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NP - Hard 
�  The aim to study this class is not to solve a 

problem but to see how hard the problem is? 



Reduction 
�  The crux of NP-Hardness is reducibility 

 
�  We say that a problem P is reduced to another 

problem Q if an instance of P can be easily 
transformed into an instance of Q, the solution 
to which provides a solution to the instance of P. 

 
�  Intuitively it means that if one can solve Q then 

one can solve P also, i.e. P is “no harder to solve” 
than Q or Q is at least as hard as P. 
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Transformation Characterstics  
�  If A(Q) is yes then A(P) is yes 

�  Vice versa 

�  It should be done in polynomial time 



Reducibility 
�  An example: 

�  P: Given a set of Booleans, is at least one 
TRUE? 

�  Q: Given a set of integers, is their sum 
positive? 

�  Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) 
where yi = 1 if xi = TRUE, yi = 0 if xi = FALSE 

�  Another example:  
�  Solving linear equations is reducible to solving 

quadratic equations 
� How can we easily use a quadratic-equation 

solver to solve linear equations? 
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NP hard 
Q is s.t.b. NP-hard if ∀ P ∈ NP, P ≤p Q 



If all problems R ∈ NP are reducible to T, 
then T is NP-Hard 

T is NP hard 



•  Q 

If T is NP-Hard 

T 

And T ∈ NP then T is NPC. 

If T ≤p Q then Q is 
NP hard. 

NP 

NPC 



Diagrammatically 

NP HARD 

NPC 



The SAT Problem 
�  One of the first problems proved to be NP-Hard 

was satisfiability (SAT): 
�  Given a Boolean expression on n variables, can we 

assign values such that the expression is TRUE? 
�  Ex: ((x1 →x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧¬x2 

�  Cook’s Theorem: The satisfiability problem is 
NP-Hard (actually NP Complete…will do this 
later) 
� Note: Argue from first principles, not 

reduction 
� Proof: not here 



Conjunctive Normal Form 
�  Even if the form of the Boolean expression is 

simplified, the problem is NP-Hard (NP Complete) 
�  Literal: an occurrence of a Boolean or its negation 
�  A Boolean formula is in conjunctive normal form, 

or CNF, if it is an AND of clauses, each of which 
is an OR of literals 
� Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5) 

�  3-CNF: each clause has exactly 3 distinct literals 
� Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 

∨ x3 ∨ x4) 
Notice: true if at least one literal in each clause 
is true 



The 3-CNF Problem 
�  Thm 36.10: Satisfiability of Boolean formulas in 

3-CNF form (the 3-CNF Problem) is NP-Hard 
(NP-Complete) 
�  Proof: Nope 

�  The reason we care about the 3-CNF problem is 
that it is relatively easy to reduce to others  
�  Thus by proving 3-CNF NP-Hard we can prove 

many seemingly unrelated problems  
NP-Hard 



CLIQUE is NP Hard 
�  Pick up a problem known to be NPHard and 

�  Transform (reduce) the known problem to CLIQUE 
�  0 Give the transformation 

1.  Show that under the transformation : solution 
of known problem is yes => solution to CLIQUE is 
yes. 

2.  Show that under the transformation : solution 
of CLIQUE is yes => solution of the known 
problem is yes. 

3.  Show that the transformation can be done in 
time polynomial in the length of an instance of 
the known problem. 

SO, THREE STEPS TO REDUCE A KNOWN 
PROBLEM TO CLIQUE. 



3-CNF → Clique 
�  What should the reduction do? 

�  A: Transform a 3-CNF formula to a graph, for 
which a k-clique will exist (for some k) iff the 3-
CNF formula is satisfiable. 



3-CNF → Clique 
�  The reduction: 

�  Let B = C1 ∧ C2 ∧ … ∧ Ck be a 3-CNF formula 
with k clauses, each of which has 3 distinct 
literals 

�  For each clause put a triple of vertices in the 
graph, one for each literal 

�  Put an edge between two vertices if they are 
in different triples and their literals are 
consistent, meaning not each other’s negation  
 



Let the expression in 3CNF be: (~x v y v z) ^ (x v ~y v ~z) 
^ (x v y v z) 

Expression → Graph 
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Clique thus formed: 

x 

y 

z 

Note:- There are many other possible cliques in 
previous mapping. This is one of the possible cliques. 



