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Abstract

Given a set of facilitied”, a set of client€”, demandi; with each clieny, facility opening
cost f; for a facility « andc;;, the service cost of assigning a cligno facility 7, the aim

of facility location problenis to open a set of facilities such that the total cost of opening
these facilities together with the service cost of all the clients is minimized. The problem
addressed in the thesis is a metric facility location problem in which the service costs
satisfy the metric property.

We discuss the capacitated version of the problem in which a capacity constraint
is associated with each facility. Local search based approximation results are presented
for three variants of the problem. Firstusiform capacitated facility location problem
in which all facilities in F' have the same capacity, denoted By We analyze a lo-
cal search based heuristic proposed by Kuehn and Hamburger [KH63] to show that this
heuristic provides a (33-factor approximation (for the problem) which improves upon
the (5.83+)-factor of Chudak and Williamson [CW99, CW05]. We give an example to
show that the analysis is tight.

In the second variant different facilities have different capacities and it is qadlied
uniform capacitated facility location problear just capacitated facility location problem.

For this problem, we give a (5)>factor approximation algorithm which improves the
current best of (5.83) given by Zhang, Chen and Ye [ZCYO05]. For this algorithm also

we provide a tight example.

The third problem we consider isiversal facility location problerwhich is a gen-



eralization of many variants of facility location problem including the first two problems.
In this problem facility cost of a facility € F'is given by a functionf;(.) and is deter-
mined by the capacity allocated at the facility. For this problem, we give a simpler algo-
rithm and show that the cost of the solution is bounded by)(Bmes the cost of the opti-
mum solution. The result is an improvement upon the (6. épactor of Vygen [Vyg07]

and also upon the (5.83)-factor given by Angel, Thang and Regnault [ATR13] in a par-
allel work. This also implies a simpler algorithm for non-uniform capacitated facility
location with the same factor.

The key ideas of our analysis are: after assigning the clients of facility being closed
to the facility being opened in the operation if the opened facility has some capacity
remaining, clients of other facilities in our solution are assigned to it if it results in cost
saving; we take a linear combination of some inequalities in a smart way to obtain the
claimed approximation guarantees.

We also performed some experiments with our third algorithm for a particular case
of nonuniform capacitated facility location problem and found that the algorithm works
well in practice. The cost of solutions were found to be within+ 0.12) times the

optimum solution’s cost.
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Chapter 1

Introduction

Consider a situation in which a retailer is interested in opening supermarket stores at
strategic locations so that the cost of establishing the desired infrastructure is not too high
while maintaining close vicinity to a large number of customers/clients. Consider another
example where a bank wants to set up its ATMs across the city. Since installation of an
ATM machine incurs a cost apart from the price of the land, it is not possible to open a
large number of ATMs. Bank needs to choose the locations in such a manner so that the
cost of setting up ATMs together with the cost incurred by its customers in traveling to an
ATM is minimized. Consider a network service provider interested in providing wireless
services to its customers. He would like to select the locations to install the base stations
S0 as to maximize the coverage area. Similarly, a government of a state may want to select
locations for schools, hospitals, fire stations and other such utilities so as to provide an
easy and fast access to a large number of citizens. These are typical examples of what is
called afacility location problem (FLP)What is common among these examples is that
the locations for facilities need to be identified in a cost efficient manner (set of potential
locations may be fixed). The goal is to minimize the cost incurred (if any) in setting up
the facilities at the selected locations with an objective to meet the demand of customers

in the best possible way.



Facility location problems have been widely studied since 1960’s. These problems
are known to be strongly NP-hard. An instance of a minimum weight set cover problem
with unit weights, which is an NP-hard problem, can be transformed into metric unca-
pacitated facility location problem [KV05]. Metric uncapacitated FLP is the simplest
amongst the various variants of the problem. Earlier studies discuss different heuristic
methods to solve these problems. Kuehn and Hamburger [KH63] suggested one of the
earliest heuristic to solve plant location problem. The drawback of heuristic methods is
that they do not guarantee the quality of the solution.

First algorithm for FLP with performance guarantee was given by Shmoys, Tardos
and Aardal [STA97]. Many different variants of FLP have been studied since then. A
variety of approximation algorithmic techniques have been applied to solve these prob-
lems. In this work, we present (8p-factor approximation founiform capacitated facility
location problemwhich improves the current best of (5.83-factor due to Chudak and
Williamson [CW99, CWO05] (using the scaling techniques of Charikar and Guha [CG99,
CGO05)); (5+)-factor for non-uniform capacitated facility location problewhich im-
proves the (5.834) factor given by Zhang, Chen, and Ye [ZCYO05]; and {pfactor for
universal facility location problerwhich improves (5.834) factor given by Angel, Thang
and Regnault [ATR13].

In this chapter we discuss some variants of facility location problems, different tech-
niques which have given good approximation factors for these type of problems and our

contributions in brief.

1.1 Facility Location Problem

In afacility location problemwe are given a set of clients = {1,...,m} and a set of
facilites ' = {1,...,n}. Aclient;j has a demand; which needs to be serviced by some

facility. Opening a facility at a locatiohe F' costsf; (the facility opening cost). The cost
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of servicing a clieny € C by a facility is given byc;; (the service cost). The objective is

to determine a set” C F and an assignment of clients to facilitiesfiti so that the total

cost of opening the facilities ih” along with the total cost of serving the demands of the
clients is minimized. For the rest of the thesis, we assume that service costs form a metric
and whenever we sdwgcility location problemwe meammetric facility location problem

Thus, for facilities:, " and clientsj, 5, c¢i/jy < cyj + ¢;; + ¢ Further let, fori, i € F

i #1i', ¢;» be the cost of the shortest path betweandi’, i.e. ¢;; = min;ec(cj; + ¢jir).

1.1.1 Uncapacitated Facility Location Problem (UFLP)

Consider a manufacturing company which wants to set up regional warehouses in every
state so as to minimize the sum of the fixed set up costs of warehouses and the cost of
transportation to its customers. It is assumed that a warehouse has sufficient supplies so
that any number of customers can be served at a particular instant of time. This is an ex-
ample of aruncapacitated facility location problem (UFLP)s mentioned earlier, UFLP

is the simplest variant of the problem. This problem can be formulated as the following
Integer Linear Program, where the indicator variabjesepresent whether a facility is

open or not and the indicator variableg represent whether a clierjitis assigned to

facility 7 or not.

min Z fzyz —+ Z Z Cz‘jdjxij

i€l el jel
S.t.
Tij S Yi ViGF,jEC
Z(L’ij =1 VJGO

el
T4 S {0,1} Vi€F7j€C

yi € {0,1} VieF

A feasible solution to this integer program is a $€t C F and an assignment

3



o:C — F'whereF’ = {i:y; =1} ando(j) = i if z;; = 1. In fact onceF” is known,
each client can be assigned to the nearest open facility. Fhubke set of open facilities,

completely defines a solution to the uncapacitated problem.

1.1.2 Capacitated Facility Location Problem (CFLP)

Consider an example in which there is a need to set up wired LANs to satisfy the con-

nectivity needs of an institution. Let us assume that the switches are facilities which

facilitate connections among the computers connected through that switch. Each switch
has a limited number of slots available which restricts the number of computers that can
be connected through it. Since the facilities (switches) have capacities (humber of slots)
on the number of clients (computers) it can serve, it makes an instarcapatitated

facility location problem (CFLP)

More formally, in capacitated facility location, each facilithas a capacity; spec-
ifying the maximum amount of demand it can serve. There are two variants of this prob-
lem: CFLP with unsplittable demands (all the demand of a client must be served by the
same facility) and CFLP with splittable demands (demand of a client can be split and
assigned to multiple open facilities). The first variant is even hard to approximate unless
P = NP [BH12]. When capacities of all the facilities are same, the problem is known as
uniform capacitated facility location problem (UCFLRRightly so, when capacities are
not necessarily the same, it is calleoin-uniform capacitated facility location probleon

just capacitated facility location problem

The problem variant with splittable demands can be formulated as the following

mixed integer linear program (MILP), whereir; variables are allowed to be non-integral

4



to capture the splittable nature of demands.

min Zfzyz + chz’jdﬂ?ij

el el jel
S.t.
T4 < Yi ViEF,jEC
ZI’U = 1 VJEC
1€F
Zdjx’ij S Ui Y; VieF
jeC
r; > 0 VieF,jeC

yi € {0,1} VieF

A feasible solution to the above MILP is given by a $&tC F' and an assignment
of clients to the facilities inF” which obeys the capacity constraints whéteis the set
of facilities i for whichy; = 1. Note that in CFLP clients cannot always be assigned to
the nearest open facilities as it may lead to violation of capacity constraints. KJnse
known, best assignment of clients can still be found in polynomial time by just solving an
assignment problem. Thus any solution to CFLP is also completely defined by the set of

open facilities.

1.1.3 Universal Facility Location Problem (UniFLP)

Many a times facilities do not have fixed facility costs. For example suppose a corporation
office needs to develop playgrounds in a city. The number of children under 15, whose
playing needs are to be addressed by these playgrounds, is known in advance. Various
locations identified for the purpose have different per-square feet rates. Locations and
their sizes need to be identified in such a manner so that every child has easy access to
a playground and total cost of establishing playgrounds is minimized. In this particular
example, cost of a playground depends both on its location as well as its size. This

is an example ofiniversal facility location problem (UniFLP)Formally, FLP is said

5



to be UniFLP if the facility opening cosf; of a facility i is a function of the capacity
allocated to the facility. Thus if; is the capacity allocated at a facility locatiothen the
cost incurred for opening the facility i§(«;), which is a monotonically non-decreasing
function. The objective is to minimize the sum of the total facility cp3t. . fi(u;) plus
the total service cost.

This problem can be formulated as the following non-linear program (NLP), where
variablesu; denote the amount of capacity allocated to facilitgnd z,; variables are

non-integral and denote the amount of demand of client j served by facility

min Zfl(ul) + chijdjxij

el i€l jel
S.t.
Zl’zj = 1 V]GC
1S
Zdjxij S U; VieF
jeC
Tij > 0 V’iEF,jEC

u, > 0 VieF

A solution to UniFLP is characterized Y/, o) whereU = (uq,ug, -+ ,u,) iS an
allocation vector and : C' — F'is an assignment which obeys the capacity constraints.
Universal facility location problem generalizes many other facility location problems in-
cluding UFLP and CFLP. It reduces to UFLP whékw;) = f/ for u; > 0 and to CFLP
when we defing/;(u;) = f/ for0 < u; < ¢;, ¢; is the capacity of facility, andf;(u;) = oo

otherwise.

