nodes with Xi = 0 have an equal probability of being replaced in the
model.) If it had been destroyed between n = 3387 and 3402, then nothing
interesting would have happened when node 38 was removed at n = 3403.
In that case the new competitor would have won. Examples of that are also
seen in the runs. In either case an ACS survives and expands until it spans the
entire graph. It is worth noting that while overall behaviour like the growth of
ACSs (including their average time scale of growth) is predictable, the details
are shaped by historical accidents.

1.6.6
Core-shift 2: Takeover by a dormant innovation

A different kind of innovation occurs at n = 4696. At the previous time step,
node 36 is the least populated (Fig. 2o). The new node 36 forms a two cycle
with node 74 (Figs. 2p). This 2-cycle remains part of the periphery since it
does not feed back into the core; this is an incremental innovation at this time
since it does not enhance λ1. However, because it generates a structure that is
intrinsically self-sustaining (a 2-cycle) this innocuous innovation is capable of
having a dramatic impact in the future.

At n = 5041, Fig 2q, the core has shrunk to 5 nodes (the reasons for this
decline are briefly discussed later). The 36-74 cycle survives in the periphery
of the ACS. Now it happens that node 85 is one of those with the least Xi and
gets picked for removal at n = 5042. Thus of the old core only the 2-cycle 26-90
is left. But this is now upstream from another 2-cycle 74-36 (see Fig 2r). This
is the same kind of structure as discussed above, with one cycle downstream
from another. The downstream cycle and its periphery wins; the upstream
cycle and all other nodes downstream from it except nodes 36, 74 and 11 are
driven to extinction. This event is also a core shift and is accompanied by a
huge crash in the s1 value (see Fig. 1b). This kind of an event is what we
call a ‘takeover by a dormant innovation’ [12]. The innovation 36-74 occurred
at n = 4696. It lay dormant until n = 5042 when the old core had become
sufficiently weakened so that this dormant innovation could take over as the
new core.
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In this run 5 of the 1070 innovations were dormant innovations. Of them
only the one at n = 4696 later caused a core shift of the type discussed above.
The others remained as incremental innovations.

At n = 8233 a ‘complete crash’ occurs. The core is a simple 3-cycle (Fig. 2s)
at n = 8232 and node 50 is hit, completely destroying the ACS. λ1 drops to
zero accompanied by a large crash in s1. Within O(s) time steps most nodes
are hit and replaced and the graph has become random like the initial graph.
The resemblance between the initial graph at n = 1 (Fig 2a) and the graph at
n = 10000 (Fig 2u) is evident. This event is not an innovation but rather the
elimination of a ‘keystone species’ [12].

1.7
Recognizing innovations: a structural classification

The 6 categories of innovations discussed above occur in all the runs of the
model and their qualitative effects are the same as described above. The above
description was broadly ‘chronological’. We now describe these innovations
structurally. Such a description allows each type of innovation to be recog-
nized the moment it appears; one does not have to wait for its consequences
to be played out. The structural recognition in fact allows us to predict quali-
tatively the kinds of impact it can have on the system. A mathematical classi-
fication of innovations is given in Appendix B; the description here is a plain
English account of that (with some loss of precision).

As is evident from the discussion above, positive feedback loops or coop-
erative structures in the graph crucially affect the dynamics. The character of
an innovation will also depend upon its relationship with previously exist-
ing feedback loops and the new feedback loops it creates, if any. Structurally
an ‘irreducible subgraph’ captures the notion of feedback in a directed graph.
By definition, since there exists a directed path (in both directions) between
every pair of nodes belonging to an irreducible subgraph, each node ‘exerts
an influence’ on the other (albeit possibly through other intermediaries).

Thus the first major classification depends on whether the new node cre-
ates a new cycle and hence a new irreducible subgraph, or not. One way of
determining whether it does so is to identify the nodes ‘downstream’ of the
new node (namely those to which there is a directed path from this node) and
those that are ‘upstream’ (from which there is a directed path to this node). If
the intersection of these two sets is empty the new node has not created any
new irreducible subgraph, otherwise it has.

A. Innovations in which the new node does not create any new cycles and hence
no new irreducible subgraph is created. These innovations will have a rela-
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tively minor impact on the system. There are two subclasses here which
depend upon the context: whether an irreducible subgraph already ex-
ists somewhere else in the graph or not.

