Randomized Algorithm

Karger's Min-Cut Algorithm

Karger's Min-Cut Algorithm

- Problem: Given a graph, find the cut of minimum size in the graph.
- Cut: Partition of vertices into two non-empty sets. The edges between vertices in different sets are called cut edges. The size of the cut is the number of such edges.

Karger's Min-Cut Algorithm

- Problem: Given a graph, find the cut of minimum size in the graph.
- Cut: Partition of vertices into two non-empty sets. The edges between vertices in different sets are called cut edges. The size of the cut is the number of such edges.

Cut of minimum size

Karger's Min-Cut Algorithm

- Collapse(e): Collapsing vertices across an edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$.
- Merge vertices \mathbf{u} and \mathbf{v} and remove self loops. There may be multiple edges between same vertices (multi-graph).

Cut of minimum size

Karger's Min-Cut Algorithm

- Collapse(e): Collapsing vertices across an edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$.
- Merge vertices \mathbf{u} and \mathbf{v} and remove self loops. There may be multiple edges between same vertices (multi-graph).

Cut of minimum size

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / /For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G}^{\prime}.
- $\mathrm{G} \leftarrow \mathrm{G}$,
- The edges across the remaining two vertices are the candidate cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / /For probability amplification.
- While |V|>2
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'
- $\mathrm{G} \leftarrow \mathrm{G}^{\prime}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While |V|>2
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'
- $\mathrm{G} \leftarrow \mathrm{G}^{\prime}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While |V|>2
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'
- $\mathrm{G} \leftarrow \mathrm{G}^{\prime}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While |V|>2
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'.
- $\mathrm{G} \leftarrow \mathrm{G}^{\prime}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While |V|>2
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'.
- $\mathrm{G} \leftarrow \mathrm{G}^{\prime}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'.
- $\mathrm{G} \leftarrow \mathrm{G}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.

The algorithm does well if the edges across a min-cut is never picked for collapsing.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'
- $G \leftarrow G$,
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let \mathbf{C} denote the edges in a minimum size cut in \mathbf{G}.
- What is the probability that a randomly chosen edge belongs to \mathbf{C} ?

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'.
- $\mathrm{G} \leftarrow \mathrm{G}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let \mathbf{C} denote the edges in a minimum size cut in \mathbf{G}.
- What is the probability that a randomly chosen edge belongs to \mathbf{C} ?
- Lemma 1: $\operatorname{Pr}[\mathrm{e} \in \mathrm{C}] \leq \mathbf{2 / n}$.
- Proof: Since $|\mathbf{E}| \geq \mathbf{n}|\mathbf{C}| / 2$.

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times //For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain G'
- $\mathrm{G} \leftarrow \mathrm{G}$
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let \mathbf{C} denote the edges in a minimum size cut in \mathbf{G}.
- Lemma 1: $\operatorname{Pr}[\mathrm{e} \in \mathrm{C}] \leq \mathbf{2 / n}$.
- Lemma 2: If $\mathbf{e} \notin \mathbf{C}$, then size of min-cut of \mathbf{G}^{\prime} is the same as the size of min-cut of \mathbf{G} after performing Collapse(e).

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / / For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G}^{\prime}.
- $\mathrm{G} \leftarrow \mathrm{G}$,
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let \mathbf{C} denote the edges in a minimum size cut in \mathbf{G}.
- Lemma 1: $\operatorname{Pr}[\mathrm{e} \in \mathrm{C}] \leq \mathbf{2 / n}$.
- Lemma 2: If $\mathbf{e} \notin \mathbf{C}$, then size of min-cut of \mathbf{G}^{\prime} is the same as the size of min-cut of \mathbf{G} after performing Collapse(e).
- Let $\mathbf{D}_{\mathbf{i}}$ denote the event that none of the edges in \mathbf{C} have been used in the first \mathbf{i} iterations.
- $\operatorname{Pr}\left[D_{n-2}\right]=\prod \operatorname{Pr}\left[D_{i+1} \mid D_{i}\right] \geq(1-2 / n)(1-2 / n-1) \ldots(1 / 3)$

