
Instructor 
Neelima Gupta 

University of Delhi, INDIA 
ngupta@cs.du.ac.in 

 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 1 

Presentation Edited by Sapna Grover 



Weighted Interval Scheduling 
�  Problem: Given a set of jobs described by  
  (si , fi  , pi)     where, 
 starting time si   ,  
 finishing time fi, and profit pi   

� Aim: Find an optimal schedule of compatible jobs 
that makes the maximum profit. 

� Two jobs are said to be compatible if one finishes 
before the other one starts. 

� Greedy approach: Choose the job which finishes 
first…..does not work. 

2 
Workshop on Design and Analysis of 

Algorithms at Epitech University, France 



  i    Si        Fi       Pi 
2    2   4        3 
1    1   5       10   
3    4   6        4 
4    5   8            20   
5    6   9        2 

3 
Workshop on Design and Analysis of 

Algorithms at Epitech University, France 



	  
	  
	  
	  
	  

4 

Weighted Interval Scheduling 

Time 0 

P(1)=10 

P(3)=4 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 



Greedy Approach 

5 

Time 0 

P(1)=10 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 



Greedy does not work 

6 

	  
	  
	  
	  
	  

Time 0 

P(1)=10 

P(4)=20  

P(2)=3 

1 2 3 4 5 6 7 8 9 

P(5)=2 

Optimal 
schedule 

Schedule 
chosen by 
greedy app 

Greedy approach takes job 2, 3 and 5 as best schedule and makes profit 
of 7.   While optimal schedule  is job 1 and job4 making profit of 30 
(10+20). Hence greedy will not work 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 



Recursive Solution 
� Order the jobs in increasing order of their 

finishing times. 
�  Let m[j]= optimal schedule solution from the first 

jth  jobs,   
          pj=profit of jth job.  
          p[j] =largest index i<j , such that interval i 

and j are disjoint i.e. i is the rightmost interval 
that ends before j begins or the last interval 
compatible with j and is before j.   

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 7 



DP Solution for WIS 
� Either j is in the optimal solution or it is not. 

o If it is, then  m[j] = pj + m[p(j)] 

o If it is not, then m[j] = m[j-1] 

o   Thus, m[j]= max(pj + m[p(j)], m[j-1])  

o Some of the problems are solved several times 
leading to exponential time. 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 8 



An example for  Weighted 
Interval Scheduling problem  
� A set of 6 jobs are given as follows –  

 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 9 

Jobs (i) Start time (si) Finish time (fi) Weight (vi) 

1 1 3 2 

2 2 5 4 

3 3 6 4 

4 2 9 7 

5 6 8 2 

6 6 8 1 



INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

Workshop on Design and Analysis of 
Algorithms at Epitech University, France 10 



Workshop on Design and Analysis of 
Algorithms at Epitech University, France 11 

INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 



Workshop on Design and Analysis of 
Algorithms at Epitech University, France 12 

INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 

P[3]=1 



Workshop on Design and Analysis of 
Algorithms at Epitech University, France 13 

INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 

P[3]=1 

P[4]=0 



Workshop on Design and Analysis of 
Algorithms at Epitech University, France 14 

INDEX 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 

P[3]=1 

P[4]=0 

P[5]=3 



Workshop on Design and Analysis of 
Algorithms at Epitech University, France 15 

INT. 
No. 
 

1 
 
2 
 
3 
 
4 
 
5 
 
6 

 

V1=2 

V2=4 

V3=4 

V4=7 

V5=2 

V6=1 

P[1]=0 

P[2]=0 

P[3]=1 

P[4]=0 

P[5]=3 

P[6]=3 



Recursive algorithm  
Compute_Opt(j) 
If j=0 then                       
 Return 0 

Else 
      m1 = Compute_Opt(j-1) 
      m2 = Compute_Opt(p(j))  
      If m2 + Vj   >  m1 then add j to the solution 
    return max{m1, m2 + Vj} 

Endif  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 16 



Tree of recursion for WIS 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

  
OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) OPT(1) 

OPT(1) 

Repeated Subproblems 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 17 



Recursion: Time complexity  
� Takes exponential time in worst case. 

� Some branches are repeated in the tree  due to 
which the total no. of calls made to compute_Opt 
will grow like Fibonacci numbers. 