A1. Before the innovation, the graph does not contain an irreducible subgraph.
Then the innovation is a shortlived one discussed in section 6.1
(Figs. 2b,c). There is no ACS before or after the innovation. The
largest eigenvalue λ1 of the adjacency matrix of the graph being
zero both before and after such an innovation is a necessary and
sufficient condition for it to be in this class. Such an innovation is
doomed to die when the first ACS arises in the graph for the rea-
sons discussed in the previous section.

A2. Before the innovation an irreducible subgraph already exists in the graph.
One can show that such an innovation simply adds to the periphery
of the existing dominant ACS, leaving the core unchanged. Here
the new node gets a non-zero Xk because it receives an incoming
link from one of the nodes of the existing dominant ACS; it has
effectively latched on to the latter like a parasite. This is an incre-
mental innovation (section 6.3, Figs. 2f,g). It has a relatively minor
impact on the system at the time it appears. Since it does not mod-
ify the core, the ratios of the Xi values of the core nodes remain
unchanged. However, it does eat up some resources (since Xk > 0)
and causes an overall decline in the Xi values of the core nodes. λ1
is nonzero and does not change in such an innovation.

B. Innovations that do create some new cycle. Thus a new irreducible sub-
graph gets generated. Because these innovations create new feedback
loops, they have a potentially greater impact. Their classification de-
pends upon whether or not they modify the core and the extent of the
modification caused; this is directly correlated with their immediate im-
pact.

B1. The new cycles do not modify the existing core. If the new irreducible
subgraph is disjoint from the existing core and its intrinsic λ1 less
than that of the core, then the new irreducible subgraph will not
modify the existing core but will become part of the periphery. Like
incremental innovations, such innovations cause an overall decline
in the Xi values of the core nodes but do not disturb their ratios and
the value of λ1. However, they differ from incremental innovations
in that the new irreducible subgraph has self-sustaining capabili-
ties. Thus in the event of a later weakening of the core (through
elimination of some core nodes), these innovations have the poten-
tial of causing a core-shift wherein the irreducible graph generated
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in the innovation becomes the new core. At that point it would
typically cause a major crash in the number of populated species,
as the old core and all its periphery that is not supported by the
new core would become depopulated. Such innovations are the
dormant innovations (section 6.6, Figs. 2o,p). Note that not all dor-
mant innovations cause core-shifts. Most in fact play the same role
as incremental innovations.

B2. Innovations that modify the existing core. If the new node is part of
the new core, the core has been modified. The classification of such
innovations depends on the kind of core that exists before and the
nature of the modification.

B21. The existing core is non-empty, i.e., an ACS already exists before
the innovation in question arrives.

B211. The innovation strengthens the existing core. In this case the
new node receives an incoming link from the existing dom-
inant ACS and has an outgoing link to the existing core.
The existing core nodes get additional positive feedback,
and λ1 increases. Such an event can cause some mem-
bers of the parasitic periphery to be co-opted into the core.
These are the core-enhancing innovations discussed in sec-
tion 6.4 (Figs. 2l,m).

B212. The new irreducible subgraph is disjoint from the existing core
and ‘stronger’ than it. ‘Stronger’ means that the intrinsic
λ1 of the new irreducible graph is greater than or equal to
the λ1 of the existing core, and in the case of equality it is
downstream from the existing core. Then it will destabilize
the existing core and become the new core itself, causing a
core-shift. The takeovers by new competitors, discussed in
section 6.5 (Figs. 2h,i) belong to this class.

B22. The existing core is empty, i.e., no ACS exists before the arrival
of this innovation. Then the new irreducible graph is the core
of the new ACS that is created at this time. This event is the
beginning of a self-organizing phase of the system. This is the
birth of an organization discussed in section 6.2 (Figs. 2d,e).
This is easily recognized graph theoretically as λ1 jumps from
zero to a positive value.

Note that the ‘recognition’ of the class of an innovation is contingent upon
knowing graph theoretic features like the core, periphery, λ1, and being able
to determine the irreducible graph created by the innovation.

The above rules are an analytic classification of all innovations in the model,
irrespective of values of the parameters p and s. Note, however, that their
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relative frequencies depend upon the parameters. In particular, innovations
of class A require the new node to have at least one link (an incoming one) and
class B require at least two links (an incoming and an outgoing one). Thus as
the connection probability p declines, for fixed s, the latter innovations (the
more consequential ones) become less likely.

