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Abstract

One approach to reduce the complexity of the task in the aizabf large scale genome-wide expression is to
group the genes showing similar expression patterns intt are calledranscription modules (TM). ATM is defined
as a set of genes and a set of conditions under which these gemneost tightly co-expressed. Most of the existing
algorithms compute non-overlapping TMs whereas a gene magdponsible for more than one cellular activity and
hence must be included in more than one TMs. Existing alymstto compute overlappirntganscription modules
either require prior biological information of co-reguddtgenes or start with a totally random input gene seed. $n thi
paper, we present an algorithm in which we generate aniggell gene seed from the expression data itself, find out
the conditions which are most favourable to these geneshemdteratively improve the TM. This eliminates the need
to have a prior information about co-regulated genes arakgime input genes are chosen intelligently the algorithm
converges fast. In fact, we generate several such seedteaaie ion all of them simultaneously. Experimental results
were obtained for synthetic data as well as for the express$éta from the yeast Saccharomyces cerevisiae. TMs
obtained for the yeast data were confirmed to cor3afit — 50% of the genes showing similar cellular functionality
using Gene Ontology database.

1 Introduction

Regulatory and metabolic functions of cells are carriedoyuseveral biochemical components interacting with each
other. Many such cellular processes are regulated by ereziyareslated on binding of one or more transcription factors
to short DNA sequences callexbtifs in the upstream regions of the process genes. One way to finth@genes
responsible for a cell function is to study the DNA sequerafdbe genes to extract a common pattern among them.
This problem is called ‘motif finding’. Another approach dsdtudy their expression patterns. When a group of genes
binds to a set ofranscription factors they show similar expression patterns. With the help of odcray experiments
biologists are able to study the expression of thousandsmégunder a large number of conditions simultaneously.
The large scale of the data makes it challenging to analyteesittract any biologically significant information from

it.

One way to reduce the complexity of the task is to classifydae into clusters of genes which show similar
expression levels. Once the genes have been clusteratsehieiences can be studied for the presence of one or more
motifs and hence determine ttranscription factors that bind to them.

Standard Clustering algorithms likemeans clustering work well for small data sets but fair powarhen the
number of experimental conditions is large as they clubtegenes based on their expressions under all the conditions
whereas the cellular processes are generally affected byal subset of conditions. Most of the other conditions



which do not contribute to the cellular process add to thé&dpemmind noise. Moreover, these algorithms compute non-
overlapping clusters i.e. a gene belongs to at most oneeclugtereas in fact a gene may be responsible for several
cellular activities and hence must be included in more tha@usters. The first problem is addressegrinjected
clustering. In projected clustering data points (genes in our case) are projected onto a releeamf dimensions
(conditions in our case) and a cluster is defined as a set afpaants and a set of dimensions that are most relevant
to these data points. However, algorithms foojected clustering [YCN04, AGGR98, APW 99, AY00, YMO5,
PJAMOZ2] also compute non-overlapping clusters. The ctasigerlap on the conditions but not on the genes. Hence
very few of them have been used to cluster the gene expresgaiarY CNO4].

In [CC00] Cheng and Church introduced the notion of biclistein which the clusters are defined to be a set
of genes and a set of conditions under which these genes atdigtdly regulated. Though their algorithm discover
non-overlapping bi-clusters they suggest that with smattyrbation in the expression values of some selected genes
they would be able to find overlapping bi-clusters. Theifmldas been contradicted by Wang etal in [WWY'Y84].

In [GLDOQ] Getz etal gave an algorithm which uses one-wasgtelting once to cluster the genes over all the conditions
and in each of the clusters so obtained, it recursively appine-way clustering again to cluster the conditions over
the genes. It repeats this process creating a tree of modinefKBCGO03], Chang etal gave an algorithm that
simultaneously clusters genes and conditions only for gmession matrix having a checker-board pattern. Their
method is based on Singular Value Decomposition technicum finear algebra on the expression matrix. The
checker-board structure is reflected in the singular vadfiéise expression matrix.

