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Abstract

One approach to reduce the complexity of the task in the analysis of large scale genome-wide expression is to
group the genes showing similar expression patterns into what are calledtranscription modules (TM). A TM is defined
as a set of genes and a set of conditions under which these genes are most tightly co-expressed. Most of the existing
algorithms compute non-overlapping TMs whereas a gene may be responsible for more than one cellular activity and
hence must be included in more than one TMs. Existing algorithms to compute overlappingtranscription modules
either require prior biological information of co-regulated genes or start with a totally random input gene seed. In this
paper, we present an algorithm in which we generate an intelligent gene seed from the expression data itself, find out
the conditions which are most favourable to these genes and then iteratively improve the TM. This eliminates the need
to have a prior information about co-regulated genes and since the input genes are chosen intelligently the algorithm
converges fast. In fact, we generate several such seeds and iterate on all of them simultaneously. Experimental results
were obtained for synthetic data as well as for the expression data from the yeast Saccharomyces cerevisiae. TMs
obtained for the yeast data were confirmed to contain30%− 50% of the genes showing similar cellular functionality
using Gene Ontology database.

1 Introduction

Regulatory and metabolic functions of cells are carried outby several biochemical components interacting with each
other. Many such cellular processes are regulated by enzymes translated on binding of one or more transcription factors
to short DNA sequences calledmotifs in the upstream regions of the process genes. One way to find out the genes
responsible for a cell function is to study the DNA sequencesof the genes to extract a common pattern among them.
This problem is called ‘motif finding’. Another approach is to study their expression patterns. When a group of genes
binds to a set oftranscription factors they show similar expression patterns. With the help of microarray experiments
biologists are able to study the expression of thousands of genes under a large number of conditions simultaneously.
The large scale of the data makes it challenging to analyse itto extract any biologically significant information from
it.

One way to reduce the complexity of the task is to classify thedata into clusters of genes which show similar
expression levels. Once the genes have been clustered, their sequences can be studied for the presence of one or more
motifs and hence determine thetranscription factors that bind to them.

Standard Clustering algorithms likek-means clustering work well for small data sets but fair poorly when the
number of experimental conditions is large as they cluster the genes based on their expressions under all the conditions
whereas the cellular processes are generally affected by a small subset of conditions. Most of the other conditions
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which do not contribute to the cellular process add to the background noise. Moreover, these algorithms compute non-
overlapping clusters i.e. a gene belongs to at most one cluster whereas in fact a gene may be responsible for several
cellular activities and hence must be included in more than one clusters. The first problem is addressed inprojected
clustering. In projected clustering data points (genes in our case) are projected onto a relevantset of dimensions
(conditions in our case) and a cluster is defined as a set of data points and a set of dimensions that are most relevant
to these data points. However, algorithms forprojected clustering [YCN04, AGGR98, APW+99, AY00, YM05,
PJAM02] also compute non-overlapping clusters. The clusters overlap on the conditions but not on the genes. Hence
very few of them have been used to cluster the gene expressiondata [YCN04].

In [CC00] Cheng and Church introduced the notion of biclustering in which the clusters are defined to be a set
of genes and a set of conditions under which these genes are most tightly regulated. Though their algorithm discover
non-overlapping bi-clusters they suggest that with small perturbation in the expression values of some selected genes
they would be able to find overlapping bi-clusters. Their claim has been contradicted by Wang etal in [WWYY84].
In [GLD00] Getz etal gave an algorithm which uses one-way clustering once to cluster the genes over all the conditions
and in each of the clusters so obtained, it recursively applies one-way clustering again to cluster the conditions over
the genes. It repeats this process creating a tree of modules. In [KBCG03], Chang etal gave an algorithm that
simultaneously clusters genes and conditions only for an expression matrix having a checker-board pattern. Their
method is based on Singular Value Decomposition technique from linear algebra on the expression matrix. The
checker-board structure is reflected in the singular valuesof the expression matrix.