3-CNF → Clique 
�  Prove the reduction works: 

�  If B has a satisfying assignment, then each 
clause has at least one literal (vertex) that 
evaluates to 1 

�  Picking one such “true” literal from each 
clause gives a set V’ of k vertices.  V’ is a 
clique (Why?) 

�  If G has a clique V’ of size k, it must contain 
one vertex in each triple (clause) (Why?) 

�  We can assign 1 to each literal corresponding 
with a vertex in V’, without fear of 
contradiction 



Reduction takes polynomial 
time 

�  Let there be n variables in the 3-CNF with k 
clauses 

�  Then, the input size is theta(k + n). 

�  Size of the graph = 3k*3(k-1) 



Vertex Cover is NP-Hard 

Pick up a problem known in NP-hard 

�  CLIQUE 



 Clique ≤p Vertex Cover  
�  Let the instance of Clique ( Ic) be <G, k>. 

�  Reducing it to instance of VC (Ivc) be <G’, |V|-k> 

    where G’ : E(G’)=Edges b/w vertex pair not 
present in G and |V|-k is the vertex cover. 

 

�  Catch behind this choice : Because it works…!!! 



Green ovals represent 
CLIQUE for this graph 

G 



G G’ 



G’ G 

Big ovals represent 
the VC for graph G’ 



Clique → Vertex Cover 
�   Reduce k-clique to vertex cover 

�  The complement GC of a graph G contains 
exactly those edges not in G 

�  Compute GC in polynomial time 
�  G has a clique of size k iff GC has a vertex 

cover of size |V| - k  



Clique → Vertex Cover 
�  Claim: If G has a clique of size k, GC has a vertex 

cover of size |V| - k  
�  Let V’ be the k-clique 
�  Then V - V’ is a vertex cover in GC 

� Let (u,v) be any edge in GC 
� Then u and v cannot both be in V’ (Why?) 
� Thus at least one of u or v is in V-

V’ (why?), so edge (u, v) is covered by V-V’ 
� Since true for any edge in GC, V-V’ is a 

vertex cover 



Clique → Vertex Cover 
�  Claim: If GC has a vertex cover V’ ⊆ V, with |V’| 

= |V| - k, then G has a clique of size k 
�  For all u,v ∈ V, if (u,v) ∈ GC then u ∈ V’ or  

v ∈ V’ or both (Why?) 
�  Contrapositive: if u ∉ V’ and v ∉ V’, then  

(u,v) ∈ E 
�  In other words, all vertices in V-V’ are 

connected by an edge, thus V-V’ is a clique 
�  Since |V| - |V’| = k, the size of the clique is k 



Independent Set Problem 
Independent Set : A subset S of V is said to be 

independent if no 2 nodes in S are joined by an 
edge. 

 

Problem Statement: Given a graph G=(V,E), find an 
independent set that is as large as possible. 



Exercise 
�  Show that Independent Set is NP Hard by 

reducing it from 
�  3 CNF 
�  Clique 
�  Vertex Cover 

�  Show that Vertex Cover is NP Hard by reducing 
it from 
�  3 CNF 



Subset Sum Problem 
Problem Statement 

 

Given:    A finite set S of natural numbers. 

      A target t є N. 

To Find: If there exists a subset S’ of S       
whose elements sum up to t. 



Subset Sum Problem 
 We now prove that Subset Sum Problem is  

 NP-Complete. 

 

 Subset Sum is in NP. For an instance <S,t>, let 
S’ be the certificate. Checking whether 
elements of S’ sum to t can be done in 
polynomial time. 



Subset Sum Problem 
Subset Sum is NP Hard 

We show this by proving that 3-SAT is reducible 

to Subset Sum in polynomial time. 

 

Given: 3-SAT formula Ф over variables x1, x2, ……xn 

with clauses C1, C2……Ck 



Subset Sum Problem 
Without loss of generality, we make the  

following 2 assumptions:  

�  No clause contains both a variable and its 
negation. WHY?  

 (Because such a clause would be trivially 
satisfied.) 

�  Each variable appears in at least 1 clause. WHY? 

 (Because otherwise, it does not matter what 
value is assigned to it.) 