�  In the tree, compute_Opt(3) is called repeatedly . 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 18 



 
 
 
Memoizing the Recursion 
 

Store and Re-USe 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 19 



 
 M-Compute-Opt(j) 
   If j=0 then 
       Return 0 
   Else if M[j] is not empty then 
       Return M[j] 
   Else                                  Reuse 
 
       M[j]= max ( Vj + M-compute-   opt(p(j)) , M-Compute-

opt(j-1))                
       Return M[j]        Store 
   Endif 

 
Memoization (Store and Reuse in 
recursion) – a Top Down Approach 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 20 



Tree of recursion with Memoization (If 
recursive call to j-1 is executed before p(j)) 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

  
OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) 

OPT(1) 

It is easy to see that time spent on each call on p(j) is constant as it has been computed 
earlier and so its simply returns the pre-computed stored value. Clearly the time complexity is O(n) 

OPT(1) 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 21 



Tree of recursion with Memoization (If 
recursive call to p(j) is executed before j-1) 

OPT(2) 

OPT(6) 

OPT(3) 

OPT(4) 

OPT(1) 

 OPT(3) OPT(2) 

OPT(5) OPT(3) 

OPT(1) 

OPT(1) 

OPT(2) OPT(1) 

OPT(1) 

Time Complexity Remains the Same 
i.e. O(n) 

OPT(1) 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 22 



Computing an Optimal Set of 
Intervals  

� Maintain an additional array S so that S[i] 
contains an optimal set of intervals among 
{1,2,.....,i}. 

� Additional Space - O(n). 
� Alternatively, one can trace through array M to 

find the set of intervals in an optimal solution as 
shown in the next slide. 

� Additional Time is O(n) in both the cases. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 23 



Algorithm to Find Optimal Set 
of Intervals 

Find-Solution(j) 
If j=0 then 
    Output nothing  
Else  
   If Vj+ M[p(j)] >= M[j-1] then 
      Output j together with the result of Find-

Solution(p(j)) 
   Else  
       Output the result of Find-Solution(j-1) 
   Endif 
Endif 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 24 



Iterative Version 
 
 Iterative-Compute-Opt 
   M[0]=0 
   For j=1,2,....,n 
         M[j]=max (vj + M[p(j)] ,  M[j-1]) 
    Endfor 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 25 



Calculating  
m[j] = max{m[j-1], m[p(j) ] + Vj} 

0 

Initially, no job belongs to optimal solution. 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 26 



0 

Max{0,2+0} 

2 

V1 = 2  
If job V1 selected => m[1] = m[p(1)]+2 = 0+2 = 2 
If not selected => m[1] = m[0] = 0  
Max. is coming from second component so, Set pa(1) = 
p(1) =0. 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 27 



0 

Max{2,4+0} 

2 4 

V2 = 4 
If job V2 selected => m[2] = m[p(2)]+4 = 0+4 = 4 
If not selected => m[2] = m[1] = 2 
Max. is coming from second component so, Set pa(2) = 
p(2) =0 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 28 



0 

Max{4,4+2} 

2 4 6 

V3 = 4 
If job V3 selected => m[3] = m[p(3)]+4 = m[1]+4 = 2+4 
= 6 
If not selected => m[3] = m[2] = 4 
Max. is coming from second component so, Set pa(3) 
= p(3) =1. 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 29 



0 

Max{6,7+0} 

2 4 6 7 

V4 = 7 
If job V4 selected => m[4] = m[p(4)]+4 = m[0]+7 = 0+7 
= 7 
If not selected => m[4] = m[3] = 6 
Max. is coming from second component so, Set pa(4) = 
p(4) =0. 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 30 



V5 = 2 
If job V5 selected => m[5] = m[p(5)]+2 = m[3]+2 = 6+2 
= 8  
If not selected => m[5] = m[4] = 7 
Max. is coming from second component so, Set pa(5) 
= p(5) =3 

0 

Max{7,6+2} 

2 4 6 7 8 

m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 31 



V6 = 1 
If job V6 selected => m[6] = m[p(6)]+1 = m[3]+1 = 6+1 
= 7 
If not selected => m[6] =m[5] = 8 
Max. is coming from first component so, Set pa(6) = 
6 -1 =5 

0 

Max{8,6+1} 

2 4 6 7 8 8 
m     0         1        2       3        4       5       6 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 32 



.	  
Reconstructing the Solution 
 
  Jobs                  Input Weights 
                   0     2     4     4     7     2     1     
 
      Array M 
 
      1             
     
     2          

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 33 

	  	  0	   2	  

0	   2	   4	  



 
Jobs                  Input Weights 
                    0     2     4     4     7     2      1          
                   Array M 
        
    3 
 
 
    4                                                          
                                                               
    5                            

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 34 

	  	  0	  	   	  	  2	   	  	  	  4	   	  	  6	   	  	  7	  

	  	  0	   2	   4	   6	  

	  	  	  0	   	  	  	  2	   	  	  	  4	   	  	  6	   	  	  7	   	  	  8	  

0	   2	   4	   6	   7	   8	   8	  



.	  

 Jobs                  Input Weights 
   6                    0       2      4        4      7       2       1  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 35 

0	   2	   4	   6	   7	   8	   8	  

 Following the heads of the pointers, we get intervals 
{1,3,5} as the solution.  