In [IFB+02] Ihmels etal have given the nametranscription modules (TM) to bi-clusters. They call the set of genes
and the set of conditions obtained for a module as asignature of the module and hence their algorithm asSignature
Algorithm. A TM is a set of genes and conditions where the genes in the TM are most similarly expressed under the
conditions of the TM and the conditions of the TM generate themost similar expression pattern for the genes of the
TM. Starting from an input set of genes, they compute the set of experimental conditions under which these genes
are co-regulated most tightly. They compute the condition scores as the average change in the expression of the input
genes for each condition. Noisy conditions are filtered out by keeping only the conditions with a large (absolute) score
and discarding the ones with low scores. It then computes thegene score, for each gene, as the weighted average
change in the expression over these conditions, using condition scores as the weights and selects the genes with high
gene scores.Signature Algorithm works well if the input genes are co-regulated. In [BIB03] Bergmann etal have given
an algorithm that eliminates the requirement of the prior biological information of co-regulated genes. Starting with
a random input seed their algorithm iteratively improves the set of conditions and the set of genes. Their algorithm
is called Iterative Signature Algorithm (ISA). Kloster etal [KTW05] have extended their work to find orthogonal
modules. Once a module is found, they delete its component from the expression matrix and compute the next module
in a direction orthogonal to the first one.

In this paper, we present a better way to overcome the problemof specifying co-regulated gene seed. Instead of
starting with a completely random input genes, we try to generate a seed consisting of genes which are co-regulated or
similar in some sense from the expression data itself. We then obtain the set of conditions which are most significant
for these genes. We then improve the quality of the TM iteratively like ISA. Since the input genes are not totally
random, our algorithm converges much faster than ISA. Moreover, we compute several TMs simultaneously.

The main idea of our algorithm is to create a set ofk medoid genes randomly. Medoids are chosen far apart from
each other so that if the TMs are scattered, we tend to pick onemedoid from several TMs (assumingk is large). For
each medoidm we compute a set of genes which are similar tom in some sense. We then take this set as the seed
to compute the set of conditions which are most significant for these genes and iterate. The iterative algorithm is run
on all the seeds giving usk TMs simultaneously. A potential problem in such an approachis the choice of the value
of k. In most of the previous work where this approach has been used [APW+99] the nature of clusters change ask
increases or decreases with the size of the clusters being large whenk is small and real clusters splitting in too small
clusters for largek. For example in [APW+99] the radius of each medoid (defined as the minimum distanceof a
medoid from all other medoids) is calculated and a point (gene) is assigned to a cluster if its distance from the medoid
of the cluster is the least. Ifk is large the medoids will be close to each other and the radii of the medoids will be
small, thus a real cluster is split if two medoids are chosen from it. A small value ofk results in small number of large
clusters missing out some clusters. To eliminate this problem, we introduce a similarity thresholdsg, which defines
the extent upto which the genes are considered to be similar to a given medoid. By doing so, the impact of varyingk
on the initial gene seeds is eliminated. Hence, the problem of splitting is eliminated for an over-estimated value ofk.
For largek, when two or more medoids are chosen from a real TM, instead ofsplitting the TM, all the medoids lead
to the same TM. We say that two TMs are same if they overlap in atleast80% of the genes.
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We ran our algorithm on a synthetic data as well as Yeast data.Synthetic data was created for two overlapping
modules. Fork ≥ 2 we were able to obtain both the modules and the module corresponding to their intersection.
We verified the modules obtained for the Yeast data by checking their functionality from Gene Ontology database
(http://www.yeastgenome.org/). Most of the TMs obtained contained30 to 50 percent of the genes showing common
functionality.

2 Definitions and Notations

We assume that the expression data from microarray experiments is given by gene expression matrixE . The(i, j)th

entry of the matrix denoted byEij is the log-fold expression change of genegi under thejth experiment. The matrixE
is thus ann x m matrix, wheren is the total number of genes andm is the total number of conditions. Atranscription
module M is defined by a set of genes and a set of conditions such that these genes are more tightly co-expressed
under these conditions as compared to other conditions and these conditions are more favourable to these genes as
compared to other genes. We denoteM by the set{G, C}, whereG = (g1, g2, . . . gn) andC = (c,c2, . . . cm) are
vectors of genes and conditions respectively such thatgi, i = 1, n andcj , j = 1, m are non-zero if and only ifgi and
cj are inM . The problem is to findM in E.

