A universal power law and proportionate change process characterize the evolution of
metabolic networks
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Biological and social systems have been found to possess a non-trivial underlying network structure
of interacting components. An important current question concerns the nature of the evolutionary
processes that have led to the observed structural patterns dynamically. By comparing the metabolic
networks of evolutionarily closeby as well distant species, we present results on the evolution of these
networks over short as well as long time scales. We observe that the amount of change in the reaction
set of a metabolite across different species is proportional to the degree of the metabolite, thus
providing empirical evidence for a ‘proportionate change’ mechanism. We find that this evolutionary
process is characterized by a power law with a universal exponent that is independent of the pair

of species compared.

PACS numbers: 89.75.Hc; 87.23.Kg; 89.75.Da

I. INTRODUCTION

Several new structural patterns have been discovered
in diverse biological, social and information networks, but
the evolutionary dynamics that lead to such structures
are still poorly understood. For example, metabolic net-
works, the best studied large scale networks in biology,
are known to have a power law degree distribution [1, 2],
and the exponent 7 is observed to be the same for all
species (for a review see [3]). However, empirical evi-
dence elucidating the nature of the process that gives
rise to such structure is lacking. In this paper we present
empirical facts about evolution based on a comparative
study of metabolic networks of various organisms. In
particular we report that the evolutionary process is it-
self characterized by a universal power law.

Various hypotheses regarding evolutionary mecha-
nisms have been proposed and explored in mathematical
models of evolving networks. For growing networks, a
‘preferential attachment’ of new nodes to higher degree
nodes [4] as well as a ‘proportionate change’ mechanism
[5, 6] whereby nodes with higher degree experience pro-
portionately higher changes in degree has been proposed
to account for the power law degree distribution of the
network. The latter process can lead to robust exponents
[6]. However, it is not clear whether this hypothesis is ap-
plicable to the evolution of metabolic networks. For one,
the metabolic network is not a growing network; dur-
ing the course of evolution the number of metabolites
has remained in the range of a few hundred to about a
thousand for all organisms [7, 8]. Furthermore, so far
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no concrete evidence has been presented for a preferen-
tial attachment or proportionate change process during
its evolution. Our work also presents empirical evidence
for a proportionate change process in metabolic network
evolution.

II. METABOLIC NETWORKS

We downloaded a database of metabolic networks of
107 organisms [8]. This contains organisms from all three
domains: eukaryotes, prokaryotes and archaea, arranged
in 15 groups including animals, plants, fungi, proteobac-
teria, firmicutes, and others. Organisms in different
groups are evolutionarily distant, while those in the same
group are relatively closeby. We selected one species from
each group (typically the one having the largest number
of metabolites) and compared the metabolic networks of
all 15 species pairwise (105 pairs of distant species). We
also compared specific pairs of nearby species (within the
same group).

The metabolic network of a given species is the set
of catalysed chemical reactions that can take place in
the organism through which it converts ‘food molecules’
into certain other types of molecules needed by its cells.
The above database contains a list of 5275 metabolic
reactions, and for each reaction gives its participating
metabolites, chemical equation, whether it is reversible
or not, and whether it exists or not in each species.

IIT. A ‘LOCAL’ MEASURE OF DISTANCE
BETWEEN METABOLIC NETWORKS

For a given pair of species, say A and B, consider
the set M of metabolites that participate in one or both
metabolic networks. For every metabolite m in M, we



now define Ak'}'5, a measure of the distance between the
two networks. Let R} (R7) be the set of reactions in
which m participates in the metabolic network of A (B).
The number £} (k%) of reactions in R’} (RE) is the de-
gree of m in the species A (B). Here we consider only the
undirected degree of a metabolite, i.e., we do not distin-
guish whether the metabolite participates as a reactant
or a product. Reversible reactions (forward and reverse
pair) in which a metabolite participates are treated as a
single reaction for calculating its degree. If m occurs in
only one of the species (say, A) and not the other (B),
then RY is the null set and k% = 0.

