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Abstract

We give a self-contained introduction to the theory of directed graphs, leading up to the re-
lationship between the Perron-Frobenius eigenvectors of a graph and its autocatalytic sets.
Then we discuss a particular dynamical system on a fixed but arbitrary graph, that describes
the population dynamics of species whose interactions are determined by the graph. The at-
tractors of this dynamical system are described as a function of graph topology. Finally we
consider a dynamical system in which the graph of interactions of the species coevolves with
the populations of the species. We show that this system exhibits complex dynamics including
self-organization of the network by autocatalytic sets, growth of complexity and structure, and
collapse of the network followed by recoveries. We argue that a graph theoretic classification
of perturbations of the network is helpful in predicting the future impact of a perturbation over
short and medium time scales.

16.1 Introduction

Studies of networks are useful at several different levels (for recent reviews see [1–4]). At one
level one is interested in describing the structure of natural and man-made networks such as
food webs in ecosystems, biochemical and neural networks in organisms, networks of social
interaction among agents in societies, and technological networks like the internet, etc. A
useful representation of a network is a graph (and its generalizations) where the components
of the network (which could be species, neurons, agents, etc.) are represented by nodes, and
their mutual interactions by the links of the graph. Graph theory provides important tools to
capture various aspects of the network structure.

At a second level one wants to know how the network structure of the system influences
what happens in the system. E.g., the food-web structure of an ecosystem affects the dynamics
of populations of the species, the network of human contacts influences the spread of a con-
tagious disease, etc. At this level of discussion the network is typically taken to be static on
the time scales of interest; the prime concern is the dynamics of other variables on a network
with some particular type of (fixed) structure. Here dynamical systems theory is a major tool,
and network variables (like the adjacency matrix elements of the underlying graph) appear as
fixed parameters in the dynamics of other system variables like population, etc.
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At a third level one is interested in how networks themselves change with time. Biochem-
ical, neural, ecological, social and technological networks are not static, but are products of
evolution. Moreover this evolution is quite complex in real systems. Networks sometimes
self-organize and grow in size and complexity, and sometimes disintegrate. Their evolution
is usually intertwined with other system variables, e.g., a food-web influences populations of
species, and if a species goes extinct, the food-web changes. Understanding the processes and
mechanisms involved in the evolution of complex networks is a major intellectual challenge.

A problem that illustrates all these levels is the problem of the origin of life on earth. The
simplest living structure that we know — a bacterial cell — is a complex collection of several
thousand types of molecules interacting with each other in a complex network of chemical
interactions. The network may be described by a graph in which the nodes represent the
molecular types or molecular species, and links connecting nodes represent chemical inter-
actions between the molecular species. By participating in specific chemical reactions each
molecular species or node plays a rather definite functional role in the organization of the cell:
it permits or creates certain specific processes or spatial structures. Note that the complex
chemical network of a cell is needed to produce the processes and structures that exist in it,
and conversely, the same processes and structures are essential for maintaining the network
and allowing it to evolve. If we assume that life originated on earth about 3.5 to 3.8 billion
years ago as suggested by the microfossil evidence, then about 4 billion years back there was
neither such a complex network of interactions nor such processes and structures existing
anywhere on the earth. One of the puzzles of the origin of life on earth is: how did the net-
work and the processes and spatial structures bootstrap themselves into existence when none
was present — how did a chemical ‘organization’ emerge with individual molecular species
playing definite roles in it?

A second puzzle concerns the highly ‘structured’ nature of the organization. The molecules
appearing in cells are very special (a small subset in a very large space of possible molecules)
and so is the graph that describes their interactions (a special kind of graph in the very large
space of graphs). The probability of such structures arising by pure chance is astronomically
small. If we assume that it was not an unlikely chance event that created life, we are led
to the question: what then are the mechanisms that can create highly structured or ‘ordered’
organizations? A similar question is relevant for economic and social networks.

In order to address such questions in a mathematical model, one is naturally led to dy-
namical systems in which the graph describing the network is also a dynamical variable,
whose dynamics is coupled to that of other variables such as the population of the molec-
ular species. Here we present a model with such a structure, which has been inspired by the
work in refs. [5–10]. The analysis of such dynamical systems is facilitated by the development
of some new tools in graph theory. Another purpose of this article is to discuss some of these
new tools. Together, the model and these tools address the above two questions about the ori-
gin of life, and provide partial answers. The model exhibits a mechanism by which a chemical
organization can emerge where none existed through the formation of small autocatalytic sets
of molecular species. In the model we also observe a self-organizing process which results
in the growth of the initial autocatalytic set into a complex and highly structured chemical
organization in a short time.

In addition, the model also captures, in an analytically tractable form, several phenomena
that one associates with the evolution of other biological and social systems. These include
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emergence of cooperation and interdependence in the system; crashes and recoveries of the
system as a whole; ‘core-shifts’; appearance of ‘keystone species’; etc. We also argue that
the juxtaposition of graph theory and dynamical systems provides the possibility of formulat-
ing more precisely notions that are important and useful in everyday language but otherwise
difficult to pin down. In particular we attempt to formulate the notion of ‘innovation’ in this
dynamical system, and classify innovations into categories according to their graph theoretic
structure. It turns out that different categories of innovation have different short and longer
term impact on the dynamics of the system.

This article is organized roughly according to the three kinds of network studies indicated
above. In section 2 we discuss aspects of graph theory in a self-contained manner, reviewing
older results as well as recent work. Among other things we describe a relation between topo-
logical properties of a graph (namely its autocatalytic sets) and its algebraic properties (the
structure of the eigenvectors of its adjacency matrix). In section 3 we discuss a simple dynam-
ical system describing molecular population dynamics on a fixed interaction graph. Here we
show how structure of the graph influences the dynamics of the system; in particular relating
the nature of its attractors to graph topology. Section 4 describes a model of graph evolution,
motivated by the origin of life problem. In section 5 we show that the dynamics of this model
exhibits self-organization and growth of cooperation and structure in the network, with ana-
lytical estimates of the time scales involved. Section 6 discusses the phenomena of crashes
and recoveries exhibited by the model. In this section we also formulate a definition of inno-
vation that seems appropriate for this model, and discuss a hierarchy of different categories
of innovation and the roles they play in the ups and downs of the system. Finally, section 7
contains a discussion of some limitations of the model, speculations regarding the origin of
life problem and possible future directions.

16.2 Graph theory and autocatalytic sets

16.2.1 Directed graphs and their adjacency matrices

A directed graph G = G(S, L), often referred to in the sequel as simply a graph, is defined
by a set S of ‘nodes’ and a set L of ‘links’ (or ‘arcs’), where each link is an ordered pair
of nodes [11, 12]. It is convenient to label the set of nodes by integers, S = {1, 2, . . . , s}
for a graph of s nodes. An example of a graph is given in Figure 16.1a where each node is
represented by a small labeled circle, and a link (j, i) is represented by an arrow pointing from
node j to node i. A graph with s nodes is completely specified by an s× s matrix, C = (cij),
called the adjacency matrix of the graph, and vice versa. The matrix element in the ith row
and jth column of C, cij , equals unity if L contains a directed link (j, i) (arrow pointing from
node j to node i), and zero otherwise. (This convention differs from the usual one where

cij = 1 if and only if there is a link from node i to node j; our adjacency matrix is the
transpose of the usual one. We have chosen this convention because it is more natural in
the context of the dynamical system to be discussed in subsequent sections.) Figure 16.1b
shows the adjacency matrix corresponding to the graph in Figure 16.1a. We will use the terms
‘graph’ and ‘adjacency matrix’ interchangeably: the phrase ‘a graph with adjacency matrix
C’ will often be abbreviated to ‘a graph C’. Undirected graphs are special cases of directed



358 16 Graph theory and the evolution of autocatalytic networks

3

4

5

8 9 10

18

2

1

7

6

13

12

11

15

14

19

17

a)

20

16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

b)

C =

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

c)

14

15

16

17

18

19



16.2 Graph theory and autocatalytic sets 359

e = ( 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ) / 2

1

2

d)

e = ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 )
4

e = ( 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 ) / 6
3

e = ( 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) / 2

2

3

5

7

8

9

C1

C

C

C4 C C6

C

C

C

C10

C11

C12

C13

e)

C14

Figure 16.1: a. A directed graph with 20 nodes. b. The adjacency matrix of the graph in
Figure 16.1a. c. A subgraph of the graph in Figure 16.1a. The adjacency matrix of the subgraph
is the shaded portion of the matrix in Figure 16.1b. d. Four Perron-Frobenius eigenvectors
(PFEs) of the graph in Figure 16.1a. The first three vectors have been divided by factors of
2, 2 and 6 respectively to normalize them. e. The irreducible decomposition of the graph in
Figure 16.1a into subgraphs Cα, with α = 1, 2, . . . , 14. Each of the 14 nodes of the graph in
Figure 16.1e represents either an irreducible subgraph of the graph in Figure 16.1a, or a single
node that is not part of any irreducible graph. The basic subgraphs of the graph in Figure 16.1a
are represented by yellow nodes. The dotted lines in Figure 16.1b demarcate the adjacency
matrices corresponding to the subgraphs Cα. Colours identify the attractor of the dynamics
discussed in section 3, except in Figure 16.1e. In all graphs in the article (except Figure 16.1e),
white nodes have zero relative population in the attractor, Xi = 0, while blue and red nodes
have Xi > 0. In graphs that have an autocatalytic set, red nodes belong to the core of the
dominant autocatalytic set of the graph, blue nodes to its periphery, and white nodes are outside
the dominant autocatalytic set.
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graphs whose adjacency matrices are symmetric. A single (undirected) link of an undirected
graph between, say, nodes j and i, can be viewed as two directed links of a directed graph,
one from j to i and the other from i to j.

A graph G′ = G′(S′, L′) is called a subgraph of G(S, L) if S′ ⊂ S and L′ ⊂ L. We will
use the term ‘subgraph’ if G′ satisfies a stronger property: every link in L with both endpoints
in S′ also belongs to L′. That is, for us, a subgraph will be a subset of nodes together with all
their mutual links. (This is often called an ‘induced subgraph’ in the literature [12].) The graph
in Figure 16.1c (comprising nodes 14, 15, 16, 17, 18 and 19 and all their mutual links) is thus
a subgraph of the graph in Figure 16.1a. For a subgraph we will often find it more convenient
to label the nodes not by integers starting from 1, but by the same labels the corresponding
nodes had in the parent graph. The adjacency matrix of a subgraph can be obtained by deleting
all the rows and columns from the full adjacency matrix that correspond to the nodes outside
the subgraph. The highlighted portion of the matrix in Figure 16.1b is the adjacency matrix of
the subgraph in Figure 16.1c.

A walk of length n (from node i1 to node in+1) is an alternating sequence of nodes and
links i1l1i2l2 . . . inlnin+1 such that link l1 points from node i1 to node i2 (or l1 = (i1, i2)),
l2 points from i2 to i3 and so on. A walk with all nodes distinct (except possibly the first and
last nodes) will be called a path. If the first and last nodes i1 and in+1 of a walk or path are
the same, it will be referred to as a closed walk or path. The existence of even one closed
walk in the graph implies the existence of an infinite number of distinct walks in the graph. In
the graph of Figure 16.1a, there is an infinite number of walks from node 11 to node 17 (e.g.,
11 → 12 → 14 → 17, 11 → 12 → 11 → 12 → 14 → 17, . . .) but no walks from node 11 to
node 10. An undirected graph trivially has closed walks if it has any undirected links at all.