1.1.4 k-Median Problem

Consider the warehouse example again. Suppose there is a licensing authority which gives

fixed number of licenses sayfor warehouses and no cost of establishing warehouses is

6



incurred by the company. The aim of the company is now to choose the locations intelli-
gently within the budget constraint on the number of licenses for the warehouses available
to it so as to minimize the total cost of transportation to its customers. A warehouse can
serve any number of customers. This is an examplenotpacitated:-median problem

The problem is better known as jusimedian problem

This problem can be formulated as the following Integer Linear Program:

min chijdjxij

ieF jeC
S.t.
Zij < ViGF,jEC
Z.’L’ij = 1 Vj eC
1€F
oy <k (1.1)
i€F

Tij € {0,1} ViGF,jEC

vy € {0,1} VieF

A solution to this problem is described by a $étC F' where|F’| < k and an assign-
mento : C — F’ whereF’ ando are as defined earlier for UFLP. Since there are no
capacities associated with a facility, a client gets assigned to the nearest open facility.
Therefore solution to thé-median problem is also completely determined by the set of

open facilities.

1.1.5 Other variants

Some other existing variants of FLP which are similar to these problems in some way or
the other arek-facility location problem [Zha07], soft capacitated facility location prob-
lem [CS03, AGK'01], red-blue median problem [HKK12] and mobile facility location
problem [AFS13]. k-facility location problem is UFLP with an added constraint which

7



specifies the maximum number of open facilities in a solution. Red-blue median prob-
lem is a generalization df-median where the facility seft is partitioned into two sets:

red and blue, at mogt,. red facilities and at most, blue facilities can be opened in any
solution. Mobile facility location problem is also a generalizatiorkehedian problem.
Soft-capacitated FLP is an easier version of CFLP where we can open multiple copies of

a facility.

1.2 Algorithmic Techniques for Approximation Algorithms

for FLP

The problems discussed in the previous section are known to be the NP-hard [KV05].
One common approach to solve these problems is to provide approximate solutions. An
a-approximation algorithm is a polynomial time algorithm which finds a solution whose
cost is withina-factor of the cost of an optimum solution. For a minimization problem

a > 1 and for a maximization problemm < 1.

Many techniques have been used for the design of approximation algorithms for
FLP. These include LP-rounding, primal-dual approach, greedy approach, local search
technique to name a few. Each of these techniques has its own advantages as well as
disadvantages. The first approximation algorithm for a facility location problem uses LP-
rounding approach [STA97]. This approach involves solving LP relaxation of an Integer
programming formulation of the problem and hence is generally quite time consuming.
Primal-dual algorithms are relatively faster. Greedy and local search algorithms are gen-
erally simple to implement but hard to analyze. There are very few problems to which
local search technique has been applied successfully. We next review these techniques

briefly.



1.2.1 LP-Rounding

Linear programming has been used extensively in designing approximation algorithms.
Many of the optimization problems can be formulated as an Integer Linear Program.
Some of them admit a polynomial time solution but many of them are NP-hard. LP-

relaxation followed by rounding the solution of the relaxed LP is often used to get good

approximation algorithms for these problems. Sometimes the rounding technique is trivial
as is the case in Vertex Cover problem [Hoc82a] but more often than not, it requires
sophisticated techniques to round the fractional solution of the linear program to obtain

an integral solution.

First approximation algorithm for uncapacitated facility location problem by Shmoys,
Tardos and Aardal [STA97] uses LP-rounding to give 3.16-factor approximation algo-
rithm. The technique has since been used to develop several approximation algorithms
for UFLP with improved approximation factors [CS03, Svi02, Byr07] with the current
best being 1.488 by Shi Li [Li13]. This is a very recent result which shows that the at-
tempts are on to close the gap between the lower bound of 1.463 [GK99] and the upper

bound for the problem.

LP-rounding has been applied to obtain good approximation factors for other vari-
ants of the problem as well. For example, Charikar and Li [CL12] gave a 3.25-factor for
the k-median problem in a recent result and, Chudak and Shmoys [SC99] gave a 3-factor
approximation for the soft-capacitated version. Levi, Shmoys and Swamy [LSS12] gave
a 5-factor algorithm for CFLP for a restricted version of the problem in which all facility
costs are same. This algorithm is a combination of rounding approach in the first phase
followed by greedy in the second phase. More approximation algorithms for other re-
lated problems which have used LP-rounding technique can be found in [BSS10, XX05,
BGRS10, SS02, CCGG98, AAK99, HJCO08].

9



1.2.2 Primal-Dual Approach

Primal-dual approach is a technique that uses the dual of the problem to obtain a good
integral solution to the relaxed linear program. Starting with a feasible solution of the
dual and an infeasible solution to the primal, a feasible solution to the primal is built in
steps. Iteratively the feasibility of the primal solution is improved, which is guided by the
successive improvements in the optimality of the dual solution. Primal solution is always
modified integrally in every iteration, so that the resultant solution is an integral solution.
The cost of the primal solution is bounded by an appropriate factor of the dual feasible
thereby providing an approximation of the primal optimal.

Jain and Vazirani [JV01] used primal-dual approach to give a 3-factor algorithm for
uncapacitated facility location problem and a 6- factor algorithm forktineedian prob-
lem. There are many network design problems which have used primal-dual successfully
[AKR95, SK04, KGR02, AZ02]. For a survey on approximation algorithms based on
primal-dual refer to [Wil02].

1.2.3 Greedy Approach

Greedy approach is one of the simplest techniques used to design algorithms for the opti-
mization problems. At any point in time, we have a partially constructed solution and the
solution is extended based on some greedy choice that is the current best without bother-
ing about its impact on the future solutions. For many problemsnikemum spanning
tree, shortest path, Huffman codesname a few, the technique provides a global opti-
mum.

For its simplicity, the technique has been applied to obtain approximation algorithms
also. For example, the best known approximation algorithm for the classical problem of
set covelis greedy [Joh73, Lov75, Chv79]. Surprisingly, this is the best that is possible

for the problem [Fei98]. The technique has also been used to provide several results for

10



UFLP [Hoc82b, IMS02, GK99, MYZ02, MMSV01] and a 4-factor approximatiornifor
median problem by Charikar and Guha [CG99]. Some other approximation results using

greedy approach can be found in [CEKO06, Cha00].

1.2.4 Local Search Algorithms

Local search as an algorithm design technique has been around since 1950’s. However
for the design of approximation algorithms, the success using this approach came only
during the last 15 years. The technique of local search is straightforward and simple to
apply but notoriously hard to analyze. In this approach we begin with an initial feasible
solution which is improved iteratively in every step doing some local improvements. This
process is repeated until it is no more possible to improve the cost of the solution locally.
The solution thus obtained is said to be locally optimal solution. In the next chapter we

discuss the various aspects of local search paradigm in more detalil.

1.3 Our contribution

In this thesis, we use local search technique to provide improved results for two variants
of facility location problem: CFLP and UniFLP. We consider CFLP with splittable de-
mands in two flavors: uniform (capacities of all the facilities are same) and non-uniform
(capacities of different facilities may be different). In all the problems discussed, we have
made an assumption that demand of a cljeatC' is one i.e.d; = 1. Since demands are
splittable this assumption can be easily gotten rid of.

Korupolu, Plaxton and Rajaraman [KPR0OO, KPR98] first analyzedatitedelete-
swapheuristic of Kuehn and Hamburger to show that it is ancf&actor algorithm for
the uniform capacitated case. Later Chudak and Williamson [CW05, CW99] improved
the analysis to improve the factor for the same heuristic to (2)83fe further improve

the analysis for the same algorithm to give factor)3# he key ideas of our analysis are:
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1. instead of assigning the clients of the facilities being closed only to the facilities
being opened, we also assign them to other facilities in our solution using a mapping

similar to the one discussed in Argaal [AGK *01].

2. after assigning the clients of facility being closed to the facility being opened in
the operation if the opened facility has some capacity remaining, clients of other

facilities in our solution are assigned to it if it results in cost saving.

3. we take a linear combination of some inequalities in a smart way to obtain the

claimed approximation guarantees.

We also give a tight example to show that this factor cannot be further reduced for
this heuristic.

A simple add-delete-swajheuristic of Kuehnet al, which is so appropriate for
CFLP with uniform capacities, is not so good for the case when the capacities are non-
uniform. Pal, Tardos and Wexler [PTWO01] gave an algorithm with two new operations:
openandclose which are extensions of swap operation in the changed scenario of non-
uniform capacities, and Zhargg al. [ZCY05] added another operation calleallti to
these operations. We modify these operations to be able to use our key ideas developed
for the uniform capacity case to obtain a ¢pfactor for the problem. We also show that
the analysis is tight by providing a tight example.

For the universal facility location problem we suggest two operatigesiandclose
similar tomopenandmclose drop the expensiveimultioperation altogether and provide
a (5+)-factor approximation for the problem. As a particular case, it provides a simpler
algorithm for (non-uniform) CFLP.

All the three results given by us are currently the best results for the respective
problems. The results are consolidated in Table 1.3. We also performed an experimental
study of our algorithm for the case of non-uniform capacities. The aim of this study is

to show that the (5¢)-factor for this algorithm is just an upper bound and in practice the
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results are much closer to the optimum solution. In this study we present results for the
random instances. The results obtained are within- 0.12)-factor of the cost of the

optimum solution.

Problem Current best Our results

1 | uniform capacitated facility location problem | 5.83+ [CWO05] | 3+e

2 | non-uniform capacitated facility location problen®.83+ [ZCY05] | 5+

3 | universal facility location problem 5.83+ [ATR13] | 5+¢

Table 1.1: Results presented in the thesis

The thesis is organized as follows: in Chapter 2 we discuss the local search paradigm
in detail; in Chapter 3 we give an improved analysis of the algorithm for uniform capac-
itated facility location problem; Chapter 4 discusses the)&actor algorithm for non-
uniform capacitated facility location problem; in Chapter 5 we present the-fa¢tor
algorithm for universal facility location problem and the experimental study of the algo-

rithm. At the end we give our conclusive remarks in Chapter 6.
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Chapter 2

Local Search Technigue

Local search technique (denoted by LS for brevity) has been applied to various combi-
natorial optimization problems as a solution method. LS is quite powerful, but difficult
to analyze. Johnson, Papadimitriou and Yannakakis [JPY85] studied some local search
heuristics and defined a class called PLS for them. A local search heuristic for a problem
belongs to the class PLS if the local optimal can be verified in polynomial time. Yan-
nakakis [Yan90] gave a detailed study of local search algorithms. For some problems
the technique is known to provide good solutions in practice but without any perfor-
mance guarantees. Famous Kerninghan-Lin algorithm for Graph Partitioning [KL70] and
Lin-Kerninghan algorithm for traveling salesman problem (TSP) [LK73] are known to
produce good solutions quickly and are widely used and implemented [Hel00, BS89];
however no known performance guarantees exist for these heuristics.

The technique is also known to provide good approximation factors for some well
known problems like Max-Cut, satisfiability [Ali94], and various variants of facility loca-
tion problem. Most of the problems for which local search has been successfully applied
with guaranteed quality of solution are different variants of facility location problems
[CG99, KPROO, AGK 01, CW05, PTWO01, MP03, Vyg07, ALBL3, BGG12, AFS13,

BSSS13]. In fact the only approximation algorithms for capacitated facility location prob-
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lem with constant approximation factors are based on local search technique.