In [IFBT02] Ihmels etal have given the narmanscription modules (TM) to bi-clusters. They call the set of genes
and the set of conditions obtained for a module agyaature of the module and hence their algorithm&gnature
Algorithm. A TM is a set of genes and conditions where the genes in the fENMnast similarly expressed under the
conditions of the TM and the conditions of the TM generatentiwest similar expression pattern for the genes of the
TM. Starting from an input set of genes, they compute the tekperimental conditions under which these genes
are co-regulated most tightly. They compute the conditmres as the average change in the expression of the input
genes for each condition. Noisy conditions are filtered gutdeping only the conditions with a large (absolute) score
and discarding the ones with low scores. It then computegéine score, for each gene, as the weighted average
change in the expression over these conditions, using tondicores as the weights and selects the genes with high
gene scoresSgnature Algorithmwaorks well if the input genes are co-regulated. In [BIBO3}g®aann etal have given
an algorithm that eliminates the requirement of the priotdgical information of co-regulated genes. Starting with
a random input seed their algorithm iteratively improves slet of conditions and the set of genes. Their algorithm
is calledIterative Sgnature Algorithm (ISA). Kloster etal [KTWO05] have extended their work to findtwogonal
modules. Once a module is found, they delete its componemttine expression matrix and compute the next module
in a direction orthogonal to the first one.

In this paper, we present a better way to overcome the probfespecifying co-regulated gene seed. Instead of
starting with a completely random input genes, we try to gateea seed consisting of genes which are co-regulated or
similar in some sense from the expression data itself. We disgain the set of conditions which are most significant
for these genes. We then improve the quality of the TM iteedyilike ISA. Since the input genes are not totally
random, our algorithm converges much faster than ISA. Maggave compute several TMs simultaneously.

The main idea of our algorithm is to create a set @fiedoid genes randomly. Medoids are chosen far apart from
each other so that if the TMs are scattered, we tend to pickretoid from several TMs (assumitgs large). For
each medoidn we compute a set of genes which are similafriton some sense. We then take this set as the seed
to compute the set of conditions which are most significantifese genes and iterate. The iterative algorithm is run
on all the seeds giving Us TMs simultaneously. A potential problem in such an apprdac¢he choice of the value
of k. In most of the previous work where this approach has beedh [#g@W99] the nature of clusters changeias
increases or decreases with the size of the clusters begm\Whenk is small and real clusters splitting in too small
clusters for largec. For example in [APW 99] the radius of each medoid (defined as the minimum distahee
medoid from all other medoids) is calculated and a point ¢yé&nassigned to a cluster if its distance from the medoid
of the cluster is the least. K is large the medoids will be close to each other and the rddiie@@medoids will be
small, thus a real cluster is split if two medoids are chosemfit. A small value of results in small number of large
clusters missing out some clusters. To eliminate this grablwe introduce a similarity threshaidg, which defines
the extent upto which the genes are considered to be similagiven medoid. By doing so, the impact of varying
on the initial gene seeds is eliminated. Hence, the probFespliting is eliminated for an over-estimated valuekof
For largek, when two or more medoids are chosen from a real TM, insteaglidfing the TM, all the medoids lead
to the same TM. We say that two TMs are same if they overlap lieest80% of the genes.



We ran our algorithm on a synthetic data as well as Yeast d&tathetic data was created for two overlapping
modules. Foik > 2 we were able to obtain both the modules and the module camnelépg to their intersection.
We verified the modules obtained for the Yeast data by chgdkiair functionality from Gene Ontology database
(http://lwww.yeastgenome.org/). Most of the TMs obtainedtained30 to 50 percent of the genes showing common
functionality.