Iterative Version: Running Time 
Clearly O(n) , since it runs for n iterations and 

spends constant time in each iteration. 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 36 



Principles of DP 
� Recursive Solution (Optimal Substructure 

Property) 

� Overlapping Subproblems 

� Total Number of Subproblems is polynomial 

� A major ingredient of a DP solution is “ordering”. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 37 



WIS:  
� Optimal Substructure Property : we just 

exhibited. 

� Number of sub-problems: Polynomial (Linear). 

� Ordering: Increasing order of finishing times. 

�  Iterative Version is nothing but the DP solution. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 38 



Multi-Way Choices: Matrix Chain 
Multiplication 
Input: Let  A1,  A2,  ………,   An be  n matrices of order (d1, 
d2 ),(d2, d3 ),…… , (dn,dn+1) respectively.   
Aim: Determine the order in which the matrices should 
be multiplied so as to minimize the number of 
multiplications. 
Example: Let A1,   A2,   A3  be 3 matrices of order  (2 x 
3), (3 x 4), (4 x 5) respectively.                      
 
(A1,  A2) A3 :    (2 x 3 x 4 )+ (2 x 4 x 5) = 24+ 40= 64 
A1 ( A2 , A3 ):   (3 x 4 x 5)+ (2 x 3x 5)  = 60 + 30 = 90   
So, we see that by changing the evaluation sequence 
cost of operation changes. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 

39 



Optimal Substructure 
(Recursive Solution) 
	  
	  
	  
In general, 
	  
	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 40 

}]................1[]..........1[{min].......1[ 111

1

++

−

=
+++= nk

n

ik
dddnkmkmnm

}]................1[]..........[{min].......[ 11

1

++

−

=
+++= jki

j

ik
dddjkmkimjim



Overlapping Subproblems 
                                  m[1………4] 
 
 
     
m[1],m[2,3,4]     m[1,2],m[3,4]       m[1,2,3],m[4] 
 
 
m[2],m[3,4]      m[2,3],m[4]        m[1],m[2,3]   m[1,2],m[3] 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 41 



Number of sub-problems 
                             M[i……………j]                i<=j 
                  
                             

   n options   n options 
 
Number of subproblems= n2 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 42 



Example: 
Matrix dimensions: 
� A1  : 3 × 5 
� A2  : 5 × 4 
� A3  : 4 × 2 
� A4   : 2 × 7 
� A5   : 7 × 3 
� A6    : 3 × 8 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 43 



Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 

A2 	  	  -‐ 0 40 

A3 	  	  -‐ 	  	  -‐ 0 56 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 44 

A1 *A2 = 3*5*4  = 60 
A2*A3  = 5*4*2  = 40 
A3*A4  = 4*2*7  = 56 
A4*A5  = 2*7*3  = 42 
A5*A6  = 7*3*8  = 168 

A1  : 3 × 5 
A2  : 5 × 4 
A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 



Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 70 

A2 	  	  -‐ 0 40 110 

A3 	  	  -‐ 	  	  -‐ 0 56 66 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 90 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 45 

                           A1  : 3 × 5 
                           A2  : 5 × 4 

A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 

•  A1 _A3= A1 *A2 *A3 = 
min(  (A1.A2).A3 =60+ 3*4*2 =84 
or   A1.(A2 .A3)=40+ 3*5*2=70) 
=70 

•  A2 _A4= A2 *A3 *A4 = 
min(  (A2.A3).A4 =40+ 5*2*7=110 
or A2.
(A3.A4)=56+5*4*7=196)=110 

•  A3 _A5= A3 *A4 *A5 = 
min( (A3.A4).A5 =56+4*7*3=140 
or A3.(A4.A5)=42+ 4*2*3 =66) = 
66 

•  A4 _A6= A4 *A5 *A6 = min( (A4 
*A5)*A6= 42+2*3*8=90 or A4 
*(A5 *A6 )=168+ 2*7*8=312)=90 



Problem of parenthesization 
A1 A2 A3 A4 A5 A6 

A1 0 60 70	  
K=1 

112	  
K=3 

130	  
K=3 

202	  
K=5 

A2 	  	  -‐ 0 40 110	  
K=3 

112	  
K=3 

218	  
K=3 

A3 	  	  -‐ 	  	  -‐ 0 56 66	  
K=3 

154	  
K=3 

A4 	  	  -‐ 	  	  -‐ 	  	  -‐	   0 42 90	  
K=5 

A5 	  	  -‐ 	  	  -‐ 	  	  -‐ 	  	  -‐ 0 168 

A6 	  	  -‐ 	  	  -‐	  	   	  	  -‐ 	  	  -‐ 	  	  -‐ 0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 46 

