
NP Hard Problems
Instructor

Neelima Gupta

ngupta@cs.du.ac.in

Presentation Edited by Sapna Grover

Table of Contents

�  NP – Hardness

�  Reductions

NP - Hard
�  The aim to study this class is not to solve a

problem but to see how hard the problem is?

Reduction
�  The crux of NP-Hardness is reducibility

�  We say that a problem P is reduced to another

problem Q if an instance of P can be easily
transformed into an instance of Q, the solution
to which provides a solution to the instance of P.

�  Intuitively it means that if one can solve Q then

one can solve P also, i.e. P is “no harder to solve”
than Q or Q is at least as hard as P.

IP

SQ

(Yes/
No)

IQ

SP

(Yes/
No)

Poly.
Time

Poly.
Time

IP : Instance of problem P

IQ : Instance of problem Q

SP : Solution of problem P

SQ : Solution of problem Q

Transformation Characterstics
�  If A(Q) is yes then A(P) is yes

�  Vice versa

�  It should be done in polynomial time

Reducibility
�  An example:

�  P: Given a set of Booleans, is at least one
TRUE?

�  Q: Given a set of integers, is their sum
positive?

�  Transformation: (x1, x2, …, xn) = (y1, y2, …, yn)
where yi = 1 if xi = TRUE, yi = 0 if xi = FALSE

�  Another example:
�  Solving linear equations is reducible to solving

quadratic equations
� How can we easily use a quadratic-equation

solver to solve linear equations?

IP

SQ

(Yes/
No)

IQ

SP

(Yes/
No)

Poly.
Time

Poly.
Time

IP : Instance of problem P

IQ : Instance of problem Q

SP : Solution of problem P

SQ : Solution of problem Q

NP hard
Q is s.t.b. NP-hard if ∀ P ∈ NP, P ≤p Q

If all problems R ∈ NP are reducible to T,
then T is NP-Hard

T is NP hard

•  Q

If T is NP-Hard

T

And T ∈ NP then T is NPC.

If T ≤p Q then Q is
NP hard.

NP

NPC

Diagrammatically

NP HARD

NPC

The SAT Problem
�  One of the first problems proved to be NP-Hard

was satisfiability (SAT):
�  Given a Boolean expression on n variables, can we

assign values such that the expression is TRUE?
�  Ex: ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2

�  Cook’s Theorem: The satisfiability problem is
NP-Hard (actually NP Complete…will do this
later)
� Note: Argue from first principles, not

reduction
� Proof: not here

Conjunctive Normal Form
�  Even if the form of the Boolean expression is

simplified, the problem is NP-Hard (NP Complete)
�  Literal: an occurrence of a Boolean or its negation
�  A Boolean formula is in conjunctive normal form,

or CNF, if it is an AND of clauses, each of which
is an OR of literals
� Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5)

�  3-CNF: each clause has exactly 3 distinct literals
� Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5

∨ x3 ∨ x4)
Notice: true if at least one literal in each clause
is true

The 3-CNF Problem
�  Thm 36.10: Satisfiability of Boolean formulas in

3-CNF form (the 3-CNF Problem) is NP-Hard
(NP-Complete)
�  Proof: Nope

�  The reason we care about the 3-CNF problem is
that it is relatively easy to reduce to others
�  Thus by proving 3-CNF NP-Hard we can prove

many seemingly unrelated problems
NP-Hard

CLIQUE is NP Hard
�  Pick up a problem known to be NPHard and

�  Transform (reduce) the known problem to CLIQUE
�  0 Give the transformation

1.  Show that under the transformation : solution
of known problem is yes => solution to CLIQUE is
yes.

2.  Show that under the transformation : solution
of CLIQUE is yes => solution of the known
problem is yes.

3.  Show that the transformation can be done in
time polynomial in the length of an instance of
the known problem.

SO, THREE STEPS TO REDUCE A KNOWN
PROBLEM TO CLIQUE.

3-CNF → Clique
�  What should the reduction do?

�  A: Transform a 3-CNF formula to a graph, for
which a k-clique will exist (for some k) iff the 3-
CNF formula is satisfiable.