2 Definitions and Notations

We assume that the expression data from microarray expetsiigegiven by gene expression matfix. The (i, j)*

entry of the matrix denoted b;; is the log-fold expression change of gepender thej*" experiment. The matrig

is thus am x m matrix, wheren is the total number of genes andis the total number of conditions. #hanscription
module M is defined by a set of genes and a set of conditions such theg tlenes are more tightly co-expressed
under these conditions as compared to other conditionsteess tconditions are more favourable to these genes as
compared to other genes. We dendieby the set{ G, C'}, whereG = (g1, 92,...9,) andC = (c,ca,...cy) are
vectors of genes and conditions respectively suchghat= 1,n andc;, j = 1, m are non-zero if and only i§; and

cj areinM. The problemis to find/ in E.

Denote the distance between a pair of gepedg; by d(gi, g;), whered(gi, g;) = >4y, | Eix — Ejil. LetsS
be a set of genes. Denote the distance of a gdr@m S by d(g, S), thend(g, S) = mingcsd(g, g').

To compute the initial set of genes, we selechedoids randomly. LEf’ = {m, ms ... m;} represent the set of
medoids. Letl; be the set of genes which are similar to medaid The notion of similarity is defined later.

Due to experimental errors, some genes may show higher amelsay show lower expression levels as compared
to their real expression values. Similarly, a gene may shigivar expression values under some conditions and lower
expression values under some other conditions as compatbdit real expression values. To handle this situation
the expression matrix is normalized once over all the gendsoace over all the conditions. Lét; be the matrix
obtained by normalizing the expression maitkiover all genes. Similarlf- is the matrix obtained by normalizing
the expression matrik’ over all conditions.

To find out the relevant conditions for a given set of genesfimeeout how each condition scores for these genes
and keep only the ones with high scores. Similarly, to findtbetrelevant genes for a given set of conditions, we find
out how each gene scores for these conditions and keep anbyrids with high scores. Lét denote the vector of
condition scores anflY the vector of gene scores.

3 Overview of Iterative Signature Algorithm

The Iterative Sgnature Algorithm normalizes the expression matrx to obtain the two matrice&; and E¢ to
eliminate any experimental errors such that £ = 0, >°,(Eg#)* = 1 for each conditior; and}", Eg =
0, Z:J,(Eg)2 = 1 for each geng;. Starting with a random input segdit computes, for each condition, the average

condition score over the input genes i.e. it comp$tes: Eg-g. Theit* component of¢ is set to zeremi’(rfc) <t

wheret. is the condition threshold angd(x) ando () denote the mean and variancerofit then computes, for each
gene, the average gene score over the non-zero componedfitaef it computessy = E¢ - 5¢. Theit® component

of 59 is set to zero n‘% <ty wheret, is the gene threshold. The algorithm then iterates unkikei(i) number

. . . n+l_ n . . . . .
of iterations exceeds a certain number or } +1+‘an < e whereg™ is the gene vector obtained in thé&" iteration.

4 FISA : Fast Iterative Signature Algorithm

In this section, we present an algorithm to compudascription modulesin gene expression data given asram m
expression matri¥s, wheren is the total number of genes andis the total number of conditions. The main idea
of our algorithm is to create a set bfmedoids randomly. Medoids are chosen far apart from eadr.ofor each
medoidm we compute a set of genes which are similantdn some sense. These are then taken as the input gene
seeds to compute theTMs simultaneously. The way the medoids are chosen, irotispeof the first medoid, for an
appropriate value (an over-estimated value} athe medoids from other TMs are also chosen. The algorithnksvo

in three phases.



Phase 1: Find a s&t of £k medoid genes which are far apart from each other. The firsbidéslchosen randomly.
The second medoid is chosen to be the gene which is fartloesttfre first medoid. The third medoid gene is chosen
which is farthest from the previous medoids and so on. Inwlaig we pick up medoid genes which are well separated
from each other. Also, if the TMs are scattered in the expoegsatrix, we tend to pick one medoid gene from every
TM (assumingk is large enough). The procedure Compute-medoidF§etomputes the sét of medoids.

Compute-medoid-séty()
1. T = my{m; is the first medoid gene which is generated randgmly
2. Forindx =2tok

(a) Foreachgeng¢ T
Compute distancé(g, T).