A1  : 3 × 5 
A2  : 5 × 4 
A3  : 4 × 2 
A4   : 2 × 7 
A5   : 7 × 3 
A6    : 3 × 8 



Running Time 
}]................1[]..........[{min].......[ 11

1

++

−

=
+++= jki

j

ik
dddjkmkimjim

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 47 

Ο(n2) entries each takes O(n) time to compute 
 
The running time of this procedure is Ο(n3). 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 48 



Given a set P of n points in a plane denoted by (x1,y1), (x2,y2), . . . , 
(xn,yn) and line L defined by the equation y = ax +b,  error of line 
L with respect to P is the sum of  squares of the distances of 
these points from L. Aim is to determine a line that minimizes 
Error(L, P) =  ∑n

i=0(yi – b - axi)2 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 49 

A line of ‘best fit’ 



Line of Best Fit 
�  Line of Best Fit is the one that minimizes this 

error. This can be computed in O(n) time using the 
following formula: 

 
a = (n( ∑ xiyi) - ( ∑yi ∑xi )) /  (n ∑xi

2 – ( ∑xi )2 ) 
 
b=(1/n)(∑ yi – a ∑ xi) 

� The formula is obtained by differentiating the 
error wrt a and equating to zero and wrt b and 
equating to zero 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 50 



	  	   
Consider the following scenario: Clearly approximating 
these points with a single line is not a good idea. 
 
 
 
 
 
    
     A set of points that lie approximately on two lines 
 
Using two lines clearly gives a better approximation. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 51 



(contd.)	  

 
 
 
 
 

 A set of points that lie approximately on three lines 
 
In this case, 3 lines will give us a better approximation. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 52 



Segmented Least Square Error 
�  In all these cases, we are able to tell the number 

of lines we must use by looking at the points. In 
general, we don’t know this number. That is we 
don’t know what is the minimum number of lines 
we must use to get a good approximation.  

� Thus our aim becomes to minimize the number of 
lines that minimize the least square error. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 53 



We know that the last point p n belongs to a single 
segment in the optimal partition and this segment 
begins at some point, say pi . 
Thus, if we know the identity of the last segment, then 
we can recursively solve the problem on the remaining 
points p1 …  pi-1 as illustrated below: 
 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 54 

Designing the Algorithm 



�  If the last segment in the optimal is pi , … , pn,  then 
the value of optimal is, 

                      SLS(n)= SLS(i-1) + c + ein  
where c is the cost of using the segment and ein is the 

least square error of this segment.  
 
� But since we don’t know i, we’ll compute it as follows: 
                       SLS(n)= mini { SLS(i-1) + c + eij } 
 
� General recurrence:  
For the sub-problem p1, … , pj ,  
                  SLS(j)= mini { SLS(i-1) + c + eij } 
 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 55 

Writing the recurrence 



Time Analysis: 
�  eij values can be pre-computed in O(n3) time.  

� Additional Time: n entries, each entry computes 
the minimum of at most n values each of which can 
be computed in constant time. Thus a total of 
O(n2). 

 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 56 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 57 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 58 

FRACTIONAL KNAPSACK 
PROBLEM 

Given a set S of n items, with value vi and weight wi 
and a knapsack with capacity W. 
 
Aim: Pick items with maximum total  value  but with 
weight at most W. You may choose fractions of 
items. 



GREEDY APPROACH 
Pick the items in the decreasing order of value  per 
unit weight i.e. highest first. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 59 

 
 



Example 
   Knapsack Capacity: 50 

  Item 1  Item 2  Item 3 

 
   vi  = 60  vi = 100  vi  = 120 

  vi/wi  = 6  vi/wi  = 5  vi/wi  = 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 60 

10 
20 30 



Example 
   Knapsack Capacity: 50 

  Item 2  Item 3 

 
 vi = 100  vi  = 120     60 
 vi/wi  = 5  vi/wi  = 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 61 

10 

20 30 



Example 
   Knapsack Capacity: 50 

  Item 3   
 

        100 
 vi = 120         + 
 vi/wi  = 4        60 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 62 

10 

20 

30 



Example 
Knapsack Capacity: 50 

        
                80   
        + 
       100 
         + 
        60 
       = 240 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 63 

10 

20 

20 



0-1 Kanpsack 
Example	  to	  show	  that	  the	  above	  greedy	  approach	  will	  
not	  work.	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 64 



GREEDY APPROACH DOESN’T 
WORK FOR 0-1 KNAPSACK 

      -Counter Example 
   Knapsack Capacity: 50 

  Item 1  Item 2  Item 3 

 
   vi  = 60  vi = 100  vi  = 120 

  vi/wi  = 6  vi/wi  = 5  vi/wi  = 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 65 

10 
20 30 



Counter Example 
   Knapsack Capacity: 50 

  Item 2  Item 3 

 
 vi = 100  vi  = 120     60 
 vi/wi  = 5  vi/wi  = 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 66 

10 

20 30 



Counter Example 
   Knapsack Capacity: 50 

  Item 3   
 

        100 
 vi = 120         + 
 vi/wi  = 4        60 
        =160 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 67 

10 

20 

30 

Suboptimal 



DP Solution for 0-1KS : Adding a 
Variable 
�  Arrange the elements in any arbitrary order. 
�  Let OPT(n, W) denote the value of optimal solution with n 

objects and capacity W. 
�  Working on similar lines as in WIS and SLS, 
�  If n does not belong to OPT, then OPT(n, W) = OPT(n-1, W) 
�  If n belongs to OPT then ?  

