A brief introduction to Randomized Algorithms

Ragesh Jaiswal, CSE, UCSD

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Recommended Books

@ Randomized Algorithms by Rajeev Motwani and Prabhakar
Raghavan.

@ Probability and Computing by Michael Mitzenmacher and Eli
Upfal.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction

@ Randomized Algorithms: Algorithms that have additional
random input bits.

@ Why study randomized algorithms?
e Simplifies deterministic algorithms.
o Efficient randomized algorithm for certain problems for which
no deterministic algorithms are known.
e May be used to break symmetry in distributed settings.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction

@ Randomized Algorithms: Algorithms that have additional
random input bits.
o Why study randomized algorithms?
o Simplifies deterministic algorithms.
o Efficient randomized algorithm for certain problems for which
no deterministic algorithms are known.
o May be used to break symmetry in distributed settings.
@ What you should expect to learn in this brief introduction?
o Basic techniques for using randomness to design algorithms for
problems.
o Techniques for analyzing randomized algorithms.
o Hash functions, Karger's algorithm, Lovasz Local Lemma(LLL)
etc.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

@ Hashing: A set of S keys from a large universe
U={0,....,m—1} is stored in a table T = {0, ...,n — 1}
using a hash function h: U — T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

o If m > n, then any deterministic function h is bad.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

@ Hashing: A set of S keys from a large universe
U={0,....,m—1} is stored in a table T = {0, ...,n— 1}
using a hash function h: U — T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

If m > n, then any deterministic function h is bad.
Main idea: Choose h randomly from a hash function family H.

Let H consists of all functions from U to {0,...,n — 1}.

e 6 o6 o

Consider t insert operations. What is the expected cost of
each operation?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Introduction
Hashing

@ Hashing: A set of S keys from a large universe
U={0,....,m—1} is stored in a table T = {0, ...,n — 1}
using a hash function h: U — T so as to minimize the
number of collisions. Collisions are resolved using external
data structures.

If m > n, then any deterministic function h is bad.
Main idea: Choose h randomly from a hash function family H.

Let H consists of all functions from U to {0,...,n — 1}.

e 6 o6 o

Consider t insert operations. What is the expected cost of
each operation? (1+ t/n)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1, X, and constants c;, ¢, we have

E[C1X1 aF C2X2] = C1E[X1] + C2E[X2]

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1, X, and constants c1, ¢, we have

E[C1X1 G C2X2] = C1E[X1] = C2E[X2]

v

Hat check problem

n men go to a party and their hats get mixed up. They randomly
pick up a hat. What is the expected number of men who get their
own hats?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Lemma (Linearity of Expectation)

For any random variables X1, X, and constants c1, ¢, we have

E[C1X1 G C2X2] = C1E[X1] = C2E[X2]

v

Hat check problem

n men go to a party and their hats get mixed up. They randomly
pick up a hat. What is the expected number of men who get their
own hats?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon
every day. What is the expected number of days in which you
should collect at least one coupon of each type?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon
every day. What is the expected number of days in which you
should collect at least one coupon of each type?

o Define ith epoch to be the sequence of days starting the day
after the (i — 1)*" new coupon was collected and ending on
the day the i*" coupon was collected.

@ Define X; to be a random variable denoting the number of
days in the it" epoch. Note that X; = 1.

@ We are interested in knowing the expected value of
X=X1+..+X,.
o What is the value of E[X]]?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Linearity of Expectation

Coupon Collector Problem

There are n different type of coupons. You get a random coupon every
day. What is the expected number of days in which you should collect
at least one coupon of each type?

o Define i epoch to be the sequence of days starting the day after
the (i — 1)*" new coupon was collected and ending on the day the
i coupon was collected.

@ Define X; to be a random variable denoting the number of days in
the it" epoch. Note that X; = 1.

@ We are interested in knowing the expected value of
X=X1+..+ X,

o What is the value of E[X{]? E[X/] = -7+

@ So, we have:

EX]=E[Xi+ ...+ X,] = E[Xi]+..+E[X)]
n-(1+1/2+1/3+...+1/n)
= n-H,=0(n-logn)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then
PrX > a] < EX.

”
Corollary

Let X be a non-negative random variable and ¢ > 1, then
PriX > c-E[X]] < L.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then
Pr[X > a] < @

<

Corollary

Let X be a non-negative random variable and ¢ > 1, then
PriX > c-E[X]] < L.

@ Hat-check Problem: What is the probability that at least 10
people out of n get their own hats?

o E[X] =1. So, from Markov, we get that Pr[X > 10] < 0.1.
o Note that
1

o Prleveryone gets their own hats] =
o On the other hand from Markov, we get that Pr[X > n] <1/n.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Markov's Inequality)

Let X be a non-negative random variable and a > 0, then
Pr[X > a] < @

Theorem (Chebychev's Inequality)

Let X be a random variable and a > 0, then
Pr[|X — E[X]| > a] < X,

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Deviation from Expectation

Theorem (Chernoff bounds 1)

Let Xi, ..., X, be independent 0/1 random variables. Let

X =X1+ ..+ X, and = E[X]. Let § > 0 be any real number.
Then Pr[X > (1+6) - u] < e T4 where
f(6)=2+0)In(1+0)—06.

