
Dynamic Programming

Venkatesan Chakaravarthy
IBM Research, Bangalore

Recursion or Induction

• Solve given problem instance by reducing it to smaller instances

Input
Instance

I

Smaller
Instance

A1

Smaller
Instance

A2

Smaller
Instance

B1

Smaller
Instance

B2

Smaller
Instance

B3

Smaller
Instance

B4

Dynamic Programming

Input
Instance

I

Smaller
Instance

A1

Smaller
Instance

A2

Smaller
Instance

B1

Smaller
Instance
B2 = B3

Smaller
Instance

B4

Gospel of Dynamic Program
Do not repeat the same work: Save and reuse

Directed Acyclic Graph (DAG) Structure

I

Solve
backwards

Fibonacci Sequence

F[n] = F[n-1] + F[n-2]

51 2 31

F[1] F[2] F[3] F[4] F[5]

8

F[6]

Fibonacci Sequence – Dynamic Program
Problem: Given n, compute F[n]

F[5]

F[4]

F[3]

F[1]= 1 F[2] =1

F[2] =1

F[3]

F[1]= 1 F[2] =1

F[5]

F[4]

F[3]

F[2]= 1 F[1]= 1

Recursion Dynamic Program

• Expensive – 9 computations
• Exponential in general

• Cheap – 5 computations
• Linear time

Memoization

Input : n
Output : F[n]

F[1] = 1
F[2] = 1
For j = 3 to n

F [j] = F[j-1] + F[j-2]

Memoization : Latin for “remember”

F[5]

F[4]

F[3]

F[2]= 1 F[1]= 1

Solve
backwards

Framework

• Identify sub-instances

• Identify recurrence relation

• Derive a bound on the number of sub-instances
o Determines running time

• F[n] F[n-1] and F[n-2]

• F[n] = F[n-1] + F[n-2]

• Number of sub-instances = n

• Sub-instances – may become non-trivial
• Recurrence relation – may become non-trivial
• DAG Structure – may become complex
• Correctness proof – may become non-trivial
• Deriving bound on number of sub-instances

• May need combinatorial arguments and proofs
• May need to generalize the problem

• Why all this trouble?
o Many seemingly exponential time

problems admit fast, polynomial
time dynamic programs

Subset Sum Problem

Subset Sum Problem

63 2 85

• Input : A sequence of numbers and a target T
• Objective : Does there exists a subset whose sum is exactly T? – no repetitions

T = 17 63 2 85

T = 13 63 2 85

T = 12 Not possible

Naïve algorithm
• Try all possible subsets
• Check whether any of them yield T
• Running time: exponential – 2n

Input

Dynamic Program

S• Input instance I
• What are the sub-instances we wish to create?
• Two Choices:

• S does not contain the first number
• S contains the first number

S

S contains the
first number

S does not
contain the first

number

S does not contain the first number:

Sub-instance A1, Target = T

Two Choices

Lemma : I has solution if and only if A1 has solution

63 2 85

S contains the first number:

Sub-instance A2, Target = ?

63 2 85
Target = T - first number

Algorithm

Algorithm SSUM
Input : I = a1, a2, …. an and Target T
Output : Does there exist a solution of sum exactly T?

1. A1 = {a2, a3, ……, a_n} and target T
2. A2 = {a2, a3, ……., a_n} and target T -a1
3. Solve A1 and A2
4. Input has a solution if and only if A1 or A2 has a solution

Memoization:
• Whenever we solve a sub-instance, store its answer
• Whenever we want to solve a sub-instance, first check if we have solved it already

Solution(I – a1, t)
OR

Solution(I, t – a1)

Solution(I, t) =

Recursion
5 3 2 6 8 17

3 2 6 8 17

3
2 6 8 142 6 8 17

6 8 14
2

6 8 12

5
3 2 6 8 12

2 6 8 12
3

2 6 8 9

6 8 12 6 8 10
2

Naïve recursion:
• Will grow exponentially
• 2^n nodes – one for each possible subset

Reuse
5 3 2 6 8 17

3 2 6 8 17

3
2 6 8 142 6 8 17

6 8 14
2

6 8 12

5
3 2 6 8 12

2 6 8 12
3

2 6 8 9

6 8 12 6 8 10
2

Naïve recursion:
• Will grow exponentially
• 2^n nodes – one for each possible subset

Reuse

No reuse

How many sub-instances?