(b) Letm = argmazy{d(g,T)}.
(c) IncludeminT.

Phase 2: For every medoid geng found in Phase 1, compute the subset of geiewhich are similar ton;.
For computingl;, we compute the distance of each gene fragrover all the conditions. Lek;; denote the distance
between geng; andm,;. Let u; and o? denote the mean and variance of these distanceg:j.e= ¥;X;;/n and
02 =%;(X;; — wi)?/(n—1) thenL; = {g; : (XJT”” < sg}. If |L;| < .1% of total number of genes then discard
m; and L;. RemainingL;'s serve as an input seed for PhaseGiven the sefl’ of medoid genes, the procedure
Compute-gene-seeds{1) computes: gene seed§;, i = 1, k.

Compute-gene-seeds{T’)
For everym,; € T do

1. for each geng; in E do
ComputeXij = 5(gj,mi)

2. CompUtQJi = Einj/n, g; = \/E(X” — u7)2/(n — 1)
3. for each geneg; in £ do

(a) computer; = (X;; — w;)/ 0.
(b) if T; < 8g putgj inL;.

Phase 3: In this phase, for eath computed in Phas®, we compute, for each condition, the average condition

score over the genes if; i.e. we computeSs® = E¢ - L;. Let S¢ be the condition vector whos&" component is
non-zero only |fs%§(s)) > t. wheret,. is the condition threshold and(x) ando(z) denote the mean and variance
of z. We then compute, for each gene, the average gene scoreneveni-zero components 6f i.e. we compute
S9 = E¢ - 58¢. Let S9 be the gene vector whosé& component is non-zero only % > ty Wheret, is

the gene threshold. The algorithm then iterates until eifhenumber of iterations exceeds a certain number or (ii)
% < e whereg" is the gene vector obtained in thé" iteration. The procedure Compute-TMs() computes the
TMs corresponding to gene seells



Compute-TMs()
Let M; = {G;, C;} denote the TM obtained for sedd.

1. Normalize genes over conditions to obtain the malix
i

i ZJ?E . H

S or each gene;.

|Eii— J |

n

i _
Es =

2. Normalize conditions over genes to obtain the mafiix
. E'
| B — =t |
3. Eor eachl; do
S9 =1,
Repeat until the terminating condition is met

for each conditior;.

(a) ComputeS© = E - 99. §¢ = S
(b) Apply condition threshold o&<.
(c) ComputeSy = Eq - 5¢. §9 = §9,
(d) Apply gene threshold ofY.

We have used two gene thresholds because their effectdfareni. s,, the similarity threshold is used to compute
the genes which are similar to a medoid whergas used to select genes with high gene scores. Thus as weadecre
54 we get less genes similar to the medoid whereas when we de¢jese get more genes of high scores.

Pearson’s coefficient was used to determine the relialifitthe TMs. The procedure FISA() summarizes our
algorithm.

FISA(
1. Compute-medoid-séf)

2. Compute-gene-seeds(T). Discardm,; and L; if
|L7| < 0.1%n.

3. Compute-TMs()

Effect of increasing k: As k increases, TMs start replicating. For lafgemore than one medoids may be chosen
from a real TM. However, it does not result in splitting/ags andS9’s depend on the threshold parameteysaindt,
respectively rather than the density of the medoid set.

Effect of varying s,: As we increase,, L;'s have large overlap and hence they start converging to Tawting
large overlaps. As a result, the number of uniqgue TMs redAseve decrease,, L;'s become small. We discard a
medoid and its corresponding seed.jfbecomes too small.

Effect of varying ¢t,: The changing values @f, affect the granularity of the TMs.