Denote the distance between a pair of genesgi andgj by δ(gi, gj), whereδ(gi, gj) =
∑

k=1,m |Eik −Ejk|. LetS
be a set of genes. Denote the distance of a geneg from S by δ(g, S), thenδ(g, S) = ming′∈Sδ(g, g′).

To compute the initial set of genes, we selectk medoids randomly. LetT = {m1, m2 . . . mk} represent the set of
medoids. LetLi be the set of genes which are similar to medoidmi. The notion of similarity is defined later.

Due to experimental errors, some genes may show higher and some may show lower expression levels as compared
to their real expression values. Similarly, a gene may show higher expression values under some conditions and lower
expression values under some other conditions as compared to their real expression values. To handle this situation
the expression matrix is normalized once over all the genes and once over all the conditions. LetEG be the matrix
obtained by normalizing the expression matrixE over all genes. SimilarlyEC is the matrix obtained by normalizing
the expression matrixE over all conditions.

To find out the relevant conditions for a given set of genes, wefind out how each condition scores for these genes
and keep only the ones with high scores. Similarly, to find outthe relevant genes for a given set of conditions, we find
out how each gene scores for these conditions and keep only the ones with high scores. LetSc denote the vector of
condition scores andSg the vector of gene scores.

3 Overview of Iterative Signature Algorithm

The Iterative Signature Algorithm normalizes the expression matrixE to obtain the two matricesEG andEC to
eliminate any experimental errors such that

∑

i Eij
G = 0,

∑

i(E
ij
G )2 = 1 for each conditioncj and

∑

j Eij
C =

0,
∑

j(E
ij
C )2 = 1 for each genegi. Starting with a random input seed̂g, it computes, for each condition, the average

condition score over the input genes i.e. it computesSc = EG ·ĝ. Theith component ofSc is set to zeroS
c
i −µ(Sc)
σ(Sc) < tc

wheretc is the condition threshold and,µ(x) andσ(x) denote the mean and variance ofx. It then computes, for each
gene, the average gene score over the non-zero components ofSc i.e. it computesSg = EC · Sc. Theith component

of Sg is set to zero if
S

g

i
−µ(Sg)

σ(Sg) < tg wheretg is the gene threshold. The algorithm then iterates until either (i) number

of iterations exceeds a certain number or (ii)|gn+1−gn|
|gn+1+gn| < ε wheregn is the gene vector obtained in thenth iteration.

4 FISA : Fast Iterative Signature Algorithm

In this section, we present an algorithm to computetranscription modules in gene expression data given as ann x m
expression matrixE, wheren is the total number of genes andm is the total number of conditions. The main idea
of our algorithm is to create a set ofk medoids randomly. Medoids are chosen far apart from each other. For each
medoidm we compute a set of genes which are similar tom in some sense. These are then taken as the input gene
seeds to compute thek TMs simultaneously. The way the medoids are chosen, irrespective of the first medoid, for an
appropriate value (an over-estimated value) ofk, the medoids from other TMs are also chosen. The algorithm works
in three phases.
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Phase 1: Find a setT of k medoid genes which are far apart from each other. The first medoid is chosen randomly.
The second medoid is chosen to be the gene which is farthest from the first medoid. The third medoid gene is chosen
which is farthest from the previous medoids and so on. In thisway we pick up medoid genes which are well separated
from each other. Also, if the TMs are scattered in the expression matrix, we tend to pick one medoid gene from every
TM (assumingk is large enough). The procedure Compute-medoid-set-T () computes the setT of medoids.

Compute-medoid-set-T ()

1. T = m1{m1 is the first medoid gene which is generated randomly}.

2. Forindx = 2 to k

(a) For each geneg /∈ T

Compute distanceδ(g, T ).

(b) Letm = argmaxg{δ(g, T )}.

