
A Brief Introduction to Greedy Algorithms

Ragesh Jaiswal, CSE, UCSD

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Introduction

“A local (greedy) decision rule leads to a globally optimal
solution.”

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Candidate greedy choices:

Earliest start time
Smallest duration
Least overlapping

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Candidate greedy choices:

Earliest start time
Smallest duration
Least overlapping
Earliest finish time

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty

- Choose an interval (S(i),F (i)) from R that has the smallest
value of F (i)

- Delete all intervals in R that overlaps with (S(i),F (i))

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty

- Choose an interval (S(i),F (i)) from R that has the smallest
value of F (i)

- Delete all intervals in R that overlaps with (S(i),F (i))

Question: Let O denote some optimal subset and A by the subset
given by GreedySchedule. Can we show that A = O?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Question: Let O denote some optimal subset and A by the subset
given by GreedySchedule. Can we show that A = O?
Question Can we show that |O| = |A|?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Question: Let O denote some optimal subset and A by the subset
given by GreedySchedule. Can we show that A = O?
Question Can we show that |O| = |A|?
Yes we can! We will use “greedy stays ahead” method to show
this.

Proof

Let a1, a2, ..., ak be the sequence of requests that GreedySchedule
picks and o1, o2, ..., ol be the requests in O sorted in non-decreasing
order by finishing time.

Claim 1: F (a1) ≤ F (o1).

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Question: Let O denote some optimal subset and A by the subset
given by GreedySchedule. Can we show that A = O?
Question Can we show that |O| = |A|?
Yes we can! We will use “greedy stays ahead” method to show
this.

Proof

Let a1, a2, ..., ak be the sequence of requests that GreedySchedule
picks and o1, o2, ..., ol be the requests in O sorted in non-decreasing
order by finishing time.

Claim 1: F (a1) ≤ F (o1).
Claim 2: If F (a1) ≤ F (o1), F (a2) ≤ F (o2), ...,
F (ai−1) ≤ F (oi−1), then F (ai) ≤ F (oi).

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Question: Let O denote some optimal subset and A by the subset
given by GreedySchedule. Can we show that A = O?
Question Can we show that |O| = |A|?
Yes we can! We will use “greedy stays ahead” method to show
this.

Proof

Let a1, a2, ..., ak be the sequence of requests that
GreedySchedule picks and o1, o2, ..., ol be the requests in O
sorted in non-decreasing order by finishing time.
We will show by induction that ∀i ,F (ai) ≤ F (oi)
Claim 1 (base case): F (a1) ≤ F (o1).
Claim 2 (inductive step): If F (a1) ≤ F (o1), F (a2) ≤ F (o2), ...,
F (ai−1) ≤ F (oi−1), then F (ai) ≤ F (oi).
GreedySchedule could not have stopped after ak .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form (S(i),F (i)),
find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- Initialize R to contain all intervals
- While R is not empty

- Choose an interval (S(i),F (i)) from R that has the smallest
value of F (i)

- Delete all intervals in R that overlaps with (S(i),F (i))

Running time?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Interval scheduling

Problem

Interval scheduling: Given a set of n intervals of the form
(S(i),F (i)), find the largest subset of non-overlapping intervals.

Algorithm

GreedySchedule

- While R is not empty
- Choose an interval (S(i),F (i)) from R that has the smallest

value of F (i)
- Delete all intervals in R that overlaps with (S(i),F (i))

Running time? O(n log n)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Spanning Tree: Given a strongly connected graph
G = (V ,E), a spanning tree of G is a subgraph G ′ = (V ,E ′)
such that G ′ is a tree.

Minimum Spanning Tree (MST): Given a strongly connected
weighted graph G = (V ,E), a Minimum Spanning Tree of G
is a spanning tree of G of minimum total weight (i.e., sum of
weight of edges in the tree).

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Spanning Tree: Given a strongly connected graph
G = (V ,E), a spanning tree of G is a subgraph G ′ = (V ,E ′)
such that G ′ is a tree.

Minimum Spanning Tree (MST): Given a strongly connected
weighted graph G = (V ,E), a Minimum Spanning Tree of G
is a spanning tree of G of minimum total weight (i.e., sum of
weight of edges in the tree).