1.8
Some possible general lessons

In this model, due to the simplicity of the population dynamics, it is possi-
ble to make an analytic connection between the graph structure produced by
various innovations and their subsequent effect on the short and long term
dynamics of the system. In addition, we are able to completely enumerate the
different types of innovations and classify them purely on the basis of their
graph structure. Identifying innovations and understanding their effects is
much more complicated in real world processes in both biological and social
systems. Nevertheless, the close parallel between the qualititive categories of
innovation we find in our model and real world examples means that there
may be some lessons to be learnt from this simple mathematical model.

One broad conclusion is that in order to guess what might be an innova-
tion, we need an understanding of how the patterns of connectivity influence
system dynamics and vice versa. The inventor of a new product or a ven-
ture capitalist asks: what inputs will be needed, and whose needs will the
product connect to? Given these potential linkages in the context of other ex-
isting nodes and links, what flows will actually be generated along the new
links? How will these new flows impact the generation other new nodes and
links and the death of existing ones and how that will feed back into the flows
again? The detailed rules of this dynamics are system dependent, but presum-
ably successful entrepreneurs have an intuitive understanding of this very dy-
namics.

In our model, as in real processes, there are innovations which have an im-
mediate impact on the dynamics of the system (e.g., the creation of the first
ACS and core-shifting innovations) and ones which have little or no immedi-
ate impact. Innovation in real processes analogous to the former are probably
easier to identify because they cause the dynamics of the system to imme-
diately change dramatically (in this model, triggering a new round of self-
organized growth around a new ACS). Of the latter, the most interesting inno-
vations are the ones which eventually do have a large impact on the dynamics:
the dormant innovations. In this model dormant innovations sometimes lead
to a dramatic change in the dynamics of the system at a later time. This sug-
gests that in real world processes too it might be important, when observing
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a sudden change in the dynamics, to examine innovations which occurred
much before the change. Of course, in the model and in real processes, there
are innovations which have nothing to do with any later change in the dynam-
ics. In real processes it would be very difficult to distinguish such innovations
from dormant innovations which do cause a significant impact on the dynam-
ics. The key feature distinguishing a dormant innovation from incremental
innovations in this model is that a dormant innovation creates an irreducible
structure which can later become the core of the graph.

This suggests that in real world processes it might be useful to find an anal-
ogy of the core and periphery of the system and then focus on innovations
or processes which alter the core or create structures which could become the
core. In the present model, it is possible to define the core in a purely graph
theoretic manner. In real systems it might be necessary to define the core in
terms of the dynamics. One possible generalization is based on the observa-
tion that removal of a core node causes the population growth rate to reduce
(due to the reduction of λ1) while the removal of a periphery node leaves
λ1 unchanged. This could be used as an algorithmic way of identifying core
nodes or species in more complex mathematical models, or in real systems
where such testing is possible.

1.9
Discussion

As in real systems, the model involves an interplay between the force of selec-
tion that weeds out underperforming nodes, the influx of novelty that brings
in new nodes and links, and an internal (population) dynamics that depends
upon the mutual interactions. In an environment of non-autocatalytic struc-
tures, a small ACS is very successful and drives the other nodes to the status
of ‘have-nots’ (Xi = 0). The latter are eliminated one by one, and if their re-
placements ‘latch on’ to the ACS, they survive, else they suffer the same fate.
The ACS ‘succeeds’ spectacularly: eventually all the nodes join it. But this sets
the stage for enhanced internal competition between the members of the ACS.
Before the ACS spanned the graph, only have-nots, nodes outside the domi-
nant ACS, were eliminated. After spanning the eliminated node must be one
of the ‘haves’, a member of the ACS (whichever has the least Xi). This internal
competition weakens the core and enhances the probability of collapse due
to core-transforming innovations or elimination of keystone species. Thus the
ACS’s very success creates the circumstances that bring about its destruction6.
Both its success, and a good part of its destruction, is due to innovations (see
also [12]).

