Dynamic Programming

Venkatesan Chakaravarthy IBM Research, Bangalore

Recursion or Induction

- Solve given problem instance by reducing it to smaller instances

Dynamic Programming

Directed Acyclic Graph (DAG) Structure

Fibonacci Sequence

$$
\mathrm{F}[\mathrm{n}]=\mathrm{F}[\mathrm{n}-1]+\mathrm{F}[\mathrm{n}-2]
$$

Fibonacci Sequence - Dynamic Program
Problem: Given n, compute F[n]

- Expensive - 9 computations
- Exponential in general

Dynamic Program

- Cheap - 5 computations
- Linear time

Memoization

Framework

- Identify sub-instances
- Identify recurrence relation
- Derive a bound on the number of sub-instances
- Determines running time
- $\mathrm{F}[\mathrm{n}] \rightarrow \mathrm{F}[\mathrm{n}-1]$ and $\mathrm{F}[\mathrm{n}-2]$
- $F[n]=F[n-1]+F[n-2]$
- Number of sub-instances $=\mathrm{n}$
- Sub-instances - may become non-trivial
- Recurrence relation - may become non-trivial
- DAG Structure - may become complex
- Correctness proof - may become non-trivial
- Deriving bound on number of sub-instances
- May need combinatorial arguments and proofs
- May need to generalize the problem
- Why all this trouble?
- Many seemingly exponential time problems admit fast, polynomial time dynamic programs

Subset Sum Problem

Subset Sum Problem

- Input : A sequence of numbers and a target T
- Objective : Does there exists a subset whose sum is exactly T? - no repetitions

T = $12 \quad$ Not possible

Naïve algorithm

- Try all possible subsets
- Check whether any of them yield T
- Running time: exponential -2^{n}

Dynamic Program

- Input instance I
- What are the sub-instances we wish to create?
- Two Choices:
- S does not contain the first number
- S contains the first number

Two Choices

S does not contain the first number:
Sub-instance A1, Target = T

Lemma : I has solution if and only if A1 has solution
S contains the first number:
Sub-instance A2, Target = ?

Target $=\mathrm{T}$ - first number

Algorithm

Algorithm SSUM

Input : I = a1, a2, an and Target T
Output : Does there exist a solution of sum exactly T ?

1. $\mathrm{A} 1=\left\{\mathrm{a} 2, \mathrm{a} 3, \ldots . . ., \mathrm{a} _\mathrm{n}\right\}$ and target T
2. $\mathrm{A} 2=\left\{\mathrm{a} 2, \mathrm{a} 3, \ldots, \mathrm{a} _\mathrm{n}\right\}$ and target $\mathrm{T}-\mathrm{a} 1$
3. Solve A1 and A2
4. Input has a solution if and only if A1 or A2 has a solution

Memoization:

- Whenever we solve a sub-instance, store its answer
- Whenever we want to solve a sub-instance, first check if we have solved it already

Recursion

Naïve recursion:

- Will grow exponentially
- 2^{\wedge} n nodes - one for each possible subset

Reuse

5	3	2	6	8	17

- Will grow exponentially
- 2^{\wedge} n nodes - one for each possible subset

How many sub-instances?

That's all fine madam! But the question is: How many sub-instances?

- Identify sub-instances
- Identify recurrence relation
- Derive a bound on the number of sub-instances
- Determines running time

How many sub-instances?

- A sub-instances has [a subset, a target]

How many subsets?

- All subsets are suffixes of the input At most n

How many targets?

- Any target is a number between 1 and original target T At most T

Lemma : Number of sub-instances is at most $\mathrm{n} \times \mathrm{T}$

Theorem: Subset Sum problem can be solved in time O(nT)

Algorithm - with explicit memoization

- Each sub-instance can be represented as a pair < k, t>,
- Represents suffix \{a_k,, a_n\}
- Target = t
- Input: $\langle 1, \mathrm{~T}\rangle$

Solve backw

```
Algorithm SSUM
Input: a1, a2, .... an and Target T
Output : Does there exist a solution of sum exactly T?
For k = n to 1 Suffix starting point
    For t = 1 to T target
    S(k,t)=S(k+1,t)ORS(k+1,t - ak)
```


Matrix Chain Multiplication

Matrix Chain Multiplication

- How many multiplications?