Consider the reactions in R4NRp. (For brevity we will
often drop the superscript m as being understood.) The
reactions in R4NRp represent the links of the metabolite
that are common to both species, and hence k’}'5, the size
of this set, is a measure of how much the reaction set of
this metabolite has remained ‘conserved’ in the evolution
leading to species A and B from their last common an-
cestor. (This is a kind of ‘local measure’ of conservation,
from the vantage point of this metabolite inside the net-
work.) Similarly, the set (R4 U Rp)\(Ra N Rp), that is,
the set of reactions in R4 U Rp that are not in R4 N Rp,
or equivalently those reactions of this metabolite that are
in one network but not the other, is a local measure of
the divergence between the two networks. The size of
the latter set will be referred to as the divergence of the
reaction sets of this metabolite between species A and
B, and will be denoted Ak’;. Note that Ak is dif-
ferent from the magnitude of £} — k%'. For example R}
and R’Z can be different sets of reactions with the same
number of reactions in which case k7 — k%' = 0 while
Akp # 0. AK}p is a local measure of the difference
between the two networks that takes into account the
identity of reactions and not just their number.

IV. METABOLIC NETWORK EVOLUTION IS
CHARACTERIZED BY A UNIVERSAL POWER
LAW

A. Comparison of distant species: Evolution on
long time scales

We computed the degree distribution P(k) for each of
the 15 organisms as well as the ‘divergence probability
distribution’ Q(Ak) for each of the 105 pairs. By defin-
ition, for any pair (A4, B), Qap(Ak) = nap(Ak)/|M]|,
where |M| is the number of metabolites in M and
nap(Ak) is the number of metabolites in M for which
AkWp = Ak. The cumulative divergence distribution
for pairs of distant organisms is shown in Fig. 1 and
compared with the cumulative degree distribution. The
figure shows that Q(Ak) ~ (Ak)™ with v/ = v up
to statistical uncertainties in both the exponents. That
the degree distribution of two species follows the power
law P(k) ~ k77 is a statement of the present structure
of the two metabolic networks. This in no way implies

that Q(Ak) should also follow a power law with the same
exponent. The latter is a distinct statement about the
dynamical process that leads to the present structure.
That the Q(Ak) distribution has the same form for all
105 pairs of distant species considered reflects a universal
property of the evolutionary process.

B. Evolution on shorter time scales

A comparison of distant species reveals features of the
evolutionary process over long time scales. In order to
study the process over short time scales we compared
nearby species (that were in the same group). The re-
sult of three such comparisons is shown in Fig. 2. As
expected, for each pair of nearby species the absolute
divergence is smaller than for distant species. This is ev-
ident from the fact that the Q(Ak) curves are well below
the P(k) curves in Fig. 2, in contrast to Fig. 1 where
they are much closer, and that larger values of Ak are
absent in Fig. 2. However, it can be seen that the Q(Ak)
still follows a power law with almost the same exponent.
This suggests that this feature of the evolutionary process
is also valid over short evolutionary time scales.

V. METABOLIC NETWORK EVOLUTION
FOLLOWS A ‘PROPORTIONATE CHANGE’
PROCESS

We explored the relationship between Ak for a metabo-
lite across a pair of species, and its degree in each of those
species. In particular, one can ask for the conditional
probability P(Ak|k) for a metabolite to have a reaction
set divergence Ak across a pair of species, given that its
average degree in the two species is k. We found a pos-
itive and approximately linear correlation between Ak
and the degree of a metabolite (Figs. 3 and 4). Thus
the difference in the reaction set of a metabolite across
species is proportional to the size of the set.

