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Weighted Interval Scheduling 
�  Problem: Given a set of jobs described by  
  (si , fi  , pi)     where, 
 starting time si   ,  
 finishing time fi, and profit pi   

� Aim: Find an optimal schedule of compatible jobs 
that makes the maximum profit. 

� Two jobs are said to be compatible if one finishes 
before the other one starts. 

� Greedy approach: Choose the job which finishes 
first…..does not work. 
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  i    Si        Fi       Pi 
2    2   4        3 
1    1   5       10   
3    4   6        4 
4    5   8            20   
5    6   9        2 
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Weighted Interval Scheduling 

Time 0 

P(1)=10 

P(3)=4 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 
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Greedy Approach 
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Time 0 

P(1)=10 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 
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Greedy does not work 
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Time 0 

P(1)=10 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 

Optimal 
schedule 

Schedule 
chosen by 
greedy app 

Greedy approach takes job 2, 3 and 5 as best schedule and makes profit 
of 7.   While optimal schedule  is job 1 and job4 making profit of 30 
(10+20). Hence greedy will not work 
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Recursive Solution 
� Order the jobs in increasing order of their 

finishing times. 
�  Let m[j]= optimal schedule solution from the first 

jth  jobs,   
          pj=profit of jth job.  
          p[j] =largest index i<j , such that interval i 

and j are disjoint i.e. i is the rightmost interval 
that ends before j begins or the last interval 
compatible with j and is before j.   
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DP Solution for WIS 
� Either j is in the optimal solution or it is not. 

o If it is, then  m[j] = pj + m[p(j)] 

o If it is not, then m[j] = m[j-1] 

o   Thus, m[j]= max(pj + m[p(j)], m[j-1])  

o Some of the problems are solved several times 
leading to exponential time. 
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An example for  Weighted 
Interval Scheduling problem  
� A set of 6 jobs are given as follows –  
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Jobs (i) Start time (si) Finish time (fi) Weight (vi) 

1 1 3 2 

2 2 5 4 

3 3 6 4 

4 2 9 7 

5 6 8 2 

6 6 8 1 



INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 
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INT. 
No. 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 

P[3]=1 

P[4]=0 

P[5]=3 

P[6]=3 



Recursive algorithm  
Compute_Opt(j) 
If j=0 then                       
 Return 0 

Else 
      m1 = Compute_Opt(j-1) 
      m2 = Compute_Opt(p(j))  
      If m2 + Vj   >  m1 then add j to the solution 
    return max{m1, m2 + Vj} 

Endif  
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Tree of recursion for WIS 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

  
OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) OPT(1) 

OPT(1) 

Repeated Subproblems 
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Recursion: Time complexity  
� Takes exponential time in worst case. 

� Some branches are repeated in the tree  due to 
which the total no. of calls made to compute_Opt 
will grow like Fibonacci numbers. 

�  In the tree, compute_Opt(3) is called repeatedly . 
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Memoizing the Recursion 
 

Store and Re-USe 
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 M-Compute-Opt(j) 
   If j=0 then 
       Return 0 
   Else if M[j] is not empty then 
       Return M[j] 
   Else                                  Reuse 
 
       M[j]= max ( Vj + M-compute-   opt(p(j)) , M-Compute-

opt(j-1))                
       Return M[j]        Store 
   Endif 

 
Memoization (Store and Reuse in 
recursion) – a Top Down Approach 
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Tree of recursion with Memoization (If 
recursive call to j-1 is executed before p(j)) 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

  
OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) 

OPT(1) 

It is easy to see that time spent on each call on p(j) is constant as it has been computed 
earlier and so its simply returns the pre-computed stored value. Clearly the time complexity is O(n) 

OPT(1) 
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Tree of recursion with Memoization (If 
recursive call to p(j) is executed before j-1) 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

 OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) 

OPT(1) 

Time Complexity Remains the Same 
i.e. O(n) 

OPT(1) 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 22 



Computing an Optimal Set of 
Intervals  

� Maintain an additional array S so that S[i] 
contains an optimal set of intervals among 
{1,2,.....,i}. 

� Additional Space - O(n). 
� Alternatively, one can trace through array M to 

find the set of intervals in an optimal solution as 
shown in the next slide. 

