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Abstract. Many complex adaptive systems contain a large diversity of specialized
components. The specialization at the level of the microscopic degrees of freedom,
and diversity at the level of the system as a whole are phenomena that appear
during the course of evolution of the system. We present a mathematical model to
describe these evolutionary phenomena in economic communities. The model is a
generalization of the replicator equation. The economic motivation for the model
and its relationship with some other game theoretic models applied to ecology and
sociobiology is discussed. Some results about the attractors of this dynamical system
are described. We argue that while the microscopic variables – the agents comprising
the community – act locally and independently, time evolution produces a collective
behaviour in the system characterized by individual specialization of the agents
as well as global diversity in the community. This occurs for generic values of the
parameters and initial conditions provided the community is sufficiently large, and
can be viewed as a kind of self-organization in the system. The context dependence
of acceptable innovations in the community appears naturally in this framework.
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1. Introduction

Several complex adaptive systems in the course of their evolution exhibit the phe-
nomenon that the individual components comprising the system evolve to perform
highly specialized tasks whereas the system as a whole evolves towards greater diver-
sity in terms of the kinds of components it contains or the tasks that are performed
in it. Here are some examples:

1. Living systems are made of cells, which in turn are made of molecules. Among
the various types of molecules are the proteins. Each type of protein molecule
has evolved to perform a very specific task, e.g., catalyse a specific reaction in the
cell. At the same time, during the course of evolution, diverse kinds of protein
molecules have appeared – the range of specialized tasks being performed by
protein molecules has increased.

2. In an ecology, species with highly specialized traits appear (e.g., butterflies with
a specific pattern of spots on their wings). Simultaneously, the ecology evolves
to support a diverse variety of specialized species.

3. Many early human societies (such as hunter-gatherer societies) were perhaps
characterized by the fact that there were relatively few chores (e.g., hunting,
gathering, defending, raising shelter) to be performed, and everyone in the com-
munity performed almost all the chores. These societies evolved to have special-
ist hunters, tool makers, farmers, carpenters, etc. Individuals specialized, and
simultaneously a diverse set of specialists appeared.

4. In an economic web, we find firms exploring and occupying increasingly spe-
cialized niches, while the web as a whole supports an increasingly diverse set of
specialists.

In the examples above the systems and their underlying dynamics are quite differ-
ent. But they all share the twin evolutionary phenomena of individual specialization
and global diversification. In all these systems, the nonlinear interaction among the
components seems to play a crucial role in the manifestation of this type of be-
haviour. For example, in an ecology, the development of highly specialized traits in
a species is a result of its interaction with and feedback from other species. In an
economic community, each agent’s choices depend upon feedback from exchanges
(of goods, money, etc.) with other agents. Moreover, there is no purposeful global
organizing agency which directs the behaviour of individual components and ordains
them to be specialists. The phenomenon happens ‘spontaneously’, arising from the
local moves made at the level of individual components. Similarly diversity also arises
as individuals capitalize on innovations – mutations, technological innovations, etc.
– which suit them in the existing context.

In this article, we describe a mathematical model which seems to exhibit the
above twin evolutionary phenomena. The (idealized) behaviour of agents in eco-
nomic communities provides the basic motivation of the model. The model consists
of a set of coupled nonlinear ordinary differential equations describing the time evo-
lution of the activities of individual agents. In the next section we motivate and
present the model and place it in the perspective of existing work. In section 3 we
define more precisely the notions of specialization and diversity in the context of
the model and outline what type of behaviour we are looking for. Essentially we
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are seeking attractors of the dynamical model that have the property of individual
specialization and global diversity. Section 4 states certain theorems and numerical
results for the attractors of the system and discusses their consequences. The results
imply that under certain conditions that do not destroy genericity in parameter
space, the desired attractors (in which the system exhibits individual specialization
and global diversity) exist and have basins of attraction that cover the entire config-
uration space. Thus the evolutionary phenomena mentioned above occur generically
in the model. In this section we also discuss self-organization and the emergence of
innovations in the model. Finally, section 5 contains a brief summary.