�  Which subproblem to consider?  
�  OPT(n-1, W)?  
�  But OPT(n-1, W) denote the optimal solution with knapsack 

capacity W. If n belongs to OPT then we have reduced capacity in 
our knapsack for the smaller subproblems. i.e. we need to consider 
OPT(n – 1, W – wn) 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 

68 



�  If we knew the exact value (say K) of OPT 
knapsack, then to compute OPT(n, K) we know that 
for n-1 objects, we have to solve exactly two 
problems : OPT(n-1, K) and OPT(n -1, K – wn) and 
we would solve a linear number of subproblems in 
all. 

� But obviously, we don’t know that so we make a 
guess w for K (i.e. try out all possible values for K) 
and solve the problem for w. So we add a 
dimension(/variable) to our problem. 

� Similarly while dealing with objects {1 … i} we need 
to solve OPT(i-1, K) and OPT(i -1, K – wi).  

� Thus in general we need to define OPT(i, w) for 
every i < n and every w < W. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 69 



DP Solution for 0-1KS : Adding 
a Variable 
�  Let m[i,w] be the optimal value obtained when 

considering objects {1 … i} and filling a knapsack 
of capacity w 
� m[0,w] = 0 
� m[i,0] = 0 
� m[i,w] = m[i-1,w] if wi > w 
� m[i,w] = max{m[i-1, w-wi] + vi , m[i-1, w]} if wi <= 

w 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 70 



Example 
l  n = 4 

l  W = 5 

l  Elements (weight, value): 

         (2,3), (3,4), (4,5), (5,6) 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 71 



0	   0	   0	   0	   0	   0	  

0	  

0	  

0	  

0	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 72 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	  

0	  

0	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 73 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w1 ;  m[1,1] = m[1-1,1] = m[0,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	  

0	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 74 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As	  w<w2	  ;	  	  m[2,1]	  =	  m[2-‐1,1]	  =	  m[1,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	   o	  

0	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 75 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,1] = m[3-1,1] = m[2,1] 



0	   0	   0	   0	   0	   0	  

0	   o	  

0	   o	  

0	   o	  

0	   o	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 76 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,1] = m[4-1,1] = m[3,1] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	  

0	   o	  

0	   o	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 77 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,2] = max{m[1-1,2],m[1-1,2-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	  

0	   o	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 78 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w2 ;  m[2,2] = m[2-1,2] = m[1,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 79 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,2] = m[3-1,2] = m[2,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 80 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,2] = m[4-1,2] = m[3,2] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	  

0	   o	   3	  

0	   o	   3	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 81 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,3] = max{m[1-1,3],m[1-1,3-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	  

0	   o	   3	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 82 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ;  m[2,3] = max{m[2-1,3],m[2-1,3-3]+4} 

   =max{ 3,0+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 83 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w3 ;  m[3,3] = m[3-1,3] = m[2,3] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 84 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,3] = m[4-1,3] = m[3,3] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 85 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,4] = max{m[1-1,4],m[1-1,4-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	  

0	   o	   3	   4	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 86 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ; m[2,4] = max{m[2-1,4],m[2-1,4-3]+4} 

   =max{3,0+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 87 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w3 ; m[3,4] = max{m[3-1,4],m[3-1,4-4]+5} 

   =max{ 4,0+5} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 88 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w<w4 ;  m[4,4] = m[4-1,4] = m[3,4] 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 89 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w1 ; m[1,5] = max{m[1-1,5],m[1-1,5-2]+3} 

   =max{ 0,0+3} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	  

0	   o	   3	   4	   5	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 90 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w2 ; m[2,5] = max{m[2-1,5],m[2-1,5-3]+4} 

   =max{ 3,3+4} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 91 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w3 ; m[3,5] = max{m[3-1,5],m[3-1,5-4]+5} 

   =max{ 7,0+5} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	   7	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 92 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 
As w>=w4 ; m[4,5] = max{m[4-1,5],m[4-1,5-5]+6} 

   =max{ 7,0+6} 



0	   0	   0	   0	   0	   0	  

0	   o	   3	   3	   3	   3	  

0	   o	   3	   4	   4	   7	  

0	   o	   3	   4	   5	   7	  

0	   o	   3	   4	   5	   7	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 93 

 
W  0    1       2   3  4      5 i 

 
0 
 
 
1 
 
 
2 
 
 
3 
 
 
4 

 (2,3), (3,4), (4,5), (5,6) 



Obtaining a Solution 
� As before we backtrack to obtain the optimal 

solution picking the objects that provided us the 
maximum profit/value. 

