PBIRCH: A Scalable Parallel Clustering algorithm for I ncremental Data

Ashwani Garg

Ashish Mangla

Neelima Gupta

Vasudha Bhathagar
Deptt. of Computer Science, University of Delhi, Delhi, India
{ashgarg16,mangla.ashish} @gmail.com, {ngupta, vbhatnagar } @cs.du.ac.in

Abstract

We present a parallel version of BIRCH with the objec-
tive of enhancing the scalability without compromising on
the quality of clustering. The incoming data is distributed
in a cyclic manner (or block cyclic manner if the data is
bursty) to balance the load among processors. The algo-
rithmis implemented on a message passing share-nothing
model. Experiments show that for very large data sets the
algorithm scales nearly linearly with the increasing num-
ber of processors. Experiments also show that clusters ob-
tained by PBIRCH are comparable to those obtained using
BIRCH.

1 Introduction

The objective of clustering problem is to partition a pop-
ulation of IV elements each described by m attributes, into
clusters such that elements of a cluster are similar and el-
ements of different clusters are dissimilar [2, 3, 4]. Paral-
lelization is an efficient technique to design fast algorithms
to cluster huge data sets.

In this paper we present PBIRCH algorithm, a paral-
lel version of BIRCH [5], which is a widely used algo-
rithm to cluster incremental data. Our algorithm uses data-
parallelism with low data dependency and good locality. As
a result, it involves less communication. PBIRCH is scal-
able and speeds-up linearly with the number of processors.

2 BIRCH Algorithm

BIRCH clusters incoming multi-dimensional data points
to produce the quality clustering with the available memory
and time constraints. It uses the concept of Cluster Feature
(CF) to condense information about sub-clusters of points.
The Cluster Features are organized in a height-balanced tree
called CF-tree. The algorithm makes full use of available
memory and requires atmost two scans of the input data.

3 PBIRCH - Parallel Birch Algorithm

In this section we present a parallel version of BIRCH
algorithm. PBIRCH algorithm runs on the Single Program
Multiple Data (SPMD) model using message-passing. Pro-
cessors communicate with each other through an intercon-
nect. Since communication latencies waste a lot of time,
message passing is kept minimum.

Initially, the target data is distributed equally among the
processors. Suppose we have p processors and N data
items. Then each processor gets about N/p data items.
Each processor bulids its own CF-tree. When new data
items arrive they are distributed cyclically to all the proces-
sors. If the data is bursty, as might be the case in several real
life applications, the data is divided into p blocks of roughly
equal size and distributed among the processors. Each pro-
cessor inserts newly allocated data items in its own local CF
tree.

After constructing the CF tree, as in case of BIRCH, a
clustering algorithm is used to cluster the CFs at the leaf
nodes whenever required. However, in the present context
we need a parallel clustering algorithm to accomplish this
task. Since the number of CFs at the leaf nodes of the CF
trees is much less than the number of data items, parallel
k means algorithm is a good choice [1]. Initially, one pro-
cessor chooses k initial seeds for the k-means algorithm,
and broadcasts it to all the processors. Each processor uses
the seed to cluster its CFs locally. The means of the local
clusters are then exchanged using all-reduce and the global
means are computed. This is the only step that requires data
exchange among processors in every iteration.

At this point each processor has the & global means.
Starting with these & means each processor recomputes the
clusters and the procedure repeats. The algorithm termi-
nates when the change in clusters between consecutive iter-
ations becomes less than some specified threshold.

We believe that since the number of CFs (at leaf nodes)
will be more in parallel than that in sequential, more repre-
sentatives of data items are available and one should expect
clusters of better quality.

The main steps of the PBIRCH algorithm are:

1. Data distribution : Initially data is divided equally
among all processors. When new data items arrive they
are distributed cyclically (/block cyclically) to all the
processors.

2. Computing the CF trees concurrently: Initial in-
memory CF tree is generated by each processor using
local data. If a tree runs out of memory at any point of
time then it is rebuilt by increasing the threshold [5].

3. Apply clustering on the leaf nodes: Apply a paral-
lel clustering algorithm on the CFs stored at the leaf

nodes.
\ Input Data |
Distribute data /I\
Py Py Fp
Generate CF Tree
Broadcast initial
seeds toall [Choose seeds | [Receive seeds | Receive seeds

procegeors

N
Locdl Clustering [7)
Communicate to
lobal

compute Global Compute Global Mean Compute Global Mean Compute Global Mean
Means

>
Termination
Condition 7 v ¥

£ £ =
Terminate

Final Clusters

Figure 1. Outline of parallel BIRCH

We have used parallel k-means algorithm [1] in Step 3. Fig-
ure 1 gives an outline of the algorithm.

4 Experimental Study

In this section we briefly describe the experiments that
compared the performance of PBIRCH with BIRCH. The
algorithm was implemented in C and executed on a par-
allel machine based on SUN Microsystem’s UltraSPARC
Il architecture with four dual processor SMP nodes. Each
processor operates at 400 MHz. The communication is cap-
tured entirely in MPI. The experiments were performed for
various data sizes ranging from 50000 to 150000 with vary-
ing dimensions.

Figure 2 shows that for large data sets the speedup in-
creases nearly linearly with the number of processors. For

small data sets, since the computation time is very less,
communication cost starts dominating as the number of pro-
cessors increase. Hence the speedup decreases with the
number of processors. In fact, this is true for any parallel
clustering algorithm. The real power of a parallel algorithm

proiteosfses number of data points
0000 100000 150000
2 1.933881 1956022 1.965549
4 3345761 2.57988 379662
& 3669063 4222255 4378928

Figure 2. Speedup Table

Experiments further revealed that the sum of radii of
the clusters obtained by running the parallel algorithm is
slightly lesser than that of the clusters obtained by running
BIRCH. This supports our belief that the cluster quality
might improve in the parallel version (Section 3).

5 Conclusion

In this paper,we presented PBIRCH, a parallel version of
BIRCH algorithm for clustering massive data sets. Our al-
gorithm uses data-parallelism and involves negligible com-
munication overheads. The algorithm runs on share noth-
ing message passing architecture. It scales well with the
increasing size of the data. The algorithm speeds up nearly
linearly with the increasing number of processors. In addi-
tion to obtaining time gain, we also show that the quality of
the clusters also improves in the parallel version.

References

[1] 1. S. Dhillonand D. S. Modha. A data-clustering algorithm on
distributed memory multiprocessors. Proceedings of Large-
scale Parallel KDD Systems Workshop, ACM S GKDD, Au-
gust 15-18, 1999.

[2] J. A. Hartigan. Clustering Algorithms. 1975.

[3] P. Michaud. Clustering techniques. Future Generation Com-
puter Systems, (13), 1997.

[4] F. Murtagh. Multidimensional Clustering Algorithms.
Physica-Verlag, Vienna., 1985.

[5] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an effi-
cient data clustering method for very large databases. pages
103-114, 1996.