Subset Sum Problem 
Reduction Process - through example 

 
Consider the 3-SAT formula : Ф = C1^ C2 ^ C3 ^ C4 

where      C1 =(x1 v x2’ v x3’) 
      C2 =(x1’ v x2’ v x3’) 
      C3 =(x1’ v x2’ v x3) 
      C4 =(x1 v x2 v x3) 

A satisfying assignment is <x1=0, x2=0, x3=1> 



Subset Sum Problem 
Steps: 

Ø Create 2 numbers in set S for each variable xi 
and 2 numbers for each clause Cj. 

Ø These numbers are in base 10 and each has n+k 
digits. 

Ø Each digit corresponds to a variable or a clause. 
Label least significant k digits by clauses and 
most significant n digits by variables. 



•  Do the following for i = 1……n 
•  If xi = 1 in the assignment, include vi in S’, 

otherwise include vi’. In the example, 
•  x1=0 => x1’=1 , v1’ is selected 
•  x2=0 => x2’=1 , v2’ is selected 
•  x3=1 => x3=1 , v3 is selected 

Subset Sum Problem 



4 4 4 4 1 1 1 t 

2 0 0 0 0 0 0 S4' 

1 0 0 0 0 0 0 S4 

0 2 0 0 0 0 0 S3' 

0 1 0 0 0 0 0 S3 

0 0 2 0 0 0 0 S2' 

0 0 1 0 0 0 0 S2 

0 0 0 2 0 0 0 S1' 

0 0 0 1 0 0 0 S1 

0 0 1 1 1 0 0 V3' 

1 1 0 0 1 0 0 V3 

0 1 1 1 0 1 0 V2' 

1 0 0 0 0 1 0 V2 

 0 1 1 0 0 0 1 V1' 

1 0 0 1 0 0 1 V1 

C4 C3 C2 C1 X3 X2 X1   

(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v x3) Λ (x1 v x2 v x3)  
Satisfying assignment x1=0, x2=0, x3=1 
x1’, x2’ and x3 are selected. 



(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v x3) 
Λ (x1 v x2 v x3)  
Satisfying assignment x1=0, x2=0, x3=1 

4 4 4 4 1 1 1 t 

2 0 0 0 0 0 0 S4' 

1 0 0 0 0 0 0 S4 

0 2 0 0 0 0 0 S3' 

0 1 0 0 0 0 0 S3 

0 0 2 0 0 0 0 S2' 

0 0 1 0 0 0 0 S2 

0 0 0 2 0 0 0 S1' 

0 0 0 1 0 0 0 S1 

0 0 1 1 1 0 0 V3' 

1 1 0 0 1 0 0 V3 

0 1 1 1 0 1 0 V2' 

1 0 0 0 0 1 0 V2 

 0 1 1 0 0 0 1 V1' 

1 0 0 1 0 0 1 V1 

C4 C3 C2 C1 X3 X2 X1   

4
0 



(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v 
x3) Λ (x1 v x2 v x3)  
Satisfying assignment x1=0, x2=0, x3=1 

4 4 4 4 1 1 1 t 

2 0 0 0 0 0 0 S4' 

1 0 0 0 0 0 0 S4 

0 2 0 0 0 0 0 S3' 

0 1 0 0 0 0 0 S3 

0 0 2 0 0 0 0 S2' 

0 0 1 0 0 0 0 S2 

0 0 0 2 0 0 0 S1' 

0 0 0 1 0 0 0 S1 

0 0 1 1 1 0 0 V3' 

1 1 0 0 1 0 0 V3 

0 1 1 1 0 1 0 V2' 

1 0 0 0 0 1 0 V2 

 0 1 1 0 0 0 1 V1' 

1 0 0 1 0 0 1 V1 

C4 C3 C2 C1 X3 X2 X1   

4
1 



(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v 
x3) Λ (x1 v x2 v x3)  
Satisfying assignment x1=0, x2=0, x3=1 

4 4 4 4 1 1 1 t 

2 0 0 0 0 0 0 S4' 

1 0 0 0 0 0 0 S4 

0 2 0 0 0 0 0 S3' 

0 1 0 0 0 0 0 S3 

0 0 2 0 0 0 0 S2' 

0 0 1 0 0 0 0 S2 

0 0 0 2 0 0 0 S1' 