� Additional Time is O(n) in both the cases. 
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Algorithm to Find Optimal Set 
of Intervals 

Find-Solution(j) 
If j=0 then 
    Output nothing  
Else  
   If Vj+ M[p(j)] >= M[j-1] then 
      Output j together with the result of Find-

Solution(p(j)) 
   Else  
       Output the result of Find-Solution(j-1) 
   Endif 
Endif 
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Iterative Version 
 
 Iterative-Compute-Opt 
   M[0]=0 
   For j=1,2,....,n 
         M[j]=max (vj + M[p(j)] ,  M[j-1]) 
    Endfor 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 25 



Calculating  
m[j] = max{m[j-1], m[p(j) ] + Vj} 

0 

Initially, no job belongs to optimal solution. 

m     0         1        2       3        4       5       6 
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0 

Max{0,2+0} 

2 

V1 = 2  
If job V1 selected => m[1] = m[p(1)]+2 = 0+2 = 2 
If not selected => m[1] = m[0] = 0  
Max. is coming from second component so, Set pa(1) = 
p(1) =0. 

m     0         1        2       3        4       5       6 
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0 

Max{2,4+0} 

2 4 

V2 = 4 
If job V2 selected => m[2] = m[p(2)]+4 = 0+4 = 4 
If not selected => m[2] = m[1] = 2 
Max. is coming from second component so, Set pa(2) = 
p(2) =0 

m     0         1        2       3        4       5       6 
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0 

Max{4,4+2} 

2 4 6 

V3 = 4 
If job V3 selected => m[3] = m[p(3)]+4 = m[1]+4 = 2+4 
= 6 
If not selected => m[3] = m[2] = 4 
Max. is coming from second component so, Set pa(3) 
= p(3) =1. 

m     0         1        2       3        4       5       6 
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0 

Max{6,7+0} 

2 4 6 7 

V4 = 7 
If job V4 selected => m[4] = m[p(4)]+4 = m[0]+7 = 0+7 
= 7 
If not selected => m[4] = m[3] = 6 
Max. is coming from second component so, Set pa(4) = 
p(4) =0. 

m     0         1        2       3        4       5       6 
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V5 = 2 
If job V5 selected => m[5] = m[p(5)]+2 = m[3]+2 = 6+2 
= 8  
If not selected => m[5] = m[4] = 7 
Max. is coming from second component so, Set pa(5) 
= p(5) =3 

0 

Max{7,6+2} 

2 4 6 7 8 

m     0         1        2       3        4       5       6 
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V6 = 1 
If job V6 selected => m[6] = m[p(6)]+1 = m[3]+1 = 6+1 
= 7 
If not selected => m[6] =m[5] = 8 
Max. is coming from first component so, Set pa(6) = 
6 -1 =5 

0 

Max{8,6+1} 

2 4 6 7 8 8 
m     0         1        2       3        4       5       6 
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.	  
Reconstructing the Solution 
 
  Jobs                  Input Weights 
                   0     2     4     4     7     2     1     
 
      Array M 
 
      1             
     
     2          
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	  	  0	   2	  

0	   2	   4	  



 
Jobs                  Input Weights 
                    0     2     4     4     7     2      1          
                   Array M 
        
    3 
 
 
    4                                                          
                                                               
    5                            
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	  	  0	  	   	  	  2	   	  	  	  4	   	  	  6	   	  	  7	  

	  	  0	   2	   4	   6	  

	  	  	  0	   	  	  	  2	   	  	  	  4	   	  	  6	   	  	  7	   	  	  8	  

0	   2	   4	   6	   7	   8	   8	  



.	  

 Jobs                  Input Weights 
   6                    0       2      4        4      7       2       1  
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0	   2	   4	   6	   7	   8	   8	  

 Following the heads of the pointers, we get intervals 
{1,3,5} as the solution.  



Iterative Version: Running Time 
Clearly O(n) , since it runs for n iterations and 

spends constant time in each iteration. 
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Principles of DP 
� Recursive Solution (Optimal Substructure 

Property) 

� Overlapping Subproblems 

� Total Number of Subproblems is polynomial 

� A major ingredient of a DP solution is “ordering”. 
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WIS:  
� Optimal Substructure Property : we just 

exhibited. 

