A brief introduction to Randomized Algorithms

Ragesh Jaiswal, CSE, UCSD

Recommended Books

- Randomized Algorithms by Rajeev Motwani and Prabhakar Raghavan.
- Probability and Computing by Michael Mitzenmacher and Eli Upfal.

Introduction

Introduction

- Randomized Algorithms: Algorithms that have additional random input bits.
- Why study randomized algorithms?
 - Simplifies deterministic algorithms.
 - Efficient randomized algorithm for certain problems for which no deterministic algorithms are known.
 - May be used to break symmetry in distributed settings.

Introduction

- Randomized Algorithms: Algorithms that have additional random input bits.
- Why study randomized algorithms?
 - Simplifies deterministic algorithms.
 - Efficient randomized algorithm for certain problems for which no deterministic algorithms are known.
 - May be used to break symmetry in distributed settings.
- What you should expect to learn in this brief introduction?
 - Basic techniques for using randomness to design algorithms for problems.
 - Techniques for analyzing randomized algorithms.
 - Hash functions, Karger's algorithm, Lovasz Local Lemma(LLL) etc.

- Hashing: A set of S keys from a large universe $\overline{U} = \{0, ..., m-1\}$ is stored in a table $T = \{0, ..., n-1\}$ using a hash function $h: U \to T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If m > n, then any deterministic function h is bad.

Introduction Hashing

- Hashing: A set of S keys from a large universe $\overline{U} = \{0,...,m-1\}$ is stored in a table $T = \{0,...,n-1\}$ using a hash function $h: U \to T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If m > n, then any deterministic function h is bad.
- Main idea: Choose h randomly from a hash function family H.
- Let H consists of all functions from U to $\{0, ..., n-1\}$.
- Consider t insert operations. What is the expected cost of each operation?

Introduction Hashing

- Hashing: A set of S keys from a large universe $\overline{U} = \{0, ..., m-1\}$ is stored in a table $T = \{0, ..., n-1\}$ using a hash function $h: U \to T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If m > n, then any deterministic function h is bad.
- Main idea: Choose h randomly from a hash function family H.
- Let H consists of all functions from U to $\{0,...,n-1\}$.
- Consider t insert operations. What is the expected cost of each operation? (1+t/n)

Lemma (Linearity of Expectation)

For any random variables X_1, X_2 and constants c_1, c_2 , we have

$$\mathbf{E}[c_1X_1 + c_2X_2] = c_1\mathbf{E}[X_1] + c_2\mathbf{E}[X_2]$$

Lemma (Linearity of Expectation)

For any random variables X_1, X_2 and constants c_1, c_2 , we have

$$\mathbf{E}[c_1X_1 + c_2X_2] = c_1\mathbf{E}[X_1] + c_2\mathbf{E}[X_2]$$

Hat check problem

n men go to a party and their hats get mixed up. They randomly pick up a hat. What is the expected number of men who get their own hats?

Lemma (Linearity of Expectation)

For any random variables X_1, X_2 and constants c_1, c_2 , we have

$$\mathbf{E}[c_1X_1 + c_2X_2] = c_1\mathbf{E}[X_1] + c_2\mathbf{E}[X_2]$$

Hat check problem

n men go to a party and their hats get mixed up. They randomly pick up a hat. What is the expected number of men who get their own hats?

Coupon Collector Problem

There are *n* different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

Coupon Collector Problem

There are *n* different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

- Define i^{th} epoch to be the sequence of days starting the day after the $(i-1)^{th}$ new coupon was collected and ending on the day the i^{th} coupon was collected.
- Define X_i to be a random variable denoting the number of days in the i^{th} epoch. Note that $X_1 = 1$.
- We are interested in knowing the expected value of $X = X_1 + ... + X_n$.
- What is the value of $\mathbf{E}[X_i]$?