5 Experimental Results on synthetic data

We created the synthetic expression data for two overlgpmiadules. Each module consisted56fgenes and0
conditions as shown in figure

Fork = 10,s, = 0.5,t, = 0.5 andt. = 0.5 we obtained three TMs, a TM consisting of geres 45 and
conditionsl — 20, a TM consisting of geness — 100 and condition$1 — 50 and, a TM consisting of the intersection



of M1 andM?2 i.e. genesl6 — 55 and condition21 — 30. As we decreasg, we continue to get the same TMs. In
order to get TMsV/ 1 and M 2 we decreased botly andt, in steps of 0.1. At, = 0.1 and¢. = 0.2, we get complete
TMs, one consisting of genés— 55 and conditiond — 30 and the other consisting of genés— 100 and conditions
21 —50. By reducing, further to - 0.1, we ged/1 U M2. The value ofs, is kept fixed at 0.5 in all these experiments.
As we increasé keepings,, t, andt, fixed to 0.5, 0.1 and 0.2 respectively no new TMs are obtaiAsdve increase
54 from0.5to 1 in the steps of 0.1, with, = 0.1 andz. = 0.2, we continue to get both the modul&sl andA/2 and
finally for s, = 1 we get only one TM which is the intersection bf1 and /2.

Figure 1: Expression matrix for synthetic data showing twertapping modules.

6 Experimental Results on Yeast data

Gene expression data for Saccharomyces cerevisiae wadadaled from the site http://www.weizmann.ac.il. The
data contains expression profiles6@b6 genes undet011 conditions.

We ran our algorithm for varying on Yeast data. We observed thatiasicreases, TMs start repeating. For large
k, most of the TMs repeat many number of times and very few nevg &M found. The following table summarizes
the results for varying,. We observe that the number of unique TMs reduce as we irekgasThe table also
summarizes the cellular activity with which the maximum renof genes within each module is associated. The
functional significance (ca: catalytic activity, mfu: moigar function unknown, sma: structural molecular agfivit
of the modules was obtained using Gene Ontology database.

tg=2 tc=2 k=150

sg=1 sg=2 sg=3 Sg=6
sno. | max(%) | func. | sno.| max(%) | func. | sno.| max(%) | func. | sno.| max(%) | func.
1. 45.1 mfu | 1. 40.7 mfu | 1. 40.7 mfu | 1. 28 mfu
2. 47.7 ca 2. 43.6 ca 2. 43.6 ca 2. 46 ca
3. 46.8 mfu | 3. 28.8 mfu | 3. 42.7 ca 3. 44.6 sma
4. 39.5 mfu | 4. 45.1 ca 4. 45.1 ca 4. 44.8 sma
5. 53.5 mfu | 5. 43.8 sma | 5. 43.8 sma | 5. 43.8 sma
6. 40.7 mfu | 6. 42.8 ca 6. 38.6 mfu | 6. 31.9 mfu
7. 43.6 ca 7. 43.5 ca 7. 42.8 ca 7. 42.6 sma
8. 28.8 mfu | 8. 37.3 mfu | 8. 45.6 sma
9. 45.1 mfu | 9. 48 mfu
10. | 37.3 mfu | 10. | 38.3 mfu
11. | 43.8 sma
12. | 42.8 ca

7 Conclusion and Future Work

One of the problems faced in computing overlapgnagscription modules for the gene expression data is to specify
an input gene seed. The existing algorithms either requpreoa knowledge of some co-regulated genes or work with



a totally random input gene seeds. In this paper, we havepres a method to compute initial gene seed containing
genes which are similar in some sense. Our algorithm doesegaire any prior knowledge of co-regulated genes
but rather extract this information from the expressioradtself and then computes the set of conditions and genes
iteratively. Since the input seed is chosen intelligerithg iterative algorithm converges fast. We compute several
seeds and compute modules for all of them simultaneously. ob¥ained experimental results for synthetic data
created to contain two overlapping modules and we were abdbtain all the TMs by varying the parameters. We
also showed that the TMs do not split for large TMs were also obtained experimentally for the yeast dath an
they were confirmed to contaB% — 40% of the genes showing similar cellular functionality usingr® Ontology
database.
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