In the graph theory literature, what we have defined above to be a ‘closed path’ is usually
referred to as a ‘cycle’. However, for later convenience, we define a cycle somewhat differ-
ently. We define an n-cycle to be a subgraph with n ≥ 1 nodes which contains exactly n links
and also contains a closed path that covers all n nodes. E.g., the subgraph formed by node 20
and its self link is a 1-cycle, that formed by nodes 1 and 2 is a 2-cycle and by nodes 3,4 and
5 a 3-cycle. The subgraph formed by nodes 1,2,3,4 and 5 is not a 5-cycle because it does not
have a closed path covering all the five nodes. The word ‘cycle’ will be used generically for
an n-cycle of unspecified length. Given a directed graph C, its associated undirected graph
(or ‘symmetrized version’) C(s) can be obtained by adding additional links as follows: for
every link (j, i) in L, add another link (i, j) if the latter is not already in L. Two nodes of a
directed graph C will be said to be connected if there exists a path between them in the as-
sociated undirected graph C(s), and disconnected otherwise. Thus any directed graph can be
decomposed into ‘connected components’ which are maximal sets of connected nodes (e.g.,
the graph of Figure 16.1a has five connected components that are disconnected from each
other). In a directed graph C, we refer to a node i as being ‘downstream’ from a node j if
there is a path in C leading from j to i, and no path from i to j. Similarly i is ‘upstream’ from
j if there is a path in C leading from i to j, and no path from j to i. Thus in Figure 16.1a, node
17 is downstream from node 11, or equivalently node 11 is upstream from node 17. Node 10
is neither upstream nor downstream from node 11 since they are not connected, and node 12 is
neither upstream nor downstream from 11 because each can be reached from the other along
some directed path.
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If C is the adjacency matrix of a graph then it is easy to see that (Cn)ij equals the number
of distinct walks of length n from node j to node i. E.g., C2

ij =
∑s

k=1 CikCkj ; each term in
the sum is unity if and only if there exists a link from j to k and from k to i; hence the sum
counts the number of walks from j to i of length 2.

Perron-Frobenius eigenvalues and eigenvectors (PFEs)

A vector x = (x1, x2, . . . , xs) is said to be an eigenvector of an s × s matrix C with an
eigenvalue λ if for each i,

∑s
j=1 cijxj = λxi. The eigenvalues of a matrix C are roots of

the characteristic equation of the matrix: |C − λI| = 0 where I is the identity matrix of the
same dimensionality as C and |A| is the determinant of the matrix A. In general a matrix will
have complex eigenvalues and eigenvectors, but an adjacency matrix of a graph has special
properties, because it is a ‘non-negative’ matrix, i.e., it has no negative entries.

For any non-negative matrix, the Perron-Frobenius theorem [13, 14] guarantees that there
exists an eigenvalue which is real and larger than or equal to all other eigenvalues in magni-
tude. This largest eigenvalue is often called the Perron-Frobenius eigenvalue of the matrix,
which we will denote by λ1(C) for a graph C. Further the theorem also states that there exists
an eigenvector of C corresponding to λ1(C) (which we will refer to as a Perron-Frobenius
Eigenvector, PFE) all of whose components are real and non-negative. The Perron-Frobenius
eigenvalue of the graph in Figure 16.1a is 1. Four PFEs of the graph in Figure 16.1a are
displayed in Figure 16.1d.

The presence or absence of closed paths in a graph can be determined from the Perron-
Frobenius eigenvalue of its adjacency matrix (see ref. [16] for a simple proof):
Proposition 1. If a graph, C,
(i) has no closed walk then λ1(C) = 0,
(ii) has a closed walk then λ1(C) ≥ 1,
(iii) has a closed walk and all closed walks only occur in subgraphs that are cycles then
λ1(C) = 1.

Note that λ1 cannot take values between zero and one because of the discreteness of the
entries of C which are either zero or one. (Thus, for an undirected graph, if it has even
one undirected link, λ1(C) ≥ 1.) Several results pertaining to the relationship of the graph
structure to the structure of its PFEs can be found in ref. [15].

Irreducible graphs and matrices

A subgraph of a directed graph is termed irreducible if there is a path within the subgraph
from each node in the subgraph to every other node in the subgraph. The simplest irreducible
subgraph is a 1-cycle. In Figure 16.1a the subgraph comprising nodes 3,4 and 5 is irreducible,
as is the subgraph of nodes 6 and 7, but the subgraph of nodes 3,4,5,6 and 7 is not irreducible
since there is, for example, no path from node 6 to node 5.

If a graph or subgraph is irreducible then the corresponding adjacency matrix is also
termed irreducible. Thus a matrix C is irreducible if for every ordered pair of nodes i and
j there exists a positive integer k such that (Ck)ij > 0. Refs. [13, 14] describes further
properties of irreducible matrices.
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The nodes of any graph can be grouped into a unique set of irreducible subgraphs as
follows:

(1) Pick any node, say i. Find all the nodes which have paths leading to them starting
at i. Denote this set by S1; it may include i itself. Similarly find all the nodes which have
paths leading to i. Denote this set by S2. Denote the subgraph formed by the set of nodes
{i} ∪ (S1 ∩ S2) and all their mutual links as C1. If S1 ∩ S2 �= φ, then C1 is an irreducible
graph because every node of C1 has a path within C1 to every other node in it. If S1∩S2 = φ,
then i does not belong to any irreducible subgraph and C1 consists of just the node i and no
links.

(2) Pick another node which is not in C1 and repeat the procedure with that node to get
another subgraph, C2. The sets of nodes comprising the two subgraphs will be disjoint.

(3) Repeat this process until all nodes have been placed in some Cα, α = 1, 2, . . . , M .
Each Cα is either an irreducible subgraph or consists of a single node with no links.

Irrespective of which nodes are picked and in which order, this procedure will produce for
any graph a unique set of disjoint subgraphs (upto labelling of the Cα) encompassing all the
nodes of the graph. The graph in Figure 16.1a will decompose into 14 such subgraphs (see
Figure 16.1e).

We say there is a path from an irreducible subgraph C1 to another irreducible subgraph C2

if there is a path in C from any node of C1 to any node of C2. The terms ‘downstream’ and
‘upstream’ can thus be used unambiguously for the Cα.

Structure of a general graph

A general adjacency matrix can be rewritten in a useful form by renumbering the nodes by the
following procedure [13, 14]:
Determine all the subgraphs C1, C2, . . . , CM of the graph as described above. Construct a
new graph of M nodes, one node for each Cα, α = 1, . . . , M . The new graph has a directed
link from Cβ to Cα if, in the original graph, any node of Cβ has a link to any node of Cα.
Figure 16.1e illustrates what this new graph looks like for the graph of Figure 16.1a.

Clearly the resulting graph cannot have any closed paths. For if it were to have a closed
path then the Cα subgraphs comprising the closed path would together have formed a larger
irreducible subgraph in the first place. Therefore we can renumber the Cα such that if α > β,
Cβ is never downstream from Cα. Now we can renumber the nodes of the original graph such
that nodes belonging to a given Cα occupy contiguous node numbers, and whenever a pair of
nodes i and j belong to different subgraphs Cα and Cβ respectively, then α > β implies i > j.
Such a renumbering is in general not unique, but with any such renumbering the adjacency
matrix takes the following canonical form:

C =











C1 0
C2

.
.

.
R CM











where 0 indicates that the upper block triangular part of the matrix contains only zeroes while
the lower block triangular part, R, is not equal to zero in general. It can be seen that the graph
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Figure 16.2: Various autocatalytic sets (ACSs). a. A 1-cycle, the simplest ACS. b. A 2-cycle. c.
An ACS which is not an irreducible graph. d,e Examples of ACSs which are irreducible graphs
but not cycles.

in Figure 16.1a is already in this canonical form. In Figure 16.1b, the dotted lines demarcate
the block diagonal portions which correspond to the Cα.

From the above form of C it follows that

|C − λI| = |C1 − λI| × |C2 − λI| × . . . × |CM − λI|
Therefore the set of eigenvalues of C is the union of the sets of eigenvalues of C1, . . . , CM .
λ1(C) = maxα{λ1(Cα)}.

Therefore if a given graph C has a Perron-Frobenius eigenvalue λ1 > 0 then it contains at
least one irreducible subgraph with Perron-Frobenius eigenvalue λ1. When λ1 > 0, all irre-
ducible subgraphs of C with Perron-Frobenius eigenvalue equal to λ1 are referred to as basic
subgraphs. The yellow nodes in Figure 16.1e correspond to the basic subgraphs of Figure
16.1a.

16.2.2 Autocatalytic sets

The concept of an autocatalytic set (ACS) was first introduced in the context of a set of cat-
alytically interacting molecules. There it was defined to be a set of molecular species which
contains a catalyst for each of its member species [17–19]. Such a set of molecular species can
collectively self-replicate under certain circumstances even if none of its component molecular
species can individually self-replicate. This property is considered important in understanding
the origin of life. If we imagine a node in a directed graph to represent a molecular species
and a link from j to i as signifying that j is a catalyst for i, this motivates the following
graph-theoretic definition of an ACS in any directed graph: An autocatalytic set (ACS) is a
subgraph, each of whose nodes has at least one incoming link from a node belonging to the
same subgraph.

Figure 16.2 shows various ACSs. The simplest ACS is a 1-cycle; Figure 16.2a. There is
the following hierarchical relationship between cycles, irreducible subgraphs and ACSs: all
cycles are irreducible subgraphs and all irreducible subgraphs are ACSs, but not all ACSs are
irreducible subgraphs and not all irreducible subgraphs are cycles. Figures 16.2a and 16.2b
are graphs that are irreducible as well as cycles, 16.2c is an ACS that is not an irreducible
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subgraph and hence not a cycle, while 16.2d and 16.2e are examples of irreducible graphs that
are not cycles. It is not difficult to see the following [16]:

Proposition 2.
(i) An ACS must contain a closed path. Consequently,
(ii) If a graph C has no ACS then λ1(C) = 0.
(iii) If a graph C has an ACS then λ1(C) ≥ 1.

Relationship between autocatalytic sets and Perron-Frobenius eigenvectors

The ACS is a useful graph-theoretic construct in part because of its connection with the PFE.
Let x be a PFE of a graph. Consider the set of all nodes i for which xi is non-zero. We will
call the subgraph of all these nodes and their mutual links the ‘subgraph of the PFE x’. If
all the components of the PFE are non-zero then the subgraph of the PFE is the entire graph.
For example the subgraph of the PFE e3 mentioned in Figure 16.1d is is the graph shown in
Figure 16.1c. One can show that [16]

Proposition 3
If λ1(C) > 0, then the subgraph of any PFE of C is an ACS.