2.1 The general outline of the technique

Many combinatorial optimization problems can be described as: givenrg §ed a fea-

sible setS C F' that (satisfies certain criteria and) minimizes/maximizes the cost/value of
the solution. Each instance is associated with a finite set of feasible solutions, each solu-
tion has some cost. Finding optimal solutions for many of these problems (for example
set-cover, vertex-cover etc.) is NP-hard. One way to get around this problem is to look
for locally optimal solutions which are known to be optimal/close to optimal for many of
them.

A local search algorithm starts with a feasible solution and improves upon it locally
as long as it is possible to do so. When it is not possible to further improve the solution
locally we arrive at a local optimal. Starting with a different (initial) feasible solution
might lead to a different local optimal solution. For an instahcket LOPT(I) be the
cost of a locally optimal solution ard PT'(1) be the cost of a globally optimum solution.

The supremum of the rati%OPPT—T((II)), over all such instances is called thdocality gap

In a local improvement step of a local search procedure, we move from the current
solution to a neighboring solution. A neighboring solution to a solutida determined
by a neighborhood relation. The neighborhood relation determines the structure of the
neighborhood of a solution. As an example, for the vertex cover problem neighbor of a
solution S is another solutiod” such thatS — 7’| = 1. Different local search heuristics
may lead to different neighborhood structures for the same problem.

A local search procedure restricts the search space of the problem instance, thus
making it possible to find a locally optimal solution quickly in comparison to the global
optimum solution. To perform a local search algorithm in polynomial time it is important

that:
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e the number of iterations performed by the procedure is polynomial.
e alocal improvement step can be performed in polynomial time.

Many a times, the local search heuristic does not lead to locally optimal solution
in polynomial number of iterations. Johnson, Papadimitriou and Yannakakis [JPY85]
and Yannakakis [Yan90] discuss these type of algorithms and put them in PLS class of
algorithms. Lin-Kerninghan and Kerninghan-Lin heuristics also belong to this class. A
well known technique, to reduce the number of iterations to polynomial, is to perform
an improvement step only when the improvement is substantial. In the lemma below,
we show that if the cost of the solution is decreased by at Iﬁ%{for a minimization
problem then the algorithm terminates in polynomial number of iterations, wheréhe
current solution ang(n, ¢) is a polynomial im, size of the problem instance, a%ncﬂor a
carefully chosen value. With this modification the algorithm can be made to terminate

in polynomial time.

Lemma 2.1 Let S, be an initial feasible solution with costS,) and letS* be a global

optimum solution with costS*). A local search procedure terminates in at most

O <p(n, €) - logjg‘i%) iterations if a local search move is performed only when the cost of

the current solutiort' is reduced by at Ieas];%.

Proof Local search procedure begins with an initial feasible solutipof costc(Sy).
In each iteration cost is reduced by at Iep n};, whereS is the current solution. A
local search procedure cannot reduce the cost of solution to les§'tlsin. Lett be the

number of iterations used to obtain a local optimal solutigthen

)54&)

c@jﬁ(l—

p(n,e)
and

c(S) > ¢(S7)
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therefore,

(1— ! )t-c(SO)ZC(S*)

p(n,e)
Fort = p(n, ).l the cost would be

p(n,€) el
This implies
C(Zo) > ¢(S*)
or .
[ <lo c((Sii
This means that the procedure terminate@i(‘qy(n, €) - log%) iterations. [

2.2 Local search heuristics with no performance guaran-

tees

Kuehn and Hamburger [KH63] in early 1960’s gave a simple local search heuristic for
uncapacitated and capacitated facility location problems. For the capacitated version they
gave experimental results for the case when the capacities are uniform. It was much later,
almost after 35 years, shown by Korupa@tal. [KPROO] that this heuristic provides a
locality gap of 8 for the case of uniform capacities.

The other well known local search heuristics which evolved during 1960's to 1990’s
are for graph partitioning problem and traveling salesman problem. These heuristics
evolved from 2-opt heuristic for traveling salesman problem given by Croes [Cro58] in
1958. 2-opt is a simple local search heuristic: a) it starts with a traveling salesman tour,
b) swaps 2 edges in the tour with two edges not in the tour so that result is a cheaper tour,
c) continues this way until no more improvements are possible. If the number of edges

exchanged in each stepighen the algorithm is said to beopt. Kerninghan-Lin (KL)
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gave a generalization ofopt for graph partitioning problem in 1969. This is an adaptive
algorithm and decides a new value)oin each iteration.

Lin-Kerninghan's algorithm (LK) for traveling salesman problem was designed in
1971 which draws ideas from KL's graph partitioning algorithm and is a generalization of
A-opt for TSP. KL and LK are known to be the most successful heuristic procedures for
these problems which use local search approach. These algorithms are very sophisticated.
Both these algorithms are known to provide good solutions which are within- 2%
of the optimal solution for most instances. Even after 40 years since its inception LK
is one of the best heuristics for the TSP. It has also been adapted to solve generalised
travelling salesman problem [KG11]. Chandra, Karloff and Tovey [CKT99] show that
A-opt heuristic for TSP can have an arbitrarily large locality gap. The same result applies

to Lin-Kerninghan algorithm also.

2.3 Approximation algorithms based on local search tech-
nique

Beginning with an approximation algorithm for satisfiability in 1994 by Alimonti [Ali94]
several approximation algorithms have been designed using local search. As mentioned
in the previous section, Korupolet al. [KPR0O, KPR98] in 1998 analyzed the local
search heuristic of Kuehet al. to show that it is within an (84)-factor of the optimal

for CFLP with uniform capacities and within (&y-factor of the optimal for UFLP. Arya

et al. [AGK 04, AGK"01] improved the locality gap for UFLP from (5)to (3+) and

gave atight example for the same. Chueakl.[CW99, CWO05] improved the analysis of
Korupoluet al.for CFLP to give a factor of (5.83% for uniform capacities. In our work

we have further improved the analysis to obtaindj3factor [ALB™13, AABT10]. We

also provide a tight example to put to rest any further scope of improvement in the analysis

of the heuristic given by Kuehet al.. This means that to seek any further improvement
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in the locality gap for the problem, we need to devise new local search heuristics for the

problem.

Kuehnet al. deals with CFLP only with uniform capacities. The neighborhood
structure of the approach does not deal with the case of non-uniform capacities. In 2001
Pal, Tardos and Wexler [PTWO01] gave a different local search algorithm which is well
suited for the case of non-uniform capacities and is the first such result for this problem.
They showed that their algorithm has a locality gap of (8&)3Mahdian and Bl [MP03]
gave an LS algorithm for universal facility location problem with (7.88factor. Since
UniFL is a generalization of capacitated facility location problem, the result also implied
an improvement for non-uniform capacities. Local search algorithm by Zhang, Chen and
Ye [ZCYO05] improved the locality gap to (5.83)+in 2004. We modify the operations of
Palet al.[PTWO01] and Zhangt al. [ZCYO05] and give a solution which is at most (§+
times the cost of an optimum solution [BGG12]. By giving a tight example, we prove that

the analysis for our algorithm cannot be strengthened any further.

Result of Mahdiaret al. [MPO3] for universal facility location problem was im-
proved by Vygen in 2007 [Vyg07] to (6.702 The line of their analysis is very similar
to that of Zhanget al.. Recently in a parallel work with ours, Angel, Thang and Regnault
in [ATR13] have reduced this factor further to (5.83+However, we give a better factor

of (5+¢) for the problem by extending our results for CFLP to this problem.

There are other variants of facility location problems which have benefited from
the local search paradigm. Charikar and Guha [CG99, CGO05] gave a local search based
algorithm with (2.414 +)-factor for soft-capacitated version in 1999. In 2001, Aeja
al. [AGK 04, AGK"01] gave first LS algorithm for thé-median problem with (3d)-
factor. Gupta and Kanat [GT08] simplified the analysis given by Astyal. for the same
factor. In 2005 Devanuet al. [DGK*05] gave a (5#)-factor algorithm fork-facility
location problem and showed that it can be used to bound the price of anarchy of the

defined game. In 2007, we saw a result, a\(2¥factor, onk-facility location by Zhang
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[Zzha07] . In 2010, a constant factor on budgeted red-blue median problem was given
by Hajiaghayi, Khandekar and Kortsarz [HKK10, HKK12]. Ahmadian, Friggstad and
Swamy gave a (34-factor algorithm for the mobile facility location problem [AFS13]
and suggest that any improvement in factor for this problem means a similar improvement
for the k-median problem. Currently their factor matches the best knowr-foedian
problem using local search.

Other problems for which local search heuristic has provided approximation algo-
rithms include k-means clustering problem [KMBR2]. Microprocessor scheduling by
Shuurmaret al. [SV07], balls into bins by Bogdaet al.in [BSSS13], Maximum cover-
age over a matroid by Filmuwet al.[FW12], max 3-cover problem by Caragianeisalin
[CM13], k-exchange systems [FNSW11], ranking tournaments [CWQ09], the Maximum
Set Packing Problem [SW13]. Refer to [Ang06] for more approximation results using

local search.
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Chapter 3

A (3+¢)-Approximation Algorithm for
the Facility Location Problem with

Uniform Capacities

In this chapter we deal with theniform capacitated facility location problem which the
number of clients that a facilitycan serve is bounded by andu; = U, for all i. For this
problem of uniform capacities the first approximation factor was due to Korupolu, Plaxton
and Rajaraman [KPR0O0, KPR98] who analyzed the local search algorithm by kKtehn
al. [KH63] and proved that any locally optimal solution has cost no more than) (8+
times cost of an (global) optimum solution. Chudak and Williamson [CW05, CW99]
strengthened the analysis in [KPR0OO, KPR98] to obtain a (5)88pproximation.

Given a set of open facilities, the best way of serving the clients, can be determined
by solving an assignment problem [STA97]. Thus any solution is completely determined
by the set of open facilities. The local search procedure proposed by Kaethrstarts
with an arbitrary set of open facilities and then updates this set, using one of the operations
add delete swap whenever that operation reduces the total cost of the solution. We show

that a solution which is locally optimal with respect to this same set of operations is a
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(3+¢)-approximation. We then show that our analysis of this local search algorithm is
best possible by demonstrating an instance where the locally optimum solution is three

times the (global) optimum solution.

All earlier work for capacitated facility location (uniform or non-uniform), in their
analysis, is able to capture rerouting all the clients in a swap operation from the facility
which is being closed to the one being opened. This however can be quite expensive and
cannot lead to the tight bounds that we achieve. We use the idea of Arya et.al"[NGK
AGK*04] to reassign some clients of the facility being closed in a swap operation to other
facilities in our current solution. However, to be able to handle the capacity constraints
in this reassignment we need to extend the notion of the mapping between clients used
in [AGK ™01, AGK*04] to a fractional assignment. We also show rerouting of clients
from their current facilities to the facility opened in the swap operation to better utilize its

remaining available capacity.

