
A brief introduction to Randomized Algorithms

Ragesh Jaiswal, CSE, UCSD

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Recommended Books

Randomized Algorithms by Rajeev Motwani and Prabhakar
Raghavan.

Probability and Computing by Michael Mitzenmacher and Eli
Upfal.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction

Randomized Algorithms: Algorithms that have additional
random input bits.

Why study randomized algorithms?

Simplifies deterministic algorithms.
Efficient randomized algorithm for certain problems for which
no deterministic algorithms are known.
May be used to break symmetry in distributed settings.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction

Randomized Algorithms: Algorithms that have additional
random input bits.

Why study randomized algorithms?

Simplifies deterministic algorithms.
Efficient randomized algorithm for certain problems for which
no deterministic algorithms are known.
May be used to break symmetry in distributed settings.

What you should expect to learn in this brief introduction?

Basic techniques for using randomness to design algorithms for
problems.
Techniques for analyzing randomized algorithms.
Hash functions, Karger’s algorithm, Lovasz Local Lemma(LLL)
etc.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

Hashing: A set of S keys from a large universe
U = {0, ...,m − 1} is stored in a table T = {0, ..., n − 1}
using a hash function h : U → T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

If m > n, then any deterministic function h is bad.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

Hashing: A set of S keys from a large universe
U = {0, ...,m − 1} is stored in a table T = {0, ..., n − 1}
using a hash function h : U → T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

If m > n, then any deterministic function h is bad.

Main idea: Choose h randomly from a hash function family H.

Let H consists of all functions from U to {0, ..., n − 1}.
Consider t insert operations. What is the expected cost of
each operation?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

Hashing: A set of S keys from a large universe
U = {0, ...,m − 1} is stored in a table T = {0, ..., n − 1}
using a hash function h : U → T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

If m > n, then any deterministic function h is bad.

Main idea: Choose h randomly from a hash function family H.

Let H consists of all functions from U to {0, ..., n − 1}.
Consider t insert operations. What is the expected cost of
each operation? (1 + t/n)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1,X2 and constants c1, c2, we have

E[c1X1 + c2X2] = c1E[X1] + c2E[X2]

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1,X2 and constants c1, c2, we have

E[c1X1 + c2X2] = c1E[X1] + c2E[X2]

Hat check problem

n men go to a party and their hats get mixed up. They randomly
pick up a hat. What is the expected number of men who get their
own hats?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1,X2 and constants c1, c2, we have

E[c1X1 + c2X2] = c1E[X1] + c2E[X2]

Hat check problem

n men go to a party and their hats get mixed up. They randomly
pick up a hat. What is the expected number of men who get their
own hats?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon
every day. What is the expected number of days in which you
should collect at least one coupon of each type?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon
every day. What is the expected number of days in which you
should collect at least one coupon of each type?

Define i th epoch to be the sequence of days starting the day
after the (i − 1)th new coupon was collected and ending on
the day the i th coupon was collected.

Define Xi to be a random variable denoting the number of
days in the i th epoch. Note that X1 = 1.

We are interested in knowing the expected value of
X = X1 + ...+ Xn.

What is the value of E[Xi]?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every
day. What is the expected number of days in which you should collect
at least one coupon of each type?

Define i th epoch to be the sequence of days starting the day after
the (i − 1)th new coupon was collected and ending on the day the
i th coupon was collected.
Define Xi to be a random variable denoting the number of days in
the i th epoch. Note that X1 = 1.
We are interested in knowing the expected value of
X = X1 + ...+ Xn.
What is the value of E[Xi]? E[Xi] = n

n−i+1
So, we have:

E[X] = E[X1 + ...+ Xn] = E[X1] + ...+ E[Xn]

= n · (1 + 1/2 + 1/3 + ...+ 1/n)

= n · Hn = O(n · log n)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov’s Inequality)

Let X be a non-negative random variable and a > 0, then
Pr[X ≥ a] ≤ E[X]

a .

Corollary

Let X be a non-negative random variable and c ≥ 1, then
Pr[X ≥ c · E[X]] ≤ 1

c .

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov’s Inequality)

Let X be a non-negative random variable and a > 0, then
Pr[X ≥ a] ≤ E[X]

a .

Corollary

Let X be a non-negative random variable and c ≥ 1, then
Pr[X ≥ c · E[X]] ≤ 1

c .

Hat-check Problem: What is the probability that at least 10
people out of n get their own hats?

E[X] = 1. So, from Markov, we get that Pr[X ≥ 10] ≤ 0.1.

Note that

Pr[everyone gets their own hats] = 1
n!

On the other hand from Markov, we get that Pr[X ≥ n] ≤ 1/n.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov’s Inequality)

Let X be a non-negative random variable and a > 0, then
Pr[X ≥ a] ≤ E[X]

a .