Theorem (Chernoff bound 2)

Let Xi, ..., Xy be independent 0/1 random variables. Let

X =Xi+ ...+ X, and n = E[X]. Let 6 > 0 be any real number.
Then Pr[X < (1 —6) - u] < e 8@~ where
g(0)=(1-9)In(1—-0)+9.

. i §2
o Claim 2: V6 >0, g(6) > %.

Deviation from Expectation

Theorem (Chernoff bounds special case)

Let Xi, ..., X, be independent {£1} random variables such that for
all i, Pr[X; = +1] = Pr[X; = —1] = 1/2. Let X = Xy + ... + X,
and p = E[X]. Let A > 0 be any real number. Then

A2
Pr[X > Al <e 2.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You uniformly sample g items with replacement from a collection
of n items. What is the probability that two items are the same?

Birthday Problem (popular version)

There are g people in a room. What is the value of g such that the
probability of two people having the same birthday is at least 1/2.
Each person’s birthday is assumed to be a random day in the year.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You uniformly sample g items with replacement from a collection
of n items. What is the probability that two items are the same?

@ Let Xj; be an indicator random variable that is 1 if the ith and
jt person has the same birthday and 0 otherwise.

o Claim 1: Vi < j,E[Xj] =1/n.
@ Let X denotes the number of distinct pairs of people that
have the same birthday.

o Claim 2: X =3, ; Xj

e Claim 3: E[X] = M - L (by linearity of expectation).
e So, if g = v/2n, then E[X] > 1.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Birthday Problem

Birthday Problem

You
items. What is the probability that two items are the same?

uniformly sample g items with replacement from a collection of n

Let X;; be an indicator random variable that is 1 if the it and jt
person has the same birthday and 0 otherwise.
Claim 1: Vi < j,E[Xj] =1/n.

o Let X denotes the number of distinct pairs of people that have

®© 6 6 o ¢

o By Chebychev, we get Pr[X < 1] < Pr[|X —E[X]| > 9] < 2 < 1.

the same birthday.

Claim 2: X =}, _; Xj;.

Claim 3: E[X] = q(q L. 1 (by linearity of expectation).
So, if g~ c-v2n, then E[X] = 10.

Claim 4: Var[X;] = 1.

Claim 5: Var[X] =3_,_; Var[Xj].

So, Var[X] = 4e=1(n=1) _ 10.(1 —1/n) for g ~ c - V/2n.

2n?

4

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort
Problem
Sort a given an array of integers containing n distinct integers.

Randomized-Quick-Sort (A)
- If (JA] = 1)return(A)
- Randomly pick an index 7 in the array A
- Let A, denote the array of elements that are smaller than A[/]
- Let Ag denote the array of elements that are larger than A/
- B + Randomized-Quick-Sort (A;)
- Br <+ Randomized-Quick-Sort (Agr)
- return(BL|A[i]| Br)

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Randomized-Quick-Sort (A)
- If (JA] = 1)return(A)
- Randomly pick an index 7 in the array A
- Let A, denote the array of elements that are smaller than A[/]
- Let Ag denote the array of elements that are larger than A/
- B; + Randomized-Quick-Sort (A;)
- Br <+ Randomized-Quick-Sort (Agr)
- return(BL|A[i]| Br)

o Let T(n) denote the expected number of comparisons performed.
o Claim1: T(n)=(n—1)+ 1.7 T(i)+ T(n—i—1)) and
T(1)=0.

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Randomized-Quick-Sort (A)
- If (JA] = 1)return(A)
- Randomly pick an index 7 in the array A
- Let A, denote the array of elements that are smaller than A[/]
- Let Ag denote the array of elements that are larger than A/
- B; + Randomized-Quick-Sort (A;)
- Br <+ Randomized-Quick-Sort (Ag)
- return(BL|A[i]| Br)

o Let T(n) denote the expected number of comparisons performed.

o Claim1: T(n)=(n—1)+ 2.7 T(i)+ T(n—i—1)) and
T(1)=0.

o So, T(n) = (n—1)+2- Y74 T(i).

@ How do we solve such recurrence relations?

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

Randomized Quick Sort

Randomized-Quick-Sort (A)
- If (JA] = 1)return(A)
- Randomly pick an index i in the array A
- Let A, denote the array of elements that are smaller than A[/]
- Let Ag denote the array of elements that are larger than Alf]
- B; < Randomized-Quick-Sort (A;)
- Br + Randomized-Quick-Sort (AgR)
- return(By|A[f]|Br)

@ Here is another way to analyze the algorithm.

o For i < j, let Xjj be a r.v. that is 1 if a comparison between A[/]
and A[j] is made and 0 otherwise.

o Claim 1: E[Xj] = = /+1

@ So, the expected time is:

X ZE[XU]fZ2< +Z 4. +%+1><2nlnn

i<j i<j

Ragesh Jaiswal, CSE, UCSD A brief introduction to Randomized Algorithms

End

Ragesh Jaiswal, CSE, UCSD

tion to Randomized Algorithms