As in earlier work, we use the fact that when we have a local optimal, no opera-
tion leads to an improvement in cost. However, we now take carefully dehinear
combinationof the inequalities capturing this local optimality. All previous work that
we are aware of seems to only use twmof such inequalities and therefore requires
additional properties like the integrality of the assignment polytope to identify suitable
swaps [CWO05, CW99]. Our approach is therefore more general and amenable to better
analysis. The idea of doing things fractionally appears more often in our analysis. Thus,
when analyzing the cost of an operation we assign clients fractionally to the facilities
and rely on the fact that such a fractional assignment cannot be better than the optimum

assignment which follows from the integrality of the assignment polytope.

In Section 3.5 we give a tight example that requires the construction of a suitable
set-system. While this construction itself is quite straightforward, this is the first instance

we know of where such an idea has been applied to prove a large locality gap.
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3.1 Preliminaries

Let C be the set of clientg;” denote the facility locations and be the capacity of each
facility in F. Let|C| = m and|F| = n. LetS (resp.O) be the set of open facilities in our
solution (resp. optimum solution). With abuse of notation we &igeesp. O) to denote

our solution (resp. optimum solution). Initiallyis an arbitrary set of facilities which can
serve all the clients. Let(S) = c¢;(S) + ¢,(S5) denote the total cost (facility cost plus the
service cost) of solutiol. The three operations that make up the local search algorithm

of Kuehnet alare

add Fors ¢ S, if ¢(S + {s}) < ¢(S) thenS «— S + {s}.

delete Fors € S, if ¢(S — {s}) < ¢(5) thenS «— S — {s}.

Swap Fors € Sands’ ¢ S, if ¢(S — {s} +{s'}) < c(S5) thenS «— S — {s} + {s'}.

S is locally optimal if none of the three operations are possible and at this point the
algorithm stops.

Recall thatf;, 7 € F'is used to denote the cost of opening a facility at locatiand
c;; 1s used to denote the cost of assigning cligtd facility . Let S; andO; denote the
service-cost of clienj in the solutionsS and O respectively. The presence of thdd
operation ensures that the total service cost of the clients in any locally optimal solution

is at most the total cost of the optimum solution [KPROO]. Formally,

Lemma 3.1 ([KPROO]) For any locally optimal solutionS, >, S; < > ;.o O; +
ZOEO fo-

For the sake of completeness we prove this lemma in Section 3.2 for the cas&'when
O = ¢ and again in Section 3.4 for the general case.
We next show that the facility cost of a locally optimal solution is no more than 2

times the cost of an optimum solution. We prove this by identifying a suitable set of local
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operations and determine the increase in cost if these operations were to be performed.
Since the solution is locally optimal, the increase in cost due to these operations is non-
negativé. This gives us a set of inequalities and a suitable linear combination of these
inequalities yields the bound on the facility cost of the locally optimal solution. Note that
the inequalities generated are only for the purpose of analysis; we do not actually perform
those local operations since we are already at a locally optimal solution.

Combining the bounds of the service cost and the facility cost of a locally optimal

solution then gives us our main theorem:

Theorem 3.2 For any locally optimal solutiors' and an optimum solutio® to the fa-

cility location problem with uniform capacitieg(S) < 3¢(O).

To ensure that our procedure has a polynomial running time we use an idea first
proposed in [KPROO] — a local step is performed only if the cost of a solutioaduces
by more thane¢/4n)c(S’) wheree > 0 andn = |F| is the number of facility locations.

It is immediate from Lemma 2.1 that as a result of this modification the number of lo-
cal search steps done is at mdst ! log(c(Sy)/c(O)) whereS, is the initial solution.

In Section 3.3 we argue that the approximation guarantee of this modified local search
procedure increases to at m@gtl — ¢).

The rest of the chapter is organized as follows. In Section 3.2 we give a little loose
bound of (3,2) on the facility costs of the locally optimal solution which means that the
facility cost of S is at most 3 times the facility cost plus 2 times the service cost of the
optimal solution. We improve upon this bound in Section 3.3 by giving a better utilization
of opened facilities. In both these sections we assume that the facilities in the locally
optimal solutionS are disjoint from the facilities in the optimum solutiéGh Most of the
new ideas for this problem appear in these two sections. In Section 3.4 we extend the

argument to the case when the facilitiesSrand O are not disjoint. In Section 3.5 we

1in fact, we do not determine the exact increase in cost when a local operation is performed but only an

upper bound on this quantity.
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give an example of a solution which is locally optimal with respect to the operations of
add, delete, swapnd has cost three times the optimum. This establishes that our analysis

is tight.

3.2 Bounding the cost whenS N O = ¢: A loose bound
on facility cost

For this section and the next, we assume that the Setad O are disjoint. This as-
sumption allows us to add any facility 61 or to swap any facility inS with a facility
in O without worrying about the possibility that the facility of included in our solu-
tion might already be a part &f. Let Ng(s) denote the clients served by facilityin
the solutionS and Ny (o) denote the clients served by facilityin solutionO. Let N?
denote the set of clients served by facilityn solutionS and by facilityo in solutionO
i.e. N2 = Ng(s) N No(o). Foraclientj € C, leto(j)(respectivelyr(j)) be the facility
which serveg in solutionS(respectivelyO).

We first give the proof of Lemma 3.1 to bound the service cost of sol#fiander

the assumption that N O = ¢.
Proof Consider the operatioadd (o) for a facility o € O. SinceS is a locally optimal
solution therefore by assigning clients fray (o) to o, instead of best assignment of
clients to facilities inSU{o}, would not improve the cost of the solution. We can therefore
write the following inequality due to this operation:

fotr > (0;=5)>0 (3.1)

J€No(0)
We can write one such inequality w.r.t. eacke O. Adding all these inequalities,

we get

D fot D, D, (0;-85)=20

oe0 0€O jeNp (o)
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or

> fot ) (0;-8))=0

0€0 jeC

This implies for a locally optimal solutiof,

ZSjSZOj+ZfO (32)

jeC jeC 0€0
|

To bound the facility cost of, we will considerswap/deleteperations in which
we close a facilitys and assign the clients served byo other facilities inS and, some
facility in O if required. Recall that this is done only for the purpose of analysis and
to help generate inequalities which arise from the fact thas locally optimal. The
reassignment of a client served bys to the facilities inS' is done using dractional
assignmentr, : No(0) x No(o) — RT whereo = 7(j). m,(j, ') defines the extent up
to which j is assigned to the facility (') when the facilityo(j) = s is closed. Clearly,
for this fractional assignment we need to chog'ssuch thatr (') # s (we call this the
separation propertyf the fractional assignment). For the purpose of analysis, we also
require thatr, (', 7) = m,(j, j')-

Let wt (j) denote the total extent up to whighis assigned to other facilities ifi

using this assignment. Therefore foe Ng(s)

Yo omli) = Y, i) =wt())

J'€C:j'#] J'€C:'#]
We call these equalities as thalance propertyf the fractional assignment.

Note thatl — wt () fraction of j remains unassigned. We define thsidual weight
of j asl —wt (j) and denote it byes-wt (). This much extent of will be assigned to
some facility inO.

Before we formally explain how to compui () andr,, let's consider the follow-

ing examples{{ = 100):
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1. A facility s; is serving 80 clients irt, i.e. |Ng(s;)| = 80. Whens; is closed,
at most 80 clients frons; can be reassigned using the fractional assignment, to
other facilities inS. But s; can receive at most 20 clients, through the fractional
assignment, from other facilities it — {s; } when they are closed. Therefore due
to the balance property of fractional assignment, wheis closed only 20 clients

can be reassigned using fractional assignment.

2. afacility s, is serving 20 clients it¥, i.e. | Ns(s2)| = 20. Thoughs, can receive 80
clients from other facilities irt when they are closed, but at most 20 clients from
s9 can be reassigned using fractional assignment, to other faciliti@svinens, is
closed. Again, due to the balance property of fractional assignmeran receive

atmost 20 clients from other facilities using fractional assignment.

The above examples show that at mosh (U — |Ng(s)|, | Ns(s)|) clients from a
facility s can be reassigned using the fractional assignment. However instead of assigning

these many clients from, whens is closed, we will assign all clientse Ng(s) up to at
U-|Ns(s)|

mostmin | 1,
( [Ns(s)]

) extent, i.e.

wt (j) < min (1,

U —[Ns(s)|
[Ns(s)| ) '

In order to be able to define a valid fractional assignment, we require that for all
o€ Oands € S,wt (N?) <wt(Np(o))/2. Here forX C C, wt (X) denotes the sum of
the weights of the clients iX.

Thereforewt () for each;j € C satisfies the following two properties:

: i (1 U=INs(a())]
1. wt (j) < min <1, W) :

2. Forallo € Oands € S, wt(N?) <wt(Np(o))/2.

Now we will explain how to computevt (7) that satisfies these properties. Let

initwt ~ (j) = min (1%) Since|Ns(o(j))| < U, we have thad <
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init-wt ~ (j) < 1. To determinewt (j) so that the above two properties are satisfied
we start by assigningvt (j) = init-wt  (j). However, this assignment might vio-
late the second property. We say that a facility= S capturesa facility o € O if
init-wt ~ (N?) > init-wt  (No(0))/2. Note that at most one facility if can capture
a facility o. If s does not capture then for all; € N? definewt (j) = initwt  (j).
However ifs captures then for allj € N? definewt (j) = «-init-wt  (j) wherea < 1
is such thatvt (N?) = wt (No(0))/2. Note that if N? = Ny (o) thena = 0.

Next, we proceed to formally define fractional assignment No(o) x No(o) —

Rr* for a facility o € O with the following properties.

separation 7,(7,7’) > 0 only if j and;’ are served by different facilities ifi.

balance > .c (o) To(i's 1) = Y eno (o) Toldrd") = Wt () for all j € No(o).

L L 5——_ p_ -
0 ; E No(0)
— L~ —
0 E E No(0)
o(:0)

Figure 3.1: Definingr,. The lower arrangement is obtained by splitting the top arrange-
ment at the central dotted line and swapping the two halves.

The fractional assignment, can be obtained along the same lines as the mapping
in [AGK*04]. Associate an interval of lengtht (;) for eachj € Ny(0) and arrange
these intervals on a line segment of lengt N (o)) (see Figure 3.1). The intervals are
ordered so that intervals corresponding to clients served by the same facHitgppear
together. Consider another arrangement of intervals obtained from the first by splitting the

line segment at the center and swapping the two halves. As a consequence, one interval
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Figure 3.2:0(j) = sando(j') = 5. 7(j) =7(j') =0

might be split and be non-contiguous in the second arrangement. Superimpose these two
arrangementsr,(j, j') is now defined as the overlap between the interval corresponding
to j in the first arrangement and the interyaln the second. The second property of the
weights ensures that there is no overlap between an interval in the first arrangement and
the corresponding interval in the second arrangement. Further, it is easy to see that the
mappingr, as defined here satisfies the properties of separation and balance.