2. The model

The system is a community of N agents labeled by the index α = 1, 2, . . . , N . Each
agent can perform s strategies or activities labelled by i ∈ S = {1, 2, . . . , s}. At time
t, agent α performs strategy i with a probability pα

i (t),
∑s

i=1 pα
i (t) = 1. The vector

pα(t) = (pα
1 (t), pα

2 (t), . . . , pα
s (t)) is the mixed strategy profile of agent α at time t. In

particular, if pα
i (t) = δij , then the agent α is said to pursue the pure strategy j or

to have specialized in strategy j.
The vectors pα(t) constitute the basic dynamical variables of the model. The

equation governing their evolution is taken to be

ṗα
i (t) = pα

i (t)[
∑

β 6=α

s
∑

j=1

aijp
β
j (t) −

∑

β 6=α

s
∑

i,j=1

pα
i (t)aijp

β
j (t)]. (1)

Here aij denotes the ijth element of the s-dimensional payoff matrix A.
This dynamics is motivated as follows. Each agent is interacting pairwise with

all other agents and receiving a payoff at every interaction that depends on the
strategy pursued by each of the agents during that interaction. Each agent updates
her strategy profile based on the payoffs received, so as to increase her payoff at
subsequent interactions. In a time ∆t, agent α has a total of m∆t interactions with
every agent (m assumed constant). If in a particular interaction with agent β, agent
α plays pure strategy k and β plays pure strategy j, then the payoff to α is akj

(by the definition of payoff matrix elements). Since α plays the strategy k with

probability pα
k and β plays the strategy j with probability pβ

j , the average payoff to
α from the m∆t interactions with β is

m∆t
∑

k,j

pα
k (t)akjp

β
j (t).

The average payoff to α from the whole community is

m∆t
∑

β 6=α

∑

k,j

pα
k (t)akjp

β
j (t).

This is the second term in the [ ] in Eq. (1). We have assumed that ∆t is large
enough for there to be a statistically sufficient number of interactions m∆t so that
averages make sense. Yet it is small enough compared to the time scale at which
agents update their strategies so that pα

k can be considered constant during ∆t, i.e.,
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there is a separation of time scales between the individual interactions of agents
(which happen on a short time scale) and the time scale over which agents update
their strategy profile (a long time scale).

If agent α were to pursue not the mixed strategy profile pα during this interval
but instead the pure strategy i, then the payoff received during this period would
have been

m∆t
∑

β 6=α

∑

j

aijp
β
j (t).

This is the first term in the [ ] in Eq. (1). This quantity depends on i and for some i
will be greater than the average payoff and for some it will be less than the average
payoff. At the end of period ∆t, the agent α updates her strategy profile pα

i to
pα

i + ∆pα
i , adding a positive weight ∆pα

i to those strategies i that do better than
the average and a negative weight to those doing worse than the average. ∆pα

i /pα
i

is chosen to be proportional to the amount by which the pure strategy payoff differs
from the average payoff:

∆pα
i

pα
i

= cm∆t[
∑

β 6=α

∑

j

aijp
β
j (t) −

∑

β 6=α

∑

i,j

pα
i (t)aijp

β
j (t)]. (2)

Taking the limit ∆t → 0 and rescaling t by the factor cm, we recover Eq. (1).
Therefore the equation embodies the statement that at all times, all agents update
their individual mixed strategy profiles so as to increase their own payoffs in the
current environment of the strategy profiles of other agents.

The reason why ∆pα
i /pα

i and not just ∆pα
i appears in the l.h.s. of (2) is that the

dynamics must respect the probability interpretation of pα
i . If two pure strategies i

and i′ provide the same payoff to agent α, she must increment them in proportion
to their current strength in her profile. This is needed to ensure that pα(t) remains
normalized at all times,

∑s
i=1 pα(t) = 1. If we start with normalized pα, the pro-

portionality factor pα
i on the r.h.s of (1) ensures that it remains normalized, since

∑s
i=1 ṗα

i (t) = 0.
Thus, we have a community of N interacting agents, each responding to the rest

of the environment by updating their own profile according to the above dynamical
equation. This is a “non-cooperative game”. Agents act on their own (not in concert,
per se) and are selfish – their actions are designed to increase their own payoff,
without consideration for others or the community as a whole. Agents also exhibit
“bounded rationality” – they do not anticipate other agents’ future strategies, but
merely respond to the aggregate of the other agents’ current strategies. There is
no global organizing agency at work, the community evolves just through these
individual actions of the agents.