3-CNF → Clique
�  The reduction:

�  Let B = C1 ∧ C2 ∧ … ∧ Ck be a 3-CNF formula
with k clauses, each of which has 3 distinct
literals

�  For each clause put a triple of vertices in the
graph, one for each literal

�  Put an edge between two vertices if they are
in different triples and their literals are
consistent, meaning not each other’s negation

Let the expression in 3CNF be: (~x v y v z) ^ (x v ~y v ~z)
^ (x v y v z)

Expression → Graph

 ~x y z

 x

~y

 ~z

 x

y

z

Clique thus formed:

x

y

z

Note:- There are many other possible cliques in
previous mapping. This is one of the possible cliques.

3-CNF → Clique
�  Prove the reduction works:

�  If B has a satisfying assignment, then each
clause has at least one literal (vertex) that
evaluates to 1

�  Picking one such “true” literal from each
clause gives a set V’ of k vertices. V’ is a
clique (Why?)

�  If G has a clique V’ of size k, it must contain
one vertex in each triple (clause) (Why?)

�  We can assign 1 to each literal corresponding
with a vertex in V’, without fear of
contradiction

Reduction takes polynomial
time

�  Let there be n variables in the 3-CNF with k
clauses

�  Then, the input size is theta(k + n).

�  Size of the graph = 3k*3(k-1)

Vertex Cover is NP-Hard

Pick up a problem known in NP-hard

�  CLIQUE

 Clique ≤p Vertex Cover
�  Let the instance of Clique (Ic) be <G, k>.

�  Reducing it to instance of VC (Ivc) be <G’, |V|-k>

 where G’ : E(G’)=Edges b/w vertex pair not
present in G and |V|-k is the vertex cover.

�  Catch behind this choice : Because it works…!!!

Green ovals represent
CLIQUE for this graph

G

G G’

G’ G

Big ovals represent
the VC for graph G’

Clique → Vertex Cover
�  Reduce k-clique to vertex cover

�  The complement GC of a graph G contains
exactly those edges not in G

�  Compute GC in polynomial time
�  G has a clique of size k iff GC has a vertex

cover of size |V| - k

Clique → Vertex Cover
�  Claim: If G has a clique of size k, GC has a vertex

cover of size |V| - k
�  Let V’ be the k-clique
�  Then V - V’ is a vertex cover in GC

� Let (u,v) be any edge in GC
� Then u and v cannot both be in V’ (Why?)
� Thus at least one of u or v is in V-

V’ (why?), so edge (u, v) is covered by V-V’
� Since true for any edge in GC, V-V’ is a

vertex cover

Clique → Vertex Cover
�  Claim: If GC has a vertex cover V’ ⊆ V, with |V’|

= |V| - k, then G has a clique of size k
�  For all u,v ∈ V, if (u,v) ∈ GC then u ∈ V’ or

v ∈ V’ or both (Why?)
�  Contrapositive: if u ∉ V’ and v ∉ V’, then

(u,v) ∈ E
�  In other words, all vertices in V-V’ are

connected by an edge, thus V-V’ is a clique
�  Since |V| - |V’| = k, the size of the clique is k

Independent Set Problem
Independent Set : A subset S of V is said to be

independent if no 2 nodes in S are joined by an
edge.

Problem Statement: Given a graph G=(V,E), find an
independent set that is as large as possible.

Exercise
�  Show that Independent Set is NP Hard by

reducing it from
�  3 CNF
�  Clique
�  Vertex Cover

�  Show that Vertex Cover is NP Hard by reducing
it from
�  3 CNF

Subset Sum Problem
Problem Statement

Given: A finite set S of natural numbers.

 A target t є N.

To Find: If there exists a subset S’ of S
whose elements sum up to t.

Subset Sum Problem
 We now prove that Subset Sum Problem is

 NP-Complete.

 Subset Sum is in NP. For an instance <S,t>, let
S’ be the certificate. Checking whether
elements of S’ sum to t can be done in
polynomial time.

Subset Sum Problem
Subset Sum is NP Hard

We show this by proving that 3-SAT is reducible

to Subset Sum in polynomial time.