� Backtracking gives us {2, 1} as the final solution. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 94 



Running Time 
�  nW cells  

� Constant time to compute each cell 

� Total Time = O(nW) 

�   Pseudo-polynomial Algorithm 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 95 



Pseudo-polynomial algorithm 
� An algorithm that runs in time polynomial in the 

numeric value of the input (which is actually 
exponential in the size of the input – the number of 
digits). 

 
� DP solution to 0-1 Knapsack is pseudo-polynomial as it 

is polynomial in W, the capacity (one of the inputs) of 
the Knapsack.   

� Note that polynomial in ‘n’ is fine as ‘n’ is not an input 
parameter, it is only a symbol we have used for our 
convenience to denote the number of objects. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 96 



Strongly Polynomial Algorithms 
� An algorithm is said to be strongly polynomial if 

its running time is polynomial in the input size and 
does not depend on any value of the input. 

�  It will be shown later that 0-1 Knapsack is actually 
an NP-hard problem and is unlikely to possess a 
strongly polynomial time solution. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 97 



Alternative Definitions 
�  Pseudo-polynomial Algorithm: An algorithm that 

runs in time polynomial in the input size when the 
input is represented as a string of 1’s ( instead of 
0’s and 1’s) is called a Pseudo-polynomial 
Algorithm. 

� Strongly-polynomial Algorithm: An algorithm that 
runs in time polynomial in the input size when the 
input is represented as a string of 0’s and 1’s is 
called a Strongly-polynomial Algorithm. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 98 



Weakly/Strongly NP hard 
problems 
� An NP hard problem with a known pseudo-

polynomial time solution is said to be  weakly NP 
hard...Thus 0-1 knapsack is weakly NP-hard. 

� An NP- hard problem for which it has been proved 
that it cannot admit a pseudo-polynomial solution 
unless P= NP is said to be strongly NP hard. 

�  In our next session, we’ll studying NP-hard 
problems. But most of the times, we do not 
categorize them as weak/strong NP-hard unless 
we give a pseudo-polynomial algorithm for a 
problem. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 99 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 100 



� occurrence 
� occurrence 

101 

o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

6 mismatches, 1 gap 

1 mismatch,   1 gap 

0 mismatch,  3 gaps 
Workshop on Design and Analysis of Algorithms 
at Epitech University, France 

String Similarity 



�  PROBLEM:  Given two strings X = x1 x2 . . . xn               
and  Y = y1 y2 . . .. ym 

� GOAL:  Find an alignment of minimum cost, 
where  δ is the cost of a gap and ᾳ is the cost 
of a mismatch. 

�  Let OPT(i,j)=min cost of aligning strings X = x1 
x2 . . . xi and  Y = y1 y2 . . .yj 

102 
Workshop on Design and Analysis of Algorithms 
at Epitech University, France 



�  Case1:	  	  xi	  is	  aligned	  with	  yj	  in	  OPT and	  they	  match	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
OPT(i,j)=min	  cost	  of	  aligning	  	  x1x2…….xi-‐1	  	  and	  y1y2……..yj-‐1	  
�  Case	  2:	  	  xi	  is	  aligned	  with	  yj	  in	  OPT and	  they	  don’t	  match	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
OPT(i,j)=	  	  	  	  	  	  	  	  +	  min	  cost	  of	  aligning	  	  x1x2…….xi-‐1	  	  and	  y1y2……..yj-‐1	  

	  
	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

   __xi 
   __yj 

   __xi 
   __yj 

match 

mismatch 

ji yx
α

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 103 

4 cases for constructing optimal 
solution 



•  Case 3:  ith position of  X is not matched. 
 
                
 
OPT(i,j) = δ + min cost of aligning x1 x2 . . . xi-1 and  

  y1 y2 . . . yj 
                 
•   Case 4:  jth position of  Y is not matched. 
 
 
                                
OPT(i,j) = δ + min cost of aligning x1 x2 . . . xi and 

  y1 y2 . . . Yj-1 

___xi 
__yj_ 

__xi_ 
___yj 

gap 

gap 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 104 



Thus, 
OPT(i,j)=min{ 

       OPT(i-1,j-1), 
                        OPT(i-1,j) + δ, 
                        OPT(i,j-1) + δ, 

       OPT(i-1,j-1) + 
                   } 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 105 

ji yx
α



Let  X = naem, 
       Y = name, 

ji yx
α  :mismatch cost  = 1 
δ    :gap cost = 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 106 

Example 



	   

	   

	   

n  a   m  e 

m 

e 

a 

 n 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 107 



	   