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / / For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G} '.
- $G \leftarrow G$ '
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let \mathbf{C} denote the edges in a minimum size cut in \mathbf{G}.
- Lemma 1: $\operatorname{Pr}[\mathbf{e} \in \mathbf{C}] \leq \mathbf{2 / n}$.
- Lemma 2: If $\mathbf{e} \notin \mathbf{C}$, then size of min-cut of \mathbf{G}^{\prime} is the same as the size of min-cut of \mathbf{G} after performing Collapse(e).
- Let $\mathbf{D}_{\mathbf{i}}$ denote the event that none of the edges in \mathbf{C} have been used in the first \mathbf{i} iterations.
- $\operatorname{Pr}\left[\mathrm{D}_{\mathrm{n}-2}\right]=\prod_{\operatorname{Pr}}\left[\mathrm{D}_{\mathrm{i}+1} \mid \mathrm{D}_{\mathrm{i}}\right] \geq(1-2 / \mathrm{n})(1-2 / \mathrm{n}-1) \ldots(1 / 3)$

$$
=2 /(n(n-1))
$$

$$
=\Omega\left(1 / \mathbf{n}^{2}\right)
$$

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / /For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G} '.
- $G \leftarrow G$ '
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- $\operatorname{Pr}\left[D_{n-2}\right]=\prod \operatorname{Pr}\left[D_{i+1} \mid D_{i}\right] \geq(1-2 / n)(1-2 / n-1) \ldots(1 / 3)$ $=2 /(n(n-1))$
$=\Omega\left(1 / \mathbf{n}^{2}\right)$
- Let $\left.\mathbf{P}=\mathbf{n}^{\mathbf{2}} \boldsymbol{\operatorname { l n }} \mathbf{n}\right)$.
- What is the probability that the algorithm returns the correct answer?

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / / For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G} '.
- $G \leftarrow G$ '
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- $\operatorname{Pr}\left[D_{n-2}\right]=\prod \operatorname{Pr}\left[D_{i+1} \mid D_{i}\right] \geq(1-2 / n)(1-2 / n-1) \ldots(1 / 3)$

$$
\begin{aligned}
& =2 /(n(n-1)) \\
& =\Omega\left(1 / \mathbf{n}^{2}\right)
\end{aligned}
$$

- Let $\left.\mathbf{P}=\mathbf{n}^{\mathbf{2}} \boldsymbol{(l n} \mathbf{n}\right)$.
- What is the probability that the algorithm returns the correct answer?
- $\operatorname{Pr}[$ Algorithm returns min-cut $] \geq 1-\left(1-2 / n^{2}\right)^{n^{\wedge} 2 \ln n}$

$$
\geq 1-1 / n
$$

Karger's Min-Cut Algorithm

- Min-cut algorithm:
- Repeat \mathbf{P} times / / For probability amplification.
- While $|\mathbf{V}|>2$
- Pick a random edge \mathbf{e} in the multi-graph \mathbf{G} and perform Collapse(e) to obtain \mathbf{G}^{\prime}.
- $\mathrm{G} \leftarrow \mathrm{G}$,
- The edges across the remaining two vertices are the cut edges.
- Output the best answer from the \mathbf{P} trials.
- Let $\mathbf{P}=\mathbf{n}^{2}(\boldsymbol{l n} \mathbf{n})$.
- $\operatorname{Pr}[$ Algorithm returns min-cut] $\geq 1-1 / n$.
- Running time: \mathbf{P}.(n-2). $\mathbf{n}=\mathbf{O}\left(\mathbf{n}^{4} \log \mathbf{n}\right)$.
- Question: Is it possible to improve the running time?
- Observation: The probability of a cut \mathbf{C} surviving becomes smaller as the graph shrinks in size. So, "there is a need to repeat for smaller graphs not for larger ones".

Karger's Min-Cut Algorithm

- Suppose we keep collapsing vertices until the number of vertices in the graph is $\mathbf{n} / 2$.
- What is the probability that a min-cut \mathbf{C} has survived?
- $\operatorname{Pr}[C$ survives $] \geq(1-2 / n) \ldots(1-2 /(n / 2+1)) \geq 1 / 4$.
- Starting from \mathbf{G} we run the iterative collapse procedure four times independently to obtain graphs $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}$, and \mathbf{G}_{4} that have $\mathbf{n} / \mathbf{2}$ vertices. Repeat this step in a tree like fashion.
- Running time of above algorithm:

$$
T(n)=4 T(n / 2)+O\left(n^{2}\right) \leftrightarrows T(n)=O\left(n^{2} \log n\right)
$$

- Success probability:

Karger's Min-Cut Algorithm

- Suppose we keep collapsing vertices until the number of vertices in the graph is $\mathbf{n} / 2$.
- What is the probability that a min-cut \mathbf{C} has survived?
- $\operatorname{Pr}[C$ survives $] \geq(1-2 / n) \ldots(1-2 /(n / 2+1)) \geq 1 / 4$.
- Starting from \mathbf{G} we run the iterative collapse procedure four times independently to obtain graphs $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}$, and $\mathbf{G}_{\mathbf{4}}$ that have $\mathbf{n} / \mathbf{2}$ vertices. Repeat this step in a tree like fashion.
- Running time of above algorithm:

$$
T(n)=4 T(n / 2)+O\left(n^{2}\right) \rightarrow T(n)=O\left(n^{2} \log n\right)
$$

