
Randomized Algorithm
Karger’s Min-Cut Algorithm

Karger’s Min-Cut Algorithm
y Problem: Given a graph, find the cut of minimum size in the

graph.
y Cut: Partition of vertices into two non-empty sets. The edges

between vertices in different sets are called cut edges. The size of the
cut is the number of such edges.

Karger’s Min-Cut Algorithm
y Problem: Given a graph, find the cut of minimum size in the

graph.
y Cut: Partition of vertices into two non-empty sets. The edges

between vertices in different sets are called cut edges. The size of the
cut is the number of such edges.

Cut of minimum size

Karger’s Min-Cut Algorithm
y Collapse(e): Collapsing vertices across an edge e=(u,v).

y Merge vertices u and v and remove self loops. There may be
multiple edges between same vertices (multi-graph).

Cut of minimum size

Karger’s Min-Cut Algorithm
y Collapse(e): Collapsing vertices across an edge e=(u,v).

y Merge vertices u and v and remove self loops. There may be
multiple edges between same vertices (multi-graph).

Cut of minimum size

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e)
to obtain G’.

y G Å G’
y The edges across the remaining two vertices are the candidate cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

The algorithm does well if the edges across a min-cut is never picked for collapsing.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

• Let C denote the edges in a minimum size cut in G.
• What is the probability that a randomly chosen edge

belongs to C?

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

• Let C denote the edges in a minimum size cut in G.
• What is the probability that a randomly chosen edge

belongs to C?
• Lemma 1: Pr[e �C] ≤ 2/n.

• Proof: Since|E| ≥ n|C|/2.

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain
G’.

y G Å G’
y The edges across the remaining two vertices are the cut edges.

y Output the best answer from the P trials.

• Let C denote the edges in a minimum size cut in G.
• Lemma 1: Pr[e �C] ≤ 2/n.
• Lemma 2: If e�C, then size of min-cut of G’ is the same

as the size of min-cut of G after performing Collapse(e).

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’.
y G Å G’

y The edges across the remaining two vertices are the cut edges.
y Output the best answer from the P trials.

• Let C denote the edges in a minimum size cut in G.
• Lemma 1: Pr[e �C] ≤ 2/n.
• Lemma 2: If e�C, then size of min-cut of G’ is the same

as the size of min-cut of G after performing Collapse(e).
• Let Di denote the event that none of the edges in C have

been used in the first i iterations.
• Pr[Dn-2] = � Pr[Di+1|Di] ≥ (1-2/n)(1-2/n-1)…(1/3)

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’.
y G Å G’

y The edges across the remaining two vertices are the cut edges.
y Output the best answer from the P trials.

• Let C denote the edges in a minimum size cut in G.

• Lemma 1: Pr[e �C] ≤ 2/n.

• Lemma 2: If e�C, then size of min-cut of G’ is the same as the size of min-cut of
G after performing Collapse(e).

• Let Di denote the event that none of the edges in C have been used in the first i
iterations.

• Pr[Dn-2] = � Pr[Di+1|Di] ≥ (1-2/n)(1-2/n-1)…(1/3)
 = 2/(n(n-1))
 = Ω(1/n2)

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’.
y G Å G’

y The edges across the remaining two vertices are the cut edges.
y Output the best answer from the P trials.

• Pr[Dn-2] = � Pr[Di+1|Di] ≥ (1-2/n)(1-2/n-1)…(1/3)
 = 2/(n(n-1))
 = Ω(1/n2)

• Let P = n2(ln n).
• What is the probability that the algorithm returns the

correct answer?

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’.
y G Å G’

y The edges across the remaining two vertices are the cut edges.
y Output the best answer from the P trials.

• Pr[Dn-2] = � Pr[Di+1|Di] ≥ (1-2/n)(1-2/n-1)…(1/3)
 = 2/(n(n-1))
 = Ω(1/n2)

• Let P = n2(ln n).
• What is the probability that the algorithm returns the

correct answer?
• Pr[Algorithm returns min-cut] ≥ 1 - (1 – 2/n2)n^2ln n

 ≥ 1 – 1/n

Karger’s Min-Cut Algorithm
y Min-cut algorithm:

y Repeat P times //For probability amplification.
y While |V|>2

y Pick a random edge e in the multi-graph G and perform Collapse(e) to obtain G’.
y G Å G’

y The edges across the remaining two vertices are the cut edges.
y Output the best answer from the P trials.

• Let P = n2(ln n).
• Pr[Algorithm returns min-cut] ≥ 1 – 1/n.
• Running time: P�(n-2)�n = O(n4log n).
• Question: Is it possible to improve the running time?