That’s all fine madam! But the question is:
How many sub-instances?

• Identify sub-instances
• Identify recurrence relation
• Derive a bound on the number of sub-instances

o Determines running time

How many sub-instances?
• A sub-instances has [a subset, a target]

How many subsets?

• All subsets are suffixes of the input At most n

How many targets?

• Any target is a number between 1 and original target T At most T

Lemma : Number of sub-instances is at most n x T

Theorem: Subset Sum problem can be solved in time O(nT)

I

Solve
backw
ards

Algorithm – with explicit memoization

• Each sub-instance can be represented as a pair < k, t >,
• Represents suffix {a_k, ….., a_n}
• Target = t

• Input : < 1, T >

Solution(k+1, t)
OR

Solution(k+1, t – ak)

Solution(k, t) =

Algorithm SSUM
Input : a1, a2, …. an and Target T
Output : Does there exist a solution of sum exactly T?

For k = n to 1
For t = 1 to T

S(k, t) = S(k+1, t) OR S(k+1, t – ak)

Suffix starting point

target

Matrix Chain Multiplication

Matrix Chain Multiplication

A1a

b

A2b

c

• How many multiplications?

#multiplications = a x b x c

• How about three matrices?

A1a

b

A2b

c

A3c

d

X

X X

Associativity

A1a

b

A2b

c

A3c

d

X X

A1a

b

A2b

c

A3c

d

X X

X

A1 A2

A3

X

X

A2 A3

X

A1

#multiplications = abc
Output = a x c matrix

#multiplications = acd
Output = a x d matrix

#multiplications = abc + acd

#multiplications = bcd
Output = b x d matrix #multiplications = abd + bcd

#multiplications = abd
Output = a x d matrix

Example

A15

2

A12

10

A110

3

#muitplicaitons = 5 x 2 x 10 = 100
Output matrix = 5 x 10

#muitplicaitons = 5 x 10 x 3= 150
Output matrix = 5 x 3

Total multiplications = 100 + 150 = 250

A15

2

A12

10

A110

3

#muitplicaitons = 2 x 10 x 3= 60
Output matrix = 2 x 3

#muitplicaitons = 5 x 2 x 3= 30
Output matrix = 5 x 3

Total multiplications = 60 + 30 = 90

Matrix Chain Multiplication
Input: A sequence of matrices
Output: Plan for multiplication so that total number of multiplications is minimized

A1 A2 A3 A4 A5 A6

a1 x a2 a2 x a3 a3 x a4 a4 x a5 a5 x a6 a6 x a7

X

A1 A2

A3

X

X

A4

A5

X A6

X

X

A5 A6

A4

X

X

A3

A2

XA1

X

More choices

X

A5 A6

A4

X

X

A3A2A1

X

X

X

A5 A6

A4

X

A3

A2A1

X

X

X

How many choices?

1

𝑛 + 1

2𝑛

𝑛
≈ 2𝑛• Catalan number:

Eugene Catalan

Dynamic Programming

X

A5 A6

A4

X

X

A3A2A1

X

X

A1 A2 A3 A4 A5 A6

X

A5 A6

A4

X

A3

A2A1

X

X

X

A1 A2 A3 A4 A5 A6

We are going to guess this top-most split

Algorithm

Algorithm: MCM
Input: A1, A2, ….., An
Output: Plan

1. t = GET_BEST_SPLIT
2. X = MCM(A1, …, At)
3. Y = MCM(A_t+1, …, An)
4. X * Y

A1 A2 A3 A4 A5 A6

a1 x a2 a2 x a3 a3 x a4 a4 x a5 a5 x a6 a6 x a7

X Y

#muitplicaitons = Cost(X)
Output matrix = a1 x a4

#muitplicaitons = Cost(Y)
Output matrix = a4 x a7

t

Cost(X * Y) = a1 x a4 x a7
Cost(X * Y) = a1 x a_t+1 x a_n

How to get the best split?