The fractional assignments, are extended to a fractional assignment (over all
clients),r : C' x C'— R* in the obvious way —« (j, ') = 7,(j,j') if 7,7 € No(o) and
is O otherwise.

Thus when a facility is closed, a clienj € Ng(s) is assigned to (j') to an extent
of 7(j,7"). Let A(s) denote the increase in the service-cost of the clients servedibg
to this reassignment. Recall th@f and.S; denote the service costs of clignin solution

O andS respectively. In the following lemma we bound the cost of this reassignment.
Lemma3.3 > 4 A(s) < ) e 20,Wt(5).

Proof Letn(j,5) > 0. When the facilityo(j) is closed andr(j, ;') fraction of client
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j assigned to facilitys(j'), the increase in service costri$j, j')(cjo(;) — Cjo(s)). Since
¢joiy < O+ Oy + S (see Figure 3.2) we have

SOAGs) = D w5 o — Ciot)

SES j,3'eC

< Y w0+ O + 8y = S))

Jy'ed

= 2) 0wt (j)

jeC
where the last equality follows from the balance property. [ |

Let S’ C S be the set of facilities such that ferc S’ wt (j) = 1 Vj € Ng(s) i.e.
res-wt (j) = 0Vj € Ng(s). We perform adeleteoperation for each of the facilities in
S

A facility s € S’ can be deleted fromd using operatiomelete(s)  and its clients
reassigned completely to the other facilitiesSn SinceS is locally optimal, therefore

cost of this operation is non-negative, i.e.
—fs —cs(S)+es(S—{s}) >0

where the reassignment of clients is done in best possible way. Cost of reassigning

clients of s usingm assignment, whenis deleted, will only be more or equal. Therefore
A(s) = —c(S) + (5 — {s})

and hence

We write such an inequality for eache S’ and add all of them to get

D (—fit+ Als) > 0. (3.3)

ses’
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Fors € S — 5, facilities for whichres-wt (j) > 0 for somej € Ng(s), delete
operation is not sufficient ags-wt () extent ofj needs to be assigned to a facility not
in S. Thus fors € S —.5’, we need to perform swapoperation by swappingwith some
facility o € O. res-wt (j) extent of a clientj will be assigned t@ andwt (;) extent of
client j will be assigned to facilities ity \ s, as is determined by theassignment. The
total extent to which clients are assignedtm this operation equalses-wt (Ng(s))
which is at mosU.

Let us consider swapping of faciliti@so wheres € S — S" ando € O. The service
cost of a clientj, which is assigned to instead ofs would increase by;, — c;;. Since
cjo— Cjs < Cs0, the total increase in service cost of all clients\g(s) which are assigned
(partly) too is at mostc,,res-wt  (Ng(s)).

SinceS' is locally optimal we have
fo— fs+cs(S—{s}uU{o}) —es(S) > 0.

Let (s,0) denote swapping of facilities, o together with reassignment of clients
served by to facilities inS — {s} U{o} as follows:wt (j) extent of each client € Ng(s)
is reassigned to facilities ifi usingm assignment ances-wt  (j) extent ofj is assigned
to o. Since in the actual operati@wap(s,0) the reassignment of clients is done in
best possible way, cost of reassignment of clientssim) will only be more or equal.

Therefore,

csol€S-Wt  (Ng(s)) + A(s) > cs(S — {s} U{o}) — ¢s(S).
and therefore
fo— fs + csotes-wt  (Ng(s)) + A(s) > 0. (3.4)

The above inequalities are written for every pgiro),s € S — 5,0 € O. We take a

linear combination of these inequalities with the inequality correspondifig o having
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a weight); , in the combination to get

Z )\s,ofo - Z /\s,ofs + Z /\s ocsores -wit NS Z >\s oA

s€S—S5".0 s€S—S',0 s€S—S',0 s€S—S".0

(3.5)
We need to define\, , values carefully to ensure that the reassignment costs of
res-wt (Ng(s)) clients is not very high. Define

res-wt (IN?)
res-wt (Ng(s))
if res-wt (Ng(s)) # 0 andis 0 ifres-wt (Ng(s)) = 0. Note that for alls € S — 5,
Y o Aso = 1. We show that with these values af , third term of Inequality 3.5 is

bounded by) _, . res-wt (j)(O; + S;). This is proved in the following lemma.

$,0 —

Lemma3.4 > .  Asocsol€S-Wt (Ns(s)) <> jcores-wt (5)(0; + S;)

Proof The left hand side in the inequality is

Z AsoCsol€S-WE  (Ns(s) Z csores-wt (N©).

S,0 S,0

Next, recall that,, = min cc(cjs + ¢jo) < minjeno(O; + S;). Therefore

Col€S-WE (N?) = > cireswt (j)
jENg
< ) reswt (5)(0;+S;)
JEN?

Therefore

D coreswt (N2 < > ) reswt (4)(0; +S))

S,0 s,0 jeN?
= > ) reswt (j)(0;+5;)
s€S jeNg(s)
= ) reswt (j)(O;+5;)
jecC
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We add the Inequality 3.3 to Inequality 3.5 and get

STH+A)+ Y Nofom D Aol

ses’ s€S—5",0 s€S—5",0
+ ) AoCsoteswt (Ns(s))+ D AoA(s) > 0. (3.6)
s€eS—=5"0 s€eS—=5"0

As) X, =1foralls e S— 5 we have

Z fs + Z )\s,ofs = Zfs (37)

ses’ seS—-5",0

and

DAG) + D) AAls ZA <> 20wt () (3.8)

ses’ s€S—S5",0 jeC
Where the last inequality follows from Lemma 3.3.

Incorporating equations (3.7), (3.8) and Lemma 3.4 into inequality (3.6) we get

—Zfﬁzksofﬁz:reswt )(0;+ 55+ Y 20wt (j) > 0

jeC jec

or

Y f < ZAsofoJrZreswt (0 + S;) + Y 20,0t ()

s jec jec
= szofomZo + ) res-wt (5)(S; — O;) (3.9)
jec jec

We will now bound _, A , the coefficient off, in the Inequality 3.9, which provides

us with the number of times a facility of the optimum solution may be opened.

Lemma3.5 Foralloc O,) A, <2.

Proof We begin with the following observations.

1. Foralls,o, \s, < 1.
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2. Let I C S be the facilitiess such thats does not capture anye O and|Ng(s)| <
U/2. Lets € I, 0 € O thenV j € N2, wt(j) = initwt  (j) (becauses does
not capturep) andinit-wt  (j) = 1 (becauseNs(s) < U/2). Thus¥ j € N?
wt(j) = inittwt  (j) = 1 and thereforges-wt (j) = 0. This implies that
res-wt (N?) =0and hence\,, =0forall s € I.

Thus we only need to show th@sﬂ Aso < 2. We now consider two cases.

1. ois not captured by any € S.

Let's partition S — I further into two setd’ andI”, where fors € I' we have
Ng(s) < U/2 and fors € I" we haveNg(s) > U/2. Lets € I'. Sinceo is not
captured by any facility in5 therefore in particular it is not captured By Thus
forall j € N2, wt(j) = init-wt  (j) = 1 and sores-wt (j) = 0 by the same

argument as for the case of 1. This implies that\,, = O forall s € I".

Let s be a facility in/”. Sinces does not capture, for j € N?, wt(j) =

init-wt ~ (j). Thus

U
resswt (j)=1-—wt(j)=1—initwt (j) =
|Ns(s)]
However, forj € Ng(s) we havewt (j) < init-wt  (5). Thus
resswt (j)=1-wt(j) >1—initwt (j) = v
- |Ns(s)]
Therefore
_res-wt (N?) - |N?|
*? res-wt (Ng(s)) ~ |Ns(s)]
Hence

Ne Ne| _ [No(o
ZASO—ZASO_Z“ | Z'U/Q‘_’U/Q)’gz
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2. ois captured by’ € S.

[Ns(s)|

This implies
initwt - (N2) > ) initwt  (NY)
s#s’
> ) initwt (N
s¢Tu{s'}
U —
= >IN rar
ot INs(s)
V2
- s
;{:}( [Ns(s)]
Sinceinit-wt ~ (N9) < |NZ| rearranging we get,
INO IV
2 NGl Z
s¢IU{s'}
Now

2]
2 Mo DL TGS

s¢IU{s'} s¢TU{s'}
and since\y , < 1 we have

Z /\s,o = Z )\s,o + )‘5’,0 <2

s¢Iu{s'}
This completes the proof.

Incorporating Lemma 3.5 into Inequality (3.9) we get

Zfs§2(2fo+20>+2reswt )(S; —

jeC jeC
Note thatzjec res-wt (5)(S; — O,) is at mosthEC(Sj

bounded by} _, f, by Lemma 3.1 and thus we have

Zfs<32fo+220

jecC
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This gives us the result of this section. In the next section we will prove the following

bound on facility cost of.

Zfs §2Zfo+2203

jecC
3.3 Our main result

The key to obtaining a sharper bound on the facility cost of our solution is the observation
that in the swafs, o) facility o gets onlyres-wt (Ng(s)) clients and can accommodate

additionalU — res-wt (Ng(s)) clients.

Claim 3.6 A facility o € O is opened at most twice and gets at mi@stlients in all the

swap operations considered.

Proof Total clients that a facility € O gets over all the operations is

D Aofes-wt (Ng(s) = > reswt (N?)) (3.11)
S = r;s-wt (No(0)) <U (3.12)
[ |

In swap(s, o), we assign a client € Ng(s) to other facilities inS up to the extent
of wt (j) and too up to the extent ofes-wt (j). We have considered the reassignment

of clients served only by facility in this swap Note that

1. ois assigned a total aks-wt (Ng(s)) clients in this reassignment.
2. o can get an additiondl — res-wt (Ng(s)) clients.

3. we can assign, to, additional clients which are served by other facilitiesSin
and byo in the optimal. wt () extent for all the clientg € C is kept aside to
participate int assignment only, therefore onkgs-wt (j) extent of; is avail-

able for any other type of reassignmentjofThus additional clients fronVy (o)
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are assigned to up to a total extent of at moses-wt (Np(o)) This means
min (res-wt  (Np(0)),U —res-wt (Ng(s))) clients can be assigned ¢odue to

this reassignment.

However, instead of assignimgin(res-wt (No(0)),U —res-wt (Ng(s))) clients
to o, residual weight of each clierite Ny (o) is assigned up to an extent of

: v-res-wt  (Ng(s))\ : : : L
min (1, res-wt (No (o)) in this reassignment. Call this quantjty,, i.e.

8., = min (1’ U — res-wt (NS(S)))

res-wt (No(o))
Let A’(s,0) denote the increase in service cost of the clientd/gfo) due to this

reassignment. i.e.
N(s,0)=fso > reswt (j)(0;—S;). (3.13)
J€No(0)

We will now put the pieces together to prove the following theorem:

Theorem 3.7 WhenS N O = ¢, the total cost of open facilities in any locally optimal
solution is at most twice the cost of an optimum solution.