0 0 0 1 0 0 0 S1 

0 0 1 1 1 0 0 V3' 

1 1 0 0 1 0 0 V3 

0 1 1 1 0 1 0 V2' 

1 0 0 0 0 1 0 V2 

 0 1 1 0 0 0 1 V1' 

1 0 0 1 0 0 1 V1 

C4 C3 C2 C1 X3 X2 X1   

4
2 



(x1 v x2’ v x3’) Λ (x1’ v x2’ v x3’) Λ (x1’ v x2’ v 
x3) Λ (x1 v x2 v x3)  
Satisfying assignment x1=0, x2=0, x3=1 

4 4 4 4 1 1 1 t 

2 0 0 0 0 0 0 S4' 

1 0 0 0 0 0 0 S4 

0 2 0 0 0 0 0 S3' 

0 1 0 0 0 0 0 S3 

0 0 2 0 0 0 0 S2' 

0 0 1 0 0 0 0 S2 

0 0 0 2 0 0 0 S1' 

0 0 0 1 0 0 0 S1 

0 0 1 1 1 0 0 V3' 

1 1 0 0 1 0 0 V3 

0 1 1 1 0 1 0 V2' 

1 0 0 0 0 1 0 V2 

 0 1 1 0 0 0 1 V1' 

1 0 0 1 0 0 1 V1 

C4 C3 C2 C1 X3 X2 X1   

4
3 



Subset Sum Problem 
Construct S and t as follows: 

Ø t has a 1 in each digit labeled by a variable and 4 
in each clause-digit. 

Ø For each xi, there exist 2 integers vi, vi’ in S. 
Both vi and vi’ have 1 corresponding to digit xi.  

Ø If xi appears in Cj, the Cj-digit in vi = 1 

 If vi’ appears in Cj, the Cj-digit in vi’ = 1 

Ø All other digits are zero. 



Subset Sum Problem 
Claim: All vi and vi’ in S are unique 

�  vi (vi’) and vj (vj’ ) will be different in most 
significant positions. 

�  vi and vi’ will be different in least significant 
positions. WHY? 

  (both cannot belong to the same clause) 



Subset Sum Problem 
Ø For  all Cj, there exist sj and sj’ integers in S. 

Both have 0’s in all digits other than the one 
labeled by Cj. 

Ø sj has a 1 corresponding to Cj, and sj’ has a 2 
corresponding to Cj. 

Ø These integers are slack variables, used to get 
clause labeled digit position to add to the target 
value of 4. 



Subset Sum Problem 
Claim: All sj and sj’ in S are unique 
 (for reasons similar to vi and vi’) 
Observation: The greatest sum of digits in any 

digit position is 6. This occurs in clause-digits (vi 
and vi’ make a contribution of 3, sj and sj’ make 
a contribution of 1 and 2 respectively). 

Conclusion: Interpretation is in base 10, so no 
carries would be generated. 

 
REDUCTION DONE !! 



Subset Sum Problem 
Cla im : Th i s reduct i on can be done i n       

polynomial time. 
Ø S contains 2n+2k values. 
Ø Each has n+k digits. 
Ø Each digit takes time polynomial in (n+k) to be 

produced. 
Ø t has n+k digits each being produced in constant 

time. 
Hence Proved ! 



Subset Sum Problem 
To Prove: 3-SAT Ф is satisfiable if and only if 

there exists a subset S’ of S whose elements 
sum to ‘t’. 

 

Proof 

Part 1 

Given: Ф has a satisfying assignment. 



Subset Sum Problem 
Ø Do the following for i = 1……n 

Ø If xi = 1 in the assignment, include vi in S’, 
otherwise include vi’. In the example, v1’, v2’, v3 
belong to S’.  

 

Note: For each variable digit, the sum of values of 
S’ must be 1 ( = those of target t) 



Subset Sum Problem 
Ø Each clause is satisfied, therefore has at least 

one positive literal. Thus, each clause digit has 
at least one ‘1’ through a vi or vi’ value in S’. 
(the sum of clause digit may be 1 or 2 or 3). 

 

Ø Include appropriate non empty subset of slack 
variables {sj, sj’} in S’ to achieve the target of 
4 in each digit labeled by Cj. 



Subset Sum Problem 
�  Since we have matched all target digits of the 

sum, and there does not exist any carry, 
therefore the values of S’ sum to t. 