Given: 3-SAT formula Ф over variables x1, x2, ……xn

with clauses C1, C2……Ck

Subset Sum Problem
Without loss of generality, we make the

following 2 assumptions:

�  No clause contains both a variable and its
negation. WHY?

 (Because such a clause would be trivially
satisfied.)

�  Each variable appears in at least 1 clause. WHY?

 (Because otherwise, it does not matter what
value is assigned to it.)

Subset Sum Problem
Reduction Process - through example

Consider the 3-SAT formula : Ф = C1^ C2 ^ C3 ^ C4

where C1 =(x1 v x2’ v x3’)
 C2 =(x1’ v x2’ v x3’)
 C3 =(x1’ v x2’ v x3)
 C4 =(x1 v x2 v x3)

A satisfying assignment is <x1=0, x2=0, x3=1>

Subset Sum Problem
Steps:

Ø Create 2 numbers in set S for each variable xi
and 2 numbers for each clause Cj.

Ø These numbers are in base 10 and each has n+k
digits.

Ø Each digit corresponds to a variable or a clause.
Label least significant k digits by clauses and
most significant n digits by variables.

•  Do the following for i = 1……n
•  If xi = 1 in the assignment, include vi in S’,

otherwise include vi’. In the example,
•  x1=0 => x1’=1 , v1’ is selected
•  x2=0 => x2’=1 , v2’ is selected
•  x3=1 => x3=1 , v3 is selected

Subset Sum Problem

4 4 4 4 1 1 1 t

2 0 0 0 0 0 0 S4'

1 0 0 0 0 0 0 S4

0 2 0 0 0 0 0 S3'

0 1 0 0 0 0 0 S3

0 0 2 0 0 0 0 S2'

0 0 1 0 0 0 0 S2

0 0 0 2 0 0 0 S1'

0 0 0 1 0 0 0 S1

0 0 1 1 1 0 0 V3'

1 1 0 0 1 0 0 V3

0 1 1 1 0 1 0 V2'

1 0 0 0 0 1 0 V2

 0 1 1 0 0 0 1 V1'

1 0 0 1 0 0 1 V1

C4 C3 C2 C1 X3 X2 X1

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v x3) Λ (x1 v x2 v x3)
Satisfying assignment x1=0, x2=0, x3=1
x1’, x2’ and x3 are selected.

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v x3)
Λ (x1 v x2 v x3)
Satisfying assignment x1=0, x2=0, x3=1

4 4 4 4 1 1 1 t

2 0 0 0 0 0 0 S4'

1 0 0 0 0 0 0 S4

0 2 0 0 0 0 0 S3'

0 1 0 0 0 0 0 S3

0 0 2 0 0 0 0 S2'

0 0 1 0 0 0 0 S2

0 0 0 2 0 0 0 S1'

0 0 0 1 0 0 0 S1

0 0 1 1 1 0 0 V3'

1 1 0 0 1 0 0 V3

0 1 1 1 0 1 0 V2'

1 0 0 0 0 1 0 V2

 0 1 1 0 0 0 1 V1'

1 0 0 1 0 0 1 V1

C4 C3 C2 C1 X3 X2 X1

4
0

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v
x3) Λ (x1 v x2 v x3)
Satisfying assignment x1=0, x2=0, x3=1

4 4 4 4 1 1 1 t

2 0 0 0 0 0 0 S4'

1 0 0 0 0 0 0 S4

0 2 0 0 0 0 0 S3'

0 1 0 0 0 0 0 S3

0 0 2 0 0 0 0 S2'

0 0 1 0 0 0 0 S2

0 0 0 2 0 0 0 S1'

0 0 0 1 0 0 0 S1

0 0 1 1 1 0 0 V3'

1 1 0 0 1 0 0 V3

0 1 1 1 0 1 0 V2'

1 0 0 0 0 1 0 V2

 0 1 1 0 0 0 1 V1'

1 0 0 1 0 0 1 V1

C4 C3 C2 C1 X3 X2 X1

4
1

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v
x3) Λ (x1 v x2 v x3)
Satisfying assignment x1=0, x2=0, x3=1