Nevertheless, we will argue that the community does exhibit a kind of global
organization under certain circumstances. If the community starts with some arbi-
trary initial condition in which each pα at t = 0 is specified (each agent starts with
some mixed strategy profile which could be different for different agents) and evolves
according to Eq. (1), it will settle down to some attractor of the dynamics. The orga-
nization referred to above is in the nature of the attractors. When the payoff matrix
elements satisfy certain inequalities, and when the size of the community is larger
than a certain finite bound that depends on the payoff matrix (i.e., N is sufficiently
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large), then we find that these attractors are characterized by each individual agent
having specialized to some pure strategy or the other, and at the same time the com-
munity as a whole retaining its full diversity of strategies, i.e., every pure strategy is
pursued by some agent or the other in the attractor configuration. Such attractors
seem, generically, to be the only stable attractors of the system under the above
conditions. Most of the time, we will consider the system with a fixed set of pure
strategies. At the end, we will mention applications of our results for the innovation
of new strategies. The instability of attractors in which the community does not
have the full diversity of available strategies provides a mechanism by which new
pure strategies, or innovations, can invade the system.

Before proceeding further, we would like to place this model in the perspective of
existing work in the subject. Consider the “homogeneous sector”, where all agents
have the same (but in general mixed) strategy profile: pα = x ∀ α. Then Eq. (1)
reduces to

ẋi(t) = xi(t)[
∑

j

aijxj(t) −
∑

k,j

xk(t)akjxj(t)](N − 1). (3)

The overall factor of N − 1 can be absorbed in a rescaling of time. This equa-
tion is the well known replicator equation [1]. It has applications in diverse fields
such as economics and sociobiology (where it models evolutionary games) macro-
molecular evolution (describing evolution of autocatalytic networks, in particular the
hypercyclic feedback), mathematical ecology (Eq. (3) maps onto the Lotka-Volterra
equation) and population genetics (where it is the continuous counterpart of the
discrete selection equation). This system exhibits a great diversity of solutions in-
cluding fixed points, limit cycles, heteroclinic cycles, etc. For more details, see [2]. In
these applications i labels strategies or species of molecules or organisms, depending
upon the application. xi represents the fraction of individuals of type i in a large
population, and Eq. (3) models the change of the composition of the population with
time.

Eq. (1) has been considered as a multi-population generalization of the replicator
dynamics and has been studied as such in the literature [2] [3]. The index α now labels
populations, e.g., α = 1 might correspond to a population of frogs, and α = 2 to a
population of insects. The idea here is to model the co-evolution of the populations of
frogs and insects in interaction with each other. p1

i now stands for the fraction of the
frog population with genotype i and p2

j for the fraction of the insect population with
genotype j. The indices i and j run over values s1 and s2 respectively which need
not be equal, and now there are two payoff matrices, one for the frogs, A1 = (a1

ij),

whose matrix element a1
ij equals the payoff to a frog of type i in an encounter with

an insect of type j, and another for the insects, A2 = (a2
ji) whose matrix element

a2
ji equals the payoff to the insect in the same encounter. The dynamics for the two

populations is now given by

ṗ1
i (t) = p1

i (t)[
s2
∑

j=1

a1
ijp

2
j(t) −

s1
∑

k=1

s2
∑

j=1

p1
k(t)akjp

2
j(t)],

ṗ2
j(t) = p2

j(t)[
s1
∑

i=1

a2
jip

1
i (t) −

s2
∑

k=1

s1
∑

i=1

p2
k(t)akip

1
i (t)]. (4)
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This is a so called ‘bimatrix game’ and reduces to Eq. (1) with N = 2, when
s1 = s2 = s and A1 = A2 = A.