� Number of sub-problems: Polynomial (Linear). 

� Ordering: Increasing order of finishing times. 

�  Iterative Version is nothing but the DP solution. 
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Multi-Way Choices: Matrix Chain 
Multiplication 
Input: Let  A1,  A2,  ………,   An be  n matrices of order (d1, 
d2 ),(d2, d3 ),…… , (dn,dn+1) respectively.   
Aim: Determine the order in which the matrices should 
be multiplied so as to minimize the number of 
multiplications. 
Example: Let A1,   A2,   A3  be 3 matrices of order  (2 x 
3), (3 x 4), (4 x 5) respectively.                      
 
(A1,  A2) A3 :    (2 x 3 x 4 )+ (2 x 4 x 5) = 24+ 40= 64 
A1 ( A2 , A3 ):   (3 x 4 x 5)+ (2 x 3x 5)  = 60 + 30 = 90   
So, we see that by changing the evaluation sequence 
cost of operation changes. 
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Optimal Substructure 
(Recursive Solution) 
	  
	  
	  
In general, 
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Overlapping Subproblems 
                                  m[1………4] 
 
 
     
m[1],m[2,3,4]     m[1,2],m[3,4]       m[1,2,3],m[4] 
 
 
m[2],m[3,4]      m[2,3],m[4]        m[1],m[2,3]   m[1,2],m[3] 
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Number of sub-problems 
                             M[i……………j]                i<=j 
                  
                             

   n options   n options 
 
Number of subproblems= n2 
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Example: 
Matrix dimensions: 
� A1  : 3 × 5 
� A2  : 5 × 4 
� A3  : 4 × 2 
� A4   : 2 × 7 
� A5   : 7 × 3 
� A6    : 3 × 8 
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Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 

A2 	  	  -‐ 0 40 

A3 	  	  -‐ 	  	  -‐ 0 56 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 
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A1 *A2 = 3*5*4  = 60 
A2*A3  = 5*4*2  = 40 
A3*A4  = 4*2*7  = 56 
A4*A5  = 2*7*3  = 42 
A5*A6  = 7*3*8  = 168 

A1  : 3 × 5 
A2  : 5 × 4 
A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 



Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 70 

A2 	  	  -‐ 0 40 110 

A3 	  	  -‐ 	  	  -‐ 0 56 66 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 90 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 
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                           A1  : 3 × 5 
                           A2  : 5 × 4 

A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 

•  A1 _A3= A1 *A2 *A3 = 
min(  (A1.A2).A3 =60+ 3*4*2 =84 
or   A1.(A2 .A3)=40+ 3*5*2=70) 
=70 

•  A2 _A4= A2 *A3 *A4 = 
min(  (A2.A3).A4 =40+ 5*2*7=110 
or A2.
(A3.A4)=56+5*4*7=196)=110 

•  A3 _A5= A3 *A4 *A5 = 
min( (A3.A4).A5 =56+4*7*3=140 
or A3.(A4.A5)=42+ 4*2*3 =66) = 
66 

•  A4 _A6= A4 *A5 *A6 = min( (A4 
*A5)*A6= 42+2*3*8=90 or A4 
*(A5 *A6 )=168+ 2*7*8=312)=90 



Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 70	  
K=1 

112	  
K=3 

130	  
K=3 

202	  
K=5 

A2 	  	  -‐ 0 40 110	  
K=3 

112	  
K=3 

218	  
K=3 

A3 	  	  -‐ 	  	  -‐ 0 56 66	  
K=3 

154	  
K=3 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 90	  
K=5 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 
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A1  : 3 × 5 
A2  : 5 × 4 
A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 



Running Time 
}]................1[]..........[{min].......[ 11
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+++= jki
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ik
dddjkmkimjim
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Ο(n2) entries each takes O(n) time to compute 
 
The running time of this procedure is Ο(n3). 
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Given a set P of n points in a plane denoted by (x1,y1), (x2,y2), . . . , 
(xn,yn) and line L defined by the equation y = ax +b,  error of line 
L with respect to P is the sum of  squares of the distances of 
these points from L. Aim is to determine a line that minimizes 
Error(L, P) =  ∑n

i=0(yi – b - axi)2 
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Line of Best Fit 
�  Line of Best Fit is the one that minimizes this 

error. This can be computed in O(n) time using the 
following formula: 

 
a = (n( ∑ xiyi) - ( ∑yi ∑xi )) /  (n ∑xi

2 – ( ∑xi )2 ) 
 
b=(1/n)(∑ yi – a ∑ xi) 

� The formula is obtained by differentiating the 
error wrt a and equating to zero and wrt b and 
equating to zero 
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Consider the following scenario: Clearly approximating 
these points with a single line is not a good idea. 
 