Proof The Inequality (3.4) corresponding to teeap (s, o) would now get an addi-
tional termA’(s, o) on the left. Hence the terjp;_ | As ,A’(s, o) would appear on the left

in Inequality (3.6) and on the right in Inequality (3.9).

Now

Z)\S’OA/(S,O) = Z )\s,oﬁs,o Z res-wt (])(O]_SJ>

s JENo(0)
= (Z As,oﬁs,o) Z res-wt (])(O] - S])
s JENo(0)

If >, As.0f3s0 > 1 then we reduce some, , so that the sum is exactly 1 (we will later

show that this does not affect the analysis). On the other hand, X ,0:, = 1 — 7.,
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v, > 0, then we take the inequalities corresponding to the operation of adding the facility
o€

fot Y reswt (j)(O;—S;) =0 (3.14)

J€No(0)
and add these to Inequality (3.6) with a weight Hence the total increase in the left

hand side of Inequality (3.6) is

Z )\s,oA/(Sv O) + 270 (fo + Z res-wt (])(O] - S]))

Jj€No(0)
_ Z Z (1 —,)res-wt (5)(0; — S;)
o jENo(o
+Z%fo+z > vreswt (5)(0; - 5))
o jENo(o)
= > ) reswt (5)(0;—9)) +Z%fo
0 jENo(o)
— Zres-wt (5)(0; — S; +Z%fo
jeC ©

and so Inequality (3.9) now becomes

Y fo < ZZAM]‘-},HZO +Z%fo

jec

+Zres-wt (7)(S; — 0;) +Zres-wt ()(0; — S;)

jec jeC

= Z (%JrZAso) fo+2)0;

jec

= Z (1 + Z)\S,o(l - ﬁs,o)) Jo+ 2ZOJ'
~ ; jeC
< (Zfo+20)

where the last inequality follows from the next lemma. This completes the proof of the

theorem. [ |
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Lemma3.8 Y  A.(1—/f,) < 1.
Proof When)_ X0, > 1 we reduced somg, , to ensure that the sum is exactly 1.

In this case
Z /\s,o(]- - ﬁs,o) = Z )\s,o -1< 17

since by Lemma 3.5y A, < 2.

We now assume that ng , was reduced. Since
res-wt (No(o)) < |No(o)| <U

we have

- U —res-wt (Ng(s))
Bso = mm(’ res-wt (Nop(0)) )
' res-wt (Ng(s))
> min (1’ - res-wt (NZ(O))>
res-wt (Ng(s))
~ res-wt  (No (o))

Hence

res-wt (N?)
Z )\s,o<1 - 65,0) S Z res-wt (No(o)) = 1

S S

Recall that to ensure that the local search procedure has a polynomial running time
we modified the local search procedure so that a step was performed only when the cost
of the solution decreases by at leéstin)c(S). This modification implies that the right
hand sides of inequalities (3.4), (3.3) and (3.14) which are all zero should instead be
(—e/4n)c(S). Note that for every choice of € S ando € O we add a\, , multiple of
Inequality (3.4) to obtain Inequality (3.6). Sing€, \;, = 1, hence}_, A, = |S] < n.

We also add Inequality (3.3) for every € S to Inequality (3.6). Similarly, for every
o€ 0,a, (7, < 1) multiple of Inequality (3.14) is added to Inequality (3.6).

Putting all these modifications together gives rise to an extra term of at most

(3e/4)c(S). This implies that the facility cost of solutiasiis at mostc(O) + (3¢/4)c(5).
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S

S

Figure 3.3: An instance showing the decomposition into cycles (dotted arcs), swap paths
(solid arcs) and transfer paths (dashed arcs). The facilities labaled-, so; andso, are

in S N O and have been duplicated. The cycleds, so,, sos, so;. The transfer paths are

(81, 809, 501), (S2, 502) @and(ss, so3). The swap paths arg, so;, sos, 01 ands,, soy, 01.

Similarly, the service cost of solutighican now be bounded kyO)+(e/4)c(.S). Adding
these yields
(1= €)e(S) < 3¢(0)

which implies thatS is a3/(1 — ¢) approximation to the optimum solution.

3.4 WhenSNO # ¢

We now consider the case wheéhn O # ¢. We construct a bipartite grapli, on
the vertex set” U F' as in [CWO05]. Every clienfj € C has an edge from the facility
o(j) € S and an edge to the facility(j) € O. Thus each client has one incoming and
one outgoing edge. A facility € S has|Ngs(s)| outgoing edges and a facilitye O has
|No(0)| incoming edges. Decompose the graptinto a set of maximal paths?, and
cycles,C, as is explained in Appendix A.1.

Note that all facilities on a cycle are frosn O. Consider a maximal pati® € P
which starts at a vertex € S and ends at a vertex € O. Let headf) denote the
client served bys on this path and tailf) be the client served by on this path. Let

S0, Jos S1, J1, - - - » Sky Jk, 0 D€ the sequence of vertices on this path where s,. Note
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that {s1, so,...,sx} € SN O. A shiftalong this path is a reassignment of clients so
that j; which was earlier assigned tg is now assigned te,;,; wheres;,; = 0. As a
consequence of this shift, facilityserves one client less while facilibyserves one client
more. Let shiftf’) denote the increase in service cost due to a shift along thefath
Then

shift(P) = Y~ (0; - S)).

jecnp

We can similarly define a shift along a cycle. The increase in service cost equals the sum
of O; — S; for all clients; in the cycle and since the assignment of clients to facilities is

done optimally in our solution and in the global optimum this sum is zero. Thus

YD (0;-5;)=0.

0eC 7€Q
As we did for the case whetin O = ¢, for this case also we prove the bound on service
cost and facility cost separately. Following is the proof of Lemma 3.1 which provides the
bound on service cost of a locally optimal solutirwhenS N O # ¢.
Proof Consider the operation of adding a facilitye O. We shift along all the paths
which end ab. The increase in service cost due to these shifts equals the sUm-of

for all clients;j on these paths and this quantity is at leag}.

Y S0,-8) = -3 h

pecP jer 0e0
Thus
D0 =8) =D > (0;=8)(0; =)+ D > (0;=58)==> [,
JEC peP iel QeC i€ 0€0
which implies that the service cost 8fis bounded by - ., fo + >~ O |

To bound the cost of facilities i — O we only need the paths that start from a
facility in S — O. Hence we throw away all cycles and all paths that start at a facility in

S N O; this is done by removing all clients on these cycles and pathsPlagnote the
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remaining paths and' the remaining clients. Every client ifi either belongs to a path
which ends inS' N O (transferpath) or to a path which ends in — S (swappath). Let7
denote the set of transfer paths ahthe set of swap paths (see Figure 3.3).

We now defineV? to be the set of paths that startsa¢ .S and end ab € O. Further,
define

Ns(s) = ero_SNSO.

Note that we do not include the transfer paths in the above definition. Similarly for all
o € O define
No(O) = UsestN;-

Just as we defined theit-wt (), wt () andres-wt () of a client, we can define
theinit-wt (), wt() andres-wt () of a swap path. Thus for a path which starts

froms € S — O we define

init-wt  (P) = min (1, LNS(S)’) :

[Ns(s)|

The notion ofcaptureremains the same and we reduce the initial weights on the paths
to obtain their weights. Thuat (P) < init-wt  (P) and for everys € S ando € O,

wt (N?2) < wt(No(0))/2. For everyo € O — S we define a fractional mapping, :
No(0) x No(o) — R such that

separation m,(P, P') > 0 only if P and P’ start at different facilities irt — O.
balance 3 picn o) To(F's P) = 3 preng (o) To( P, P') = Wt (P) for all P € No(o).

This fractional mapping can be constructed in the same way as done earlier. The way we
use this fractional mapping,, will differ slightly. When facility s is closed, we will use

7 to partly reassign the clients served $in the solutionS to other facilities inS. If P

is a path starting from and~= (P, P') > 0, then we shift along® and the client tailP) is

assigned ta’, wheres’ is the facility from whichP’ starts. This whole operation is done
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50, s0, 503 0, s0,

1
[
[
Vs

1

s, s0;

Figure 3.4: The figure shows the assignment of clients to facilities after fagjlihas

been closedl{ = 3) in the instance given in Figure 3.3. The dotted lines show the earlier
assignment while the solid lines show the new assignment. Those assignments which do
not change are shown with dashed lines. Note thsg¢rves two clientg, k£ which are

the heads of swap paths, soi, so3, 01 andss, so4, 01. These two clients are mapped to
each other in the mapping When facility s; is closed we perform a shift along transfer
pathsy, sos, so;. We also perform a shift along the swap pathso,, sos, 0; with the last

client on this pathj now assigned te,. Since,s; was already serving 3 clients, we move

one of its clients along a transfer path (so).

to an extent ofr(P, P'). The cost of assigning client tai) to s' can be bounded by the
sum of the service cost of tailf) in solutionO and thelengthof the pathP’ where
length®) = ) (0; +5)).
jeCnpP’
Let A(s) denote the total increase in service cost due to the reassignment of clients
on all swap paths starting from Then

STAG) < >0 > D (P, P)(shift(P) + length(™))

s PENg(s) P/E’P

= ) wt(P)(shift(P) + length(P)) (3.15)
reS

As a result of the above reassignment a facilitye S — O,s’ # s might get
additional clients whose "number” is at most (Ng(s')). Note that this is less than
init-wt  (Ng(s")) which is at most/ — | Ng(s")|. The number of clients’ was serving

equals|Ns(s")| + |7'(s")| whereT'(s) is the set of transfer paths starting frofm This
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implies that the total number of clien¢éswould have after the reassignment could exceed
U. To prevent this violation of our capacity constraint, we also perform a shift along these
transfer paths (Figure 3.4).

Supposes’ gets an additional client, say taft], to an extent ofr(P, P'), where
P" € Ng(s'). Then for all paths; € T'(s), we would shift along patly to an extent
(P, P")/wt (Ng(s")). This ensures that

1. The total extent to which we will shift along a paghe T'(s’) is given by
X2 Ry
which is at most 1. This in turn implies that we do not violate the capacity of any
facility in S N O. This is because, if there atdransfer paths ending at a facility
o € SNO theno serveg more clients in solutio® than inS. Hence, in solutiory,
o serves at modt’ — ¢ clients. Since the total extent to which we could shift along
a transfer path ending atis 1, even if we were to perform shift along all transfer

paths ending im, the capacity ob in our solutionS would not be violated.

2. The capacity constraint of no facility il — O is violated. If a facilitys’ € S — O
gets an additionat clients as a result of reassigning the clients of some facility
s # ¢, then it would also lose some clients, saydue to the shifts along the

transfer paths. Now

z|T(s")]
(12 Z s’ ~ wt (Ng(s)

p P'eNg(s’)

and hence the additional number of clients served liyz — y which equals

()] : : : :
. (1 _ m) < Wt (Ns(s)) — [T(s)] < U — [Ns(s)| — |T(s)],

where the first inequality follows from the fact that< wt (Ns(s’)) and the second

inequality by definition ofwt. Since, initially, s’ was serving Ns(s')| + |T'(s')|
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clients, the total number of clients thaltis serving after the reassignment is at

mostU.