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

- Define i^{th} epoch to be the sequence of days starting the day after the $(i-1)^{th}$ new coupon was collected and ending on the day the i^{th} coupon was collected.
- Define X_i to be a random variable denoting the number of days in the i^{th} epoch. Note that $X_1 = 1$.
- We are interested in knowing the expected value of $X = X_1 + ... + X_n$.
- What is the value of $\mathbf{E}[X_i]$? $\mathbf{E}[X_i] = \frac{n}{n-i+1}$
- So, we have:

$$\mathbf{E}[X] = \mathbf{E}[X_1 + \dots + X_n] = \mathbf{E}[X_1] + \dots + \mathbf{E}[X_n]$$

$$= n \cdot (1 + 1/2 + 1/3 + \dots + 1/n)$$

$$= n \cdot H_n = O(n \cdot \log n)$$

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then $\Pr[X \ge a] \le \frac{\mathbf{E}[X]}{a}$.

Corollary

Let X be a non-negative random variable and $c \ge 1$, then $\Pr[X \ge c \cdot \mathbf{E}[X]] \le \frac{1}{c}$.

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then $\Pr[X \ge a] \le \frac{\mathbf{E}[X]}{a}$.

Corollary

Let X be a non-negative random variable and $c \ge 1$, then $\Pr[X \ge c \cdot \mathbf{E}[X]] \le \frac{1}{c}$.

- Hat-check Problem: What is the probability that at least 10 people out of n get their own hats?
 - $\mathbf{E}[X] = 1$. So, from Markov, we get that $\mathbf{Pr}[X \ge 10] \le 0.1$.
- Note that
 - $Pr[everyone gets their own hats] = \frac{1}{n!}$
 - On the other hand from Markov, we get that $\Pr[X \ge n] \le 1/n$.

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then $\Pr[X \ge a] \le \frac{E[X]}{a}$.

Theorem (Chebychev's Inequality)

Let X be a random variable and a > 0, then

$$\Pr[|X - \mathbf{E}[X]| \ge a] \le \frac{Var[X]}{a^2}.$$

Theorem (Chernoff bounds 1)

Let $X_1,...,X_n$ be independent 0/1 random variables. Let $X=X_1+...+X_n$ and $\mu=\mathbf{E}[X]$. Let $\delta>0$ be any real number. Then $\Pr[X>(1+\delta)\cdot\mu]\leq e^{-f(\delta)\cdot\mu}$, where $f(\delta)=(1+\delta)\ln(1+\delta)-\delta$.

• Claim 1: $\forall \delta > 0$, $f(\delta) \geq \frac{\delta^2}{2+\delta}$.

Theorem (Chernoff bound 2)

Let $X_1,...,X_n$ be independent 0/1 random variables. Let $X=X_1+...+X_n$ and $\mu=\mathbf{E}[X]$. Let $\delta>0$ be any real number. Then $\Pr[X<(1-\delta)\cdot\mu]\leq e^{-g(\delta)\cdot\mu}$, where $g(\delta)=(1-\delta)\ln{(1-\delta)}+\delta$.

• Claim 2: $\forall \delta > 0$, $g(\delta) \geq \frac{\delta^2}{2}$.

Theorem (Chernoff bounds special case)

Let $X_1,...,X_n$ be independent $\{\pm 1\}$ random variables such that for all i, $\Pr[X_i = +1] = \Pr[X_i = -1] = 1/2$. Let $X = X_1 + ... + X_n$ and $\mu = \mathbf{E}[X]$. Let A > 0 be any real number. Then

$$\Pr[X \ge A] \le e^{-\frac{A^2}{2n}}.$$

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

Birthday Problem (popular version)

There are q people in a room. What is the value of q such that the probability of two people having the same birthday is at least 1/2. Each person's birthday is assumed to be a random day in the year.

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and j^{th} person has the same birthday and 0 otherwise.
- Claim 1: $\forall i < j, \mathbf{E}[X_{ij}] = 1/n$.
- Let X denotes the number of distinct pairs of people that have the same birthday.
- Claim 2: $X = \sum_{i < j} X_{ij}$.
- Claim 3: $\mathbf{E}[X] = \frac{q(q-1)}{2} \cdot \frac{1}{n}$ (by linearity of expectation).
- So, if $q \approx \sqrt{2n}$, then $\mathbf{E}[X] > 1$.