Our interpretation of Eq. (1), presented earlier, is different from the “multi-
population” interpretation. The index α labels individuals and not populations. In
the multipopulation interpretation, individuals in each population are hard-wired to
be of some specific genotype, while the composition of the population is plastic and
subject to selection. For us, the composition of the mixed strategy profile of each
individual is subject to selection. In the multipopulation interpretation there is no
reason for A1 and A2 to be equal; frogs and insects are quite different. However a
single payoff matrix A is natural in the present context if the community consists
of N identical agents (identical in that the payoffs to agents in any interaction de-
pends on the strategies played in that interaction and not on the identity of the
agents). This allows us to study large communities (large N) without the simulta-
neous proliferation of parameters. To our knowledge, the interpretation of Eq. (1)
as modelling not N populations but a single community of N identical individuals
is new. While we make use of existing mathematical results for Eq. (1), the new
interpretation prompts us to investigate certain other mathematical properties of
the model which have not received attention. Since Eq. (1) is a generalization of
the replicator dynamics, we will refer to it as the generalized replicator dynamics
(GRD) whereas Eq. (3) will be referred to as pure replicator dynamics (PRD).

Note that in (4) frogs receive payoffs only from insects, not from other frogs,
and insects only from frogs, not from other insects. This is because the competition
among the different genotypes of frogs happens not directly, but indirectly via their
interactions and competition with insects: the more successful genotypes among frogs
might be the ones (depending upon the payoff matrix) which do better at capturing
insects. Similarly insects do not compete with each other directly but only with frogs;
the insect population profile evolves because some insect genotypes do better than
others at, say, evading frogs. A similar justification might be provided for agents
in the present context. A single isolated agent has no competition and hence no
motivation to change her strategy profile. There is no direct competition among
the weights of different pure strategies within the strategy profile of a single agent;
this competition and consequent evolution arises indirectly because of the external
pressure on the agent from the other agents. A firm that produces a number of
goods in the economy need not change its production profile if there are no other
producers. But if other producers enter the fray, the firm may need to change (say,
specialize in the production of a few items), in order to compete effectively. This
feature is captured in the model by the exclusion of the β = α term on the r.h.s. of
(1) – agents don’t compete with themselves but with other agents. We will see later
that this property is important for the emergence of specialization in the model.

A well known example is the “Hawk-dove game” [4], in which there are two
pure strategies, “hawk” (i = 1) and “dove” (i = 2). The payoff matrix elements are
a11 = (g − c)/2, a12 = g, a21 = 0, and a22 = g/2, with (typically) c > g > 0. In this
game individuals interact pairwise and every interaction is a competition for some
resource. In an interaction, a hawk always escalates and fights, irrespective of what
the opponent does. A dove “displays”, but retreats if the opponent escalates. Thus
when hawk meets dove, the dove always retreats and gets zero payoff, while the hawk
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gains a payoff g from the resource. When dove meets dove, both have equal chance of
getting the resource or retreating, hence the average payoff to each party in such an
encounter is g/2. When hawk meets hawk, there is a fight, and with equal probability
one wins without injury and gains g, while the other retreats with an injury resulting
in a cost c. The average payoff in hawk-hawk encounters to each party is therefore
(g− c)/2. It is instructive to contrast the treatment of this game in PRD and GRD.
In the former, there is a large population of individuals, each hardwired to be pure
hawk or pure dove in every encounter. The fraction of the population that is hawk,
x1, and the fraction that is dove, x2 = 1 − x1, evolves according to (3) in response
to selection pressure and birth/death processes. The point (x1, x2) = (g, c − g)/c is
a stable equilibrium of (3), and generically, the population ends up in this attractor,
i.e., with a ratio of hawks to doves being g/(g−c). In GRD, one would have N agents,
each allowed to play both hawk and dove strategy in an encounter with the respective
probabilities pα