6) For related discussion of discontinuous transitions in other systems,
see [21, 22, 23]
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It is of course true that we can describe the behaviour of the system in terms
of attractors of the dynamics as a function of the graph without recourse to
the word ‘innovation’. The advantage in introducing the notion of innovation
as defined above is that it captures a useful property of the dynamics in terms
of which many features can be readily described. Further, we hope that the
examples discussed above make out a reasonable case that this notion of in-
novation is sufficiently close (as close as is possible in an idealized model such
as this) to the real thing to help in discussions of the latter.

In the present model, the links of the new node are chosen randomly from
a fixed probability distribution. This might be appropriate for the prebiotic
chemical scenario for which the model was constructed, but is less appro-
priate for biological systems and even less for social systems. While there is
always some stochasticity, in these systems the generation of novelty is condi-
tioned by the existing context, and in social systems also by the intentionality
of the actors. Thus the ensemble of choices from which the novelty is drawn
also evolves with the system. This feedback from the recent history of system
states to the ensemble of system perturbations though not implemented in the
present version of the model, certainly deserves future investigation.

Appendix A: Definitions and Proofs

In this Appendix we collect some useful facts about the model. These and
other properties can be found in [5, 16, 17, 13]

Derivation of equation 1.1

Let i ∈ {1, . . . , s} denote a chemical (or molecular) species in a well-stirred
chemical reactor. Molecules can react with one another in various ways; we
focus on only one aspect of their interactions: catalysis. The catalytic interac-
tions can be described by a directed graph with s nodes. The nodes represent
the s species and the existence of a link from node j to node i means that
species j is a catalyst for the production of species i. In terms of the adjacency
matrix, C = (cij) of this graph, cij is set to unity if j is a catalyst of i and is set
to zero otherwise. The operational meaning of catalysis is as follows:

Each species i will have an associated non-negative population yi in the
reactor that changes with time. Let species j catalyze the ligation of reactants A

and B to form the species i, A + B
j→ i. Assuming that the rate of this catalyzed

reaction is given by the Michaelis-Menten theory of enzyme catalysis, ẏi =
Vmaxab

yj
KM+yj

[24], where a, b are the reactant concentrations, and Vmax and
KM are constants that characterize the reaction. If the Michaelis constant KM
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is very large this can be approximated as ẏi ∝ yjab. Combining the rates of
the spontaneous and catalyzed reactions and also putting in a dilution flux φ,
the rate of growth of species i is given by ẏi = k(1 + νyj)ab− φyi, where k is
the rate constant for the spontaneous reaction, and ν is the catalytic efficiency.
Assuming the catalyzed reaction is much faster than the spontaneous reaction,
and that the concentrations of the reactants are non-zero and fixed, the rate
equation becomes ẏi = Kyj − φyi, where K is a constant. In general because
species i can have multiple catalysts, ẏi = ∑s

j=1 Kijyj − φyi, with Kij ∼ cij. We
make the further idealization Kij = cij giving:

ẏi =
s

∑
j=1

cijyj − φyi. (1.2)

The relative population of species i is by definition xi ≡ yi/ ∑s
j=1 yj. As

0 ≤ xi ≤ 1, ∑s
i=1 xi = 1, x ≡ (x1, . . . , xs)T ∈ J. Taking the time derivative of xi

and using (1.2) it is easy to see that ẋi is given by (1.1). Note that the φ term,
present in (1.2), cancels out and is absent in (1.1).

The attractor of equation 1.1

A graph described by an adjacency matrix, C, has an eigenvalue λ1(C) which
is a real, positive number that is greater than or equal to the modulus of all
other eigenvalues. This follows from the Perron-Frobenius theorem[20] and
this eigenvalue is called the Perron-Frobenius eigenvalue of C.

The attractor X of equation 1.1 is an eigenvector of C with eigenvalue λ1(C).
Since (1.1) does not depend on φ, we can set φ = 0 in (1.2) without loss of
generality for studying the attractors of (1.1). For fixed C the general solution
of (1.2) is y(t) = eCty(0), where y denotes the s dimensional column vector of
populations. It is evident that if yλ ≡ (yλ

1 , . . . , yλ
s ) viewed as a column vector

is a right eigenvector of C with eigenvalue λ, then xλ ≡ yλ/ ∑s
i yλ

i is a fixed
point of (1.1). Let λ1 denote the eigenvalue of C which has the largest real part;
it is clear that xλ1 is an attractor of (1.1). By the theorem of Perron-Frobenius
for non-negative matrices [20] λ1 is real and ≥ 0 and there exists an eigenvec-
tor xλ1 with xi ≥ 0. If λ1 is nondegenerate, x˘1 is the unique asymptotically
stable attractor of (1.1), xλ1 = (X1, . . . , Xs).