Note that when we close facilitywe shift on transfer paths starting frosnmas well
as on some transfer paths starting’ag s. LetI'(s) denote the total increase in service
cost due to shifts on all transfer paths when facilitg closed. Consider a transfer path,
q, starting froms. We would shift once along pathwhen we close facilitys. We would
also be shifting along to an extent ob ., > iy o T(2, P') /Wt (Ns(s)) (which is at

most 1) when facilities other thanare closed. Hence,

D T(s) <2 shift(q) (3.16)
s qcT

For a swap patl®, defineres-wt (P) =1 — wt (P). Let; be headP) and define
wt (j) = wt (P) andres-wt (j) = res-wt (P). Let P start from facilitys. Whens is
closed, clieny is assigned to an extewt () to other facilities inS. We will be assigning
the remaining part of to a facilityo € O — S that will be opened whenis closed. Hence
the total number of clients that will be assignedisres-wt (Ng(s)) which is less than
U. The increase in service cost due to this reassignment is atapoest-wt (Ng(s)).
As done earlier, the inequality corresponding toghep(s, o) is counted to an extent, ,
in the linear combination. Since, < length) for all P € N?, we have the following

equivalent of Lemma 3.4

D Aotsores-wt (Ng(s)) < Y res-wt  (P)length(P). (3.17)
8,0 reS

The remaining available capacity @fs utilized by assigning each clieptc Ny (o)
to an extents, ,res-wt (j), whereg,, is defined as before. This assignment is actually
done by shifting along each patR,c Ny (o), by an extents; ,res-wt  (P). Let A'(s, 0)
be the increase in cost due to this reassignment of cliemt)i@). Then

N(s,0) < B, > reswt (P)shift(P).

PENo(O)
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This operation is a part df, o) and hence is counted to an exteqt, in the linear com-

bination. Therefore the contribution of this term is
PIRNEESY (Z As,oﬁs,o> > reswt (P)shift(P). (3.18)
5,0 o s PeNp (o)

Adding facility o € O — S and shifting each patlk € Ny(0) by an extentes-wt (P)

gives us the following inequality.
fot > res-wt (P)shift(P) > 0 (3.19)
PGNo(O)

As before, if) A .05, > 1 then we reduce someg , so that the sum is exactly 1. Else,

we add al — > A, .05, multiple of Inequality (3.19) to Inequality (3.18) to get

Z)\SOA (s,0) <Z%f0+z > reswt (P)shift(P). (3.20)

o PeNp(o)

wherey, = max {0,1 — > A; 0050}
The inequality corresponding to tisevap(s, o) is

fo— fs +csores-wt  (Ng(s)) + A(s) +I'(s) + A'(s,0) > 0,

and taking a linear combination of the inequalities corresponding to the swaps

s€ S —0,0¢e 00— Swith weights),, yields
Z )\s,ofo - Z )\s,ofs + Z )\s,ocsoreS'Wt (NS(S))
3 XolA(s) +T(s)) + > AoA(s,0) > 0.

Since, for alls, > A\s, = 1, we get

Y S < wamzys,ow(s,o)

s€eS—-0

+ Z As.oCsol€S-WE  (Ng(s Z (3.21)

S,0
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Putting the bounds from inequalities (3.15),(3.16),(3.17) and (3.20) into the right hand
side of Inequality (3.21), yields

dof< ). <%+Z>\s ) fo+ Y res-wt (P)shift(P)

seS—0 0e0—-S PGS
+ ) resswt (P)length@®) + > wt (P)(shift(P) + length(P))
reS PeS
+2 )~ shift(P)
pcT
< 2 ) fo+ Y res-wt (P)(shift(P) + length(P))
0€0—S PeS
+ ) wt (P)(shift(P) + length(®)) + 2 ) _ shift(P)
reS reT
= 2 ) fo+ > (shift(P) + length(?)) + 2 ) _ shift(P)
0€0—-5 peS peT
<

2 ( Z fo+ Z Oj)
oc0O—-S jec

where the first inequality follows from Lemma 3.8 and Lemma 3.5. This implies that
> §2( > fo+20j> + > fo<2 (Zf#Z@)
ses 0€0-5 jec 0€SNO 00 jec

which is the statement of Theorem 3.7 whenm O # ¢

3.5 Atight example

Our tight example consists effacilities in the optimum solutior®, r facilities in the
locally optimum solutionS andrU clients. The facilities ard" = O U S. Since no
facility can serve more thalti clients, each facility inS andO serves exactly/ clients.
Our instance has the property that a facility(hand a facility inS' share at most one

client.
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We can view our instance as a set-system — the set of facifitissthe ground set
and for every facilitys € S we have a subseX; of this ground seto € X iff there is a
client which is served by in the solutionS and byo in the solutionO. This immediately
implies that each element of the ground set is in exaltlyets and that each set is of
size exactlyUU. A third property we require is that two sets have at most one element in
common.

We now show how to construct a set system with the properties mentioned above.
With everyo € O we associate a distinct point = (29, 23, ...z¢) in aU-dimensional
space where for all, z¢ € {1,2,3,...,U}. For every choice of coordinatel < i < U
we formUY~! sets, each of which contains all points differing only in coordiriaféhus
the total number of sets we formis= UY which is the same as the number of points.
Each set can be viewed as a linelindimensional space. To see that this set system
satisfies all the properties note that each line confdipeints and each point is on exactly
U lines. It also follows from our construction that two distinct lines meet in at most one
point.

We now define the facility and the service costs. For a faciligyO, f, = 2U while
for facility s € S, f, = 6U — 6. For a clientj € N?, we havec,; = 3 andc,; = 1. All

other service costs are given by the metric property.

Lemma 3.9 For aclient;j and facility s € S, the three smallest values tha} can have
are 3,5 and 11. Similarly, the three smallest values thato € O can have are 1,7 and
9.

Proof A client j can be served at a cost 1 by exactly one facilityimand at a cost 3
by exactly one facility inS. The distance between a facility (m and a facility inS is at
least 4. [
Since the service cost of each client(his 1 and the facility cost of each facility
in O is 2U, we havec(O) = 3UY*L. Similarly, ¢(S) = (3 — 2/U)3UY*! and hence
c(S) = (3—=2/U)c(O). We now need to prove thét is indeed a locally optimum
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solution with respect to the local search operationaduf, deleteandswap

Adding a facilityo € O to the solutionS, would incur an opening cost @f/. The
optimum assignment would reassign only the clientdjf0O), and all these are assigned
to 0. The reduction in the service cost due to this is exaztfywhich is offset by the
increase in the facility cost. Hence the cost of the solution does not improve.

If we delete a facility in the solutio, the solution is no longer feasible since the
total capacity of the facilities is noWV+! — U and the number of clients {gV+1.

Now, consider swapping a facility € S with a facility o € O. The net decrease in
the facility cost istiU — 6. To bound the increase in service costs we consider a bipartite
graph with the facilitiesS U {o} and the client€’ forming the two sides of the bipartition.
Let F be the edges corresponding to the original assignment of clients to facilitigs’and
be the edges of the new assignment. The symmetric differenEeaatl £’ is a collection
of U edge-disjoint paths betweerando. Let P be this collection and be one of these
paths. We define theet-costof P as the difference between the costs of the edgés of
andF in P.

Lemma 3.10 The two paths inP with the smallest net-cost have a total net-cost of at

least 2. All other paths if® have net-cost of at least 4.

Note that the increase in service cost as a result of the éwapequals the total net-cost

of the paths irfP. The lemma implies that the net-cost of the paths is at last- 2) +

2 which is exactly equal to the decrease in facility cost. Hence, swapping any pair of
facilities s € S ando € O does not improve the solution.

Proof The edges oF on pathP have cost 3. From Lemma 3.9 it follows that the edge
on pathP incident too has cost 1,7 or higher while the remaining edge& of £’ have

cost 5,9 or higher. Edges an alternate between sets and £’. Hence starting from

we can pair consecutive edgesmfwith the first edge of each pair from and the other
from E’. Note that every pair, except the last, contributes at least 2 to the net-cBst of

while the last pair contributes at least -2.
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Figure 3.5:U = 3.The figure shows the three cases correspondirig faaving length 1, 2 and
3. Py is the dotted path?; is the path with small dashes whi& is the path with longer dashes.

1. If the edge ofP incident too has cost 7 or higher than the last pair contributes at

least 4 to the net-cost df and hence the net-cost 6fis at least 4.

2. If any edge ofP N E’ has cost 9 or higher than the corresponding pair contributes
at least 6 to the net-cost. Since the last pair contributes at least -2, the net-Eost of

is at least 4.

As a consequence of the above we can assume that all edgesBf have cost 5, except
the edge incident to which has cost 1. This implies that the pd&tltorresponds to a path
S1,Ss, ... S, In our set-system where consecutive sets have a common elemefit and
corresponds to facility while S, contains the element correspondingtdlternatively,
in our construction of the set-system, the p&thorresponds to a sequence of lines where
consecutive lines in the sequence intersect and the first line is the one corresponding to
facility s while the last line contains the point corresponding.tdNote that the paths in
‘P are edge-disjoint but not vertex-disjoint. Hence the sequence of lines corresponding to
two paths inP may have common lines but no pair of consecutive lines can be common
in the two sequences. Further, the sequences should end in different lines.

A path P containingk sets, corresponds to a sequence of lines contaihiinges
and has a net-cost afk — 2) and we say that its length ks Hence paths with 4 or more
lines have a net-cost at least 4 and so to prove the lemma we need to argue that there are
at most 2 paths if? having less than 4 lines. L&}, P, be the two paths with the smallest

lengths withF, being the smallest.
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1. If By haslength 1 then the line corresponding tsayy®, contains the point corre-
sponding taw, sayx°. From our construction it follows that any other sequence of
lines which starts witly® and ends with a line containing which is different from
y® must contain at least 4 lines (including lipgd. Hence pathP, has a net-cost at

least 4. Thus the total net-cost of pathsand P, is at least 2 (see Figure 3.5).

2. If Py has length 2 then the ling and the point:°, have identical values fdr — 2
coordinates. Leg* be the line in, containingz®. Once again, from our construc-
tion it follows that any other sequence of lines which starts witand ends with a
line containinge® which is different fromy® must contain at least 3 lines. Henkge
has length at least 3 and so the total net-cost of p@flasd P, is at least 2. Further
the other paths oP would end with lines which are in dimensions other than the

last lines ofF,, P, and so the length of these paths is at least 4 (see Figure 3.5).