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

- Let X_{ij} be an indicator random variable that is 1 if the i^{th} and j^{th} person has the same birthday and 0 otherwise.
- Claim 1: $\forall i < j, \mathbf{E}[X_{ij}] = 1/n$.
- Let X denotes the number of distinct pairs of people that have the same birthday.
- Claim 2: $X = \sum_{i < j} X_{ij}$.
- Claim 3: $\mathbf{E}[X] = \frac{q(q-1)}{2} \cdot \frac{1}{n}$ (by linearity of expectation).
- So, if $q \approx c \cdot \sqrt{2n}$, then $\mathbf{E}[X] = 10$.
- Claim 4: $Var[X_{ij}] = \frac{(n-1)}{n^2}$.
- Claim 5: $Var[X] = \sum_{i < j} Var[X_{ij}]$.
- So, $Var[X] = \frac{q(q-1)(n-1)}{2n^2} = 10 \cdot (1-1/n)$ for $q \approx c \cdot \sqrt{2n}$.
- By Chebychev, we get $\Pr[X < 1] \le \Pr[|X \mathbf{E}[X]| \ge 9] \le \frac{10}{81} < \frac{1}{4}$.

Problem

Sort a given an array of integers containing n distinct integers.

Algorithm

- If (|A| = 1) return(A)
- Randomly pick an index i in the array A
- Let A_L denote the array of elements that are smaller than A[i]
- Let A_R denote the array of elements that are larger than A[i]
- $B_L \leftarrow \text{Randomized-Quick-Sort}(A_L)$
- $B_R \leftarrow \texttt{Randomized-Quick-Sort}(A_R)$
- return($B_L|A[i]|B_R$)

Algorithm

- If (|A| = 1) return(A)
- Randomly pick an index i in the array A
- Let A_L denote the array of elements that are smaller than A[i]
- Let A_R denote the array of elements that are larger than A[i]
- $B_L \leftarrow \texttt{Randomized-Quick-Sort}(A_L)$
- $B_R \leftarrow \texttt{Randomized-Quick-Sort}(A_R)$
- return($B_L|A[i]|B_R$)
- Let T(n) denote the expected number of comparisons performed.
- Claim 1: $T(n) = (n-1) + \frac{1}{n} \cdot \sum_{i=1}^{n-1} (T(i) + T(n-i-1))$ and T(1) = 0.

Algorithm

- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let A_L denote the array of elements that are smaller than A[i]
- Let A_R denote the array of elements that are larger than A[i]
- $B_L \leftarrow \texttt{Randomized-Quick-Sort}(A_L)$
- $B_R \leftarrow \texttt{Randomized-Quick-Sort}(A_R)$
- return($B_L|A[i]|B_R$)
- Let T(n) denote the expected number of comparisons performed.
- Claim 1: $T(n) = (n-1) + \frac{1}{n} \cdot \sum_{i=1}^{n-1} (T(i) + T(n-i-1))$ and T(1) = 0.
- So, $T(n) = (n-1) + \frac{2}{n} \cdot \sum_{i=0}^{n-1} T(i)$.
- How do we solve such recurrence relations?

Algorithm

- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let A_L denote the array of elements that are smaller than A[i]
- Let A_R denote the array of elements that are larger than A[i]
- $B_L \leftarrow \texttt{Randomized-Quick-Sort}(A_L)$
- $B_R \leftarrow \texttt{Randomized-Quick-Sort}(A_R)$
- return($B_L|A[i]|B_R$)
- Here is another way to analyze the algorithm.
- For i < j, let X_{ij} be a r.v. that is 1 if a comparison between A[i] and A[j] is made and 0 otherwise.
- Claim 1: $\mathbf{E}[X_{ij}] = \frac{2}{j-i+1}$.
- So, the expected time is:

$$\mathbf{E}\left[\sum_{i < j} X_{ij}\right] = \sum_{i < j} \mathbf{E}[X_{ij}] = \sum_{i = 1}^{n} 2 \cdot \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n - i + 1}\right) < 2n \ln n$$

End