	   

	   

n  a   m  e 

m 

e 

a 

 n 

0 0 0 0  0 
OPT(0,j)=0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 108 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



	   

	   

	   

n  a   m  e 

m 

e 

a 

 n 

0 0 0 0  0 

0 

0 

0

0 

OPT(0,j)=0 
OPT(i,0)=0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 109 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,1)=min(OPT(0,0), 
                     OPT(0,1)+1, 
                     OPT(1,0)+1) 
                =OPT(0,0) 
                =0 
                 

0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 110 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,2)=min(OPT(0,1)+1, 
                     OPT(0,2)+1, 
                     OPT(1,1)+1) 
                =OPT(1,1)+1 
                =0+1 
                =1 
                 

0 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 111 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,3)=min(OPT(0,2)+1, 
                      OPT(0,3)+1, 
                      OPT(1,2)+1) 
                =OPT(0,2)+1 
                =0+1 
                =1 
                 

0 1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 112 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(1,4)=min(OPT(0,3)+1, 
                       OPT(0,4)+1, 
                       OPT(1,3)+1) 
                =OPT(0,3)+1 
                =0+1 
                =1 
                 

0 1 1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 113 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(2,1)=min(OPT(1,0)+1, 
                     OPT(1,1)+1, 
                     OPT(2,0)+1) 
                =OPT(1,0)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 114 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(2,2)=min(OPT(1,1), 
                    OPT(1,2)+1, 
                    OPT(2,1)+1) 
                =OPT(1,1) 
                =0 
                 

0 1 1 1 

1 0 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 115 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(2,3)=min(OPT(1,2)+1, 
                      OPT(1,3)+1, 
                     OPT(2,2)+1) 
                =OPT(2,2)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 0 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 116 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(2,4)=min(OPT(1,3)+1, 
                       OPT(1,4)+1, 
                      OPT(2,3)+1) 
                =OPT(2,3)+1 
                =1+1 
                =2 
                 

0 1 1 1 

1 0 1 2 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 117 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(3,1)=min(OPT(2,0)+1, 
                      OPT(2,1)+1, 
                      OPT(3,0)+1) 
                =OPT(3,0)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 118 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(3,2)=min(OPT(2,1)+1, 
                       OPT(2,2)+1, 
                       OPT(3,1)+1) 
                =OPT(2,2)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 119 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(3,3)=min(OPT(2,2)+1, 
                         OPT(2,3)+1, 
                        OPT(3,2)+1) 
                =OPT(2,2)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 120 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(3,4)=min(OPT(2,3), 
                     OPT(2,4)+1, 
                     OPT(3,3)+1) 
                =OPT(2,3) 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 1 1 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 121 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(4,1)=min(OPT(3,0)+1, 
                      OPT(3,1)+1, 
                      OPT(4,0)+1) 
                =OPT(4,0)+1 
                =0+1 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 1 1 1 

1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 122 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(4,2)=min(OPT(3,1)+1, 
                       OPT(3,2)+1, 
                       OPT(4,1)+1) 
                =OPT(4,1)+1 
                =1+1 
                =2 
                 

0 1 1 1 

1 0 1 2 

1 1 1 1 

1 2 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 123 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(4,3)=min(OPT(3,2), 
                     OPT(3,3)+1, 
                     OPT(4,2)+1) 
                =OPT(3,2) 
                =1 
                 

0 1 1 1 

1 0 1 2 

1 1 1 1 

1 2 1 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 124 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 

OPT(4,4)=min(OPT(3,3)+1, 
                       OPT(3,4)+1, 
                      OPT(4,3)+1) 
                =OPT(3,3)+1 
                =1+1 
                =2 
                 

0 1 1 1 

1 0 1 2 

1 1 1 1 

1 2 1 2 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 125 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



0 0 0 0 0 

0 

0 	   

0 	   

0 	   

n  a   m  e 

m 

e 

a 

 n 0 1 1 1 

1 0 1 2 

1 1 1 1 

1 2 1 2 

Solution: 
• Trace from bottom right 
• Diagonal elements having          
 value 0 is the optimal 
 alignment. 

So, 
Optimal alignment: 
name 
naem 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 126 

If  i and  j match, 
   OPT(i,j)=min{OPT(i-1,j-1),OPT(i-1,j)+1,OPT(i,j-1)+1} 
else 
   OPT(i,j)=min{OPT(i-1,j-1)+1,OPT(i-1,j)+1,OPT(i,j-1)+1} 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 127 



 
 
The problem: Given a directed graph G with weights 
on edges, vertices s and t, find a shortest path from 
s to t. 

	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 128 

v2 

t 

v3 

s

v1 
6 

2 

3 

5 

1 
4 

6 

7 2 

3 



 Optimal Substructure 
(Recursion)	  
 Apply the same argument as earlier: 
Ask the same question as earlier: 
How does OPT reach t? 
 
