A brief introduction to Randomized Algorithms

Ragesh Jaiswal, CSE, UCSD

Recommended Books

- Randomized Algorithms by Rajeev Motwani and Prabhakar Raghavan.
- Probability and Computing by Michael Mitzenmacher and Eli Upfal.

Introduction

- Randomized Algorithms: Algorithms that have additional random input bits.
- Why study randomized algorithms?
- Simplifies deterministic algorithms.
- Efficient randomized algorithm for certain problems for which no deterministic algorithms are known.
- May be used to break symmetry in distributed settings.

Introduction

- Randomized Algorithms: Algorithms that have additional random input bits.
- Why study randomized algorithms?
- Simplifies deterministic algorithms.
- Efficient randomized algorithm for certain problems for which no deterministic algorithms are known.
- May be used to break symmetry in distributed settings.
- What you should expect to learn in this brief introduction?
- Basic techniques for using randomness to design algorithms for problems.
- Techniques for analyzing randomized algorithms.
- Hash functions, Karger's algorithm, Lovasz Local Lemma(LLL) etc.

Introduction
 Hashing

- Hashing: A set of S keys from a large universe $U=\{0, \ldots, m-1\}$ is stored in a table $T=\{0, \ldots, n-1\}$ using a hash function $h: U \rightarrow T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If $m>n$, then any deterministic function h is bad.

Introduction

- Hashing: A set of S keys from a large universe $\bar{U}=\{0, \ldots, m-1\}$ is stored in a table $T=\{0, \ldots, n-1\}$ using a hash function $h: U \rightarrow T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If $m>n$, then any deterministic function h is bad.
- Main idea: Choose h randomly from a hash function family H.
- Let H consists of all functions from U to $\{0, \ldots, n-1\}$.
- Consider t insert operations. What is the expected cost of each operation?

Introduction

- Hashing: A set of S keys from a large universe $\bar{U}=\{0, \ldots, m-1\}$ is stored in a table $T=\{0, \ldots, n-1\}$ using a hash function $h: U \rightarrow T$ so as to minimize the number of collisions. Collisions are resolved using external data structures.
- If $m>n$, then any deterministic function h is bad.
- Main idea: Choose h randomly from a hash function family H.
- Let H consists of all functions from U to $\{0, \ldots, n-1\}$.
- Consider t insert operations. What is the expected cost of each operation? $(1+t / n)$

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X_{1}, X_{2} and constants c_{1}, c_{2}, we have

$$
\mathbf{E}\left[c_{1} X_{1}+c_{2} X_{2}\right]=c_{1} \mathbf{E}\left[X_{1}\right]+c_{2} \mathbf{E}\left[X_{2}\right]
$$

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X_{1}, X_{2} and constants c_{1}, c_{2}, we have

$$
\mathbf{E}\left[c_{1} X_{1}+c_{2} X_{2}\right]=c_{1} \mathbf{E}\left[X_{1}\right]+c_{2} \mathbf{E}\left[X_{2}\right]
$$

Hat check problem

n men go to a party and their hats get mixed up. They randomly pick up a hat. What is the expected number of men who get their own hats?

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X_{1}, X_{2} and constants c_{1}, c_{2}, we have

$$
\mathbf{E}\left[c_{1} X_{1}+c_{2} X_{2}\right]=c_{1} \mathbf{E}\left[X_{1}\right]+c_{2} \mathbf{E}\left[X_{2}\right]
$$

Hat check problem

n men go to a party and their hats get mixed up. They randomly pick up a hat. What is the expected number of men who get their own hats?

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

- Define $i^{\text {th }}$ epoch to be the sequence of days starting the day after the $(i-1)^{\text {th }}$ new coupon was collected and ending on the day the $i^{\text {th }}$ coupon was collected.
- Define X_{i} to be a random variable denoting the number of days in the $i^{\text {th }}$ epoch. Note that $X_{1}=1$.
- We are interested in knowing the expected value of $X=X_{1}+\ldots+X_{n}$.
- What is the value of $\mathrm{E}\left[X_{i}\right]$?

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every day. What is the expected number of days in which you should collect at least one coupon of each type?