 
 
 
 
    
     A set of points that lie approximately on two lines 
 
Using two lines clearly gives a better approximation. 
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(contd.)	  

 
 
 
 
 

 A set of points that lie approximately on three lines 
 
In this case, 3 lines will give us a better approximation. 
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Segmented Least Square Error 
�  In all these cases, we are able to tell the number 

of lines we must use by looking at the points. In 
general, we don’t know this number. That is we 
don’t know what is the minimum number of lines 
we must use to get a good approximation.  

� Thus our aim becomes to minimize the number of 
lines that minimize the least square error. 
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We know that the last point p n belongs to a single 
segment in the optimal partition and this segment 
begins at some point, say pi . 
Thus, if we know the identity of the last segment, then 
we can recursively solve the problem on the remaining 
points p1 …  pi-1 as illustrated below: 
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Designing the Algorithm 



�  If the last segment in the optimal is pi , … , pn,  then 
the value of optimal is, 

                      SLS(n)= SLS(i-1) + c + ein  
where c is the cost of using the segment and ein is the 

least square error of this segment.  
 
� But since we don’t know i, we’ll compute it as follows: 
                       SLS(n)= mini { SLS(i-1) + c + eij } 
 
� General recurrence:  
For the sub-problem p1, … , pj ,  
                  SLS(j)= mini { SLS(i-1) + c + eij } 
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Writing the recurrence 



Time Analysis: 
�  eij values can be pre-computed in O(n3) time.  

� Additional Time: n entries, each entry computes 
the minimum of at most n values each of which can 
be computed in constant time. Thus a total of 
O(n2). 
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FRACTIONAL KNAPSACK 
PROBLEM 

Given a set S of n items, with value vi and weight wi 
and a knapsack with capacity W. 
 
Aim: Pick items with maximum total  value  but with 
weight at most W. You may choose fractions of 
items. 



GREEDY APPROACH 
Pick the items in the decreasing order of value  per 
unit weight i.e. highest first. 
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Example 
   Knapsack Capacity: 50 

  Item 1  Item 2  Item 3 

 
   vi  = 60  vi = 100  vi  = 120 

  vi/wi  = 6  vi/wi  = 5  vi/wi  = 4 
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Example 
   Knapsack Capacity: 50 

  Item 2  Item 3 

 
 vi = 100  vi  = 120     60 
 vi/wi  = 5  vi/wi  = 4 
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Example 
   Knapsack Capacity: 50 

  Item 3   
 

        100 
 vi = 120         + 
 vi/wi  = 4        60 
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Example 
Knapsack Capacity: 50 

        
                80   
        + 
       100 
         + 
        60 
       = 240 
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0-1 Kanpsack 
Example	  to	  show	  that	  the	  above	  greedy	  approach	  will	  
not	  work.	  
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GREEDY APPROACH DOESN’T 
WORK FOR 0-1 KNAPSACK 

      -Counter Example 
   Knapsack Capacity: 50 

  Item 1  Item 2  Item 3 

 
   vi  = 60  vi = 100  vi  = 120 

  vi/wi  = 6  vi/wi  = 5  vi/wi  = 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 65 

10 
20 30 



Counter Example 
   Knapsack Capacity: 50 

  Item 2  Item 3 

 
 vi = 100  vi  = 120     60 
 vi/wi  = 5  vi/wi  = 4 
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Counter Example 
   Knapsack Capacity: 50 

  Item 3   
 

        100 
 vi = 120         + 
 vi/wi  = 4        60 
        =160 
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DP Solution for 0-1KS : Adding a 
Variable 
�  Arrange the elements in any arbitrary order. 
�  Let OPT(n, W) denote the value of optimal solution with n 

objects and capacity W. 
�  Working on similar lines as in WIS and SLS, 
�  If n does not belong to OPT, then OPT(n, W) = OPT(n-1, W) 
�  If n belongs to OPT then ?  