1 and pα
2 . It is not obvious that each agent will end up specializing in

a pure hawk or pure dove strategy, but that is what does happen. A consequence
of one of the theorems to be described later is that the only stable attractor of this
GRD is a configuration where agents tend to distribute themselves in a pure hawk
or pure dove strategy roughly in the ratio g/(c − g) for finite N , and exactly in
this ratio as N → ∞. Thus individual specialization, which was true by assumption
in PRD, is a dynamical outcome in GRD. Moreover, while individuals specialize in
their self interest to some pure strategy or the other depending upon their initial
conditions, collectively the community seems to obey some global constraints.

3. Definitions and Notation

Consider

J = {x = (x1, x2, . . . , xs) ∈ Rs|
s

∑

i=1

xi = 1, xi ≥ 0},

which is the simplex of s-dimensional probability vectors. J is the full configuration
space of PRD dynamics and is invariant under it. The configuration space for GRD
is JN , the N -fold product. A generic point of JN is p = (p1,p2, . . . ,pN ), each pα

being an s-dimensional probability vector pα(t) = (pα
1 (t), pα

2 (t), . . . , pα
s (t)) belonging

to J (α) (the latter being a copy of the simplex J corresponding to agent α).

A point x ∈ J such that xi = δij for some j is called the jth corner of J . If
an agent α has specialized to the pure strategy j, then pα

i = δij , i.e., pα has gone

to the jth corner of J (α). If every agent has specialized to some strategy or the
other, the corresponding point in JN will be called a corner of JN and we say that
the community is fully specialized. Note that every corner of J N is an equilibrium
point of GRD, since the r.h.s. of (1) vanishes. Hence we refer to corners as corner
equilibrium points (CEPs).

A CEP can be characterized by an s-vector of non-negative integers n = (n1, n2, . . . , ns)
where ni denotes the number of agents pursuing the pure strategy i at CEP. There
can be many CEPs with the same n vector. These would differ only in the identity
of the agents at various corners. In this article we will ignore the differences between
such corners and characterize a CEP by its n-vector alone, since the agents are
identical and differ only in their strategy profile.
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Consider the following subset of JN : Fk ≡ {p ∈ JN |pα
k = 0 ∀ α} for some fixed

k ∈ S. By definition, at a point in Fk, every agent has opted out of strategy k. Fk

is also invariant under (1), i.e., if pα
k is zero at some time, it remains zero. At the

“face” Fk, strategy k therefore becomes extinct from the population, and we say
that the full diversity of strategies is lost. As long as the system is not in some Fk,
we say that the community exhibits the “full diversity” of strategies. Note that the
word ‘diversity’, as used here, does not stand for variability among agents, but to
indicate that all strategies are supported. For example we can have no variation but
full diversity at points p where pα = c ∀ α and none of the components of c are
zero. This is a “homogeneous” point, since all agents are doing the same thing.

If a CEP is such that ni 6= 0 for all i, i.e., each strategy is played by at least one
agent at the CEP, we will refer to it as a fully diversified CEP or FDCEP. If one
or more ni is zero, the full diversity of strategies is lost and such CEPs are called
non-FDCEPs.

We are interested in studying the circumstances under which FDCEPs are the
preferred attractors of the dynamics, for then, individual specialization and global
diversity will arise dynamically in the community. If it happens that the FDCEPs
are attractors and their basins of attraction cover most of J N (all of JN except a
set of lower dimension), then for generic initial conditions the community is bound
to end up in an FDCEP, which means that it will exhibit individual specialization
and as well as global diversity.

4. Results

In this section we discuss some results concerning attractors of GRD. The proofs of
the theorems are omitted here; these and further results can be found in [5, 6]. We
will discuss the significance of these results for specialization and diversity in GRD.