(c) Includem in T .

Phase 2: For every medoid genemi found in Phase 1, compute the subset of genesLi which are similar tomi.
For computingLi, we compute the distance of each gene frommi over all the conditions. LetXij denote the distance
between genegj andmi. Let µi andσ2

i denote the mean and variance of these distances i.e.µi = ΣjXij/n and

σ2
i = Σj(Xij − µi)

2/(n − 1) thenLi = {gj : (
Xij−µi)

σi
< sg}. If |Li| < .1% of total number of genes then discard

mi andLi. RemainingLi’s serve as an input seed for Phase3. Given the setT of medoid genes, the procedure
Compute-gene-seeds-Li(T ) computesk gene seedsLi, i = 1, k.

Compute-gene-seeds-Li(T )
For everymi ∈ T do

1. for each genegj in E do

computeXij = δ(gj , mi)

2. computeµi = ΣjXij/n, σi =
√

Σ(Xij − µi)2/(n − 1)

3. for each genegj in E do

(a) computexj = (Xij − µi)/σi.

(b) if xj < sg putgj in Li.

Phase 3: In this phase, for eachLi computed in Phase2, we compute, for each condition, the average condition
score over the genes inLi i.e. we computeSc = EG · Li. Let Ŝc be the condition vector whoseith component is
non-zero only ifS

c
i −µ(Sc)
σ(Sc) > tc wheretc is the condition threshold and,µ(x) andσ(x) denote the mean and variance

of x. We then compute, for each gene, the average gene score over the non-zero components of̂Sc i.e. we compute

Sg = EC · Ŝc. Let Ŝg be the gene vector whoseith component is non-zero only if
S

g

i
−µ(Sg)

σ(Sg) > tg wheretg is
the gene threshold. The algorithm then iterates until either (i) number of iterations exceeds a certain number or (ii)
|gn+1−gn|
|gn+1+gn| < ε wheregn is the gene vector obtained in thenth iteration. The procedure Compute-TMs() computes the
TMs corresponding to gene seedsLi.
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Compute-TMs()
Let Mi = {Gi, Ci} denote the TM obtained for seedLi.

1. Normalize genes over conditions to obtain the matrixEC .

Eij
C =

Eij−

∑

j
Eij

n

|Eij−

∑

j
Eij

n
|

for each genegi.

2. Normalize conditions over genes to obtain the matrixEG.

Eij
G =

Eij−

∑

i
Eij

n

|Eij−

∑

i
Eij

n
|

for each conditioncj .

3. For eachLi do
Ŝg = Li

Repeat until the terminating condition is met

(a) ComputeSc = EG · Ŝg. Ŝc = Sc.

(b) Apply condition threshold on̂Sc.

(c) ComputeSg = EC · Ŝc. Ŝg = Sg.

(d) Apply gene threshold on̂Sg.

We have used two gene thresholds because their effects are different.sg, the similarity threshold is used to compute
the genes which are similar to a medoid whereastg is used to select genes with high gene scores. Thus as we decrease
sg we get less genes similar to the medoid whereas when we decreasetg we get more genes of high scores.

Pearson’s coefficient was used to determine the reliabilityof the TMs. The procedure FISA() summarizes our
algorithm.

FISA()

1. Compute-medoid-set-T ()

2. Compute-gene-seeds-Li(T ). Discardmi andLi if
|Li| < 0.1%n.

3. Compute-TMs()

Effect of increasing k: As k increases, TMs start replicating. For largek, more than one medoids may be chosen
from a real TM. However, it does not result in splitting asLi’s andSg ’s depend on the threshold parameterssg andtg
respectively rather than the density of the medoid set.

Effect of varying sg: As we increasesg, Li’s have large overlap and hence they start converging to TMs having
large overlaps. As a result, the number of unique TMs reduce.As we decreasesg, Li’s become small. We discard a
medoid and its corresponding seed ifLi becomes too small.

Effect of varying tg: The changing values oftg affect the granularity of the TMs.