Let w1, w2, w3 are the in-neighbours of t. Then OPT 
must have taken a route through one of them. We 
don’t know which. So, 
      we compute shortest path from s to each of wi 
and then take the edge wi to t and then take the 
best amongst all of them.. 
 
 
 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 129 



 Optimal Substructure 
(Recursion) contd..	  
 Alternatively, one could ask 
How does OPT start from s? 
 
Let u1, u2, u3 are the out-neighbours of s. Then OPT 
must have taken a route through one of them. We 
don’t know which. So, 
      we take the edge s to ui and compute shortest 
path from ui to t for every ui and then take the 
best amongst all of them. 
 
 
 
 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 130 



 Recurrence relation	  
If OPT(v) denotes the shortest path from v to t, 
then we are looking for  
OPT(s) = min(OPT(ui)+ C(s, ui)) 
 
But this does not work because OPT(ui) may change 
in the next iteration (a shorter path using more 
number of edges). So we also need to add a variable 
which denotes the length of the path. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 131 



 Recurrence relation	  
OPT(i, v) = min(OPT(i-1, v), min(OPT(i-1, w)+ Cvw)) 
                                             wЄV 
     where 
 
OPT(i,v) denotes the minimum cost of a v-t  path 
using at most i edges.  
Cvw is the cost of an edge from vertex v to vertex w  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 132 



Problem: To find shortest 
path from s to t	  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 133 

v2 

t 

v3 

s

v1 
6 

2 

3 

5 

1 
-4 

6 

7 -2 

3 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 134 

0 

∞ 

∞ 

∞ 

∞ 

t 

s 

v1 

v2 

v3 

0 1 2 3 4 



0 0 

∞ ∞ 

∞ 

∞ 

∞ 

t 

s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 135 



0 0 

∞ ∞ 

∞ 6 

∞ 

∞ 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 136 



0 0 

∞ ∞ 

∞ 6 

∞ -‐4 

∞ 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 137 



0 0 

∞ ∞ 

∞ 6 

∞ -‐4 

∞ 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 138 



0 0 0 

∞ ∞ 

∞ 6 

∞ -‐4 

∞ 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 139 



0 0 0 

∞ ∞ 1 

∞ 6 

∞ -‐4 

∞ 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 140 



0 0 0 

∞ ∞ 1 

∞ 6 -‐2 

∞ -‐4 

∞ 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 141 



0 0 0 

∞ ∞ 1 

∞ 6 -‐2 

∞ -‐4 -‐4 

∞ 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 142 



0 0 0 

∞ ∞ 1 

∞ 6 -‐2 

∞ -‐4 -‐4 

∞ 7 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 143 



0 0 0 0 

∞ ∞ 1 

∞ 6 -‐2 

∞ -‐4 -‐4 

∞ 7 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 144 



0 0 0 0 

∞ ∞ 1 1 

∞ 6 -‐2 

∞ -‐4 -‐4 

∞ 7 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 145 



0 0 0 0 

∞ ∞ 1 1 

∞ 6 -‐2 -‐2 

∞ -‐4 -‐4 

∞ 7 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 146 



0 0 0 0 

∞ ∞ 1 1 

∞ 6 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 

∞ 7 7 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 147 



0 0 0 0 

∞ ∞ 1 1 

∞ 6 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 

∞ 7 7 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 148 



0 0 0 0 0 

∞ ∞ 1 1 

∞ 6 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 

∞ 7 7 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 149 



0 0 0 0 0 

∞ ∞ 1 1 1 

∞ 6 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 

∞ 7 7 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 150 



0 0 0 0 0 

∞ ∞ 1 1 1 

∞ 6 -‐2 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 

∞ 7 7 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 151 



0 0 0 0 0 

∞ ∞ 1 1 1 

∞ 6 -‐2 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 -‐4 

∞ 7 7 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 152 



0 0 0 0 0 

∞ ∞ 1 1 1 

∞ 6 -‐2 -‐2 -‐2 

∞ -‐4 -‐4 -‐4 -‐4 

∞ 7 7 4 4 

t 
s 

v1 

v2 

v3 

0 1 2 3 4 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 153 



v2 

t 

v3 

s 

v1 
6 

2 

3 

5 

1 
-4 

6 

7 -2 

3 

The final  s-t path obtained is s-v2-t with 1 as 
minimum cost . 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 154 



Acknowledgements 
� Nikita Khanna 
� Kirti Rani 
�  Pooja Rani 
� Om ji 
� Neha Katyal 
� Sonam 
�  Pulkit Ohri 
� Garima Jain 
�  Pooja  

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 155 



Any Questions….. 

Workshop on Design and Analysis of Algorithms 
at Epitech University, France 156 



Workshop on Design and Analysis of Algorithms 
at Epitech University, France 157 