Try all possibilities : there are only n of them

Algorithm: MCM
Input: A1, A2, ….., An
Output: Plan

For each t = 1 to n-1
X = MCM(A1, …, At)
Y = MCM(A_t+1, …, An)
X * Y
Cost = Cost(X) + Cost(Y) + Cost(X * Y)

Among the t choices choose the best

𝐶𝑜𝑠𝑡 𝐴1 … . , 𝐴𝑛 =

𝐶𝑜𝑠𝑡(𝐴1, … . 𝐴𝑡)

𝐶𝑜𝑠𝑡(𝐴𝑡+1, … . 𝐴𝑛)

𝑎1𝑎𝑡+1𝑎𝑛

+

+

min
t

• More complex aggregation : min over sums

A1 A2 A3 A4 A5 A6

Sub-problem structure

A1 A2 A3 A4 A5 A6

A3 A4 A5 A6

Problem instance
Not a prefix or a suffix.

A middle segment!

Sub-problem structure
A1 A2 A3 A4 A5 A6

A1 A2

A1 A2 A3

A1 A2 A3 A4 A5

A1 A2 A3 A4

A2 A3 A4 A5 A6

A2 A3 A4 A5

A2 A3 A4

A2 A3

A3 A4 A5 A6

A3 A4 A5

A3 A4

A4 A5 A6

A5 A6A4 A5

A1 A2 A3 A4 A5 A6

Solve
backwards

Algorithm
For L = 1 to n

For s = 1 to n – L
e = s + L - 1
Cost[s, s+L] = infinity
For t = s to e-1

C = Cost[s, t] + Cost[t+1, e] + a_s x a_t+1 x a_e
If C is smaller than Cost[s, s+L],

Cost[s, s+L] = C

Length of segment

Start of segment

End of segment

Initialize

Try all possible splits

Cost of this split

Is this a better split?

If so, take it

• Number of entries = number of segments = n^2
• Number of splits per entry = n
• Total running time = O(n^3)

Theorem: Our algorithm finds the optimal solution. Its running time is at most O(n^3)

Largest monotone subsequence

Largest Monotone Subsequence

• Input : A sequence of numbers
• Sub-sequence : a selection of the numbers
• Monotone : they are in increasing order
• Objective : Find the largest – having the largest sum

98 25 21 201410 7Input

98 25 21 201410 7

98 25 21 201410 7

98 25 21 201410 7

Monotone : value = 44

Not monotone

Monotone : value = 51

98 25 21 201410 7

Play with it a bit!

Attempt 1: Start from first number and keep going higher

Attempt 2: Try starting from each number and keep going higher!

98 25 21 201410 7

98 25 21 201410 7

Optimal Solution
Optimal Solution: value = 51

98 25 21 201410 7

• Optimal solution - may not be greedy. May skip numbers.
• How to determine the skips?

Naïve algorithm

• Try all possible subsequences
• Filter out non-monotone subsequences
• Among the monotone subsequences – choose the best
• Running time: exponential – 2n

Dynamic Program

OPT• Input instance I
• What are the sub-instances we wish to create?
• Two Choices:

• OPT does not contain the first number
• OPT contains the first number

OPT

OPT contains the
first number

OPT does not
contain the first

number

OPT does not contain the first number:

98 25 21 201410 7

Sub-instance A1

Two Choices

Lemma : Any solution to A1 is also a solution to input instance I

• Find optimal solution to A1.
• Output it.

OPT(I) = OPT(A1)

OPT contains the first number:

98 25 21 201410 7

Sub-instance A2

25 21 2014 7

Two Choices

Lemma : Given any solution to A2, we can obtain a solution to I by pre-pending the first number

25 21 201410

• Find optimal solution to A2.
• Prepend the first number.

OPT(I) = First number + OPT(A2)

Algorithm

Algorithm MonSeq
Input : a1, a2, …. an
Output : Largest monotone Sequence

1. A1 = {a2, a3, ……, a_n}
2. A2 = {a_i : a_i >= a_1, i >= 2}
3. Optimal solution Opt1= MonSeq(A1)
4. Optimal solution Opt2= MonSeq(A2)
5. S1 = Opt1
6. S2 = a1 + Opt2
7. Output best of S1 and S2

Opt(I) = Max(
Opt(a_2, a_3, …., a_n),
a_1 + Opt(a_i : a_i >= a_1, i >= 2)

)

Memoization:
• Whenever we solve a sub-instance store its optimal solution
• Whenever we want to solve a sub-instance, first check if we have solved it already

How many sub-instances?