Subset Sum Problem 
Part 2 of the proof 

Given: Subset S’ of S sums to t. 

Observe the following: 

Ø S’ must include exactly one of vi and vi’ for all i. 
WHY? 

 Because otherwise variable digits would not sum 
to 1 



Subset Sum Problem 
Ø If vi belongs to S’, set xi = 1. 

Ø If vi’ belongs to S’, set xi’ = 0. 

Claim: Every clause Cj is satisfied by this 
assignment. 

Proof: Note that in order to achieve a sum of in  

digits corresponding to Cj, the subset S’ must  

include at least one vi or vi’ value that has a value  

1 in the digit labeled by Cj. 



Subset Sum Problem 
Ø Since we have xi =1 if vi belongs to S’, clause Cj 

is satisfied. 

Ø And since xi =0 if vi’ belongs to S’, again clause 
Cj is satisfied. 

Ø Therefore, all clauses are satisfied. 

 

Hence Proved ! 



Set Cover Problem 
Problem Statement 

Given    

1.  A set U of n elements 

2.  A collection S1, S2,……., Sm of subsets of U 

3.  A number k 

To Find  If there exists a collection of at most k 
of these sets whose union equals all of U. 

 



Set Cover Problem 
An Application 

Ø Suppose we want to build a system with n 
functionalities using m available pieces of 
software. 

Ø Each piece of software possesses some subset 
of functionalities. Let the set of functionalities 
possessed by the ith piece of software be 
denoted by Si. 

Ø Our goal, then, is to build a system that 
possesses all the n functionalities using a small 
number of pieces of software.  



Set Cover Problem 
�  The little blue dots are 

the elements of U 

�  Black and Red figures 
represent sets. The 
dots that lie within a 
figure are the elements 
contained by that set. 

�  The red figure form 
the set cover. 

An Instance 



Set Cover Problem is NP 
Complete 

 
•  Prove that it is in NP 

•  NP – hardness follows from reduction from 
vertex cover.  HOW?......Assignment  



(Metric) Traveling Salesman 
Problem 

Problem Statement 

Given   A complete graph G with non- 

             negative edge costs ( that satisfy  

             triangle inequality) 

To Find  A minimum cost cycle visiting  

              every vertex exactly once. 

Decision Version: Does there exist a TS tour of 
cost <=k 



TSP is NP Complete 
•  Prove that it is in NP 

•  NP – hardness follows from reduction from 
Hamiltonian Cycle.  HOW? Assignment. 



NP-Complete Problems 
�  The NP-Complete problems are an interesting 

class of problems whose status is unknown  
�  No polynomial-time algorithm has been 

discovered for an NP-Complete problem 
�  No supra-polynomial lower bound has been 

proved for any NP-Complete problem, either 

�  We call this the P = NP question 
�  The biggest open problem in CS 



NP-Completeness 
The space NP of all search problems, assuming P ≠ NP 

 
P                     NPC 

INCREASING  DIFFICULTY 



Significance of NP-
Completeness 

The interest surrounding the class of NP-complete problems can be 
attributed to the following reasons.  

�  No polynomial-time algorithm has yet been discovered for any NP-
complete problem; at the same time no NP-complete problem has been 
shown to have a super polynomial-time (for example exponential time) 
lower bound.  

�  If a polynomial-time algorithm is discovered for even one NP-complete 
problem, then all NP-complete problems will be solvable in polynomial-
time.  

�  It is believed (but so far no proof is available) that NP-complete 
problems do not have polynomial-time algorithms and therefore are 
intractable. The basis for this belief is the second fact above, namely 
that if any single NP-complete problem can be solved in polynomial 
time, then every NP-complete problem has a polynomial-time algorithm.  

�  Given the wide range of NP-complete problems that have been 
discovered to date, it will be sensational if all of them could be solved 
in polynomial time. 



Why Prove NP-
Completeness? 

�  Though nobody has proved that P != NP, if you 
prove a problem NP-Complete, most people 
accept that it is probably intractable 

�  Therefore it can be important to prove that a 
problem is NP-Complete 
�  Don’t need to come up with an efficient 

algorithm 
�  Can instead work on approximation algorithms 
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Any Questions…. 



UP Next 

Approximation Algorithms 