4 4 4 4 1 1 1 t

2 0 0 0 0 0 0 S4'

1 0 0 0 0 0 0 S4

0 2 0 0 0 0 0 S3'

0 1 0 0 0 0 0 S3

0 0 2 0 0 0 0 S2'

0 0 1 0 0 0 0 S2

0 0 0 2 0 0 0 S1'

0 0 0 1 0 0 0 S1

0 0 1 1 1 0 0 V3'

1 1 0 0 1 0 0 V3

0 1 1 1 0 1 0 V2'

1 0 0 0 0 1 0 V2

 0 1 1 0 0 0 1 V1'

1 0 0 1 0 0 1 V1

C4 C3 C2 C1 X3 X2 X1

4
2

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v
x3) Λ (x1 v x2 v x3)
Satisfying assignment x1=0, x2=0, x3=1

4 4 4 4 1 1 1 t

2 0 0 0 0 0 0 S4'

1 0 0 0 0 0 0 S4

0 2 0 0 0 0 0 S3'

0 1 0 0 0 0 0 S3

0 0 2 0 0 0 0 S2'

0 0 1 0 0 0 0 S2

0 0 0 2 0 0 0 S1'

0 0 0 1 0 0 0 S1

0 0 1 1 1 0 0 V3'

1 1 0 0 1 0 0 V3

0 1 1 1 0 1 0 V2'

1 0 0 0 0 1 0 V2

 0 1 1 0 0 0 1 V1'

1 0 0 1 0 0 1 V1

C4 C3 C2 C1 X3 X2 X1

4
3

Subset Sum Problem
Construct S and t as follows:

Ø t has a 1 in each digit labeled by a variable and 4
in each clause-digit.

Ø For each xi, there exist 2 integers vi, vi’ in S.
Both vi and vi’ have 1 corresponding to digit xi.

Ø If xi appears in Cj, the Cj-digit in vi = 1

 If vi’ appears in Cj, the Cj-digit in vi’ = 1

Ø All other digits are zero.

Subset Sum Problem
Claim: All vi and vi’ in S are unique

�  vi (vi’) and vj (vj’) will be different in most
significant positions.

�  vi and vi’ will be different in least significant
positions. WHY?

 (both cannot belong to the same clause)

Subset Sum Problem
Ø For all Cj, there exist sj and sj’ integers in S.

Both have 0’s in all digits other than the one
labeled by Cj.

Ø sj has a 1 corresponding to Cj, and sj’ has a 2
corresponding to Cj.

Ø These integers are slack variables, used to get
clause labeled digit position to add to the target
value of 4.

Subset Sum Problem
Claim: All sj and sj’ in S are unique
 (for reasons similar to vi and vi’)
Observation: The greatest sum of digits in any

digit position is 6. This occurs in clause-digits (vi
and vi’ make a contribution of 3, sj and sj’ make
a contribution of 1 and 2 respectively).

Conclusion: Interpretation is in base 10, so no
carries would be generated.

REDUCTION DONE !!

Subset Sum Problem
Cla im : Th i s reduct i on can be done i n

polynomial time.
Ø S contains 2n+2k values.
Ø Each has n+k digits.
Ø Each digit takes time polynomial in (n+k) to be

produced.
Ø t has n+k digits each being produced in constant

time.
Hence Proved !

Subset Sum Problem
To Prove: 3-SAT Ф is satisfiable if and only if

there exists a subset S’ of S whose elements
sum to ‘t’.

Proof

Part 1

Given: Ф has a satisfying assignment.

Subset Sum Problem
Ø Do the following for i = 1……n

Ø If xi = 1 in the assignment, include vi in S’,
otherwise include vi’. In the example, v1’, v2’, v3
belong to S’.

Note: For each variable digit, the sum of values of
S’ must be 1 (= those of target t)

Subset Sum Problem
Ø Each clause is satisfied, therefore has at least

one positive literal. Thus, each clause digit has
at least one ‘1’ through a vi or vi’ value in S’.
(the sum of clause digit may be 1 or 2 or 3).

Ø Include appropriate non empty subset of slack
variables {sj, sj’} in S’ to achieve the target of
4 in each digit labeled by Cj.