For the PFEs of Figure 16.1d this is immediately verified by inspection. Note that this
result relates an algebraic property of a graph, its PFE, to a topological structure, an ACS.
Further, this result is not true if we considered irreducible graphs intead of ACSs. E.g., the
subgraph of e3, shown in Figure 16.1c, is not an irreducible graph.

Note also that the converse of the above statement is not true, i.e., there need not exist a
PFE for every ACS in a given graph. Thus in Figure 16.1a, nodes 3,4,5,6 and 7 form an ACS
but there is no eigenvector with eigenvalue λ1 for which all these and only these components
are non-zero.

Let x be a PFE of a graph C, and let C ′ denote the adjacency matrix of the subgraph of
x. Let λ1(C ′) denote the Perron-Frobenius eigenvalue of C ′. It is not difficult to see that
λ1(C ′) = λ1(C). Figure 16.3 illustrates this point.

For the graph in Figure 16.3a λ1 = 1. Figure 16.3b shows a PFE of the graph and how
it satisfies the eigenvalue equations. For this PFE, nodes 1, 5 and 6 have xi = 0. Removing
these nodes produces the PFE subgraph shown in Figure 16.3c. Its adjacency matrix, C ′,
is obtained by removing rows 1, 5, 6 and columns 1, 5, 6 from the original matrix. Figure
16.3d illustrates that the vector constructed by removing the zero components of the PFE is an
eigenvector of C ′ with eigenvalue 1. The logic of this example is easily extended to a general
proof that λ1(C ′) = λ1(C).

We can now perform a graph decomposition of C ′ into irreducible subgraphs as before;
since λ1(C ′) = λ1(C), it follows that C ′ must contain at least one of the basic subgraphs of
C. If C ′ contains only one of the basic subgraphs of C we will refer to x as a simple PFE,
and to C ′ as a simple ACS. The graph in Figure 16.1a has only four simple PFEs which are
displayed in Figure 16.1d. All PFEs of C are linear combinations of its simple PFEs.
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Figure 16.3: Example showing that the λ1 of a PFE subgraph equals the λ1 of the whole
graph. a. A directed graph with 6 nodes. b. x is an eigenvector of its adjacency matrix C

with eigenvalue λ1 = 1, which is the Perron-Frobenius eigenvalue of the graph. The non
zero components of x and the corresponding rows and columns of C are highlighted. c. The
subgraph of the PFE x. d. The vector x’ constructed by removing the zero components of x is
an eigenvector of the adjacency matrix, C ′, of the PFE subgraph. Its corresponding eigenvalue
is unity, which is also the Perron-Frobenius eigenvalue of the PFE subgraph.

Core and periphery of a simple PFE

If C ′ is the subgraph of a simple PFE, the basic subgraph of C contained in C ′ will be called
the core of C ′ (or equivalently, the ‘core of the simple PFE’), and denoted Q′. The set of the
remaining nodes and links of C ′ that are not in its core will together be said to constitute the
periphery of C ′. For example, for the PFE in Figure 16.1c the core is the 2-cycle comprising
nodes 14 and 15. Note that the periphery is not a subgraph in the sense we are using the
word ‘subgraph’, since it contains links not just between periphery nodes but also from nodes
outside the periphery (like the link from node 15 to 16 in Figure 16.1c).

The core and periphery can be shown to have the following topological property (which
justifies the nomenclature):

Proposition 4. From every node in the core of (the subgraph of) a simple PFE there exists a
path leading to every other node of the PFE subgraph. From no periphery node is there any
path leading to any core node.
Thus all periphery nodes are downstream from all core nodes. Starting from the core one can
reach the periphery but not vice versa.

It follows from the Perron-Frobenius theorem for irreducible graphs [13] that λ1(Q′) will
necessarily increase if any link is added to the core. Similarly removing any link will decrease
λ1(Q′). Thus λ1 measures the multiplicity of internal pathways in the core. Figure 16.4
illustrates this point.
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Figure 16.4: λ1 is a measure of the multiplicity of internal pathways in the core of simple PFE.
Four irreducible graphs are shown. An irreducible graph always has a unique PFE that is simple
and whose core is the entire graph. The Perron-Frobenius theorem ensures that adding a link to
the core of a simple PFE necessarily increases its Perron-Frobenius eigenvalue λ1. The figure
also illustrates the concept of keystone nodes (see section 3).

Core and periphery of a non-simple PFE

Since any PFE of a graph can be written as a linear combination of a set of simple PFEs (this
set is unique for any graph), the definitions of core and periphery can be readily extended to
any PFE as follows:
The core of a PFE, denoted Q, is the union of the cores of those simple PFEs whose linear
combination forms the given PFE. The rest of the nodes and links of the PFE subgraph consti-
tute its periphery. It follows from the above discussion that λ1(Q) = λ1(C). When the core
is a union of disjoint cycles then λ1(Q) = 1, and vice versa.

The structure of PFEs when there is no ACS

The above discussion about the structure of PFEs was for graphs C with λ1(C) > 0. If
λ1(C) = 0, the graph has no ACS. Then the structure of PFEs is as follows: there exists
a PFE for every connected component of the graph. Since there are no closed walks in the
graph, all walks have finite lengths. Consider the longest paths in a given connected compo-
nent. Identify the nodes that are the endpoints of these longest paths. The PFE corresponding
to the given connected component will have xi > 0 for each of the latter nodes and xi = 0
for all other nodes in the graph. Again a general PFE is a linear combination of all such PFEs,
one for each connected component of the graph. In this case since there is no closed path there
is no core (or periphery) for any PFE of the graph. The core of all PFEs of such a graph may
be defined to be the null set, Q = φ.

16.3 A dynamical system on a fixed graph

In the previous section we have discussed the properties of graphs and their associated adja-
cency matrices, eigenvalues and eigenvectors. In this section we discuss the dynamical signif-
icance of the same constructs. In particular, we present an example of a dynamical system on
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a fixed graph described by a set of coupled ordinary differential equations, whose attractors
are precisely the PFEs discussed above. This dynamical system arises as an idealization of
population dynamics of a set of chemicals.

Consider the simplex of normalized non-negative vectors in s dimensions: J = {x ≡
(x1, x2, . . . , xs) ∈ Rs|0 ≤ xi ≤ 1,

∑s
i=1 xi = 1}. For a fixed graph C = (cij) with s nodes,

consider the set of coupled ordinary differential equations [20]

ẋi =
s∑

i=1

cijxj − xi

s∑

j,k=1

ckjxj . (16.1)

This will be the dynamical system of interest to us in this section.
Note that the dynamics preserves the normalization of x,

∑s
i=1 ẋi = 0. For non-negative

C it leaves the simplex J invariant. (For negative cij , additional conditions have to be added
(see [21]) but we do not discuss that case here.)

The links of the graph represent the interactions between the variables xi that live on
the nodes. xi could represent, for example, the relative population of the ith species in a
population of s species, or the probability of the ith strategy among a group of s strategies
in an evolutionary game, or the market share of the ith company among a set of competing
companies, etc. It is useful to see how equation (16.1) arises in a population dynamic context.

Let i ∈ {1, . . . , s} denote a chemical (or molecular) species in a chemical reactor. Molecules
can react with each other in various ways; we focus on only one aspect of their interactions:
catalysis. The catalytic interactions can be described by a directed graph with s nodes. The
nodes represent the s species and the existence of a link from node j to node i means that
species j is a catalyst for the production of species i. In terms of the adjacency matrix,
C = {cij} of this graph, cij is set to unity if j is a catalyst of i and is set to zero other-
wise. The operational meaning of catalysis is as follows:

Each species i will have an associated non-negative population yi in the pond which
changes with time. In a certain approximation (discussed below) the population dynamics
for a fixed set of chemical species whose interactions are given by C, will be given by

ẏi =
s∑

j=1

cijyj − φyi, (16.2)

where φ(t) is some function of time. To see how such an equation might arise, assume that

species j catalyses the ligation of reactants A and B to form the species i, A + B
j→ i. Then

the rate of growth of the population yi of species i in a well stirred reactor will be given by
ẏi = k(1+ νyj)nAnB −φyi, where nA, nB are reactant concentrations, k is the rate constant
for the spontaneous reaction, ν is the catalytic efficiency, and φ represents a common death
rate or dilution flux in the reactor. Assuming the catalysed reaction is much faster than the
spontaneous reaction, and that the concentrations of the reactants are large and fixed, the rate
equation becomes ẏi = Kyj −φyi, where K is a constant. In general since species i can have
multiple catalysts, we get ẏi =

∑s
j=1 Kijyj − φyi, with Kij ∼ cij . We make the further

idealization Kij = cij giving equation (16.2).
The relative population of species i is by definition xi ≡ yi/

∑s
j=1 yj . Therefore x ≡

(x1, . . . , xs) ∈ J , since 0 ≤ xi ≤ 1,
∑s

i=1 xi = 1. Taking the time derivative of xi and
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using (16.2) it is easy to see that ẋi is given by (16.1). Note that the φ term, present in (16.2),
cancels out and is absent in (16.1).

We remark that the quasispecies equation [17] has the same form as equation (16.2), albeit
with a different interpretation and a special structure of the C matrix that arises from that
interpretation.

16.3.1 Attractors of equation (16.1)

The rest of this section consists of examples and arguments to justify the
Proposition 5. For any graph C,
(i) Every eigenvector of C that belongs to J is a fixed point of (16.1), and vice versa.
(ii) Starting from any initial condition in the simplex J , the trajectory converges to some fixed
point (generically denoted X) in J .
(iii) For generic initial conditions in J , X is a Perron-Frobenius eigenvector (PFE) of C.
(For special initial conditions, forming a space of measure zero in J , X could be some other
eigenvector of C. Henceforth we ignore such special initial conditions.)
(iv) If C has a unique PFE, X is the unique stable attractor of (16.1).
(v) If C has more than one linearly independent PFE, then X can depend upon the initial
conditions. The set of allowed X is a convex linear combination of a subset of the PFEs. The
interior of this convex set in J may then be said to be the ‘attractor’ of (16.1), in the sense that
for generic initial conditions all trajectories converge to a point in this set.
(vi) For every X belonging to the attractor set, the set of nodes i for which Xi > 0 is the same
and is uniquely determined by C. The subgraph formed by this set of nodes will be called the
‘subgraph of the attractor’ of (16.1) for the graph C. Physically, this set consists of nodes
that always end up with a nonzero relative population when the dynamics (16.1) is allowed to
run its course, starting from generic initial conditions.
(vii) If λ1(C) > 0, the subgraph of the attractor of (16.1) is an ACS. This ACS will be
called the dominant ACS of the graph. The dominant ACS is independent of (generic) initial
conditions and depends only on C.

For example for the graph of Figure 16.1a, X is a convex linear combination of e2 and
e3, X = ae2 + (1 − a)e3, with 0 ≤ a ≤ 1. a depends upon initial conditions; generically
0 < a < 1. The subgraph of the attractor contains eight nodes, 6,7,14-19. Starting with
generic initial conditions where all the xi are nonzero, the trajectory will converge to a point
X where these eight nodes have nonzero Xi and each of the other twelve nodes have Xi = 0.
The eight populated nodes form an ACS, the dominant ACS of the graph.