\#multiplications $=\mathrm{a} \times \mathrm{b} \times \mathrm{c}$
- How about three matrices?

Associativity

\#multiplications = abd + bcd

Example

\#muitplicaitons $=5 \times 10 \times 3=150$
Output matrix $=5 \times 3$

\#muitplicaitons $=2 \times 10 \times 3=60$
Output matrix $=2 \times 3$
\#muitplicaitons $=5 \times 2 \times 3=30$
Output matrix $=5 \times 3$

$$
\text { Total multiplications }=60+30=90
$$

Matrix Chain Multiplication

Input: A sequence of matrices
Output: Plan for multiplication so that total number of multiplications is minimized

A1	A2	A3	A4	A5	A6
a1 \times a2	a2 \times a3	a3 \times a4	a4×a5	a5 $\times 16$	G

More choices

How many choices?

- Catalan number: $\frac{1}{n+1}\binom{2 n}{n} \approx 2^{n}$

Dynamic Programming

Algorithm

```
Algorithm: MCM
Input: A1, A2, ....., An
Output: Plan
1. t = GET_BEST_SPLIT
2. }X=MCM(A1, .., At
3. Y = MCM(A_t+1, ...,An)
4. X*Y
```

A1	A2	A3
a1 \times a2	a2 \times a3	a3 \times a4
X		
\#muitplicaitons $=\operatorname{Cost}(X)$		
Output matrix $=$ a $1 \times \mathrm{a} 4$		

A4	A5	A6
a4×a5	a5 x a6	a6 \times a7
Y		
\#muitplicaitons $=\operatorname{Cost}(\mathrm{Y})$		
Output matrix $=\mathrm{a} 4 \times \mathrm{a7}$		

$$
\begin{aligned}
& \operatorname{Cost}(X * Y)=a 1 \times a 4 \times a 7 \\
& \operatorname{Cost}(X * Y)=\text { a } \times \text { a_t+1 } \times \text { a_n }
\end{aligned}
$$

How to get the best split?

Try all possibilities : there are only n of them

- More complex aggregation : min over sums

Sub-problem structure

Problem instance
Not a prefix or a suffix.
A middle segment!

Sub-problem structure

A1	A2	A3	A4	A5	A6

A1	A2	A3	A4	A5

A1	A2	A3	A4	A2	A3	A4	A5	A3	A4	A5	A6

Solve backwards

A1	A2	A3	A4	A5	A6

Algorithm

```
For L = 1 to n Length of segment
    For s=1 to n-L Start of segment
    e=s+L-1 End of segment
    Cost[s, s+L] = infinity Initialize
    Fort = s to e-1 Try all possible splits
        C = Cost[s,t] + Cost[t+1, e] + a_s x a_t+1 x a_e Cost of this split
        If C is smaller than Cost[s, s+L], Is this a better split?
            Cost[s,s+L] = C If so, take it
```

- Number of entries $=$ number of segments $=\mathrm{n}^{\wedge} 2$
- Number of splits per entry = n
- Total running time $=O\left(\mathrm{n}^{\wedge} 3\right)$

Theorem: Our algorithm finds the optimal solution. Its running time is at most $O\left(n^{\wedge} 3\right)$

Largest monotone subsequence

Largest Monotone Subsequence

- Input : A sequence of numbers
- Sub-sequence : a selection of the numbers
- Monotone : they are in increasing order
- Objective : Find the largest - having the largest sum

Monotone : value $=44$
10
8
\square

14
20 7

Not monotone
10

14 20

Monotone : value $=51$

| | 10 | 8 | 25 | 9 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | | 14 |
| :--- |

Play with it a bit!

Attempt 1: Start from first number and keep going higher

Attempt 2: Try starting from each number and keep going higher!

Optimal Solution

Optimal Solution: value $=51$

- Optimal solution - may not be greedy. May skip numbers.
- How to determine the skips?