- Define $i^{\text {th }}$ epoch to be the sequence of days starting the day after the $(i-1)^{\text {th }}$ new coupon was collected and ending on the day the $i^{\text {th }}$ coupon was collected.
- Define X_{i} to be a random variable denoting the number of days in the $i^{\text {th }}$ epoch. Note that $X_{1}=1$.
- We are interested in knowing the expected value of

$$
X=X_{1}+\ldots+X_{n}
$$

- What is the value of $\mathbf{E}\left[X_{i}\right]$? $\mathrm{E}\left[X_{i}\right]=\frac{n}{n-i+1}$
- So, we have:

$$
\begin{aligned}
\mathbf{E}[X]=\mathbf{E}\left[X_{1}+\ldots+X_{n}\right] & =\mathbf{E}\left[X_{1}\right]+\ldots+\mathbf{E}\left[X_{n}\right] \\
& =n \cdot(1+1 / 2+1 / 3+\ldots+1 / n) \\
& =n \cdot H_{n}=O(n \cdot \log n)
\end{aligned}
$$

Deviation from Expectation

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a >0, then $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$.

Corollary

Let X be a non-negative random variable and $c \geq 1$, then $\operatorname{Pr}[X \geq c \cdot \mathbf{E}[X]] \leq \frac{1}{c}$.

Deviation from Expectation

Theorem (Markov's Inequality)

Let X be a non-negative random variable and $a>0$, then $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$.

Corollary

Let X be a non-negative random variable and $c \geq 1$, then $\operatorname{Pr}[X \geq c \cdot \mathbf{E}[X]] \leq \frac{1}{c}$.

- Hat-check Problem: What is the probability that at least 10 people out of n get their own hats?
- $\mathbf{E}[X]=1$. So, from Markov, we get that $\operatorname{Pr}[X \geq 10] \leq 0.1$.
- Note that
- $\operatorname{Pr}\left[\right.$ everyone gets their own hats] $=\frac{1}{n!}$
- On the other hand from Markov, we get that $\operatorname{Pr}[X \geq n] \leq 1 / n$.

Deviation from Expectation

> Theorem (Markov's Inequality)
> Let X be a non-negative random variable and $a>0$, then $\operatorname{Pr}[X \geq a] \leq \frac{\mathrm{E}[X]}{a}$.

Theorem (Chebychev's Inequality)

Let X be a random variable and a>0, then $\operatorname{Pr}[|X-\mathbf{E}[X]| \geq a] \leq \frac{\operatorname{Var}[X]}{a^{2}}$.

Deviation from Expectation

Theorem (Chernoff bounds 1)

Let X_{1}, \ldots, X_{n} be independent $0 / 1$ random variables. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]$. Let $\delta>0$ be any real number.
Then $\operatorname{Pr}[X>(1+\delta) \cdot \mu] \leq e^{-f(\delta) \cdot \mu}$, where
$f(\delta)=(1+\delta) \ln (1+\delta)-\delta$.

- Claim 1: $\forall \delta>0, f(\delta) \geq \frac{\delta^{2}}{2+\delta}$.

Theorem (Chernoff bound 2)

Let X_{1}, \ldots, X_{n} be independent $0 / 1$ random variables. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]$. Let $\delta>0$ be any real number.
Then $\operatorname{Pr}[X<(1-\delta) \cdot \mu] \leq e^{-g(\delta) \cdot \mu}$, where $g(\delta)=(1-\delta) \ln (1-\delta)+\delta$.

- Claim 2: $\forall \delta>0, g(\delta) \geq \frac{\delta^{2}}{2}$.

Deviation from Expectation

Theorem (Chernoff bounds special case)

Let X_{1}, \ldots, X_{n} be independent $\{ \pm 1\}$ random variables such that for all $i, \operatorname{Pr}\left[X_{i}=+1\right]=\operatorname{Pr}\left[X_{i}=-1\right]=1 / 2$. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]$. Let $A>0$ be any real number. Then

$$
\operatorname{Pr}[X \geq A] \leq e^{-\frac{A^{2}}{2 n}}
$$

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

Birthday Problem (popular version)

There are q people in a room. What is the value of q such that the probability of two people having the same birthday is at least $1 / 2$. Each person's birthday is assumed to be a random day in the year.

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{\text {th }}$ and $j^{\text {th }}$ person has the same birthday and 0 otherwise.
- Claim 1: $\forall i<j, \mathbf{E}\left[X_{i j}\right]=1 / n$.
- Let X denotes the number of distinct pairs of people that have the same birthday.
- Claim 2: $X=\sum_{i<j} X_{i j}$.
- Claim 3: $\mathbf{E}[X]=\frac{q(q-1)}{2} \cdot \frac{1}{n}$ (by linearity of expectation).
- So, if $q \approx \sqrt{2 n}$, then $\mathrm{E}[X]>1$.

Birthday Problem

Birthday Problem

You uniformly sample q items with replacement from a collection of n items. What is the probability that two items are the same?