To see (i), let xλ ∈ J be an eigenvector of C,
∑

j cijxj = λxi. Substituting this on the
r.h.s. of (16.1), one gets zero. Conversely, if the r.h.s. of (16.1) is zero, one finds x = xλ,
with λ =

∑
k,j ckjxj .

To motivate (ii) and (iii) it is most convenient to consider the underlying dynamics (16.2)
from which (16.1) is derived: Since (16.1) is independent of φ, we can set φ = 0 in (16.2)
without any loss of generality. With φ = 0 the general solution of (16.2), which is a linear
system, can be schematically written as:

y(t) = eCty(0),

where y(0) and y(t) are viewed as column vectors. Suppose y(0) is a right eigenvector of C
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with eigenvalue λ, denoted yλ. Then

y(t) = eλtyλ.

Since this time dependence is merely a rescaling of the eigenvector, this is an alternative way
of seeing that xλ = yλ/

∑s
j=1 yλ

j is a fixed point of (16.1). If the eigenvectors of C form a
basis in Rs, y(0) is a linear combination: y(0) =

∑
λ aλyλ. In that case, for large t it is clear

that the term with the largest value of λ will win out, hence

y(t) t→∞∼ eλ1tyλ1

where λ1 is the eigenvalue of C with the largest real part (which we know is the same as its
Perron-Frobenius eigenvalue) and yλ1 an associated eigenvector. Therefore, for generic initial
conditions the trajectory of (16.1) will converge to X = xλ1 , a PFE of C. If the eigenvectors
of C do not form a basis in Rs, the above result is still true (as we will see in examples).

Note that λ1 can be interpreted as the ‘population growth rate’ at large t, since ẏ(t) t→∞∼
λ1y. In the previous section we had mentioned that λ1 measures a topological property of
the graph, namely, the multiplicity of internal pathways in the core of the graph. Thus in the
present model, λ1 has both a topological and dynamical significance, which relates two dis-
tinct properties of the system, one structural (multiplicity of pathways in the core of the graph),
and the other dynamical (population growth rate). The higher the multiplicity of pathways in
the core, the greater is the population growth rate of the dominant ACS.

Part (iv) follows from the above. We will give examples as illustrations of (v) and (vi).
Further, from Proposition 3, previous section, we know that the subgraph of a PFE has to be
an ACS, whenever λ1 > 0. That explains (vii). It is instructive to consider examples of graphs
and see how the trajectory converges to a PFE.

Example 1. A simple chain, Figure 16.5a:
The adjacency matrix of this graph has all eigenvalues (including λ1) zero. There is only
one (normalized) eigenvector corresponding to this eigenvalue, namely e = (0, 0, 1) and this
is the unique PFE of the graph. (This is an example where the eigenvectors of C do not
form a basis in Rs.) Since node 1 has no catalyst, its rate equation is (henceforth tak-
ing φ = 0) ẏ1 = 0. Therefore y1(t) = y1(0), a constant. The rate equation for node
2 is ẏ2 = y1 = y1(0). Thus y2(t) = y2(0) + y1(0)t. Similarly ẏ3 = y2 implies that
y3(t) = (1/2)y1(0)t2 + y2(0)t + y3(0). At large t, y1 = constant, y2 ∼ t, y3 ∼ t2; hence
y3 dominates. Therefore, Xi = limt→∞ xi(t) is given by X1 = 0, X2 = 0, X3 = 1. Thus we
find that X equals the unique PFE e, independent of initial conditions.

Example 2. A 1-cycle, Figure 16.5b:
This graph has two eigenvalues, λ1 = 1, λ2 = 0. The unique PFE is e = (1, 0). The rate
equations are ẏ1 = y1, ẏ2 = 0, with the solutions y1(t) = y1(0)et, y2(t) = y2(0). At large
t node 1 dominates, hence X = (1, 0) = e. The exponentially growing population of 1 is a
consequence of the fact that 1 is a self-replicator, as embodied in the equation ẏ1 = y1.

Example 3. A 2-cycle, Figure 16.5c:
The corresponding adjacency matrix has eigenvalues λ1 = 1, λ2 = −1. The unique normal-
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Figure 16.5: Examples of graphs with a unique PFE. The subgraph of the PFE coincides with
the nodes that are populated in the attractor.

ized PFE is e = (1/2, 1/2). The population dynamics equations are ẏ1 = y2, ẏ2 = y1. The
general solution to these is (note ÿ1 = y1)

y1(t) = Aet + Be−t, y2(t) = Aet − Be−t.

Therefore at large t, y1 → Aet, y2 → Aet, hence X = (1, 1)/2 = e. Neither 1 nor 2 is in-
dividually a self-replicating species, but collectively they function as a self-replicating entity.
This is true of all ACSs.

Example 4. A 2-cycle with a periphery, Figure 16.5d:
This graph has λ1 = 1 and a unique normalized PFE e = (1, 1, 1)/3. The population equa-
tions for y1 and y2 and consequently their general solutions are the same as Example 3, but
now in addition ẏ3 = y2, yielding y3(t) = Aet + Be−t + constant. Again for large t,
y1, y2, y3 grow as ∼ Aet, hence X = (1, 1, 1)/3 = e. The dominant ACS includes all the
three nodes.

This example shows how a parasitic periphery (which does not feed back into the core) is
supported by an autocatalytic core. This is also an example of the following general result:
when a subgraph C ′, with largest eigenvalue λ′

1, is downstream from another subgraph C ′′

with largest eigenvalue λ′′
1 > λ′

1, then the population of the former also increases at the rate
λ′′

1 . Therefore if C ′′ is populated in the attractor, so is C ′. In this example C ′ is the single
node 3 with λ′

1 = 0 and C ′′ is the 2-cycle of nodes 1 and 2 with λ′′
1 = 1.
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Example 5. A 2-cycle and a chain, Figure 16.5e:
The graph in Figure 16.5e combines the graphs of Figures 16.5a and c. Following the analysis
of those two examples it is evident that for large t, y1 ∼ t0, y2 ∼ t1, y3 ∼ t2, y4 ∼ et, y5 ∼
et. Because the populations of the 2-cycle are growing exponentially they will eventually
completely overshadow the populations of the chain which are growing only as powers of t.
Therefore the attractor will be X = (0, 0, 0, 1, 1)/2 which, it can be checked, is a PFE of the
graph (it is an eigenvector with eigenvalue 1).

In general when a graph consists of one or more ACSs and other nodes that are not part of
any ACS, the populations of the ACS nodes grow exponentially while the populations of the
latter nodes grow at best as powers of t. Hence ACSs always outperform non-ACS structures
in the population dynamics (see also Example 2). This is a consequence of the infinite walks
provided by the positive feedback inherent in the ACS structure, while non-ACS structures
have no feedbacks and only finite walks.

Example 6. A 2-cycle and another irreducible graph disconnected from it, Figure 16.5f:
One can ask, when there is more than one ACS in the graph, which is the dominant ACS? Fig-
ure 16.5f shows a graph containing two ACSs. The 2-cycle subgraph has a Perron-Frobenius
eigenvalue 1, while the other irreducible subgraph has a Perron-Frobenius eigenvalue

√
2.

The unique PFE of the entire graph is e = (0, 0, 1,
√

2, 1)/(2 +
√

2) with eigenvalue
√

2.
The population dynamics equations are ẏ1 = y2, ẏ2 = y1, ẏ3 = y4, ẏ4 = y3 + y5, ẏ5 = y4.
The first two equations are completely decoupled from the last three and the solutions for y1

and y2 are the same as for Example 3. For the other irreducible graph the solution is (since
ÿ4 = ẏ3 + ẏ5 = 2y4)

y4(t) = Ae
√

2t + Be−
√

2t, y3(t) =
1√
2
(Ae

√
2t + Be−

√
2t) + C,

y5(t) =
1√
2
(Ae

√
2t + Be−

√
2t) − C.

Thus, the populations of nodes 3,4 and 5 also grow exponentially but at a faster rate, reflecting
the higher Perron-Frobenius eigenvalue of the subgraph comprising those nodes. Therefore
this structure eventually overshadows the 2-cycle, and the attractor is X = e. The dominant
ACS in this case is the irreducible subgraph formed by nodes 3,4 and 5.

More generally, when a graph consists of several disconnected ACSs with different indi-
vidual λ1, only the ACSs whose λ1 is the largest (and equal to λ1(C)) end up with non-zero
relative populations in the attractor.

Example 7. A 2-cycle downstream from another 2-cycle, Figure 16.5g:
What happens when the graph contains two ACSs whose individual λ1 equals λ1(C), and
one of those ACSs is downstream of another? In Figure 16.5g nodes 3 and 4 form a 2-
cycle which is downstream from another 2-cycle comprising nodes 1 and 2. The unique PFE
of this graph, with λ1 = 1, is e = (0, 0, 1, 1)/2. The population dynamics equations are
ẏ1 = y2, ẏ2 = y1, ẏ3 = y4 + y2, ẏ4 = y3. Their general solution is:

y1(t) = Aet + Be−t, y2(t) = Aet − Be−t,
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Figure 16.6: Examples of graphs with multiple PFEs. (a) e1, e2, e3 are all eigenvectors with
eigenvalue λ1 = 0. Only e3 is the attractor. Thus for generic initial conditions, only node
7, which sits at the end point of the longest chain of nodes is populated in the attractor. (b)
e1, e2, e3 are all eigenvectors with eigenvalue λ1 = 1, but only e3 is the attractor. Only the
2-cycle of nodes 11 and 12, which sits at the end of the longest chain of cycles, is populated in
the attractor.

y3(t) =
t

2
(Aet − Be−t) + Cet + De−t,

y4(t) =
t

2
(Aet + Be−t) + (C − A

2
)et + (

B

2
− D)e−t.

It is clear that for large t, y1 ∼ et, y2 ∼ et, y3 ∼ tet, y4 ∼ tet. While all four grow
exponentially with the same rate λ1, as t → ∞ y3 and y4 will overshadow y1 and y2. The
attractor will be therefore be X = (0, 0, 1, 1)/2 = e. Here the dominant ACS is the 2-cycle
of nodes 3 and 4. This result generalizes to other kinds of ACSs: if one irreducible subgraph
is downstream of another with the same Perron-Frobenius eigenvalue, the latter will have zero
relative population in the attractor.

The above examples displayed graphs with a unique PFE, and illustrated Proposition 5
(iv). The stability of the global attractor follows from the fact that the constants A, B, C, D,
etc., in the above examples, which can be traded for the initial conditions of the populations,
appear nowhere in the attractor configuration X. Now we consider examples where the PFE
is not unique.