4.1. INTERIOR EQUILIBRIUM POINTS

An equilibrium point of GRD is called an interior equilibrium point (IEP) if none
of the pα

i is zero. We have the following theorem:
Theorem 1: There is at most one isolated IEP. If there is one, it is homogeneous

and is given by pα
i = xi ∀ α, i where xi ≡ ui/detB, ui is the cofactor of B0i, and B

is the (s + 1) × (s + 1) matrix (whose rows and columns are labelled by the indices
0, 1, 2, . . . , s)

B ≡

















0 1 1 · · · 1
−1
−1 A
...
−1

















. (5)

A necessary and sufficient condition for an isolated IEP to exist is given by

A1: ui 6= 0 ∀ i, and all ui have the same sign.

PRD also has an isolated IEP if condition A1 holds, which is then unique and
given by the same xi as given above for GRD. Further, note that at the IEP in GRD,
the system exhibits full diversity since no strategy is opted out of by any agent.
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However, there is no specialization. The above formula for the IEP in particular
yields the point (x1, x2) = (g, c − g)/c for the hawk-dove game.

4.2. SPECIALIZATION

For generic payoff matrices A, generic initial conditions, and sufficiently large N ,
we find that the system flows into a corner of JN . Thus specialization is a generic
outcome of the dynamics. This observation is based on the following facts:

1. Theorem 2: [2, 3] Any compact set in the interior of JN or the relative interior
of any face cannot be asymptotically stable. An equilibrium point is asymptot-
ically stable if and only if it is a strict Nash equilibrium. (A strict Nash equilib-
rium is a point p such that at this point if any single agent unilaterally changes
her strategy – unilaterally means that all other agents remain where they are –
then her payoff strictly decreases.)

2. Theorem 3: Every asymptotically stable attractor must contain at least one
corner equilibrium.

3. Numerical Work: The GRD equation for s = 3 was numerically integrated
using Runge-Kutta method of fourth order. We randomly generated ten 3 × 3
payoff matrices and numerically integrated the GRD equations for long times for
each payoff matrix with ten randomly chosen initial conditions. When this was
done with N = 5, in 90 out of the 100 cases the dynamics converged to a corner.
The remaining 10 cases (all corresponding to a single payoff matrix) converged
to a heteroclinic cycle. (In these 10 cases the system cycled between regions close
to a few corners, moving rapidly between these regions, and at every successive
cycle spending increasing amounts of time near the corners and coming closer
to them.) When N was increased to 10 for the same ten payoff matrices studied
above, all 100 cases converged to a corner. This suggests that the typically,
the stable attractors are corners or heteroclinic cycles, with corners becoming
overwhelmingly more likely at larger N .

Why are corners the preferred attractors of this dynamics? We give here an
intuitive argument, which, though not rigorous or complete, provides some insight.
(For rigorous arguments, refer to the proofs of the above mentioned theorems.) Recall
that according to the dynamics each agent updates her strategy profile to increase
her payoff in the current environment. Pick an agent α. Her payoff at any point is

Pα =
∑

k pα
k cα

k where cα
k ≡

∑

β 6=α akjp
β
j . Given a set of s numbers cα

k for a fixed
α, generically one of them will be the largest. Let the largest one be cα

l (for some
particular l). Then it is clear that since the payoff P α is linear in pα

k , the choice
pα

k = δkl will maximize it. Thus, as long as the index of the largest of the cα
k remains

k = l, the agent α will move towards the pure strategy l. This argument can be
made for any agent. Thus every agent is, at any time, moving towards some pure
strategy. In this argument it is crucial that cα

k is independent of pα (which it is
because of the exclusion of the β = α term in the payoff to α). If it were not, then
the nonlinear dependence of P α on pα would have invalidated the argument (as is
the case in PRD, where the analogous quantity

∑

k,j xkakjxj is quadratic in the xi,
and corners are not the generic attractors).
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This argument also sheds some light on why heteroclinic cycles could be attrac-
tors. The point is that cα

k are not constants, but depend upon the strategy profiles
of agents other than α. If the change in these profiles causes some other cα

k (for some
k = l′, different from l) to overtake cα

l , then from that time onwards, agent α will
have to change track and move towards pure strategy l ′ rather than l.

In particular the above theorems mean that the IEP is always unstable in GRD.