• Observation: The probability of a cut C surviving
becomes smaller as the graph shrinks in size. So, “there
is a need to repeat for smaller graphs not for larger
ones”.

Karger’s Min-Cut Algorithm
• Suppose we keep collapsing vertices until the number of

vertices in the graph is n/2.
• What is the probability that a min-cut C has survived?

• Pr[C survives] ≥ (1-2/n)…(1-2/(n/2+1)) ≥ ¼.
• Starting from G we run the iterative collapse procedure

four times independently to obtain graphs G1, G2, G3, and
G4 that have n/2 vertices. Repeat this step in a tree like
fashion.

• Running time of above algorithm:
T(n) = 4 T(n/2) + O(n2) Î T(n) = O(n2 log n)

• Success probability:

Karger’s Min-Cut Algorithm
• Suppose we keep collapsing vertices until the number of vertices in

the graph is n/2.
• What is the probability that a min-cut C has survived?

• Pr[C survives] ≥ (1-2/n)…(1-2/(n/2+1)) ≥ ¼.
• Starting from G we run the iterative collapse procedure four times

independently to obtain graphs G1, G2, G3, and G4 that have n/2
vertices. Repeat this step in a tree like fashion.

• Running time of above algorithm:
T(n) = 4 T(n/2) + O(n2) Î T(n) = O(n2 log n)

• Success probability: Let P(n) denote the probability that a
fixed min-cut C survives.
• P(n) ≥ 1 – (1 – ¼�P(n/2))4

• P(n) = Ω(1/log n)

Karger’s Min-Cut Algorithm
• Suppose we keep collapsing vertices until the number of vertices in the graph is

n/2.

• What is the probability that a min-cut C has survived?

• Pr[C survives] ≥ (1-2/n)…(1-2/(n/2+1)) ≥ ¼.

• Starting from G we run the iterative collapse procedure four times independently
to obtain graphs G1, G2, G3, and G4 that have n/2 vertices. Repeat this step in a
tree like fashion.

• Running time of above algorithm:
T(n) = 4 T(n/2) + O(n2) Î T(n) = O(n2 log n)

• Success probability: Let P(n) denote the probability that a fixed min-cut C
survives.

• P(n) ≥ 1 – (1 – ¼�P(n/2))4

• P(n) = Ω(1/log n)

• So, we repeat the algorithm O(log2 n) times to obtain C w.h.p.
• Overall running time: O(n2 log3 n).

Types of randomized algorithms
Monte Carlo Vs Las Vegas

Types of randomized algorithms
y We talked about two randomized algorithms:

1. Randomized quick-sort
2. Karger’s min-cut algorithm

Types of randomized algorithms
y We talked about two randomized algorithms:

1. Randomized quick-sort
y The algorithm always produces correct answer.

2. Karger’s min-cut algorithm
y The algorithm produces an incorrect answer with some small probability.

Types of randomized algorithms
y We talked about two randomized algorithms:

1. Randomized quick-sort
y The algorithm always produces correct answer.
y Such randomized algorithms are called Las Vegas algorithms.

2. Karger’s min-cut algorithm
y The algorithm produces an incorrect answer with some small probability.
y Such randomized algorithms are called Monte Carlo algorithms.

Types of randomized algorithms
y We talked about two randomized algorithms:

1. Randomized quick-sort
y The algorithm always produces correct answer.
y Such randomized algorithms are called Las Vegas algorithms.

2. Karger’s min-cut algorithm
y The algorithm produces an incorrect answer with some small probability.
y Such randomized algorithms are called Monte Carlo algorithms.

y Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo
algorithm for solving a problem that runs in expected time
T(n) and has a success probability of J(n). Further, given a
solution, there is a deterministic algorithm can verify the
correctness of the solution in time t(n). Then there is a Las-
Vegas algorithm for the problem that runs in expected time
______________.

Types of randomized algorithms
y We talked about two randomized algorithms:

1. Randomized quick-sort
y The algorithm always produces correct answer.
y Such randomized algorithms are called Las Vegas algorithms.

2. Karger’s min-cut algorithm
y The algorithm produces an incorrect answer with some small probability.
y Such randomized algorithms are called Monte Carlo algorithms.

y Theorem (Monte-Carlo to Las Vegas): Given a Monte-Carlo
algorithm for solving a problem that runs in expected time
T(n) and has a success probability of J(n). Further, given a
solution, there is a deterministic algorithm can verify the
correctness of the solution in time t(n). Then there is a Las-
Vegas algorithm for the problem that runs in expected time
(T(n) + t(n))/J(n).