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Problem

Given a weighted graph G where all the edge weights are distinct,
give an algorithm for finding the MST of G .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Theorem

Cut property: Given a weighted graph G = (V ,E) where all the
edge weights are distinct. Consider a non-empty proper subset S of
V and S ′ = V \ S . Let e be the least weighted edge between any
pair of vertices (u, v), where u is in S and v is in S ′. Then e is
necessarily present in all MSTs of G .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Theorem

Cut property: Given a weighted graph G = (V ,E) where all the
edge weights are distinct. Consider a non-empty proper subset S of
V and S ′ = V \ S . Let e be the least weighted edge between any
pair of vertices (u, v), where u is in S and v is in S ′. Then e is
necessarily present in all MSTs of G .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

What is the running time of Prim’s algorithm?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

What is the running time of Prim’s algorithm? O(|E | · log |V |)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Union-Find: Used for storing partition of a set of elements.
The following two operations are supported:

1 Find(v): Find the partition to which the element v belongs.
2 Union(u, v): Merge the partition to which u belongs with the

partition to which v belongs.

Consider the following data structure.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v):
Union(u, v):

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Claim: Performing k union operations takes O(k log k) time in
the worst case.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

What is the running time of Prim’s algorithm?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- S ← {u} //u is an arbitrary vertex in the graph
- T ← {}
- While S does not contain all vertices

- Let e = (v ,w) be the minimum weight edge between
S and V \ S

- T ← T ∪ {e}
- S ← S ∪ {w}

What is the running time of Prim’s algorithm? O(|E | · log |V |)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T

- T ← T ∪ {e}
- S ← S \ {e}

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- T ← T ∪ {e}
- S ← S \ {e}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Union-Finds: Used for storing partition of a set of elements.
The following two operations are supported:

1 Find(v): Find the partition to which the element v belongs.
2 Union(u, v): Merge the partition to which u belongs with the

partition to which v belongs.

Consider the following data structure.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v):
Union(u, v):

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Suppose we start from a full partition (i.e., each partition
contains one element).

How much time does the following operation take:

Find(v): O(1)
Union(u, v):

Claim: Performing k union operations takes O(k log k) time in
the worst case.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Kruskal’s algorithm using Union-Find.

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- If (Find(u) 6= Find(v))
- T ← T ∪ {e}
- Union(u, v)

- S ← S \ {e}

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Minimum Spanning Tree

Kruskal’s algorithm using Union-Find.

Algorithm

Kruskal’s Algorithm(G)

- S ← E ; T ← {}
- While the edge set T does not connect all the vertices

- //Note that G ′ = (V ,T) contains dicsonnected components
- Let e be the minimum weight edge in the set S
- If e does not create a cycle in T
- If u and v are in different components of G ′

- If (Find(u) 6= Find(v))
- T ← T ∪ {e}
- Union(u, v)

- S ← S \ {e}

What is the running time of the above algorithm? O(|E | · log |V |)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Path length: Let G = (V ,E) be a weighted directed graph.
Given a path in G , the length of a path is defined to be the
sum of lengths of the edges in the path.

Shortest path: The shortest path from u to v is the path with
minimum length.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Path length: Let G = (V ,E) be a weighted directed graph.
Given a path in G , the length of a path is defined to be the sum
of lengths of the edges in the path.
Shortest path: The shortest path from u to v is the path with
minimum length.

Problem

Single source shortest path: Given a weighted, directed graph
G = (V ,E) with positive edge weights and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Problem

Single source shortest path: Given a weighted, directed graph
G = (V ,E) with positive edge weights and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Claim 1: Shortest path is a simple path.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Problem

Single source shortest path: Given a weighted, directed graph with
positive edge weights G = (V ,E) and a source vertex s, find the
shortest path from s to all other vertices in the graph.

Claim 1: Shortest path is a simple path.
Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length l(s, u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (l(s, u) + We) is the least among all such cut edges.

Then l(s, v) = l(s, u) + We .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length l(s, u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (l(s, u) + We) is the least among all such cut edges.

