
Randomized Algorithm 
Karger’s Min-Cut Algorithm 



Karger’s Min-Cut Algorithm 
y Problem: Given a graph, find the cut of minimum size in the 

graph.  
y Cut: Partition of vertices into two non-empty sets. The edges 

between vertices in different sets are called cut edges. The size of the 
cut is the number of such edges. 
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multiple edges between same vertices (multi-graph).  
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Karger’s Min-Cut Algorithm 
y Min-cut algorithm: 

y Repeat P times //For probability amplification. 
y While |V|>2 

y Pick a random edge e in the multi-graph G and perform Collapse(e) 
to obtain G’. 

y G Å G’ 
y The edges across the remaining two vertices are the candidate cut edges. 

y Output the best answer from the P trials. 
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• Proof: Since|E| ≥ n|C|/2. 
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y Min-cut algorithm: 

y Repeat P times //For probability amplification. 
y While |V|>2 

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’. 
y G Å G’ 

y The edges across the remaining two vertices are the cut edges. 
y Output the best answer from the P trials. 

• Let P = n2(ln n).  
• Pr[Algorithm returns min-cut] ≥ 1 – 1/n. 
• Running time: P�(n-2)�n = O(n4log n). 
• Question: Is it possible to improve the running time? 

• Observation: The probability of a cut C surviving 
becomes smaller as the graph shrinks in size. So, “there 
is a need to repeat for smaller graphs not for larger 
ones”. 



Karger’s Min-Cut Algorithm 
• Suppose we keep collapsing vertices until the number of 

vertices in the graph is n/2.  
• What is the probability that a min-cut C has survived? 

• Pr[C survives] ≥ (1-2/n)…(1-2/(n/2+1)) ≥ ¼. 
• Starting from G we run the iterative collapse procedure 

four times independently to obtain graphs G1, G2, G3, and 
G4 that have n/2 vertices. Repeat this step in a tree like 
fashion. 

• Running time of above algorithm:   
T(n) = 4 T(n/2) + O(n2) Î T(n) = O(n2 log n) 

• Success probability: 
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Karger’s Min-Cut Algorithm 
• Suppose we keep collapsing vertices until the number of vertices in the graph is 

n/2.  

• What is the probability that a min-cut C has survived? 

• Pr[C survives] ≥ (1-2/n)…(1-2/(n/2+1)) ≥ ¼. 

• Starting from G we run the iterative collapse procedure four times independently 
to obtain graphs G1, G2, G3, and G4 that have n/2 vertices. Repeat this step in a 
tree like fashion. 

• Running time of above algorithm:      
T(n) = 4 T(n/2) + O(n2)  Î T(n) = O(n2 log n) 

• Success probability: Let P(n) denote the probability that a fixed min-cut C 
survives. 

• P(n) ≥ 1 – (1 – ¼�P(n/2))4 

• P(n) = Ω(1/log n) 

• So, we repeat the algorithm O(log2 n) times to obtain C w.h.p. 
• Overall running time: O(n2 log3 n). 
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y Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo 
algorithm for solving a problem that runs in expected time 
T(n) and has a success probability of J(n). Further, given a 
solution, there is a deterministic algorithm can verify the 
correctness of the solution in time t(n). Then there is a Las-
Vegas algorithm for the problem that runs in expected time 
______________. 



Types of randomized algorithms 
y We talked about two randomized algorithms: 

1. Randomized quick-sort 
y The algorithm always produces correct answer. 
y Such randomized algorithms are called Las Vegas algorithms. 

2. Karger’s min-cut algorithm 
y The algorithm produces an incorrect answer with some small probability. 
y  Such randomized algorithms are called Monte Carlo algorithms. 

y Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo 
algorithm for solving a problem that runs in expected time 
T(n) and has a success probability of J(n). Further, given a 
solution, there is a deterministic algorithm can verify the 
correctness of the solution in time t(n). Then there is a Las-
Vegas algorithm for the problem that runs in expected time 
(T(n) + t(n))/J(n). 