4.3. COLLECTIVE BEHAVIOUR

We have seen above that the GRD flows to corners generically. The next step is to
determine which corners the dynamics flows to. For the moment we restrict ourselves
to FDCEPs. Characterizing an FDCEP by its n vector (described in the previous
section), we have the following result:

Theorem 4: Let n and n′ be any two asymptotically stable FDCEPs with N ≥ s.
If condition A1 holds then all components of n− n′ are bounded by a function of
the payoff matrix A alone (and not of N). Further,

lim
N→∞

ni

N
= xi.

Thus, out of a large number (of order N s−1) of FDCEPs all of which are equi-
libria for GRD, only a few are stable. Further, even though the agents are acting
individually and selfishly and going to corners (specializing), the system as a whole
retains a memory of the unique interior equilibrium point (which is guaranteed to
exist under the conditions of the above theorem) and tunes the ratios ni/N such
that they are close to the IEP xi values.

One can give a physical or “economic” interpretation of this collective behaviour.
A stable equilibrium is by theorem 2 a strict Nash equilibrium. Thus it cannot be
advantageous for any agent to switch her pure strategy unilaterally. This means that
all agents must receive more or less the same payoff. More precisely, since a switch
of strategy by a single agent causes changes of O(1) in the payoffs to other agents,
at a strict Nash equilibrium it must be the case that differences of payoffs among
agents could not be larger than O(1), since otherwise it would be possible for some
agent to make an advantageous switch without affecting others. Thus stability is
achieved only at those equilibria at which differences in payoff among agents are a
very small fraction of the total payoff to any agent, which is O(N). This requirement
of “near-equality” of payoffs narrows down the set of stable equilibria considerably.
As to why the ratio ni/N gets tuned to be close to the IEP, we remark that in both
PRD and GRD, the IEP is characterized by exactly equal payoffs to all strategies.

The above remarks also help explain some of our numerical results. When we
increased the number of agents from 5 to 10, we found that all cases converged
to corners. This is because as N increases, the ratios ni/N can reproduce the xi

values corresponding to IEP more accurately and thereby achieve the near-equality
of payoffs required for the existence of a strict Nash equilibrium.

4.4. DIVERSITY AND SELF-ORGANIZATION

We have seen above that among the FDCEPs, only a very small subset can be
asymptotically stable. Now we consider non-FDCEPs. It could happen that along
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with an FDCEP, some non-FDCEPs are also stable. In that case, if the community
starts in the basin of attraction of a non-FDCEP, it would eventually lose its diver-
sity. We would like to eliminate such attractors of the dynamics. It turns out that
this can be achieved by imposing certain inequalities on the payoff matrix elements.
Consider the following condition:

A2: The payoff matrix is diagonally subdominant, i.e., aii < aji∀j 6= i.
Theorem 5: For s = 2, if A2 holds, then all non-FDCEPs are unstable for

N ≥ 2. For s = 3, if A1, A2 hold, then there exists a positive number N0 depending
on A, such that all non-FDCEPs are unstable for N > N0.

The condition A2 means that each pure strategy gives more payoff to other
strategies than itself, clearly a tendency that would support diversity. It is interesting
that the model also has the desirable feature that larger communities favour diversity.

It will be useful to have conditions for higher s also which make all the non-
FDCEPs unstable. Partial results in this direction are contained in [6]. We expect
that for higher s the condition of sufficiently large N and further inequalities on the
payoff matrix elements would ensure the instability of non-FDCEP.