Subset Sum Problem
�  Since we have matched all target digits of the

sum, and there does not exist any carry,
therefore the values of S’ sum to t.

Subset Sum Problem
Part 2 of the proof

Given: Subset S’ of S sums to t.

Observe the following:

Ø S’ must include exactly one of vi and vi’ for all i.
WHY?

 Because otherwise variable digits would not sum
to 1

Subset Sum Problem
Ø If vi belongs to S’, set xi = 1.

Ø If vi’ belongs to S’, set xi’ = 0.

Claim: Every clause Cj is satisfied by this
assignment.

Proof: Note that in order to achieve a sum of in

digits corresponding to Cj, the subset S’ must

include at least one vi or vi’ value that has a value

1 in the digit labeled by Cj.

Subset Sum Problem
Ø Since we have xi =1 if vi belongs to S’, clause Cj

is satisfied.

Ø And since xi =0 if vi’ belongs to S’, again clause
Cj is satisfied.

Ø Therefore, all clauses are satisfied.

Hence Proved !

Set Cover Problem
Problem Statement

Given

1.  A set U of n elements

2.  A collection S1, S2,……., Sm of subsets of U

3.  A number k

To Find If there exists a collection of at most k
of these sets whose union equals all of U.

Set Cover Problem
An Application

Ø Suppose we want to build a system with n
functionalities using m available pieces of
software.

Ø Each piece of software possesses some subset
of functionalities. Let the set of functionalities
possessed by the ith piece of software be
denoted by Si.

Ø Our goal, then, is to build a system that
possesses all the n functionalities using a small
number of pieces of software.

Set Cover Problem
�  The little blue dots are

the elements of U

�  Black and Red figures
represent sets. The
dots that lie within a
figure are the elements
contained by that set.

�  The red figure form
the set cover.

An Instance

Set Cover Problem is NP
Complete

•  Prove that it is in NP

•  NP – hardness follows from reduction from
vertex cover. HOW?......Assignment

(Metric) Traveling Salesman
Problem

Problem Statement

Given A complete graph G with non-

 negative edge costs (that satisfy

 triangle inequality)

To Find A minimum cost cycle visiting

 every vertex exactly once.

Decision Version: Does there exist a TS tour of
cost <=k

TSP is NP Complete
•  Prove that it is in NP

•  NP – hardness follows from reduction from
Hamiltonian Cycle. HOW? Assignment.

NP-Complete Problems
�  The NP-Complete problems are an interesting

class of problems whose status is unknown
�  No polynomial-time algorithm has been

discovered for an NP-Complete problem
�  No supra-polynomial lower bound has been

proved for any NP-Complete problem, either

�  We call this the P = NP question
�  The biggest open problem in CS

NP-Completeness
The space NP of all search problems, assuming P ≠ NP

P NPC

INCREASING DIFFICULTY

Significance of NP-
Completeness

The interest surrounding the class of NP-complete problems can be
attributed to the following reasons.

�  No polynomial-time algorithm has yet been discovered for any NP-
complete problem; at the same time no NP-complete problem has been
shown to have a super polynomial-time (for example exponential time)
lower bound.

�  If a polynomial-time algorithm is discovered for even one NP-complete
problem, then all NP-complete problems will be solvable in polynomial-
time.

�  It is believed (but so far no proof is available) that NP-complete
problems do not have polynomial-time algorithms and therefore are
intractable. The basis for this belief is the second fact above, namely
that if any single NP-complete problem can be solved in polynomial
time, then every NP-complete problem has a polynomial-time algorithm.

�  Given the wide range of NP-complete problems that have been
discovered to date, it will be sensational if all of them could be solved
in polynomial time.

Why Prove NP-
Completeness?

�  Though nobody has proved that P != NP, if you
prove a problem NP-Complete, most people
accept that it is probably intractable

�  Therefore it can be important to prove that a
problem is NP-Complete
�  Don’t need to come up with an efficient

algorithm
�  Can instead work on approximation algorithms

Acknowledgment
�  Shivam Sharma

�  Sufyan Haroon

Any Questions….

UP Next

Approximation Algorithms