Example 8. Graph with λ1 = 0 and three disconnected components, Figure 16.6a:
As mentioned in section 2 this graph has three independent PFEs, displayed in Figure 16.6a.
The attractor is X = e3. This is an immediate generalization of Example 1 above. Using the
same argument as for Example 1, we can see that yi ∼ tk if the longest path ending at node
i is of length k. Therefore the attractor will have nonzero components only for nodes at the
ends of the longest paths. Thus the populations of nodes 1,2,3 and 5 are constant, those of 4
and 6 increase ∼ t for large t, and of 7 as ∼ t2, explaining the result.
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Example 9. Several connected components containing 2-cycles, Figure 16.6b:
Here again there are three PFEs, one for each connected component. The population of nodes
in 2-cycles which are not downstream of other 2-cycles (nodes 1,2,3,4,7 and 8) will grow as
et. As in Example 7, Figure 16.5g, the nodes of 2-cycles which are downstream of one 2-
cycle (nodes 5,6,9 and 10) will grow as tet. It can be verified that the populations of nodes
in 2-cycles downstream from two other 2-cycles (nodes 11 and 12) will grow as t2et. The
pattern is clear: in the attractor only the 2-cycles at the ends of the longest chains of 2-cycles
will have non-zero relative populations, explaining the result.

Example 10. Figure 16.1a:
From previous examples it is evident how the populations will change with time for Figure
16.1a. Here we list the result:

y8 ∼ t0, y9 ∼ t1, y10 ∼ t2,

y1, y2, y3, y4, y5, y11, y12, y13, y20 ∼ et,

y6, y7, y14, y15, y16, y17, y18, y19 ∼ tet.

Thus, starting from a generic initial population, only the eight nodes, 6,7,14-19, will be pop-
ulated in the attractor. This explains the comments just after the statment of Proposition 5.

Note the structure of the dominant ACS in the above examples when λ1 > 0. If there is
a unique PFE in the graph, the dominant ACS is the subgraph of the PFE. If there are several
PFEs only a subset of those may be counted as illustrated in Examples 9 and 10, Figures 16.6b
and 16.1a, respectively. A general construction of the dominant ACS for an arbitrary graph
will be described elsewhere.

How long does it take to reach the attractor?

The timescale over which the system reaches its attractor depends on the structure of the graph
C. For instance in Example 2, the attractor is approached as the population of node 1, y1,
overwhelms the population y2. Since y1 grows exponentially as et, the attractor is reached on
a timescale λ−1

1 = 1. In contrast, in Example 1, the attractor is approached as y3 overwhelms
y1 and y2. Because in this case all the populations are growing as powers of t, the timescale
for reaching the attractor is infinite. In general, this timescale depends on the difference in
growth rate between the fastest growing population and the next fastest growing population.

For graphs which have no basic subgraphs, i.e., graphs with λ1 = 0 like those in Example
1 and 8, all populations grow as powers of t, hence the timescale for reaching the attractor is
infinite.

For graphs which have one or more basic subgraphs (i.e., λ1 ≥ 1) but all the basic sub-
graphs are in different connected components, such as Examples 2-6, the timescale for reach-
ing the attractor is given by (λ1 − Reλ2)

−1, where λ2 is the eigenvalue of C with the next
largest real part, compared to λ1.

For graphs having one or more basic subgraphs with at least one basic subgraph down-
stream from another basic subgraph, the ratio of the fastest growing population to the next
fastest growing will always be a power of t (as in Examples 7, 9 and 10) therefore the timescale
for reaching the attractor is again infinite.
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Core and periphery of a graph

Since the dominant ACS is given by a PFE, we will define the core of the dominant ACS to be
the core of the corresponding PFE. If the PFE is simple, the core of the dominant ACS consists
of just one basic subgraph. If the PFE is non-simple the core of the dominant ACS will be
a union of some basic subgraphs. Further, the dominant ACS is uniquely determined by the
graph. This motivates the definition of the core and periphery of a graph: The core of a graph
C, denoted Q(C), is the core of the dominant ACS of C. The periphery of C is the periphery
of the dominant ACS of C. This definition applies when λ1(C) > 0. When λ1(C) = 0, the
graph has no ACS and by definition Q(C) = φ. In all cases λ1(Q(C)) = λ1(C). For all the
graphs depicted in this paper, except the one in Figure 16.1e, the red nodes constitute the core
of the graph, the blue nodes its periphery, and the white nodes are neither core nor periphery
– they are nodes that are not in any of the PFE subgraphs. 1

Core overlap of two graphs

Given any two graphs C and C ′ whose nodes are labeled, the core overlap between them,
denoted Ov(C, C ′), is the number of common links in the cores of C and C ′, i.e., the number
of ordered pairs (j, i) for which Qij and Q′

ij are both non-zero [22]. If either of C or C ′ does
not have a core, Ov(C, C ′) is identically zero.

Keystone nodes

In ecology certain species are referred to as keystone species – those whose extinction or re-
moval would seriously disturb the balance of the ecosystem [24–27]. One might similarly ask
for the notion of a keystone node in a directed graph that captures some important organiza-
tional role played by a node. Consider the impact of the hypothetical removal of any node i
from a graph C. One can, for example, ask for the core of the graph C − i that would result if
node i (along with all its links) were removed from C. We will refer to a node i as a keystone
node if C has a non-vanishing core and Ov(C, C − i) = 0 [23]. Thus a keystone node is one
whose removal modifies the organizational structure of the graph (as represented by its core)
drastically. In each of Figures 16.4a-d, for example, the core is the entire graph. In Figure
16.4a, all the nodes are keystone, since the removal of any one of them would leave the graph
without an ACS (and hence without a core). In general when the core of a graph is a single
n-cycle, for any n, all the core nodes are keystone. In Figure 16.4b, nodes 3, 4 and 5 are
keystone but the other nodes are not, and in Figure 16.4c only nodes 4 and 5 are keystone.
In Figure 16.4d, there are no keystone nodes. These examples show that the more internal
pathways a core has (generally, this implies a higher value of λ1), the less likely it is to have
keystone species, and hence the more robust its structure is to removal of nodes.

Figure 16.7 illustrates another type of graph structure which has a keystone node. The
graph in Figure 16.7a consists of a 2-cycle (nodes 4 and 5) downstream from an irreducible
subgraph consisting of nodes 1,2 and 3. The core of this graph is the latter irreducible sub-
graph. Figure 16.7b shows the graph that results if node 3 is removed with all its links. This

1 The definition of the core of a graph given in refs. [22, 23] is a special case of this definition, holding only for
graphs where each connected component of the dominant ACS has no more than one basic subgraph.
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Figure 16.7: Example illustrating the notion of keystone species and the phenomenon of a core-
shift. Node number 3 is keystone node of the graph in part a because its removal produces the
graph in b which has a zero core overlap with the graph in a. The core nodes of both graph are
coloured red. An event in which the core before the event and after the event have zero overlap
is called a ‘core-shift’.

consists of one 2-cycle downstream from another. Though both 2-cycles are basic subgraphs
of the graph, as discussed in Example 7, Figure 16.5g, this graph has a unique (upto constant
multiples) PFE, whose subgraph consists of the downstream cycle (nodes 4 and 5) only. Thus
the 2-cycle 4-5 is the core of the graph in Figure 16.7b. Clearly Ov(C, C − 3) = 0 therefore
node 3 in Figure 16.7a is a keystone node.

We remark that the above purely graph theoretic definition of a keystone node turns out
to be useful in the dynamical system discussed in this and the following sections. For other
dynamical systems, other definitions of keystone might be more useful.

16.4 Graph dynamics

So far we have discussed the algebraic properties of a fixed graph, and the attractors of a
particular dynamical system on arbitrary, but fixed graphs. However one of the most interest-
ing properties of complex systems is that the graph of interactions among their components
evolves with time, resulting in many interesting adaptive phenomena. We now turn to such an
example, where the graph itself is a dynamical variable, and display how phenomena such as
self-organization, catastrophes, innovation, etc, can arise. We shall see that the above discus-
sion of (static) graph theory will be crucial in understanding these phenomena.

We consider a process which alters a graph in discrete steps. The series of graphs produced
by such a process can be denoted Cn, n = 1, 2, . . .. A graph update event will be one step
of the process, taking a graph from Cn−1 to Cn. In fact the process we consider is a specific
example of a Markov process on the space of graphs. At time n−1, the graph Cn−1 determines
the transition probability to all other graphs. The stochastic process picks the new graph Cn

using this probability distribution and the trajectory moves forward in graph space. In the
example we consider, the transition probability is not specified explicitly. It arises implicitly
as a consequence of the dynamics (16.1) that takes place on a fast time scale for the fixed
graph Cn−1.
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The graph dynamics is implemented as follows [20]:
Initially the graph is random: for every ordered pair (i, j) with i �= j, cij is independently
chosen to be unity with a probability p and zero with a probability 1 − p. cii is set to zero for
all i. Each xi is chosen randomly in [0, 1] and all xi are rescaled so that

∑s
i=1 xi = 1.

Step 1. With C fixed, x is evolved according to (16.1) until it converges to a fixed point,
denoted X. The set L of nodes with the least Xi is determined, i.e, L = {i ∈ S|Xi =
minj∈SXj}.

Step 2. A node, say node k, is picked randomly from L and is removed from the graph
along with all its links.

Step 3. A new node (also denoted k) is added to the graph. Links to and from k to other
nodes are assigned randomly according to the same rule, i.e, for every i �= k cik and cki are
independently reassigned to unity with probability p and zero with probability 1 − p, irre-
spective of their earlier values, and ckk is set to zero. All other matrix elements of C remain
unchanged. xk is set to a small constant x0, all other xi are perturbed by a small amount from
their existing value Xi, and all xi are rescaled so that

∑s
i=1 xi = 1.

This process, from step 1 onwards, is iterated many times.
Notice that the population dynamics and the graph dynamics are coupled: the evolution

of the xi depends on the graph C in step 1, and the evolution of C in turn depends on the
xi through the choice of which node to remove in step 2. There are two timescales in the
dynamics, a short timescale over which the graph is fixed while the xi evolve, and a longer
timescale over which the graph is changed.

This dynamics is motivated by the origin of life problem, in particular the puzzle of how
a complex chemical organization might have emerged from an initial ‘random soup’ of chem-
icals, as discussed in section 1. Let us consider a pond on the prebiotic earth containing s
molecular species which interact catalytically as discussed in the previous section, and let us
allow the chemical organization to evolve with time due to various natural process which re-
move species from the pond and bring new species into the pond. Thus over short timescales
we let the populations of the species evolve according to (16.1). Over longer timescales we
imagine the prebiotic pond to be subject to periodic perturbations from storms, tides or floods.
These perturbations remove existing species from the pond and introduce new species into
it. The species most likely to be completely removed from the pond are those that have the
least number of molecules. The new species could have entirely different catalytic properties
from those removed or those existing in the pond. The above rules make the idealization that
the perturbation eliminates exactly one existing species (that has the least relative population)
and brings in one new species. The behaviour of the system does not depend crucially on this
assumption [23].

While in previous sections we have considered graphs with 1-cycles, the requirement cii =
0 in the present section forbids 1-cycles in the graph. The motivation is the following: 1-
cycles represent self-replicating species (see previous section, Example 2). Such species, e.g.,
RNA molecules, are difficult to produce and maintain in a prebiotic scenario and it is generally
believed that it requires a complex self supporting molecular organization to be in place before
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an RNA world, for example, can take off [28, 29]. Thus, we wish to address the question: can
we get complex molecular organizations without putting in self-replicating species by hand in
the model? As we shall see below, this does indeed happen, since even though self-replicating
individual species are disallowed, collectively self-replicating autocatalytic sets can still arise
by chance on a certain time scale, and when they do, they trigger a wave of self-organization
in the system.