The attractor of equation 1.1 when there are no cycles
For any graph with no cycles, in the attractor only the nodes at the ends of the longest
paths have non-zero Xi. All other nodes have zero Xi.
Consider a graph consisting only of a linear chain of r + 1 nodes, with r links,
pointing from node 1 to node 2, node 2 to 3, etc. The node 1 (to which there
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is no incoming link) has a constant population y1 because the r.h.s of (1.2)
vanishes for i = 1 (taking φ = 0). For node 2, we get ẏ2 = y1, hence
y2(t) = y2(0) + y1t ∼ t for large t. Similarly, it can be seen that yk grows
as tk−1. In general, it is clear that for a graph with no cycles, yi ∼ tr for large
t (when φ = 0), where r is the length of the longest path terminating at node
i. Thus, nodes with the largest r dominate for sufficiently large t. Because the
dynamics (1.1) does not depend upon the choice of φ, Xi = 0 for all i except
the nodes at which the longest paths in the graph terminate.

Graph-theoretic properties of ACSs

(i) An ACS must contain a closed walk.
(ii) If a graph, C, has no closed walk then λ1(C) = 0.
(iii) If a graph, C, has a closed walk then λ1(C) ≥ 1. Consequently,
(iv) If a graph C has no ACS then λ1(C) = 0.
(v) If a graph C has an ACS then λ1(C) ≥ 1.

(i) Let A be the adjacency matrix of a graph that is an ACS. Then by defi-
nition, every row of A has at least one non-zero entry. Construct A′ by
removing, from each row of A, all non-zero entries except one that can
be chosen arbitrarily. Thus A′ has exactly one non-zero entry in each
row. Clearly the column vector x = (1, 1, . . . , 1)T is an eigenvector of
A′ with eigenvalue 1 and hence λ1(A′) ≥ 1. Proposition 2.1 therefore
implies that A′ contains a closed walk. Because the construction of A′
from A involved only removal of some links, it follows that A must also
contain a closed walk.

(ii) If a graph has no closed walk then all walks are of finite length. Let the
length of the longest walk of the graph be denoted r. If C is the adja-
cency matrix of a graph then (Ck)ij equals the number of distinct walks
of length k from node j to node i. Clearly Cm = 0 for m > r. Therefore all
eigenvalues of Cm are zero. If λi are the eigenvalues of C then λk

i are the
eigenvalues of Ck. Hence, all eigenvalues of C are zero, which implies
λ1 = 0. This proof was supplied by V. S. Borkar.

(iii) If a graph has a closed walk then there is some node i that has at least
one closed walk to itself, i.e. (Ck)ii ≥ 1, for infinitely many values of k.
Because the trace of a matrix equals the sum of the eigenvalues of the
matrix, ∑s

i=1(Ck)ii = ∑s
i=1 λk

i , where λi are the eigenvalues of C. Thus,
∑s

i=1 λk
i ≥ 1, for infinitely many values of k. This is only possible if one
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of the eigenvalues λi has a modulus ≥ 1. By the Perron-Frobenius theo-
rem, λ1 is the eigenvalue with the largest modulus, hence λ1 ≥ 1. This
proof was supplied by R. Hariharan.

(iv) and (v) follow from the above.

Dominant ACS of a graph

If a graph has (one or more) ACSs, i.e., λ1 ≥ 1, then the subgraph corresponding to
the set of nodes i for which Xi > 0 is an ACS. Renumber the nodes of the graph
so that xi > 0 only for i = 1, . . . , k. Let C be the adjacency matrix of this
graph. Since X is an eigenvector of the matrix C, with eigenvalue λ1, we have
∑s

j=1 cijXj = λ1Xi ⇒ ∑k
j=1 cijXj = λ1Xi. Since Xi > 0 only for i = 1, . . . , k

it follows that for each i ∈ {1, . . . , k} there exists a j such that cij > 0. Hence
the k × k submatrix C′ ≡ (cij), i, j = 1, . . . , k has at least one non-zero entry
in each row. Thus each node of the subgraph corresponding to this submatrix
has an incoming link from one of the other nodes in the subgraph. Hence the
subgraph is an ACS. We call this subgraph the ‘dominant ACS’ of the graph.