That’s all fine madam! But the question is:
How many sub-instances?

• Identify sub-instances
• Identify recurrence relation
• Derive a bound on the number of sub-instances

o Determines running time

How many sub-instances?

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

Are we getting all kinds
of subsets as sub-

instance?

• If that is the case, we are doomed
• 2^n subsets
• Exponential time

Two methods to proceed

• Derive a bound on the number of sub-instances
• Generalize the problem

Hay! It is not hard.
Don’t make a fuzz out of it!

How many sub-instances? Each sub-instance
• Is a suffix of the original sequence
• But some numbers may go missing

No number is missing

No number is missing

Smaller than 8 are missing

Smaller than 10 are missing

Smaller than 10 are missing

Smaller than 25 are missing

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

10 8 25 9 21 14 20 7

Sub-instance Structure
Lemma : Each sub-instance is a
• Suffix of the original sequence with some numbers missing
• All missing numbers are smaller than a prior number call it the pivot

Proof
• Suppose the property is true up to some stage
• Let us see what happens in the next stage

Q PPivot
• All missing numbers are less than P
• Q is larger than P

Q Pivot P • P continues to be the pivot

Q Pivot Q • Q becomes the pivot

How many sub-instances?
Lemma : Each sub-instance is a
• Suffix of the original sequence with some numbers missing
• All missing numbers are smaller than a prior number call it the pivot

• Number of suffixes possible? At most n

• Number of pivots possible? At most n

• Number of sub-instances possible? At most n^2

Theorem: Our algorithm finds the optimal solution. Its running time is at most O(n^2)

98 25 21 201410 7

Comparison to Greedy Methods

Attempt 1: Start from first number and keep going higher

Attempt 2: Try starting from each number and keep going higher!

98 25 21 201410 7

98 25 21 201410 7

Comparison to Greedy Method – Dynamic Programming

98 25 21 201410 7

98 25 21 201410 7

Do not greedily pick 25 – You may miss better choices later

Instead look for optimal solution for suffix starting at 25

98 25 21 201410 7

• Optimal solution for suffix starting at 25 – May or may not pick.
• Leave it to recursion to decide

Method 2: Generalize the problem

• Input : A sequence of numbers and a number P called the pivot
• Objective :

• Find the largest monotone sub-sequence involving only numbers larger than P
• You are allowed to use only the numbers larger than P

Pivoted Largest Monotone Subsequence Problem

Q

Q

Q

Input P

Sub-
Instance 1

P

Sub-
Instance 2

• May not even be possible
• Only possible if Q > P.

Q Q

Algorithm for Pivoted Largest Monotone Subsequence

OPT(I, P) =

OPT(I-Q, P)

Max
OPT(I-Q, P)

Q + OPT(I-Q, Q)

If Q < P

If Q > P

• Number of suffixes possible?

At most n

• Number of pivots possible?

At most n

• Number of sub-instances possible?

At most n^2

Algorithm for Largest Monotone Subsequence
Input: Sequence I
Solution:

• Solve Pivoted Largest Monotone Subsequence Problem
• With input I and Pivot = infinity

Single Source Shortest Path Problem
Bellman Ford Algorithm

50
50

a

b

c

d

e

1

root

a

b

c

d

e

root

1 3

5 5

1

Single Source Shortest Path: Bellman-Ford Algorithm
Input:
• An undirected graph
• Weights on the edges
• A root vertex
Output:
• Shortest path from the root to all the other

vertices

Distance vs Hops

root

u

x

y

z

50

50
40

30

30

#hops = 2#hops = 3

• Shortest path may not have the least hops
• There may be many shortest paths with different hop count

MinHop(u) = minimum number hops among the shortest paths

Main Observation

root

u

• Min-hop shortest path to u

Hops = k

root

u

v

Dist = 100

Hops = k - 1

10

Dist = 90

Min-hop
shortest path
from root to v

• Min-hop shortest path to u must pass through one of the neighbors v
• Min-hop shortest path to u can be found by extending the min-hop shortest path to one of its

neighbors

Main Observation

u

root

Min-hop = k

v1 v2 v3

Min-hop paths
#hops = k - 1

root

Shortest path structure
MinHop

k = 1

k = 2

k = 3

k = 4

k = 5

Algorithm
• We do not know the min-hop counts
• We will try all possibilities – only n choices are there.