The rules for changing the graph implement selection and novelty, two important features
of natural evolution. Selection is implemented by removing the species which is ‘performing
the worst’, with ‘performance’ in this case being equated to a species’ relative population (step
2). Adding a new species introduces novelty into the system. Note that although the actual
connections of a new node with other nodes are created randomly, the new node has the same
average connectivity as the initial set of nodes. Thus the new species is not biased in any way
towards increasing the complexity of the chemical organization. Step 2 and step 3 represent
the interaction of the system with the external environment. The third feature of the model
is dynamics of the system that depends upon the interaction among its components (step 1).
The phenomena to be described in the following sections are all consequences of the interplay
between these three elements – selection, novelty and an internal dynamics.

16.5 Self Organization

We now discuss the results of graph evolution. Figure 16.8 shows the total number of links in
the graph versus time (n, the number of graph updates). Three runs of the model described in
the previous section, each with s = 100 and different values of p are exhibited. Also exhibited
is a run where there was no selection (in which step 2 is modified: instead of picking one of
the nodes of L, any one of the s nodes is picked randomly and removed from the graph along
with all its links. The rest of the procedure remains the same). Figure 16.9 shows the time
evolution of two more quantities for the same three runs with selection displayed in Figure
16.8.

The quantities plotted are the number of nodes with Xi > 0, s1, and the Perron-Frobenius
eigenvalue of the graph, λ1. The values of the parameters p and s for the displayed runs were
chosen to lie in the regime ps < 1. Much of the analytical work described below, such as
estimation of various timescales, assumes that ps  1. Figure 16.10 shows snapshots of
the graph at various times in the run shown in Figure 16.9b, which has p = 0.0025. It is
clear that without selection each graph update replaces a randomly chosen node with another
which has on average the same connectivity. Therefore the graph remains random like the
starting graph and the number of links fluctuates about its random graph value ≈ ps2. As
soon as selection is turned on the behaviour becomes more interesting. Three regimes can be
observed. First, the ‘random phase’ where the number of links fluctuates around ps2 and s1

is small. Second, the ‘growth phase’ where l and s1 show a clear rising tendency. Finally, the
‘organized phase’ where l again hovers (with large fluctuations) about a value much higher
than the initial random graph value, and s1 fluctuates (again with large fluctuations) about its
maximum value s. The time spent in each phase clearly depends on p, and we find it also
depends on s. This behaviour can be understood by taking a look at the structure of the graph
in each of these phases, especially the ACS structure, and using the results of sections 2 and 3.
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Figure 16.8: The number of links versus time (n) for various runs. Each run had s = 100. The
black curve is a run with selection turned off; a random node is picked for removal at each graph
update. The other curves show runs with selection turned on and with different p values: Blue
p = 0.001, Red p = 0.0025, Green p = 0.005.

16.5.1 The random phase

Initially, the random graph contains no cycles, and hence no ACSs, and its Perron-Frobenius
eigenvalue is λ1 = 0. We have seen in section 3 that for such a graph the attractor will have
nonzero components for all nodes which are at the ends of the longest paths of nodes, and
zero for every other node. (In Figure 16.10a, there are two paths of length 4, which are the
longest paths in the graph. Both end at node 13, which is therefore the only populated node in
the attractor for this graph.) These nodes, then, are the only nodes protected from elimination
during the graph update. However, these nodes have high relative populations because they
are supported by other nodes, while the latter (supporting) nodes do not have high relative
populations. Inevitably within a few graph updates a supporting node will be removed from
the graph. When that happens a node which presently has nonzero Xi will no longer be at the
end of the longest path and hence will get Xi = 0. For example node 34, which belongs to L,
is expected to be picked for replacement within ≈ O(s) graph update time steps. In fact it is
replaced in the 8th time step. After that node 13 becomes a singleton and joins the set L. Thus
no structure is stable when there is no ACS. Eventually, all nodes are removed and replaced,
and the graph remains random.
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Figure 16.9: Number of populated nodes, s1, (black curve) and the Perron-Frobenius eigenvalue
of the graph, λ1, (red curve) versus time, n, for the same three runs shown in Figure 16.8. Each
run has s = 100 and p = 0.001, 0.0025 and 0.05 respectively. The λ1 values shown are 100
times the actual value.



380 16 Graph theory and the evolution of autocatalytic networks

Figure 16.10: Snapshots of the graph at various times for the run shown in Figure 16.9b with s = 100
and p = 0.0025. See text for a description of the major events. In all graphs, white nodes are those with
Xi = 0. All coloured nodes have Xi > 0. In graphs which have an ACS, the red nodes are core nodes
and the blue nodes are periphery nodes.
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Note that the inital random graph is likely to contain no cycles when p is small (ps  1).
If larger values of p are chosen, it becomes more likely that the initial graph will contain a
cycle. If it does, there is no random phase; the system is then in the growth phase, discussed
below, right from the initial time step.

16.5.2 The growth phase

At some graph update an ACS is formed by pure chance. The probability of this happening can
be closely approximated by the probability of a 2-cycle (the simplest ACS) forming by chance,
which is p2s (= the probability that in the row and column corresponding to the replaced node
in C, any matrix element and its transpose both turn out to be unity). Thus the average time
of appearance of an ACS is 1/p2s. In the run whose snapshots are displayed in Figure 16.10,
a 2-cycle between nodes 26 and 90 formed at n = 2854. This is a graph which consists of a
2-cycle and several other chains and trees. For such a graph we have shown in Example 3 in
section 3 that the attractor has non-zero Xi for nodes 26 and 90 and zero for all other nodes.
The dominant ACS consists of nodes 26 and 90. Therefore these nodes cannot be picked for
removal at the graph update and hence a graph update cannot destroy the links that make the
dominant ACS. The autocatalytic property is guaranteed to be preserved until the dominant
ACS spans the whole graph.

When a new node is added to the graph at a graph update, one of three things will happen:
1. The new node will not have any links from the dominant ACS and will not form a

new ACS. In this case the dominant ACS will remain unchanged, the new node will have
zero relative population and will be part of the least fit set. For small p this is the most likely
possibility.

2. The new node gets an incoming link from the dominant ACS and hence becomes a part
of it. In this case the dominant ACS grows to include the new node. For small p, this is less
likely than the first possibility, but such events do happen and in fact are the ones responsible
for the growth of complexity and structure in the graph.

3. The new node forms another ACS. This new ACS competes with the existing dominant
ACS. Whether it now becomes dominant, overshadowing the previous dominant ACS or it
gets overshadowed, or both ACSs coexist depends on the Perron Frobenius eigenvalues of
their respective subgraphs and whether (and which) ACS is downstream of the other. It can be
shown that this is a rare event compared with possibilities 1 and 2.

Typically the dominant ACS keeps growing by accreting new nodes, usually one at a time,
until the entire graph is an ACS. At this point the growth phase stops and the organized phase
begins. As a consequence it follows that λ1 is a nondecreasing function of n as long as
s1 < s [16].

Time scale for growth of the dominant ACS.

If we assume that possibility 3 above is rare enough to neglect, and that the dominant ACS
grows by adding a single node at a time, we can estimate the time required for it to span the
entire graph. Let the dominant ACS consist of s1(n) nodes at time n. The probability that the
new node gets an incoming link from the dominant ACS and hence joins it is ps1. Thus in ∆n
graph updates, the dominant ACS will grow, on average, by ∆s1 = ps1∆n nodes. Therefore



382 16 Graph theory and the evolution of autocatalytic networks

s1(n) = s1(na)exp((n − na)/τg), where τg = 1/p, na is the time of arrival of the first ACS
and s1(na) is the size of the first ACS (=2 for the run shown in Figure 16.10). Thus s1 is
expected to grow exponentially with a characteristic timescale τg = 1/p. The time taken from
the arrival of the ACS to its spanning is τg ln(s/s1(na)). This analytical result is confirmed
by simulations (see Figure 16.11).

In the displayed run, after the first ACS (a 2-cycle) is formed at n = 2854, it takes 1026
time steps, until n = 3880 for the dominant ACS to span the entire graph (Figure 16.10c). This
explains how a autocatalytic network structure and the positive feedback processes inherent
in it can bootstrap themselves into existence from a small seed. The small seed, in turn, is
more or less guaranteed to appear on a certain time scale (1/p2s in the present model) just by
random processes.
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Figure 16.11: Each data point shows the average of τg (the growth timescale for an ACS) over
5 different runs with s = 100 and the given p value. The error bars correspond to one standard
deviation. The solid line is the best linear fit to the data points on a log-log plot. Its slope is
consistent with the analytically predicted slope -1 (see the discussion of the growth phase in
section 5.)
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A measure of the ‘structure’ of the evolved graph.

A fully autocatalytic graph is a highly improbable structure. Consider a graph of s nodes and
let the probability of a positive link existing between any pair of nodes be p∗. Such a graph
has on average m∗ = p∗(s− 1) incoming or outgoing positive links per node since links from
a node to itself are disallowed. For the entire graph to be an ACS, each node must have at least
one incoming link, i.e. each row of the matrix C must contain at least one positive element.
Hence the probability, P , for the entire graph to be an ACS is

P = probability that every row has at least one positive entry
= [probability that a row has at least one positive entry]s

= [1 − (probability that every entry of a row is zero)]s

= [1 − (1 − p∗)s−1]s

= [1 − (1 − m∗/(s − 1))s−1]s

Note from Figure 16.8 that at spanning the number of links is O(s). Thus the average
degree m∗ at spanning is O(1). We have found this to be true in all the runs we have done
where the initial average degree (at n = 1) was O(1) or less.

For large s and m∗ ∼ O(1), P ≈ (1 − e−m∗
)s ∼ e−αs, where α is positive, and O(1).

Thus a fully autocatalytic graph is exponentially unlikely to form if it were being assembled
randomly. In the present model nodes are being added completely randomly but the underlying
population dynamics and the selection imposed at each graph update result in the inevitable
arrival of an ACS (in, on average, τa = 1/p2s time steps) and its inevitable growth into a fully
autocatalytic graph in (on average) an additional ∼ τg ln s time steps.

It is a noteworthy feature of self-organization in the present model that an organization
whose a priori probability to arise is exponentially small, ∼ e−αs, arises inevitably in a rather
short time, ∼ 1

p ln s (for large s). Why does that happen? First a small ACS of size s1(na) ∼
O(1) forms by pure chance. The probability of this happening is not exponentially small; it
is in fact quite substantial. Once this has formed, it is a cooperative structure and is therefore
stable. Its appearance ushers in an exponential growth of structure with a time scale τg = 1/p.
Hence a graph whose ‘structuredness’ (measured by the reciprocal of the probability of its
arising by pure chance) = eαs arises in only 1

p ln s steps.
As mentioned in the introduction, one of the major puzzles in the origin of life is the

emergence of very special chemical organizations in a relatively short time. We hope that
the mechanism described above, or its analogue in a sufficiently realistic model, will help in
addressing this puzzle. The relevance of this mechanism for the origin of life is discussed in
ref. [21]. We remark that other models of self-organization (e.g. the well-stirred hypercycle)
do not seem to be able to produce complex structured organizations from a simple starting
network (see ref. [23]).