Naïve algorithm

- Try all possible subsequences
- Filter out non-monotone subsequences
- Among the monotone subsequences - choose the best
- Running time: exponential -2^{n}

Dynamic Program

- Input instance I
- What are the sub-instances we wish to create?
- Two Choices:

- OPT does not contain the first number
- OPT contains the first number

Two Choices

OPT does not contain the first number:
Sub-instance A1

Lemma : Any solution to A1 is also a solution to input instance I

- Find optimal solution to A1.
- Output it.

$$
\operatorname{OPT}(\mathrm{I})=\mathrm{OPT}(\mathrm{~A} 1)
$$

Two Choices

OPT contains the first number:

Lemma : Given any solution to A2, we can obtain a solution to I by pre-pending the first number

14
20

- Find optimal solution to A2.
- Prepend the first number.

Algorithm

Algorithm MonSeq

Input: a1, a2, an
Output : Largest monotone Sequence

1. $\mathrm{A} 1=\left\{\mathrm{a} 2, \mathrm{a} 3,, \mathrm{a} _\mathrm{n}\right\}$
2. $A 2=\left\{a_{-} \mathrm{i}: \mathrm{a}_{-} \mathrm{i}>=\mathrm{a}_{-} 1, \mathrm{i}>=2\right\}$
3. Optimal solution Opt1 $=$ MonSeq(A1)
4. Optimal solution Opt2 $=$ MonSeq(A2)

$$
\begin{aligned}
\operatorname{Opt}(\mathrm{I})=\operatorname{Max}(& \\
& \\
& \text { Opt(a_2, a_3, } \left.\ldots ., a_{n} n\right), \\
& a_{-} 1+\operatorname{Opt}\left(a_{-} i: a_{-} i>=a_{-} 1, i>=2\right)
\end{aligned}
$$

5. $\mathrm{S} 1=\mathrm{Opt} 1$
6. $\mathrm{S} 2=\mathrm{a} 1+\mathrm{Opt} 2$
7. Output best of S 1 and S 2

Memoization:

- Whenever we solve a sub-instance store its optimal solution
- Whenever we want to solve a sub-instance, first check if we have solved it already

How many sub-instances?

That's all fine madam! But the question is: How many sub-instances?

- Identify sub-instances
- Identify recurrence relation
- Derive a bound on the number of sub-instances
- Determines running time

How many sub-instances?

Two methods to proceed

- Derive a bound on the number of sub-instances
- Generalize the problem

How many sub-instances?

Each sub-instance

- Is a suffix of the original sequence
- But some numbers may go missing

No number is missing

No number is missing
Smaller than 8 are missing

Smaller than 10 are missing

Smaller than 10 are missing
Smaller than 25 are missing

Sub-instance Structure

Lemma : Each sub-instance is a

- Suffix of the original sequence with some numbers missing
- All missing numbers are smaller than a prior number \rightarrow call it the pivot

Proof

- Suppose the property is true up to some stage
- Let us see what happens in the next stage

How many sub-instances?

Lemma : Each sub-instance is a

- Suffix of the original sequence with some numbers missing
- All missing numbers are smaller than a prior number \rightarrow call it the pivot
- Number of suffixes possible? At most n
- Number of pivots possible? At most n
- Number of sub-instances possible? At most n^2

Theorem: Our algorithm finds the optimal solution. Its running time is at most $O\left(n^{\wedge} 2\right)$

Comparison to Greedy Methods

Attempt 1: Start from first number and keep going higher

Attempt 2: Try starting from each number and keep going higher!

Comparison to Greedy Method - Dynamic Programming

Do not greedily pick 25 - You may miss better choices later

Instead look for optimal solution for suffix starting at 25

```
10
```


\square
 7

- Optimal solution for suffix starting at 25 - May or may not pick.
- Leave it to recursion to decide

Method 2: Generalize the problem

Pivoted Largest Monotone Subsequence Problem

- Input : A sequence of numbers and a number P called the pivot
- Objective :
- Find the largest monotone sub-sequence involving only numbers larger than P
- You are allowed to use only the numbers larger than P

Input

SubInstance 2

- May not even be possible - Only possible if Q > P.