We now discuss the behaviour of the system when such conditions hold. Notice
that since these conditions are inequalities on the payoff matrix elements (and not
equalities), the behaviour of the system is structurally stable or generic, i.e., is not
destroyed by a small perturbation of the parameters. From the evidence presented
in section 5.2, the system is expected to go to a corner with generic initial condi-
tions. By theorem 5 (and its generalizations to higher s), this corner cannot be a
non-FDCEP. Hence it must be an FDCEP. But then theorem 4 applies and tells us
that it must be a very specific corner. At this corner the number of agents ni pursu-
ing the pure strategy i is fine tuned to a value close to Nxi with xi determined by
the payoff matrix via Theorem 1, and all agents receive the same O(N) payoff upto
differences of O(1). The final state is fine-tuned but robust in that it arises without
fine-tuning the parameters or the initial state. In this sense (of spontaneous dynam-
ical fine-tuning) the system exhibits self-organization, albeit without any obvious
critical behaviour. Furthermore, this self organization is of the kind that we were
originally seeking, namely, in which the community exhibits individual specialization
and global diversity.

4.5. INNOVATIONS

So far we have considered strategy spaces of a fixed size s. However, the growth of
diversity in the systems mentioned in the introduction has to do with the appearance
of new strategies and disappearance of some old strategies. We now discuss how the
above considerations of the instability of non-FDCEPs are relevant for the generation
of innovations. As an example consider a community of N agents which has initially
only two strategies and a payoff matrix A satisfying condition A2. Then all non-
FDCEPs are unstable and only those FDCEPs with n = (n1, n2) such that the ratios
ni/N close to xi of the IEP are stable. Let us assume that the system has settled
into such a state. Now, assume that a new, third strategy arises which enlarges the
2 × 2 matrix A into a 3 × 3 matrix A′ that contains A as a submatrix. The third
row and column of A′ represent the relationship of the new strategy with respect
to the old – how much payoff it gives to them and receives from them. At the time
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this strategy arises, the system is in the state (n1, n2, 0) since the third strategy
(being new) is as yet unpopulated. Note that this state is a non-FDCEP for s = 3.
Now if A′ is such that it satisfies the conditions A1, A2 in Theorem 5, and N is
sufficiently large, then the above state is unstable. Therefore, any small perturbation
in which the agents start exploring the new strategy ever so slightly will destroy the
old state and take the system to a new stable state which must be an FDCEP with
3 strategies. By Theorem 4 this state will be (n′

1, n
′
2, n

′
3) with

1

N
(n′

1, n
′
2, n

′
3) ≈ (x′

1, x
′
2, x

′
3)

where x′
i are the components of the IEP corrsponding to the payoff matrix A′ and are

all non-zero since A′ satisfies A1. Thus the innovation has destabilized the previous
state of the system and brought it to a new state where a finite fraction of the
population has adopted strategy 3. In such a case, we say that the innovation has
been “accepted” by the community. Note that the only requirements for this to
happen is that the elements of the new row and column in the payoff matrix satisfy
certain inequalities with respect to the existing matrix elements (contained in the
conditions A1, A2 to be satified by A′) and that the community be sufficiently
large. This tells us what properties a new strategy should have in the context of

already existing activities in order for it to be “accepted” by the community. Thus
the model suggests a natural mechanism for the emergence of context dependent
innovations in the community.

5. Conclusions

To summarize, Generalized Replicator Dynamics, eq. (1), is a nonlinear dynami-
cal model of learning for a community of N mutually interacting agents with the
following features:

1. Each agent is selfish and exhibits bounded rationality.
2. This is a non-cooperative game and there is no global organizing agency at

work. It is in general a non-hamiltonian system.
3. Specialization of individual agents to pure strategies is a generic outcome of the

dynamics.
4. Under certain generic conditions on the payoff matrix parameters the agents ex-

hibit a collective behaviour, and for sufficiently large N , the community exhibits
diversity and self-organization.

5. A ‘good’ innovation (one that satisfies conditions A1, A2, etc., with respect to
the exisiting strategies) makes the society unstable and evolve until the inno-
vation is accepted.

It is noteworthy that in this dynamical system, order is generated at large N
(unlike the systems where increasing the number of degrees of freedom makes the
system less orderly, in some sense). This order is not the usual statistical mechanical
kind of order, the order of appropriately defined macroscopic variables, but an order
in the original dynamical variables themselves. However, in another sense, this order
is also statistical since we do not know which pure strategy an individual agent
follows. We only know about the fraction of agents pursuing a given strategy.
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