Timescales for appearance and growth of the dominant ACS.

The probability for an ACS to be formed at some graph update in a graph
which has no cycles, can be closely approximated by the probability of a 2-
cycle (the simplest ACS with 1-cycles being disallowed) forming by chance,
which is p2s (= the probability that in the row and column corresponding to
the replaced node in C, any matrix element and its transpose are both assigned
unity). Thus, the ‘average time of appearance’ of an ACS is τa = 1/p2s, and
the distribution of times of appearance is P(na) = p2s(1 − p2s)na−1. This
approximation is better for small p.

Assuming that possibility of a new node forming a second ACS is rare
enough to neglect, and that the dominant ACS grows by adding a single node
at a time, one can estimate the time required for it to span the entire graph.
Let the dominant ACS consist of s1(n) nodes at time n. The probability that
the new node gets an incoming link from the dominant ACS and hence joins
it is ps1. Thus in ∆n graph updates, the dominant ACS will grow, on aver-
age, by ∆s1 = ps1∆n nodes. Therefore s1(n) = s1(na)exp((n− na)/τg), where
τg = 1/p, na is the time of appearance of the first ACS and s1(na) is the size of
the first ACS. Thus s1 is expected to grow exponentially with a characteristic
timescale τg = 1/p. The time taken from the appearance of the ACS to its
spanning is τg ln(s/s1(na)).
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Appendix B: Graph Theoretic Classification of Innovations

In the main text we defined an innovation to be the new structure created by
the addition of a new node, when the new node has a non-zero population in
the new attractor. Here, we present a graph-theoretic hierarchical classifica-
tion of innovations (see Fig. 3). At the bottom of this hierarchy we recover the
six categories of innovations described in the main text.

Some notation: We need to distinguish between two graphs, one just before
the new node is inserted, and one just after. We denote them by Ci and C f
respectively, and their cores by Qi and Q f . Note that a graph update event
consists of two parts – the deletion of a node and the addition of one. Ci is the
graph after the node is deleted and before the new node is inserted. The graph
before the deletion will be denoted C0; Q0 will denote its core7. If a graph has
no ACS, its core is the null set.

The links of the new node may be such that new cycles arise in the graph
(that were absent in Ci but are present in C f ). In this case the new node is part
of a new irreducible subgraph that has arisen in the graph. N will denote the
maximal irreducible subgraph which includes the new node. If the new node
does not create new cycles, N = Φ. If N 6= Φ, then N will either be disjoint
from Q f or will include Q f (it cannot partially overlap with Q f because of
its maximal character). The structure of N and its relationship with the core
before and after the addition determines the nature of the innovation. With
this notation all innovations can be grouped into two classes:

A. Innovations that do not create new cycles, N = Φ. This implies Q f =
Qi because no new irreducible structure has appeared and therefore the
core of the graph, if it exists, is unchanged.

B. Innovations that do create new cycles, N 6= Φ. This implies Q f 6= Φ
because if a new irreducible structure is created then the new graph has
at least one ACS and therefore a non-empty core.

Class A can be further decomposed into two classes:

A1. Qi = Q f = Φ. In other words, the graph has no cycles both before
and after the innovation. This corresponds to shortlived innovations
discussed in section 6.1 (Figs. 2b,c).

7) Most of the time the deleted node (being the one with the least rel-
ative population) is outside the dominant ACS of C0 or in its pe-
riphery. Thus, in most cases the core is unchanged by the deletion:
Qi = Q0. However sometimes the deleted node belongs to Q0. In
that case Qi 6= Q0. In most such cases, Qi is a proper subset of Q0. In
very few (but important) cases, Qi ∩ Q0 = Φ (the null set). In these
latter cases, the deleted node is a ‘keystone node’ [15]; its removal
results in a ‘core shift’.
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A2. Qi = Q f 6= Φ. In other words, the graph had an ACS before the innova-
tion, and its core was not modified by the innovation. This corresponds
to incremental innovations discussed in section 6.3 (Figs. 2f,g).