Algorithm for Pivoted Largest Monotone Subsequence

$\operatorname{OPT}(\mathrm{I}, \mathrm{P})= \begin{cases}\operatorname{OPT}(\mathrm{I}-\mathrm{Q}, \mathrm{P}) & \text { If } \mathrm{Q}<\mathrm{P} \\ \operatorname{Max}\left[\begin{array}{cc}\mathrm{OPT}(\mathrm{I}-\mathrm{Q}, \mathrm{P}) \\ \mathrm{Q}+\mathrm{OPT}(\mathrm{I}-\mathrm{Q}, \mathrm{Q})\end{array}\right] & \text { If } \mathrm{Q}>\mathrm{P}\end{cases}$

- Number of suffixes possible?

At most n

- Number of pivots possible?

At most n

- Number of sub-instances possible?

At most $\mathrm{n}^{\wedge} 2$

Algorithm for Largest Monotone Subsequence

Input: Sequence I

Solution:

- Solve Pivoted Largest Monotone Subsequence Problem
- With input I and Pivot = infinity

Single Source Shortest Path Problem Bellman Ford Algorithm

Single Source Shortest Path: Bellman-Ford Algorithm

Input:

- An undirected graph
- Weights on the edges
- A root vertex

Output:

- Shortest path from the root to all the other vertices

Distance vs Hops

- Shortest path may not have the least hops
- There may be many shortest paths with different hop count

$$
\text { MinHop }(u)=\text { minimum number hops among the shortest paths }
$$

Main Observation

- Min-hop shortest path to u

Main Observation

- Min-hop shortest path to u must pass through one of the neighbors v
- Min-hop shortest path to u can be found by extending the min-hop shortest path to one of its neighbors

Shortest path structure
MinHop

Algorithm

- We do not know the min-hop counts
- We will try all possibilities - only n choices are there.

Generalize a bit

Dist(u, k) - shortest distance from root to u using at most k hops
Input:

- An undirected graph
- Weights on the edges
- A root vertex
- Number of allowed hops k

Output:

- Shortest path from the root to all the other vertices using at most k hops

Recurrence Relation

$$
\operatorname{Dist}(u, k)=\min _{\text {neighbors }} \operatorname{Dist}(v, k-1)+w(u, v)
$$

- At most k hops
- We are allowed to use lesser number of hops

Algorithm

```
For k=1 to n Guess formin-hops
    For each u Compute Dist(u, k) for all u
    Dist(u,k) = Dist(u,k-1) Current best distance
    For each neighbor v Try all neighbors
        d= \operatorname{Dist}(v,k-1)+w(u,v) Best distance going via v
        If d is smaller than \operatorname{Dist}(u,k) Is this better?
            Dist(u,k)=d If so, take it
```

- k can take at most n choices
$\operatorname{MinDist}($ root, $u)=\operatorname{Dist}(u, n)$
- u can take at most n choices
- v can take at most n choices
- Running time $O\left(n^{\wedge} 3\right)$

Theorem: Our algorithm finds the shortest paths. Its running time is at most $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$

Bin Packing Problem

Bin Packing Problem

- Input : A set of items each having size Bins each of capacity B

Have we seen this before?

- B = Sum / 2
- Allow only two bins
- What is this?
- Objective : Pack the items in as few bins as possible

How many choices?

Naïve method:

- Try all possible ways to partition the set
- For each choice, check if it is feasible
- Choose the one having the least number of parts

Number of partitions

- Bell number $\approx \mathrm{n}^{\wedge} \mathrm{n}$

What can we aim for?

- NP-hard : we can find the optimal solution in polynomial time
- Naïve algorithm: runs in roughly $O\left(n^{\wedge} n\right)$
- Our algorithm: $O(4 \wedge n)$

Recursion

- Input : A set of n items

Key Idea : Guess the items that go into the first bin and then recurse

Sub-problem structure

- Each subset is a sub-problem
- \widehat{r} It will reuse computations from all its subsets

Algorithm

```
For k=1 to n Size of sets
    For each set X of size k Each set of size k
        MinBins [X] = infity Initialize
        For each subset S of X Guess for first bin
            b = 1 + MinBins[X - S] Look up table
            if(b < MinBins [X] ) Is this better
            MinBins[X]=b If so take it
```

- Number of possible X : $2^{\wedge} n$
- Number of possible S: 2^n
- Total running time $: 4^{\wedge} n$

Theorem: Our algorithm finds the optimal solution. Its running time is at most $\mathrm{O}(4 \wedge n)$

That's about it!
Have a nice time designing dynamic programs!