- Let $X_{i j}$ be an indicator random variable that is 1 if the $i^{t h}$ and $j^{t h}$ person has the same birthday and 0 otherwise.
- Claim 1: $\forall i<j, \mathbf{E}\left[X_{i j}\right]=1 / n$.
- Let X denotes the number of distinct pairs of people that have the same birthday.
- Claim 2: $X=\sum_{i<j} X_{i j}$.
- Claim 3: $\mathbf{E}[X]=\frac{q(q-1)}{2} \cdot \frac{1}{n}$ (by linearity of expectation).
- So, if $q \approx c \cdot \sqrt{2 n}$, then $\mathbf{E}[X]=10$.
- Claim 4: $\operatorname{Var}\left[X_{i j}\right]=\frac{(n-1)}{n^{2}}$.
- Claim 5: $\operatorname{Var}[X]=\sum_{i<j} \operatorname{Var}\left[X_{i j}\right]$.
- So, $\operatorname{Var}[X]=\frac{q(q-1)(n-1)}{2 n^{2}}=10 \cdot(1-1 / n)$ for $q \approx c \cdot \sqrt{2 n}$.
- By Chebychev, we get $\operatorname{Pr}[X<1] \leq \operatorname{Pr}[|X-\mathbf{E}[X]| \geq 9] \leq \frac{10}{81}<\frac{1}{4}$.

Randomized Quick Sort

Randomized Quick Sort

Problem

Sort a given an array of integers containing n distinct integers.

Algorithm

Randomized-Quick-Sort (A)

- If $(|A|=1)$ return (A)
- Randomly pick an index i in the array A
- Let A_{L} denote the array of elements that are smaller than $A[i]$
- Let A_{R} denote the array of elements that are larger than $A[i]$
- $B_{L} \leftarrow$ Randomized-Quick-Sort $\left(A_{L}\right)$
- $B_{R} \leftarrow$ Randomized-Quick-Sort $\left(A_{R}\right)$
- return $\left(B_{L}|A[i]| B_{R}\right)$

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort (A)

- If $(|A|=1)$ return (A)
- Randomly pick an index i in the array A
- Let A_{L} denote the array of elements that are smaller than $A[i]$
- Let A_{R} denote the array of elements that are larger than $A[i]$
- $B_{L} \leftarrow$ Randomized-Quick-Sort $\left(A_{L}\right)$
- $B_{R} \leftarrow$ Randomized-Quick-Sort $\left(A_{R}\right)$
- return $\left(B_{L}|A[i]| B_{R}\right)$
- Let $T(n)$ denote the expected number of comparisons performed.
- Claim 1: $T(n)=(n-1)+\frac{1}{n} \cdot \sum_{i=1}^{n-1}(T(i)+T(n-i-1))$ and $T(1)=0$.

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort (A)

- If $(|A|=1)$ return (A)
- Randomly pick an index i in the array A
- Let A_{L} denote the array of elements that are smaller than $A[i]$
- Let A_{R} denote the array of elements that are larger than $A[i]$
- $B_{L} \leftarrow$ Randomized-Quick-Sort $\left(A_{L}\right)$
- $B_{R} \leftarrow$ Randomized-Quick-Sort $\left(A_{R}\right)$
- return $\left(B_{L}|A[i]| B_{R}\right)$
- Let $T(n)$ denote the expected number of comparisons performed.
- Claim 1: $T(n)=(n-1)+\frac{1}{n} \cdot \sum_{i=1}^{n-1}(T(i)+T(n-i-1))$ and $T(1)=0$.
- So, $T(n)=(n-1)+\frac{2}{n} \cdot \sum_{i=0}^{n-1} T(i)$.
- How do we solve such recurrence relations?

Randomized Quick Sort

Algorithm

Randomized-Quick-Sort (A)

- If $(|A|=1)$ return (A)
- Randomly pick an index i in the array A
- Let A_{L} denote the array of elements that are smaller than $A[i]$
- Let A_{R} denote the array of elements that are larger than $A[i]$
- $B_{L} \leftarrow$ Randomized-Quick-Sort $\left(A_{L}\right)$
- $B_{R} \leftarrow$ Randomized-Quick-Sort $\left(A_{R}\right)$
- return $\left(B_{L}|A[i]| B_{R}\right)$
- Here is another way to analyze the algorithm.
- For $i<j$, let $X_{i j}$ be a r.v. that is 1 if a comparison between $A[i]$ and $A[j]$ is made and 0 otherwise.
- Claim 1: $\mathbf{E}\left[X_{i j}\right]=\frac{2}{j-i+1}$.
- So, the expected time is:
$\mathbf{E}\left[\sum_{i<j} X_{i j}\right]=\sum_{i<j} \mathbf{E}\left[X_{i j}\right]=\sum_{i=1}^{n} 2 \cdot\left(\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n-i+1}\right)<2 n \ln n$

End