A random ‘proportionate change’ type process has
been proposed in models of growing networks [5, 6]. We
propose the following general definition of a proportion-
ate change type process valid for random/non-random
evolution in growing/non-growing networks and for mod-
els as well as real networks: In an evolving network ex-
isting nodes can lose some of their existing links or gain
new links. If in a certain time interval of evolution, the
number of links lost plus gained by nodes is typically
in proportion to the links they had at the beginning of
the interval, the network evolution will be said to occur
via a ‘proportionate change’ type process in that time
interval. It does not matter, for purposes of this defi-
nition, what the underlying process causing the change
is. It could be a random process or a highly designed
process. As long as the net change in the links of nodes
ends up being linearly correlated with their initial degree,
the evolutionary process will be referred to as a ‘propor-
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FIG. 1: The cumulative distribution of the divergence of reaction sets, CQ(Ak), defined below, for evolutionarily distant
organisms. This is compared with the cumulative degree distribution C'P(k) of those organisms. Figs. la-c exhibit the
comparison for three pairs of species. The species are the eukaryote Homo sapiens, the prokaryote Escherichia coli and the
archaean Methanosarcina mazei indexed as 1, 2, 3 respectively. (d) The cumulative distribution of the degree of a metabolite
averaged over 15 species (kqvg) and distribution of the divergence of the reaction sets of a metabolite averaged across the 105
pairs of species (Akawvg). Points on the CP4(k) vs k curves (CQap(Ak) vs Ak curves) represent the number of metabolites
with k% (AkTg) greater than or equal to 2”71, r = 1,2,.... The value of the exponent ' (= 1 + |slope|) obtained from the
least square fit value of the slope of the respective curve + standard error (one standard deviation) arising from the scatter of
the points plotted in the figure is (a) 2.31+0.09 (Q12(Ak)), (b) 2.26 £0.06 (Q13(Ak)), (c) 2.31+0.06 (Q23(Ak)), (d) 2.19£0.08
(Q(Akquvg)). The value of the exponent in P(k) ~ k™7 is v = 2.27 £ 0.05 (P1(k)), 2.24 £ 0.05 (P2 (k)), 2.26 +0.07 (P5(k)), and
2.26 £+ 0.08 (P(kavg)). Across the 15 organisms considered, 7 ranges from 2.22 to 2.32 with a mean of 2.27, while across the
105 pairs 7' ranges from 2.23 to 2.46 with a mean of 2.31.

tionate change’ type process. In this sense, our result have to follow such a scheme; for example a simple evo-
in the previous paragraph is evidence of a ‘proportion- lution rule that deletes randomly chosen nodes and/or
ate change’ type process in the evolution of metabolic adds new nodes that connect to randomly chosen exist-
networks. We remark that network evolution does not ing nodes will not correspond to proportionate change.
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FIG. 2: CQ(Ak) and CP(k) compared for evolutionarily closeby species. Fig. 2a compares two yeasts, Saccharomyces
cerevisiae (labeled as yl; v = 2.26 £ 0.07), and Schizosaccharomyces pombe (y2; v = 2.26 + 0.09), and «' is found to be
2.46 £ 0.10 (Qy142(Ak)). Fig. 2b compares two proteobacteria, E. coli (pl; v = 2.244+0.05 ) and Salmonella typhimurium (p2;
v = 2.234+0.05); 7' = 2.49 + 0.09. Fig. 2c compares two archaea, Pyrococcus horikoshi (al; v = 2.37 £ 0.08) and Pyrococcus
furiosus (a2; v = 2.27 4 0.05); v’ = 2.63 £ 0.18.
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FIG. 3: Positive and approximately linear correlation between Ak and k (a) Scatter plot (on a linear scale) of the average Ak
of a metabolite across the 105 pairs of species versus its average degree across the 15 (distant) species. The lone point on the
extreme right is a single highly connected metabolite, the hydrogen ion. (b) The same on a logarithmic scale where metabolites
are placed in logarithmic bins according to their average degree, and the average Ak for a bin is computed by averaging over
all 105 pairs of organisms for a given metabolite and then averaging over all metabolites in the bin. The slope of the least
square fitted straight line £ the standard error of the deviation of points in the figure from the fit is 1.08 4 0.03.