�  Which subproblem to consider?  
�  OPT(n-1, W)?  
�  But OPT(n-1, W) denote the optimal solution with knapsack 

capacity W. If n belongs to OPT then we have reduced capacity in 
our knapsack for the smaller subproblems. i.e. we need to consider 
OPT(n – 1, W – wn) 
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�  If we knew the exact value (say K) of OPT 
knapsack, then to compute OPT(n, K) we know that 
for n-1 objects, we have to solve exactly two 
problems : OPT(n-1, K) and OPT(n -1, K – wn) and 
we would solve a linear number of subproblems in 
all. 

� But obviously, we don’t know that so we make a 
guess w for K (i.e. try out all possible values for K) 
and solve the problem for w. So we add a 
dimension(/variable) to our problem. 

� Similarly while dealing with objects {1 … i} we need 
to solve OPT(i-1, K) and OPT(i -1, K – wi).  

� Thus in general we need to define OPT(i, w) for 
every i < n and every w < W. 
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DP Solution for 0-1KS : Adding 
a Variable 
�  Let m[i,w] be the optimal value obtained when 

considering objects {1 … i} and filling a knapsack 
of capacity w 
� m[0,w] = 0 
� m[i,0] = 0 
� m[i,w] = m[i-1,w] if wi > w 
� m[i,w] = max{m[i-1, w-wi] + vi , m[i-1, w]} if wi <= 

w 
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Example 
l  n = 4 

l  W = 5 

l  Elements (weight, value): 

         (2,3), (3,4), (4,5), (5,6) 
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0	   0	   0	   0	   0	   0	  

0	  

0	  

0	  

0	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 72 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	  

0	  

0	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w1 ;  m[1,1] = m[1-1,1] = m[0,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	  

0	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As	  w<w2	  ;	  	  m[2,1]	  =	  m[2-‐1,1]	  =	  m[1,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	   o	  

0	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,1] = m[3-1,1] = m[2,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	   o	  

0	   o	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,1] = m[4-1,1] = m[3,1] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	  

0	   o	  

0	   o	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,2] = max{m[1-1,2],m[1-1,2-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	  

0	   o	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w2 ;  m[2,2] = m[2-1,2] = m[1,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,2] = m[3-1,2] = m[2,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,2] = m[4-1,2] = m[3,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,3] = max{m[1-1,3],m[1-1,3-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	  

0	   o	   3	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ;  m[2,3] = max{m[2-1,3],m[2-1,3-3]+4} 

   =max{ 3,0+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,3] = m[3-1,3] = m[2,3] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,3] = m[4-1,3] = m[3,3] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,4] = max{m[1-1,4],m[1-1,4-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ; m[2,4] = max{m[2-1,4],m[2-1,4-3]+4} 

   =max{3,0+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w3 ; m[3,4] = max{m[3-1,4],m[3-1,4-4]+5} 

   =max{ 4,0+5} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,4] = m[4-1,4] = m[3,4] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 89 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,5] = max{m[1-1,5],m[1-1,5-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ; m[2,5] = max{m[2-1,5],m[2-1,5-3]+4} 

   =max{ 3,3+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w3 ; m[3,5] = max{m[3-1,5],m[3-1,5-4]+5} 

   =max{ 7,0+5} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	   7	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w4 ; m[4,5] = max{m[4-1,5],m[4-1,5-5]+6} 

   =max{ 7,0+6} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	   7	  
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W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 



Obtaining a Solution 
� As before we backtrack to obtain the optimal 

solution picking the objects that provided us the 
maximum profit/value. 

� Backtracking gives us {2, 1} as the final solution. 
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Running Time 
�  nW cells  

� Constant time to compute each cell 

� Total Time = O(nW) 

�   Pseudo-polynomial Algorithm 
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Pseudo-polynomial algorithm 
� An algorithm that runs in time polynomial in the 

numeric value of the input (which is actually 
exponential in the size of the input – the number of 
digits). 

 
� DP solution to 0-1 Knapsack is pseudo-polynomial as it 

is polynomial in W, the capacity (one of the inputs) of 
the Knapsack.   