Class B of innovations can also be divided into two subclasses:

B1. N 6= Q f . If the new irreducible structure is not the core of the new
graph, then N must be disjoint from Q f . This can only be the case if the
old core has not been modified by the innovation. Therefore N 6= Q f
necessarily implies that Q f = Qi. This corresponds to dormant innova-
tions discussed in section 6.6 (Figs. 2o,p).

B2. N = Q f , i.e., the innovation becomes the new core after the graph up-
date. This is the situation where the core is transformed due to the inno-
vation.

The ‘core-transforming theorem’ [12, 17, 13] states that an innovation of
type B2 occurs whenever either of the following conditions are true:

(a) λ1(N) > λ1(Qi) or,

(b) λ1(N) = λ1(Qi) and N is downstream of Qi.

Class B2 can be subdivided as follows:

B21. Qi 6= Φ, i.e., the graph contained an ACS before the innovation.
In this case an existing core is modified by the innovation.

B22. Qi = Φ, i.e., the graph had no ACS before the innovation.
Thus, this kind of innovation creates an ACS in the graph. It
corresponds to the birth of a organization discussed in section
6.2 (Figs. 2d,e).
Finally, class B21 can be subdivided:

B211. Qi ⊂ Q f . When the new core contains the old core as a
subset we get an innovation that causes the growth of the
core, discussed in section 6.4 (Figs. 2l,m).

B212. Qi and Q f are disjoint (Note that it is not possible for Qi
and Q f to partially overlap, else they would form one big
irreducible set which would then be the core of the new
graph and Qi would be a subset of Q f ). This is an innova-
tion where a core-shift is caused due to a takeover by a new
competitor, discussed in section 6.5 (Figs. 2h,i).
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Note that each branching above is into mutually exclusive and exhaustive
classes. This classification is completely general and applicable to all runs of
the system. Fig. 3 shows the hierarchy obtained using this classification.
Acknowledgement
S. J. would like to thank John Padgett for discussions.
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Figure legends

Figure 1. A run with parameter values s = 100 and p = 0.0025. The x-axis
shows time, n (= number of graph updates). Fig. 1a shows the number of
links in the graph as a function of time. In Fig. 1b, the continuous line shows
s1, the number of populated species in the attractor (= the number of non-zero
components of Xi) as a function of time. The dotted line shows λ1, the largest
eigenvalue of C as a function of time. (The λ1 values shown are 100 times the
actual λ1 value.)

Figure 2. The structure of the evolving graph at various time instants for the
run depicted in Fig. 1. Examples of several kinds of innovation and their
consequences for the evolution of the system are shown (see text for details).
Nodes with Xi = 0 are shown in white; according to the evolution rules all
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white nodes in a graph are equally likely to be picked for replacement at the
next graph update. Black and grey nodes have Xi > 0. Thus the number of
black and grey nodes in an graph equals s1, plotted in Fig. 1b. Black nodes
correspond to the core of the dominant ACS and grey nodes to its periphery.
Only mutual links among the nodes are of significance, not their spatial loca-
tion which is arranged for visual convenience. The graphs are drawn using
LEDA.

Figure 3. A hierarchy of innovations. Each node in this binary tree represents
a class of node addition events. Each class has a name; the small box con-
tains the mathematical definition of the class. All classes of events except the
leaves of the tree are subdivided into two exhaustive and mutually exclusive
subclasses represented by the two branches emanating downwards from the
class. The number of events in each class pertain to the run of Figure 1 with a
total of 9999 graph updates, between n = 1 (the initial graph) and n = 10000.
In that run, out of 9999 node addition events, most (8929 events) are not inno-
vations. The rest (1070 events), which are innovations, are classified according
to their graph theoretic structure. The classification is general; it is valid for
all runs. Xk is the relative population of the new node in the attractor of (1.1).
N stands for the new irreducible subgraph, if any, created by the new node. If
the new node causes a new irreducible subgraph to be created, N is the maxi-
mal irreducible subgraph that includes the new node. If not, N = Φ (where Φ
stands for the empty set). Qi is the core of the graph just before the addition of
the node and Q f the core just after the addition of the node. The six leaves of
the innovation subtree are numbered (below the corresponding box) accord-
ing to the subsection in which they discussed in the main text. The graph
theoretic classes A, B, A1, B1, etc., are described in section 7 and Appendix B.
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