Generalize a bit

Input:
• An undirected graph
• Weights on the edges
• A root vertex
• Number of allowed hops k
Output:
• Shortest path from the root to all the other vertices using at most k hops

Dist(u, k) – shortest distance from root to u using at most k hops

Recurrence Relation

𝐷𝑖𝑠𝑡 𝑢, 𝑘 = min
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑣

𝐷𝑖𝑠𝑡 𝑣, 𝑘 − 1 + 𝑤(𝑢, 𝑣)

u

root

v1 v2 v3

#hops = k - 1

Dist(v1, k-1) Dist(v3, k-1)Dist(v2, k-1)

w(u, v1) w(u, v2) w(u, v3)

• At most k hops
• We are allowed to use lesser number of hops

min
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

𝑣

𝐷𝑖𝑠𝑡 𝑣, 𝑘 − 1 + 𝑤(𝑢, 𝑣)

𝐷𝑖𝑠𝑡(𝑢, 𝑘 − 1)

Min𝐷𝑖𝑠𝑡 𝑢, 𝑘 =

For k = 1 to n
For each u

Dist(u, k) = Dist(u, k-1)
For each neighbor v

d = Dist(v, k-1) + w(u,v)
If d is smaller than Dist(u, k)

Dist(u, k) = d

Guess for min-hops

Best distance going via v

Is this better?

If so, take it

Algorithm

Try all neighbors

Current best distance

Compute Dist(u, k) for all u

• k can take at most n choices
• u can take at most n choices
• v can take at most n choices
• Running time O(n^3)

Theorem: Our algorithm finds the shortest paths. Its running time is at most O(n^3)

MinDist(root, u) = Dist(u, n)

Bin Packing Problem

Bin Packing Problem
• Input : A set of items each having size

Bins each of capacity B
• Objective : Pack the items in as few bins as possible

Input Items
2 3 5

6 7 10
B = 15

10

3

2

7

6

5
10

5

12

12

Bins = 4

12

3

7

6

2

Bins = 3

Have we seen this before?

• B = Sum / 2
• Allow only two bins
• What is this?

How many choices?
Naïve method:

• Try all possible ways to partition the set
• For each choice, check if it is feasible
• Choose the one having the least number of parts

2 3 5 6 7 10 12Input Items

Partition 1 2 3 56 7 10 12 Not feasible

Partition 2 2 35 6 7 10 12 Not feasible

Partition 3
2 35 6 7 10 12

Feasible
Bins = 4

Number of partitions

• Bell number ≈ n^n

E. T. Bell

What can we aim for?

• NP-hard : we can find the optimal solution in polynomial time

• Naïve algorithm: runs in roughly O(n^n)

• Our algorithm: O(4^n)

Recursion
• Input : A set of n items

Key Idea : Guess the items that go into the first bin and then recurse

1 2 3 4 5 6 7Guess

1 23 4 5 6 7

First bin
Other bins

Solve recursively

Make sure this is
feasible : size < B MinBins(I) = Min

𝑆 ⊆ 𝐼
S is feasible

MinBins(S)1 +

First bin used for S

Sub-problem structure

• Each subset is a sub-problem
• It will reuse computations from all its subsets

1,4

1,2,3 1,2,4 1, 3, 4

1,3

1, 2, 3, 4

2,3 2,41,2 3,4

1 2 3 4

2, 3,4Solve
backwards

Algorithm

For k = 1 to n
For each set X of size k

MinBins [X] = infity
For each subset S of X

b = 1 + MinBins[X – S]
if(b < MinBins [X])

MinBins[X] = b

Size of sets
Each set of size k
Initialize

Guess for first bin
Look up table

Is this better
If so take it

• Number of possible X : 2^n
• Number of possible S : 2^n
• Total running time : 4^n

Theorem: Our algorithm finds the optimal solution. Its running time is at most O(4^n)

That’s about it!
Have a nice time designing dynamic programs!