� Note that polynomial in ‘n’ is fine as ‘n’ is not an input 
parameter, it is only a symbol we have used for our 
convenience to denote the number of objects. 
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Strongly Polynomial Algorithms 
� An algorithm is said to be strongly polynomial if 

its running time is polynomial in the input size and 
does not depend on any value of the input. 

�  It will be shown later that 0-1 Knapsack is actually 
an NP-hard problem and is unlikely to possess a 
strongly polynomial time solution. 
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Alternative Definitions 
�  Pseudo-polynomial Algorithm: An algorithm that 

runs in time polynomial in the input size when the 
input is represented as a string of 1’s ( instead of 
0’s and 1’s) is called a Pseudo-polynomial 
Algorithm. 

� Strongly-polynomial Algorithm: An algorithm that 
runs in time polynomial in the input size when the 
input is represented as a string of 0’s and 1’s is 
called a Strongly-polynomial Algorithm. 
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Weakly/Strongly NP hard 
problems 
� An NP hard problem with a known pseudo-

polynomial time solution is said to be  weakly NP 
hard...Thus 0-1 knapsack is weakly NP-hard. 

� An NP- hard problem for which it has been proved 
that it cannot admit a pseudo-polynomial solution 
unless P= NP is said to be strongly NP hard. 

�  In our next session, we’ll studying NP-hard 
problems. But most of the times, we do not 
categorize them as weak/strong NP-hard unless 
we give a pseudo-polynomial algorithm for a 
problem. 
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� occurrence 
� occurrence 

101 

o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

6 mismatches, 1 gap 

1 mismatch,   1 gap 

0 mismatch,  3 gaps 
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String Similarity 



�  PROBLEM:  Given two strings X = x1 x2 . . . xn               
and  Y = y1 y2 . . .. ym 

� GOAL:  Find an alignment of minimum cost, 
where  δ is the cost of a gap and ᾳ is the cost 
of a mismatch. 

�  Let OPT(i,j)=min cost of aligning strings X = x1 
x2 . . . xi and  Y = y1 y2 . . .yj 

102 
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�  Case1:	  	  xi	  is	  aligned	  with	  yj	  in	  OPT and	  they	  match	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
OPT(i,j)=min	  cost	  of	  aligning	  	  x1x2…….xi-‐1	  	  and	  y1y2……..yj-‐1	  
�  Case	  2:	  	  xi	  is	  aligned	  with	  yj	  in	  OPT and	  they	  don’t	  match	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
OPT(i,j)=	  	  	  	  	  	  	  	  +	  min	  cost	  of	  aligning	  	  x1x2…….xi-‐1	  	  and	  y1y2……..yj-‐1	  

	  
	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

   __xi 
   __yj 

   __xi 
   __yj 

match 

mismatch 

ji yx
α
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4 cases for constructing optimal 
solution 



•  Case 3:  ith position of  X is not matched. 
 
                
 
OPT(i,j) = δ + min cost of aligning x1 x2 . . . xi-1 and  

  y1 y2 . . . yj 
                 
•   Case 4:  jth position of  Y is not matched. 
 
 
                                
OPT(i,j) = δ + min cost of aligning x1 x2 . . . xi and 

  y1 y2 . . . Yj-1 

___xi 
__yj_ 

__xi_ 
___yj 

gap 

gap 
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Thus, 
OPT(i,j)=min{ 

       OPT(i-1,j-1), 
                        OPT(i-1,j) + δ, 
                        OPT(i,j-1) + δ, 

       OPT(i-1,j-1) + 
                   } 
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ji yx
α



Let  X = naem, 
       Y = name, 

ji yx
α  :mismatch cost  = 1 
δ    :gap cost = 1 
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Example 



	   

	   

	   

n  a   m  e 

m 

e 

a 

 n 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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n  a   m  e 

m 

e 

a 

 n 

0 0 0 0  0 
OPT(0,j)=0 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



	   

	   

	   

n  a   m  e 

m 

e 

a 

 n 

0 0 0 0  0 

0 

0 

0

0 

OPT(0,j)=0 
OPT(i,0)=0 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,1)=min(OPT(0,0), 
                     OPT(0,1)+1, 
                     OPT(1,0)+1) 
                =OPT(0,0) 
                =0 
                 