Thus our observation above captures a definite pattern  i.e., P(Ak|k) ~ 6(Ak— f(k)), or, equivalently, that Ak =
in metabolic network evolution. f (k) for some fixed one-to-one function f, and also that
P(k) ~ k=7. Then the statement f(k) ~ k% is equivalent

The result also provides insight into why the exponents fo the statement Q(Ak) ~ (Ak)—’y/’ with 7/ = v/a. In

~" and « might be equal or very close. For, let us assume
for the moment a perfect correlation between Ak and k,
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FIG. 4: Ak versus k of a metabolite for three pairs of (a) distant species and (b) close-by species. The species and their indices

in Fig. 4a are the same as in Fig. la-c and in Fig. 4b are the same as in Figs. 2a-c. For each pair of species

A, B), the z-axis

(
represents kmax = max(ka, k). The slopes of the three lines in Fig. 4a are 1.09 = 0.03 (1,2); 1.08 +0.02 (1,3); and 1.03 £ 0.02
(2,3) and in Fig. 4b the slopes of best fit lines are 1.03 4 0.07 (y1,y2); 0.97 £ 0.12 (p1,p2); and 1.07 + 0.08 (al,a2).

particular v = 1 implies 4/ = « and vice versa '. However
this is not a complete explanation because, as is evident
from Figs. 3 and 4, there is stochasticity in the relation
between Ak and k, and not perfect correlation.

VI. POSSIBLE MOLECULAR MECHANISMS
FOR PROPORTIONATE CHANGE IN

METABOLIC NETWORK EVOLUTION

The linear correlation described above is an overall
characterization of the evolutionary process. A deeper
understanding would require going into the mechanisms
by which such a correlation comes about, as well as into
the departures from the statistical pattern. A metabolic
reaction is catalyzed by an enzyme to which the reac-
tant molecules bind at specific sites in a 3-dimensional
geometry. Hence metabolic network evolution ultimately
rests on mechanisms of enzyme structure evolution [9],
which in turn involves the molecular evolution of genes
that code for the enzymes. The latter is governed both by
random processes as well as the forces of selection. The
following random processes that are biologically plausi-
ble can in principle give rise to a proportionate change
in metabolic networks: A metabolite with high degree

1 We remark that given the statistical uncertainty in the expo-
nents, our results are consistent with a value of « slightly differ-
ent from 1 and +’ slightly different from +.

binds to several enzymes that catalyze its reactions; if a
gene corresponding to one of these enzymes mutates in a
manner that disturbs the binding site of this metabolite
on the enzyme, the corresponding reaction could be lost.
The more enzymes the metabolite binds to, the propor-
tionately higher is the probability of losing its reactions
through random mutations. On the other hand if the
gene duplicates and diverges, that can introduce a new
enzyme to which the metabolite binds and hence a new
reaction for it to participate in. Large degree metabolites
have a larger pool of interacting enzymes whose genes
can duplicate, and hence if genes duplicate randomly, the
number of new reactions a given metabolite participates
in is also expected to be positively correlated with its de-
gree. For two species A and B that have descended from
a common ancestor, these processes would imply that
Ak ~ k. Thus the same mechanisms, namely gene muta-
tions and duplication-divergence, that have been consid-
ered as mechanisms for proportionate change and prefer-
ential attachment in protein interaction networks [10-16],
could operate for metabolic networks also.

VII. DISCUSSION

The above mentioned mechanisms are attractive for
their economy in explaining proportionate change: they
invoke only random processes and do not invoke selection.
However, selection also certainly shapes metabolism.
There is evidence [17, 18] that the amount of conservation
or divergence in the reaction sets of particular metabo-



lites depends upon the role played by those metabolites
in the network, and that cells can direct the generation
of potentially favourable mutations with greater proba-
bility than random [19]. Delineating the respective con-
tribution of random/directed processes in proportionate
change as well as other aspects of metabolic network evo-
lution is an important task for the future. Some insight
may be provided by the design of metabolic networks and
the observation known to biochemists and emphasized
recently [20, 21] that the role played by a metabolite is
reasonably well correlated with its degree. Our meth-
ods allow a systematic investigation of the deviation of
individual metabolites from the null hypothesis of pro-
portionate change, which also impinges on this question.
We add that the method used in this paper to compare
metabolic networks could be useful for comparing other

labeled bipartite graphs.
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