Another graph theoretic measure of the structure of the evolved graph is ‘interdependency’
among the nodes, discussed in [16, 21]. Like the links and s1, the interdependency is low in
the random phase, then rises in the growth phase to a value that is about an order of magnitude
higher.
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16.5.3 The organized phase

Once an ACS spans the entire graph the effective dynamics again changes although the mi-
croscopic dynamical rules are unchanged. At spanning, for the first time since the formation
of the initial ACS, a member of the dominant ACS will be picked for removal. This is because
at spanning all nodes by definition belong to the dominant ACS and have non zero relative
populations; one node nevertheless has to be picked for removal. Most of the time the re-
moval of the node with the least Xi will result in minimal damage to the ACS. The rest of
the ACS will remain with high populations, and the new node will keep getting repeatedly
removed and replaced until it once again joins the ACS. Thus s1 will fluctuate between s and
s − 1 most of the time. However, once in a while, the node which is removed happens to be
playing a crucial role in the graph structure despite its low population. Then its removal can
trigger large changes in the structure and catastrophic drops in s1 and l. Alternatively it can
sometimes happen that the new node added can trigger a catastrophe because of the new graph
structure it creates. The catastrophes and the mechanisms which cause them are the subject of
the next section.

16.6 Catastrophes and recoveries in the organized phase

Figure 16.12 shows the same run as that of Figure 16.9b for n = 1 to n =50,000. In this long
run one can see several sudden, large drops in s1: catastrophes in which a large fraction of the
s species become extinct. Some of the drops seem to take the system back into the random
phase, others are followed by recoveries in which s1 rises back towards its maximum value s.
The recoveries are comparatively slower than the catastrophes, which in fact occur in a single
time step.

In order to understand what is happening during the catastrophes and subsequent recover-
ies we begin by examining the possible changes that an addition or a deletion of a node can
make to the core of the dominant ACS.

Deletion of a node

We have already seen how the deletion of a node can change the core – recall the discussion of
keystone nodes in section 3: the removal of a keystone node results in a zero overlap between
the cores of the dominant ACS before and after the removal. A zero core overlap means
that a single graph update event (in which one of the least populated species is replaced by a
randomly connected one) has caused a major reorganization of the dominant ACS: the cores
of the dominant ACS before and after the event (if an ACS still exists) have not even a single
link in common. We will call such events core-shifts.

In an actual run a keystone node can only be removed if it happens to be one of the nodes
with the least Xi. However the core nodes are often ‘protected’ by having higher Xi. Why is
that?

X is an eigenvector of C with eigenvalue λ1. Therefore, when λ1 �= 0 it follows that for
nodes of the dominant ACS, Xi = (1/λ1)

∑
j cijXj . If node i of the dominant ACS has only

one incoming link (from the node j, say) then Xi = Xj/λ1; we can say that Xi is ‘attenuated’
with respect to Xj by a factor λ1. The periphery of an ACS is a tree like structure emanating
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Figure 16.12: The same run displayed in Figure 16.9b over a longer timescale, till n = 50000.
This displays repeated rounds of crashes and recoveries.

from the core, and for small p most periphery nodes have a single incoming link. For instance
the graph in Figure 16.10c, whose λ1 = 1.31, has a chain of nodes 44 → 45 → 24 → 29 →
52 → 89 → 86 → 54 → 78. The farther down such a chain a periphery node is, the lower
is its Xi because of the cumulative attenuation. For such an ACS with λ1 > 1 the ‘leaves’ of
the periphery tree (such as node 78) will typically be the species with least Xi while the core
nodes will have larger Xi.

However, when λ1 = 1 there is no attenuation. Recall that Proposition 1(iii) shows that at
λ1 = 1 the core must be a cycle or a set of disjoint cycles, hence each core node has only one
incoming link within the dominant ACS. All core nodes have the same value of Xi. As one
moves out towards the periphery λ1 = 1 implies there is no attenuation, hence each node in
the periphery that receives a single link from one of the core nodes will also have the same Xi.
Some periphery nodes may have higher Xi if they have more than one incoming link from the
core. Iterating this argument as one moves further outwards from the core, it is clear that at
λ1 = 1 the core is not protected and in fact will always belong to the set of least fit nodes if the
dominant ACS spans the graph. We have already seen in section 3 that when λ1 = 1 and the
core is a single cycle every core node is a keystone node. Thus when λ1 = 1 the organization
is fragile and susceptible to core-shifts caused by the removal of a keystone node.
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Addition of node

We now turn to the effects of the addition of a node to the dominant ACS. We will use the
notation C ′

n ≡ Cn−1 − k for the graph of s − 1 nodes just before the new node at time step
n is brought in (and just after the least populated species k is removed from Cn−1). Q′

n will
stand for the core of C ′

n. In the new attractor the new species k may go extinct, i.e., Xk may
be zero, or it may survive, i.e., Xk is non-zero. If the new species goes extinct then it remains
in the set of least fit nodes and clearly there is no change to the dominant ACS. So we will
focus on events in which the new species survives in the new attractor.

Innovations

We define an innovation to be a new node for which Xk in the new attractor is nonzero, i.e.
a new node which survives till the next graph update [23]. This may seem to be a very weak
requirement, yet we will see that it has nontrivial consequences. A description of various
types of innovations and their consequences, with examples, is given in [30]. Here we present
a graph-theoretic classification of innovations (in terms of a hierarchy, see Figure 16.13).

Remarks to Fig. 16.13: All classes of events except the leaves of the tree are subdivided into two
exhaustive and mutually exclusive subclasses (represented by the two branches emanating downwards
from the class). The number of events in each class pertain to the run of Figure 16.9b with a total of
9999 graph updates, between n = 1 (the initial graph) and n = 10000. In that run, out of 9999 node
addition events, most (8929 events) are not innovations. The rest (1070 events), which are innovations,
are classified according to their graph theoretic structure. The classification is general; it is valid for all
runs. Xk is the relative population of the new node in the attractor configuration of (16.1) that is reached
in step 1 of the dynamics (see Section 4) immediately following the addition of that node. N stands for
the new irreducible subgraph, if any, created by the new node. If the new node causes a new irreducible
subgraph to be created, N is the maximal irreducible subgraph that includes the new node. If not, N = φ
(where φ stands for the empty set). Qin is the core of the graph just before the addition of the node (just
before step 3 of the dynamics in Section 4) and Qfin the core just after the addition of the node. The
six leaves of the innovation subtree are numbered from 1 to 6 and correspond to the classes discussed in
Section 6. The impact of each kind of innovation on the system dynamics is discussed in the text and
in more detail in [30]. Some classes of events happen rarely (e.g., classes numbered 5 and 6) but have
a major impact on the dynamics of the system. The precise impact of all these classes of innovations
on the system over a short time scale (before the next graph update) as well as their probable impact
over the medium term (upto a few thousand graph updates) can be predicted from the graph theoretic
structure of N and the rest of the graph at the moment these innovations appear in a run.

The innovations which have the least impact on the populations of the species and the
evolution of the graph on a short time scale (of a few graph updates) are ones which do not
affect the core of the dominant ACS, if it exists. Such innovations are of three types (see boxes
1-3 in Figure 16.13):

1. Random phase innovations. These are innovations which occur in the random phase
when no ACS exists in the graph, and they do not create any new ACSs. These innovations
are typically short lived and have little short term or long term impact on the structure of the
graph.
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Figure 16.13: A hierarchy of innovations. Each node in this binary tree represents a class of node
addition events. Each class has a name; the small box contains the mathematical definition of the class.



388 16 Graph theory and the evolution of autocatalytic networks

2. Incremental innovations. These are innovations which occur in the growth and orga-
nized phases, which add new nodes to the periphery of the dominant ACS without creating
any new irreducible subgraph. In the short term they only affect the periphery and are respon-
sible for the growth of the dominant ACS. In a longer term they can also affect the core as
chains of nodes from the periphery join the core of the dominant ACS.

3. Dormant innovations. These are innovations which occur in the growth and organized
phases, which create new irreducible subgraphs in the periphery of the dominant ACS. These
innovations also affect only the periphery in the short term. But they have the potential to
cause core-shifts later if the right conditions occur (discussed in the next subsection).

Innovations which do immediately affect the core of the existing dominant ACS are always
ones which create a new irreducible subgraph. They are also of three types (see boxes 4-6 in
Figure 16.13):

4. Core enhancing innovations. These innovations result in the expansion of the existing
core by the addition of new links and nodes from the periphery or outside the dominant ACS.
They result in an increase of λ1 of the graph.

5. Core-shifting innovations. These are innovations which cause an immediate core-shift
often accompanied by the extinction of a large number of species.

6. Creation of the first ACS. This is an innovation which creates an ACS for the first time
in a graph which till then had no ACSs. The innovation moves the system from the random
phase to the growth phase, triggering the self organization of the system around the newly
created ACS.

Innovations of types 4, 5 and 6 which affect the core of the dominant ACS will be called
core-transforming innovations. These innovations cause a substantial change the vector of rel-
ative populations in a single graph update. Innovations of type 5 and 6 also make a qualitative
change in the structure of the graph and significantly influence subsequent graph evolution.
The following theorem makes precise the conditions under which a core transforming innova-
tion can occur.

Core transforming Theorem

Let N (or Nn at time step n) denote the maximal new irreducible subgraph which includes
the new species. One can show that Nn will become the new core of the graph, replacing the
old core Qn−1, whenever either of the following conditions are true:
(a) λ1(Nn) > λ1(Q′

n) or,
(b) λ1(Nn) = λ1(Q′

n) and Nn is ‘downstream’ of Q′
n (i.e., there is a path from Q′

n to Nn but
not from Nn to Q′

n.)
Such an innovation will fall into category 4 above if Qn−1 ⊂ Nn. However, if Qn−1 and

Nn are disjoint, we get a core-shift and the innovation is of type 5 if Qn−1 is non-empty and
type 6 otherwise.
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16.6.1 Catastrophes, core-shifts and a classification of proximate causes

The large sudden drops visible in Figure 16.12 are now discussed. Our first task is to see if
the large drops are correlated to specific changes in the structure of the graph. Let us focus on
those events in which more than 50% of the species go extinct. There were 701 such events
out of 1.55 million graph updates in a set of runs with s = 100, p = 0.0025. Figure 16.14
shows a histogram of core overlaps Ov(Cn−1, Cn) for these 701 events. 612 of these have
zero core overlap, i.e., they are core-shifts.
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Figure 16.14: Large crashes are predominantly core-shifts. A histogram of core overlaps for
the 701 events where s1 dropped by more than s/2 observed in various runs with s = 100 and
p = 0.0025, totalling 1.55 million iterations.

If we now look at only those events in which more than 90% of the species went extinct
then we find 235 such events in the same runs, out of which 226 are core-shifts. Clearly most
of the large extinction events happen when there is a drastic change in the structure of the
dominant ACS – a core-shift.