0 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,2)=min(OPT(0,1)+1, 
                     OPT(0,2)+1, 
                     OPT(1,1)+1) 
                =OPT(1,1)+1 
                =0+1 
                =1 
                 

0 1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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                      OPT(0,3)+1, 
                      OPT(1,2)+1) 
                =OPT(0,2)+1 
                =0+1 
                =1 
                 

0 1 1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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                       OPT(1,3)+1) 
                =OPT(0,3)+1 
                =0+1 
                =1 
                 

0 1 1 1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(2,1)=min(OPT(1,0)+1, 
                     OPT(1,1)+1, 
                     OPT(2,0)+1) 
                =OPT(1,0)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 114 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(2,2)=min(OPT(1,1), 
                    OPT(1,2)+1, 
                    OPT(2,1)+1) 
                =OPT(1,1) 
                =0 
                 

0 1 1 1 

1 0 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(2,3)=min(OPT(1,2)+1, 
                      OPT(1,3)+1, 
                     OPT(2,2)+1) 
                =OPT(2,2)+1 
                =0+1 
                =1 
                 

0 1 1 1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(2,4)=min(OPT(1,3)+1, 
                       OPT(1,4)+1, 
                      OPT(2,3)+1) 
                =OPT(2,3)+1 
                =1+1 
                =2 
                 

0 1 1 1 

1 0 1 2 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(3,1)=min(OPT(2,0)+1, 
                      OPT(2,1)+1, 
                      OPT(3,0)+1) 
                =OPT(3,0)+1 
                =0+1 
                =1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(3,2)=min(OPT(2,1)+1, 
                       OPT(2,2)+1, 
                       OPT(3,1)+1) 
                =OPT(2,2)+1 
                =0+1 
                =1 
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1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 119 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(3,3)=min(OPT(2,2)+1, 
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                        OPT(3,2)+1) 
                =OPT(2,2)+1 
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                =1 
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1 1 1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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                =1 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(4,3)=min(OPT(3,2), 
                     OPT(3,3)+1, 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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OPT(4,4)=min(OPT(3,3)+1, 
                       OPT(3,4)+1, 
                      OPT(4,3)+1) 
                =OPT(3,3)+1 
                =1+1 
                =2 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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1 1 1 1 

1 2 1 2 

Solution: 
• Trace from bottom right 
• Diagonal elements having          
 value 0 is the optimal 
 alignment. 

So, 
Optimal alignment: 
name 
naem 
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If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 
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The problem: Given a directed graph G with weights 
on edges, vertices s and t, find a shortest path from 
s to t. 
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 Optimal Substructure 
(Recursion)	  
 Apply the same argument as earlier: 
Ask the same question as earlier: 
How does OPT reach t? 
 
Let w1, w2, w3 are the in-neighbours of t. Then OPT 
must have taken a route through one of them. We 
don’t know which. So, 
      we compute shortest path from s to each of wi 
and then take the edge wi to t and then take the 
best amongst all of them.. 
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 Optimal Substructure 
(Recursion) contd..	  
 Alternatively, one could ask 
How does OPT start from s? 
 
Let u1, u2, u3 are the out-neighbours of s. Then OPT 
must have taken a route through one of them. We 
don’t know which. So, 
      we take the edge s to ui and compute shortest 
path from ui to t for every ui and then take the 
best amongst all of them. 
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 Recurrence relation	  
If OPT(v) denotes the shortest path from v to t, 
then we are looking for  
OPT(s) = min(OPT(ui)+ C(s, ui)) 
 
But this does not work because OPT(ui) may change 
in the next iteration (a shorter path using more 
number of edges). So we also need to add a variable 
which denotes the length of the path. 
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 Recurrence relation	  
OPT(i, v) = min(OPT(i-1, v), min(OPT(i-1, w)+ Cvw)) 
                                             wЄV 
     where 
 
OPT(i,v) denotes the minimum cost of a v-t  path 
using at most i edges.  
Cvw is the cost of an edge from vertex v to vertex w  
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Problem: To find shortest 
path from s to t	  
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The final  s-t path obtained is s-v2-t with 1 as 
minimum cost . 
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Any Questions….. 
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