Theorem (Chebychev’s Inequality)

Let X be a random variable and a > 0, then
Pr[|X − E[X]| ≥ a] ≤ Var [X]

a2
.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Chernoff bounds 1)

Let X1, ...,Xn be independent 0/1 random variables. Let
X = X1 + ...+ Xn and µ = E[X]. Let δ > 0 be any real number.
Then Pr[X > (1 + δ) · µ] ≤ e−f (δ)·µ, where
f (δ) = (1 + δ) ln (1 + δ)− δ.

Claim 1: ∀δ > 0, f (δ) ≥ δ2

2+δ .

Theorem (Chernoff bound 2)

Let X1, ...,Xn be independent 0/1 random variables. Let
X = X1 + ...+ Xn and µ = E[X]. Let δ > 0 be any real number.
Then Pr[X < (1− δ) · µ] ≤ e−g(δ)·µ, where
g(δ) = (1− δ) ln (1− δ) + δ.

Claim 2: ∀δ > 0, g(δ) ≥ δ2

2 .

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Chernoff bounds special case)

Let X1, ...,Xn be independent {±1} random variables such that for
all i , Pr[Xi = +1] = Pr[Xi = −1] = 1/2. Let X = X1 + ...+ Xn

and µ = E[X]. Let A > 0 be any real number. Then

Pr[X ≥ A] ≤ e−
A2

2n .

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection
of n items. What is the probability that two items are the same?

Birthday Problem (popular version)

There are q people in a room. What is the value of q such that the
probability of two people having the same birthday is at least 1/2.
Each person’s birthday is assumed to be a random day in the year.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection
of n items. What is the probability that two items are the same?

Let Xij be an indicator random variable that is 1 if the i th and
j th person has the same birthday and 0 otherwise.

Claim 1: ∀i < j ,E[Xij] = 1/n.

Let X denotes the number of distinct pairs of people that
have the same birthday.

Claim 2: X =
∑

i<j Xij .

Claim 3: E[X] = q(q−1)
2 · 1n (by linearity of expectation).

So, if q ≈
√

2n, then E[X] > 1.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n
items. What is the probability that two items are the same?

Let Xij be an indicator random variable that is 1 if the i th and j th

person has the same birthday and 0 otherwise.
Claim 1: ∀i < j ,E[Xij] = 1/n.
Let X denotes the number of distinct pairs of people that have
the same birthday.
Claim 2: X =

∑
i<j Xij .

Claim 3: E[X] = q(q−1)
2 · 1n (by linearity of expectation).

So, if q ≈ c ·
√

2n, then E[X] = 10.

Claim 4: Var[Xij] = (n−1)
n2

.
Claim 5: Var[X] =

∑
i<j Var[Xij].

So, Var[X] = q(q−1)(n−1)
2n2

= 10 · (1− 1/n) for q ≈ c ·
√

2n.

By Chebychev, we get Pr[X < 1] ≤ Pr[|X −E[X]| ≥ 9] ≤ 10
81 <

1
4 .

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Problem

Sort a given an array of integers containing n distinct integers.

Algorithm

Randomized-Quick-Sort(A)
- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let AL denote the array of elements that are smaller than A[i]
- Let AR denote the array of elements that are larger than A[i]
- BL ← Randomized-Quick-Sort(AL)

- BR ← Randomized-Quick-Sort(AR)

- return(BL|A[i]|BR)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort(A)
- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let AL denote the array of elements that are smaller than A[i]
- Let AR denote the array of elements that are larger than A[i]
- BL ← Randomized-Quick-Sort(AL)

- BR ← Randomized-Quick-Sort(AR)

- return(BL|A[i]|BR)

Let T (n) denote the expected number of comparisons performed.
Claim 1: T (n) = (n − 1) + 1

n ·
∑n−1

i=1 (T (i) + T (n − i − 1)) and
T (1) = 0.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort(A)
- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let AL denote the array of elements that are smaller than A[i]
- Let AR denote the array of elements that are larger than A[i]
- BL ← Randomized-Quick-Sort(AL)

- BR ← Randomized-Quick-Sort(AR)

- return(BL|A[i]|BR)

Let T (n) denote the expected number of comparisons performed.
Claim 1: T (n) = (n − 1) + 1

n ·
∑n−1

i=1 (T (i) + T (n − i − 1)) and
T (1) = 0.
So, T (n) = (n − 1) + 2

n ·
∑n−1

i=0 T (i).
How do we solve such recurrence relations?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort(A)
- If (|A| = 1)return(A)
- Randomly pick an index i in the array A
- Let AL denote the array of elements that are smaller than A[i]
- Let AR denote the array of elements that are larger than A[i]
- BL ← Randomized-Quick-Sort(AL)

- BR ← Randomized-Quick-Sort(AR)

- return(BL|A[i]|BR)

Here is another way to analyze the algorithm.
For i < j , let Xij be a r.v. that is 1 if a comparison between A[i]
and A[j] is made and 0 otherwise.
Claim 1: E[Xij] = 2

j−i+1 .
So, the expected time is:

E

∑
i<j

Xij

 =
∑
i<j

E[Xij] =
n∑

i=1

2·
(

1

2
+

1

3
+ ...+

1

n − i + 1

)
< 2n ln n

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

End

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