Classification of core-shifts

Using the insights from the above discussion of the effects of deletion or addition of a node,
we can classify the different mechanisms which cause core-shifts. Figure 16.15 differentiates
between the 612 core-shifts we observed amongst the 701 crashes.

They fall into three categories [23]: (i) complete crashes (136 events), (ii) takeovers by
core-transforming innovations (241 events), and (iii) takeovers by dormant innovations (235
events).
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Figure 16.15: Classification of core-shifts into three categories. The graph shows the fre-
quency, f , of the 612 core-shifts observed (see Figure 16.14) in a set of runs with s = 100

and p = 0.0025 vs. the λ1 values before, λ1(Cn−1), and after, λ1(Cn), the core-shift.
Complete crashes (black; λ1(Cn−1) = 1, λ1(Cn) = 0), takeovers by core-transforming
innovations (blue; λ1(Cn) ≥ λ1(Cn−1) ≥ 1) and takeovers by dormant innovations (red;
λ1(Cn−1) > λ1(Cn) ≥ 1) are distinguished. Numbers alongside vertical lines represent the
corresponding f value.

Complete crashes

A complete crash is an event in which an ACS exists before but not after the graph update.
Such an event takes the system into the random phase. A complete crash occurs when a
keystone node is removed from the graph. For example at n = 8232 the graph had λ1 = 1
and its core was the simple 3-cycle of nodes 20, 50 and 54. As we have seen above, when
the core is a single cycle every core node is a keystone node and is also in the set of least fit
nodes. At n = 8233 node 54 was removed thus disrupting the 3-cycle. The resulting graph
had no ACS and λ1 dropped to zero. As we have discussed earlier, graphs with λ1 = 1 are the
ones which are most susceptible to complete crashes. This can be seen in Figure 16.15: every
complete crash occurred from a graph with λ1(Cn−1) = 1.
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Takeovers by core-transforming innovations

An example of a takeover by a core-transforming innovation is given in Figures 16.10g,h. At
n = 6061 the core was a single loop comprising nodes 36 and 74. Node 60 was replaced by a
new species at n = 6062 creating a cycle comprising nodes 60, 21, 41, 19 and 73, downstream
from the old core. The graph at n = 6062 has one cycle feeding into a second cycle that is
downstream from it. We have already seen in section 3 (see the discussion of Example 4) that
for such a graph only the downstream cycle is populated and the upstream cycle and all nodes
dependent on it go extinct. Thus the new cycle becomes the new core and the old core goes
extinct resulting in a core-shift. This is an example of condition (b) for a core-transforming
innovation. For all such events in Figure 16.15, λ1(Q′

n) = λ1(Cn−1) since k happened not
to be a core node of Cn−1. Thus these core-shifts satisfy λ1(Cn) = λ1(Nn) ≥ λ1(Q′

n) =
λ1(Cn−1) ≥ 1 in Figure 16.15.

Takeovers by dormant innovations

We have earlier discussed dormant innovations, which create an irreducible structure in the
periphery of the dominant ACS which does not affect its core at that time. For example the
2-cycle comprising nodes 36 and 74 formed at n = 4696. At a later time such a dormant
innovation can result in a core-shift if the old core gets sufficiently weakened.

In this case the core has become weakened by n = 5041, when it has λ1 = 1.24. The
structure of the graph at this time is very similar to the graph in Figure 16.7a. Just as node 3
in Figure 16.7a was a keystone node, here nodes 44, 85, and 98 are keystone nodes because
removing any of them results in a graph like Figure 16.7b, consisting of two 2-cycles, one
downstream from the other.

Indeed at n = 5041, node 85 is hit and the resulting graph at n = 5042 has a cycle (26
and 90) feeding into another cycle (36 and 74). Thus at n = 5042 nodes 36 and 74 form the
new core with only one other downstream node, 11, being populated. All other nodes become
depopulated resulting in a drop in s1 by 97. A dormant innovation can takeover as the new core
only following a keystone extinction which weakens the old core. In such an event the new
core necessarily has a lower (but nonzero) λ1 than the old core, i.e., λ1(Cn−1) > λ1(Cn) ≥ 1
(see Figure 16.15).

Note that 85 is a keystone node, and the graph is susceptible to a core-shift because of the
innovation which created the cycle 36-74 earlier. If the cycle between 36 and 74 were absent,
85 would not be a keystone species by our definition, since its removal would still leave part
of the core intact (nodes 26 and 90).

16.6.2 Recoveries

After a complete crash the system is back in the random phase. In O(s) graph updates each
node is removed and replaced by a randomly connected node, resulting in a graph as random as
the initial graph. Then the process starts again, with a new ACS being formed after an average
of 1/p2s time steps and then growing to span the entire graph after, on average, (1/p) ln(s/s0)
time steps, where s0 is the size of the initial ACS that forms in this round (typically s0 = 2).
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After other catastrophes, an ACS always survives. In that case the system is in the growth
phase and immediately begins to recover, with s1 growing exponentially on a timescale 1/p.
Note that these recoveries happen because of innovations (mainly of type 2 and 4, and some
of type 3).

16.6.3 Correlation between graph theoretic nature of perturbation and
its short and long term impact

In previous sections we have analysed several examples of perturbations to the system. These
can be broadly placed in two classes based on their effect on s1:
(i) ‘Constructive perturbations’: these include the birth of a new organization (an innovation of
type 6), the attachment of a new node to the core (an innovation of type 4) and an attachment
of a new node to the periphery of the dominant ACS (an innovation of type 2).
(ii) ‘Destructive perturbations’: these include complete crashes and takeovers by dormant
innovations (both caused by the loss of a keystone node), and takeovers by core-transforming
innovations (innovations of type 5). Note that the word ‘destructive’ is used only in the sense
that several species go extinct on a short time scale (a single graph update in the present model)
after such a perturbation. In fact, over a longer time scale (ranging from a few to several
hundred graph updates in the run of Figure 16.9b), the ‘destructive’ takeovers by innovations
generally trigger a new round of ‘constructive’ events like incremental innovations (type 2)
and core enhancing innovations (type 4).

Note that the maximum upheaval is caused by those perturbations that introduce new ir-
reducible structures in the graph (innovations of type 4, 5 and 6) or those that destroy the
existing irreducible structure. For example the creation of the first ACS at n = 2854 triggered
the growth phase, a complete change in the effective dynamics of the system. Other examples
of large upheavals are core-shifts caused by a takeover by a core-transforming innovation at
n = 6061, takeover by a dormant innovation at n = 5041, and a complete crash at n = 8233.
In sections 2 and 3 we have mentioned that irreducibility is related to the existence of positive
feedback and cooperation, and the ‘magnitude’ of the feedback is measured by λ1. While the
present model is a highly simplified model of evolving networks, we expect that this qualita-
tive feature, namely, the correlation between the dynamical impact of a perturbation and its
‘structural’ character embodied in its effect on the ‘level of feedback’ in the underlying graph,
will hold for several other complex systems.

16.7 Concluding remarks

In this article we have attempted to show that a certain class of dynamical systems, those in
which graphs coevolve with other dynamical variables living on them (in our example, living
on the nodes of the graph), possess rich dynamical behaviour which is analytically and com-
putationally tractable. Even in the highly idealized model discussed here, this behaviour is
reminiscent of what happens in real life — birth of organizational structure characterized by
interdependence of components, cooperation of parts of the organization giving way to com-
petition, robust organizations becoming fragile, crashes and recoveries, innovations causing
growth as well as collapse, etc.
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From the point of view of the origin of life problem the main conclusions are:

(i) The model shows the emergence of an organization where none exists: a small ACS
emerges spontaneously by random processes and then triggers the self-organization of
the system.

(ii) A highly structured organization, whose timescale of forming by pure chance is expo-
nentially large (as a function of the size of the system), forms in this model in a very
short timescale that grows only logarithmically with the size of the system. In [21] we
have speculated that this timescale may be ∼ 100 million years for peptide based ACSs,
which is in the same ballpark as the timescale on which life is believed to have originated
on the prebiotic earth.

We remark that this speculation is not necessarily in conflict with, and is possibly comple-
mentary to, some other approaches to the origin of life:

(i) Complex autocatalytic organizations of polypeptides could enter into symbiosis with the
autocatalytic citric acid cycle proposed in [31]. The latter would help produce, among
other things, amino acid monomers needed by the former; the former would provide
catalysts for the latter.

(ii) It is conceivable that membranes (possibly lipid membranes, which have been argued to
have their own catalytic dynamics [32]) could form in regions where autocatalytic sets
of the kind discussed here existed, thereby surrounding complex molecular organization
in an enclosure. These ‘cells’ may have contained different parts of the ACS, thereby
endowing them with different fitnesses. Such an assembly could evolve.

(iii) It is also conceivable that such molecular organizations formed an enabling environment
for self replicating molecules such as those needed for an RNA world.

Testing some of these possibilities is a task for future models and experiments. Further-
more, the mathematical ideas and mechanisms discussed here might be relevant for these
other approaches also.

The present model has a number of simplifying features which depart from realism but
enhance analytical tractability. One is the linearity of the populations dynamics on a fixed
graph. Equation (16.1) is nonlinear, but since it originates via a nonlinear change of vari-
ables from a linear equation, equation (16.2), its attractors can be easily analysed in terms of
the underlying linear system. The attractors are always fixed points, and are just the Perron
Frobenius eigenvectors of the adjacency matrix of the graph. This allows us to use (static)
graph theoretic results for analysis of the dynamics.

In this context it is helpful to note that while the population dynamics in the present model
is essentially linear as long as the graph is fixed, the model feeds the result of the population
dynamics into the subsequent graph update (the least populated node is removed). Thus over
long time scales over which the graph changes, the ‘coupling constants’ cij in equation (16.1)
are not constant but implicitly depend upon the xi, thus making the evolution highly nonlinear.
By virtue of the simplifying device of widely separated time scales for the graph dynamics
and the population dynamics (the population variables reach their attractor before the graph
is modified), what we have is piecewise linear population dynamics. It is essentially linear



394 16 Graph theory and the evolution of autocatalytic networks

between two graph updates, and nonlinear over longer time scales because of the intertwining
of population dynamics and graph dynamics. This nonlinearity is essential for all the complex
phenomena described above, while the short time scale linearity is an aid in analysis. It would
be interesting to explore complex phenomena in models in which the short term population
dynamics is also inherently nonlinear. This naturally arises in prebiotic chemistry when the
concentration of the reactants (which are assumed buffered here) are dynamical variables in
addition to the catalysts and products, as well as in several other fields.

The present model describes a well-stirred reactor; there are no spatial degrees of freedom.
This precludes a discussion of the origin of spatial structure and its consequences alluded to in
section 1. It is worthwhile to extend the model in that direction. Another issue is the generation
of novelty. Here the links of the new node are drawn from a fixed probability distribution. In
real systems this distribution depends upon the (history of) states of the system. A further
direction for generalization consists in letting the two time scales of the population and graph
dynamics, separated by hand in the present model, be endogenous.
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