Then l(s, v) = l(s, u) + We .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length l(s, u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (l(s, u) + We) is the least among all such cut edges.

Then l(s, v) = l(s, u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length l(s, u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (l(s, u) + We) is the least among all such cut edges.

Then l(s, v) = l(s, u) + We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) + We

- d(v)← d(u) + We

- S ← S ∪ {v}

What is the running time of the above algorithm?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms

For some problems, even though the greedy strategy does not
give an optimal solution but it might give a solution that is
provably close to the optimal solution.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Covering set: Let S be a set containing n elements. A set of
subsets {S1, ...,Sm} of S is called a covering set if each
element in S is present in at least one of the subsets
S1, ...,Sm.

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Example

S = {a, b, c , d , e, f }
S1 = {a, b}, S2 = {a, c}, S3 = {b, c}, S4 = {d , e, f },
S5 = {e, f }
{S1,S2,S3,S4} is a covering set.
{S1,S2,S4} is a covering set of minimum cardinality.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Application: There are n villages and the government is trying
to figure out which villages to open schools at so that it has
to open minimum number of schools. The constraint is that
no children should have to walk more than 3 miles to get to a
school.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Greedy strategy: Give preference to the subsets that covers
the most number of (remaining) elements.

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Problem

Set Cover: Given a set S containing n elements and m subsets
S1, ...,Sm of S . Find a covering set of S of minimum cardinality.

Greedy strategy: Give preference to the subsets that covers the
most number of (remaining) elements.

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Counterexample: S = {a, b, c , d , e, f , g , h},S1 =
{a, b, c , d , e}, S2 = {a, b, c , f },S3 = {d , e, g , h}.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.

Proof of Claim 1

Let Nt be the number of uncovered elements after t iterations of
the loop.
Claim 1.1: Nt ≤ (1− 1/k) · Nt−1.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Set Cover

Algorithm

GreedySetCover(S , S1, ...,Sm)
- T ← {}; R ← S
- While R is not empty:

- Pick a subset Si that covers the maximum number
of elements in R

- T ← T ∪ {Si}; R ← R − Si

Claim 1: Let k be the cardinality of any optimal covering set.
Then the greedy algorithm outputs a covering set with cardinality
at most k · ln n.

Proof of Claim 1

Let Nt be the number of uncovered elements after t iterations of
the loop.
Claim 1.1: Nt ≤ (1− 1/k) · Nt−1.
Claim 1.2: Nk·ln n < 1.

Use the fact that (1− x) ≤ e−x and the equality holds only for
x = 0.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs.
For each job i , you are given the duration of this job d(i) that
denotes the time that is required by any machine to perform this
job. Assign these n jobs on m machine such that the maximum
finishing time is minimized.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Is this solution optimal?

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Problem

Minimum Makespan: You have m identical machines and n jobs. For
each job i , you are given the duration of this job d(i) that denotes the
time that is required by any machine to perform this job. Assign these
n jobs on m machine such that the maximum finishing time is
minimized.

Greedy strategy: Assign the next job to a machine with least load.

Is this solution optimal? No

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)

This implies that G ≤ OPT + d(i) (using claim 1.1)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

Greedy (Approximation) Algorithms
Minimum Makespan

Algorithm

GreedyMakespan

- While all jobs are not assigned
- Assign the next job to a machine with least load

Let OPT be the optimal value.
Let G denote the maximum finishing time of a machine as per
the greedy assignment.
Claim 1: G ≤ 2 · OPT .

Proof of Claim 1

Claim 1.1: OPT ≥ d(1)+d(2)+...+d(n)
m

Claim 1.2: For any job t, OPT ≥ d(t).
Let the j th machine finish last. Let i be the last job assigned to
machine j . Let s be the start time of job i on machine j .
Claim 1.3: s ≤ d(1)+d(2)+...+d(n)

m
So, G ≤ s + d(i)

This implies that G ≤ d(1)+...+d(n)
m + d(i) (using claim 1.3)

This implies that G ≤ OPT + d(i) (using claim 1.1)
This implies that G ≤ OPT + OPT (using claim 1.2)

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

End

Ragesh Jaiswal, CSE, UCSD A Brief Introduction to Greedy Algorithms