- Success probability: Let $\mathbf{P}(\mathbf{n})$ denote the probability that a fixed min-cut \mathbf{C} survives.
- $\mathbf{P}(\mathbf{n}) \geq 1-(1-1 / 4 . P(n / 2))^{4}$
- $\mathbf{P (n)}=\boldsymbol{\Omega}(1 / \log \mathbf{n})$

Karger's Min-Cut Algorithm

- Suppose we keep collapsing vertices until the number of vertices in the graph is n/2.
- What is the probability that a min-cut \mathbf{C} has survived?
- $\operatorname{Pr}[C$ survives $] \geq(1-2 / n) \ldots(1-2 /(n / 2+1)) \geq 1 / 4$.
- Starting from \mathbf{G} we run the iterative collapse procedure four times independently to obtain graphs $\mathbf{G}_{1}, \mathbf{G}_{\mathbf{2}}, \mathbf{G}_{3}$, and \mathbf{G}_{4} that have $\mathbf{n} / \mathbf{2}$ vertices. Repeat this step in a tree like fashion.
- Running time of above algorithm:

$$
T(n)=4 T(n / 2)+O\left(n^{2}\right) \quad \Rightarrow T(n)=O\left(n^{2} \log n\right)
$$

- Success probability: Let $\mathrm{P}(\mathrm{n})$ denote the probability that a fixed min-cut C survives.
- $P(n) \geq 1-(1-1 / 4 . P(n / 2))^{4}$
- $\mathbf{P}(\mathbf{n})=\boldsymbol{\Omega}(1 / \log \mathbf{n})$
- So, we repeat the algorithm $\mathbf{O}\left(\log ^{2} \mathbf{n}\right)$ times to obtain \mathbf{C} w.h.p.
- Overall running time: $\mathbf{O}\left(\mathbf{n}^{2} \log ^{3} \mathbf{n}\right)$.

Types of randomized algorithms

Monte Carlo Vs Las Vegas

Types of randomized algorithms

- We talked about two randomized algorithms:

1. Randomized quick-sort
2. Karger's min-cut algorithm

Types of randomized algorithms

- We talked about two randomized algorithms:

1. Randomized quick-sort

- The algorithm always produces correct answer.

2. Karger's min-cut algorithm

- The algorithm produces an incorrect answer with some small probability.

Types of randomized algorithms

- We talked about two randomized algorithms:

1. Randomized quick-sort

- The algorithm always produces correct answer.
- Such randomized algorithms are called Las Vegas algorithms.

2. Karger's min-cut algorithm

- The algorithm produces an incorrect answer with some small probability.
- Such randomized algorithms are called Monte Carlo algorithms.

Types of randomized algorithms

- We talked about two randomized algorithms:

1. Randomized quick-sort

- The algorithm always produces correct answer.
- Such randomized algorithms are called Las Vegas algorithms.

2. Karger's min-cut algorithm

- The algorithm produces an incorrect answer with some small probability.
- Such randomized algorithms are called Monte Carlo algorithms.
- Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo algorithm for solving a problem that runs in expected time $\mathbf{T}(\mathbf{n})$ and has a success probability of $\boldsymbol{\gamma}(\mathbf{n})$. Further, given a solution, there is a deterministic algorithm can verify the correctness of the solution in time $\mathbf{t}(\mathbf{n})$. Then there is a LasVegas algorithm for the problem that runs in expected time

Types of randomized algorithms

- We talked about two randomized algorithms:

1. Randomized quick-sort

- The algorithm always produces correct answer.
- Such randomized algorithms are called Las Vegas algorithms.

2. Karger's min-cut algorithm

- The algorithm produces an incorrect answer with some small probability.
- Such randomized algorithms are called Monte Carlo algorithms.
- Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo algorithm for solving a problem that runs in expected time $\mathbf{T}(\mathbf{n})$ and has a success probability of $\boldsymbol{\gamma}(\mathbf{n})$. Further, given a solution, there is a deterministic algorithm can verify the correctness of the solution in time $\mathbf{t}(\mathbf{n})$. Then there is a LasVegas algorithm for the problem that runs in expected time $(T(n)+t(n)) / \gamma(n)$.