5 Experimental Results on synthetic data

We created the synthetic expression data for two overlapping modules. Each module consisted of55 genes and30
conditions as shown in figure1.

For k = 10, sg = 0.5, tg = 0.5 and tc = 0.5 we obtained three TMs, a TM consisting of genes1 − 45 and
conditions1− 20, a TM consisting of genes56− 100 and conditions31− 50 and, a TM consisting of the intersection
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of M1 andM2 i.e. genes46 − 55 and conditions21 − 30. As we decreasesg we continue to get the same TMs. In
order to get TMsM1 andM2 we decreased bothtg andtc in steps of 0.1. Attg = 0.1 andtc = 0.2, we get complete
TMs, one consisting of genes1− 55 and conditions1− 30 and the other consisting of genes46− 100 and conditions
21−50. By reducingtc further to - 0.1, we getM1∪M2. The value ofsg is kept fixed at 0.5 in all these experiments.
As we increasek keepingsg, tg andtc fixed to 0.5, 0.1 and 0.2 respectively no new TMs are obtained.As we increase
sg from 0.5 to 1 in the steps of 0.1, withtg = 0.1 andtc = 0.2, we continue to get both the modulesM1 andM2 and
finally for sg = 1 we get only one TM which is the intersection ofM1 andM2.

Figure 1: Expression matrix for synthetic data showing two overlapping modules.

6 Experimental Results on Yeast data

Gene expression data for Saccharomyces cerevisiae was downloaded from the site http://www.weizmann.ac.il. The
data contains expression profiles of6206 genes under1011 conditions.

We ran our algorithm for varyingk on Yeast data. We observed that ask increases, TMs start repeating. For large
k, most of the TMs repeat many number of times and very few new TMs are found. The following table summarizes
the results for varyingsg. We observe that the number of unique TMs reduce as we increase sg. The table also
summarizes the cellular activity with which the maximum number of genes within each module is associated. The
functional significance (ca: catalytic activity, mfu: molecular function unknown, sma: structural molecular activity)
of the modules was obtained using Gene Ontology database.

tg=2 tc=2 k=150
sg=1 sg=2 sg=3 sg=6

sno. max(%) func. sno. max(%) func. sno. max(%) func. sno. max(%) func.
1. 45.1 mfu 1. 40.7 mfu 1. 40.7 mfu 1. 28 mfu
2. 47.7 ca 2. 43.6 ca 2. 43.6 ca 2. 46 ca
3. 46.8 mfu 3. 28.8 mfu 3. 42.7 ca 3. 44.6 sma
4. 39.5 mfu 4. 45.1 ca 4. 45.1 ca 4. 44.8 sma
5. 53.5 mfu 5. 43.8 sma 5. 43.8 sma 5. 43.8 sma
6. 40.7 mfu 6. 42.8 ca 6. 38.6 mfu 6. 31.9 mfu
7. 43.6 ca 7. 43.5 ca 7. 42.8 ca 7. 42.6 sma
8. 28.8 mfu 8. 37.3 mfu 8. 45.6 sma
9. 45.1 mfu 9. 48 mfu
10. 37.3 mfu 10. 38.3 mfu
11. 43.8 sma
12. 42.8 ca

7 Conclusion and Future Work

One of the problems faced in computing overlappingtranscription modules for the gene expression data is to specify
an input gene seed. The existing algorithms either require aprior knowledge of some co-regulated genes or work with
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a totally random input gene seeds. In this paper, we have presented a method to compute initial gene seed containing
genes which are similar in some sense. Our algorithm does notrequire any prior knowledge of co-regulated genes
but rather extract this information from the expression data itself and then computes the set of conditions and genes
iteratively. Since the input seed is chosen intelligently,the iterative algorithm converges fast. We compute several
seeds and compute modules for all of them simultaneously. Weobtained experimental results for synthetic data
created to contain two overlapping modules and we were able to obtain all the TMs by varying the parameters. We
also showed that the TMs do not split for largek. TMs were also obtained experimentally for the yeast data and
they were confirmed to contain30% − 40% of the genes showing similar cellular functionality using Gene Ontology
database.
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