3. If F, has length 3 thep® andz° have identical values fay — 3 coordinates. In
this case, the net-cost of pathg, P, is at least 2 and the other paths@have at

least 4 lines (see Figure 3.5).
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Chapter 4

A (5+¢)-Approximation for Capacitated

Facility Location

In this chapter we apply our ideas developed in Chapter 3 to the setting of non-uniform
capacities. The first local search algorithm for non-uniform capacities problem was due
to Pal, Tardos and Wexler [PTWO01] who gave a (8. §3approximation for this problem.
Mahdian and Pal [MPO03] reduced this to a (7.88approximation and simultaneously
extended it to the more genemahiversal facility locationproblem. The approximation
guarantee for the capacitated facility location problem was further reduced by Zhang,
Chen and Ye [ZCYO05] to (5.839.

Zhanget al. use three operatioresdd openandcloseof Palet al. and introduce a
new operation callechulti. We modify theopen closeandmulti operations so that apart
from the clients served by facilities being closed, some more clients, served by other
facilities in the current solution, are assigned to the facilities being opened to utilize them
more efficiently. We show that with these modifications we are able to achieve a factor of
(5+e).

The remainder of this chapter is organized as follows. In Section 4.1 we present

a brief overview of the algorithm and analysis of Zhaatgal. In Section 4.2 we first
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show the underutilization of the opened facilities withpen closeand multi operations

and then suggest the improved operatiompen mcloseandmmulti We then bound the
facility cost of our solution obtained with these new operations in the same section. We
also present a tight example in Section 4.3 where we give a locally optimal sokition
whose cost is 5 times the cost of the optimum solution. Throughout this chapter we have
made an assumption th&th O = ¢. This assumption helps us in building new ideas for
the problem and putting them in a simpler way. In the next chapter we will get rid of this

assumption when we discuss a more general version of the problem.

4.1 Preliminaries and Previous Work

As is true for the uniform capacity case, for a set of facilittesC F’, the optimal as-
signment of clients to the facilities ii can be done by solving a mincost flow problem.
Therefore we only need to determine a good sulSs€t F' of facilities. We reuse the
notations of chapter 3 wherg denotes both the solution and the set of open facilities in
the solution; the cost of the solutighis denoted by:(S) = c¢;(S) + ¢5(S), wherec,(S)
is the facility cost and;(.S) is the service cost of the solutigh

Pal, Tardos and Wexler [PTWO01] suggested a local search algorithm to find a good
approximate solution for the problem. Starting with a feasible solutidhe following

operations are performed to improve the solution if possible.

e add(s): S «— SU{s}, s € S. In this operation a facilitys which is not in the

current solutions' is added if its addition improves the cost of the solution.

e open(t, T): S «— (SU{thH) \T,t ¢ S, T C S. In this operation a facility ¢ S
is opened and a subset of faciliti#gs C S is closed. Since the possibilities for
the setl” are exponentially large, to make the procedure polynomial, instead of
computing the exact cost of the new solution only an estimated cost is computed

which overestimates the exact cost. The operation is then performed if the estimated
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cost is less than the cost of the solutiSn In computing the estimated cost it
is assumed that for any € T, all clients served by are assigned to and that
each such reassignment cosgtswherec,; = min;cc ¢;; + ¢js. Working with the
estimated cost allows to find in polynomial time, for a givethe setl” for which
the estimated cost df5' \ 7°) U {¢} is minimum [PTWO01] by solving a knapsack

problem.

e close(s, T):S «— (SUT)\ {s},s € S,T C F\ S. In this operation a facility
s € S'is closed and a subset of facilitigs(disjoint from S) is opened. Once again,
an estimated cost of the operation is computed, in which it is assumed that a client
which was assigned toin the solutionS will now be assigned to somec 7" and
that this reassignment costs. As before, working with the estimated cost allows
to find in polynomial time, for a given, the setl’ for which the estimated cost of

(SUT)\ {s}is minimum [PTWO01] by computing a covering knapsack problem.
Zhanget al. added the following operation to the above set of operations:

e multi, R, t, T): S— (SURU{tH\({r}uT),re S\T, T C S\{r},RC F\
(SuU{t}),t ¢ SU R. This operation is essentially a combination aiese (r, R)
andopen (¢, T') with the added provision that clients servedrbgmay be assigned
to facility ¢. For a choice of andt the operation can be implemented by guessing
the number of clients serviced bythat will be assigned toand then determining

the setsk andT" which minimize the total expected cost.

S is locally optimal if none of the four operations improve the cost of the solution
and at this point the algorithm stops. Polynomial running time can be ensured at the
expense of an additivein the approximation factor by doing a local search operation
only if the cost reduces by more than a ¢/5n factor, fore > 0.

Let S C F be a locally optimal solution an@ C F' be an optimum solution. As

in the case of uniform capacities, taddoperation allows us to bound tservice cosof
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the solutionS, i.e.
Lemma 4.1 ((MPO03, ZCYO05]) ¢s(S) < ¢5(0) + ¢£(0) = ¢(0).

To bound thefacility costof .S, a suitable set of inequalities is formulated which
arise from the fact that is locally optimal. To identify these inequalities, Fedlal. build
an exchange grapfi whose vertices are the set of facilitiesSnand the facilities in the
optimum solutionD. G has an edgés, 0),s € S,0 € O if there are clients served by
in the solutionS and byo in O and the value of this edge(s, o), is the number of such
clients. Note thay(s,0) = |N?|, whereN? is the set of clients served byc S and by
o € O as defined in Section 3.2. As defined in Section 8Zs) (No(0)) denote the
set of clients served byin S (o in O). Also Np(0) = Uses N2 and Ng(s) = Uyeo NE.
Also recall thatO; denotes the service cost of clignhtn the solutionO and S; denotes
the service cost of clientin the solutionS. The cost of the edggs, o) is ¢,,. Recall that

Cso = MiNjec(Cjs + ¢jo) < Minjeney (O; + S;). Note that

1. ZSES,OEO 650y<37 0) S CS<S) + CS(O).

Proof ~ Sincey(s,0) = |N°|

Yod eIV < DTN (05+ )

0cO sef8 0cO se8 jeN?

= > ) (0;+5)

s€S jeNg(s)

= > (0;+5))
jeC

— (9) +(0)

2. GG is a bipartite graph witl$ andO defining the sets of the partition.

3. Vs €S8, Y coyls,0) =|Ng(s)|andVo € O, _sy(s,0) = [No(0)|.
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The graphG may contain cycles, therefore it is now modified to make it acyclic.
Consider a cycle irG and letC' be the edges on the cycle. Partition the edge€§’ of
into setsC, Cs such that the edges af; (and(,) are alternate edges on the cycle. Let
~ be the minimum value of an edge @. Consider two operations: one in which we
increase the value of edgesdn and decrease the value of edge€inby an amounty
and the other in which we do the inverse. decrease the value of the edge<inand
increase the value of the edges(in. Note that in one of these operations the total cost
Y ses.0co CsoY(8, 0) would not increase and the value of one of the edges would reduce to
zero thereby removing it from the graph. This process is continued till the graph becomes
acyclic. Note that the modified values of the edges continue to satisfy the three properties
listed above (see Appendix A.2 for proof). However, now it is no more the case that value
of an edgd s, o) is the number of clients which are serveddy S ando € O.

Consider a subtre€ in GG of height 2 rooted at € O. Figure 4.1 shows one such
subtree. Recall that the aim is to formulate a set of inequalities that will let us bound the
total facility costc,(S) of the solutionS. Each inequality is obtained by considering a
potential local step and using the fact tisas a locally optimal solution. The inequalities

are written such that
1. each facility inS'is closed exactly once.
2. each facility inO is opened at most thrice.
3. the total cost of reassigning clients is bounde®@By . .. csoy(s,0).
and when added yield
—c(S) + 3¢£(0) +2(cs(S) + ¢5(0)) > 0

or

cr(S) < 3cp(O) + 2(cs(5) + ¢5(0)) (4.1)

56



8] [ afa] (8] [o] B][e][8][2][s] o©

Figure 4.1: The subtree of height 2 showing up-facilities and down-facilities. The square
facilities are in the optimum solution while the circular facilities are in the locally optimal
solution. The arrow in the facility identifies it as an up/down facility

We now discuss the choice of inequalities as given by Zhetrg. in greater de-
tail. For a facility i, let p(i) be the parent and (i) be the children of. A facility i
is anup-facility if y(i,p(i)) > Z]EKU) y(i,j) and adown-facilityotherwise. LetK (1)
(respectivelyK,(7)) denote the children af which are up-facilities (respectively down-

facilities). For a facilityo € O we further insist that

1. if o is an up-facility it is opened at most once in the operations involving facili-
ties which are descendants @fn the tree and is opened at most twice in other

operations.

2. if o is a down-facility it is opened at most twice in the operations involving facil-
ities which are descendants ofin the tree and is opened at most once in other

operations.

Consider a facilitys € .S which is a child oft € O.
Case 1:Let s be a down-facility and leb € O be a child ofs. Whens is closed

we can assigy(s, o) clients served by to facility o if o is a down-facility. Else we can
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Figure 4.2: The ordering of facilities if(,;(¢) and the reassignment of clients when one
of these facilities is closed.

assigny(s, o) clients served by to o. Thus we need to assign

Zy(s,o)— Z (s,0) —2 Z (s,0) = y(s,t) — Z y(s,0)

00 0€Ku(s) 0€K (s 0€K4(s)
to facilities other than the children af we refer to the above quantity asm(s). To
assign these clients, Zhaagal.order the facilities i, (¢) in increasing order aem(s);
let sy, so, ..., s be the order (Figure 4.2). For# k, they assign the remainimgm(s;)
clients of s; to facilities in K, (s, 1) with at mosty(s;.1,0) clients assigned to facility

o € K,(s;4+1). This takes care of all the remaining demand because
rem(s;) <rem(si) =y(si ) — > ylsi,00 < Y y(sis1,0)
0€Kq(si+1) 0€Ku(si+1)
where the last inequality follows from the fact that, is a down-facility and hence
y(sis ) < D ylsin o)+ Y ylsi,o).
OEKd(Si+1) 0€K7L(Si+1)
Thus Zhanget al. performclose (s;, K (s;) U K, (s;+1)) for i # k and assign the clients

of s; as described above. The discussion above shows that the operation is feasible. The
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last facility in the order, i.e.s; needs to be handled differently. In fagj, is closed

together with the facilities i, (t).

that

1.

To bound the cost of reassigning clients served by facilitie& j(¢) \ {sx}, note

since edge costs form a metric,,, 0 € K,(s;41) is at moste,,; + ¢, + Csyy 100

. the contribution of the edgés;,t) i # 1,k to the reassignment cost is at most

(rem(s;) + rem(s;_1))cs,¢. Since bothrem(s;) andrem(s;_;) are at mosy(s;, t)
the total contribution is at mosgt(s;, t)cs,;:. The contribution of the edge, ¢) to
the reassignment cost is at mosin (s;)cs,: < y(s1,t)cs,+ and the contribution of

the edgd s, t) to the reassignment cost is at most (s;—1)cs,: < rem(sg)cs,: <

Y(Sk, ) Cspt

. for i # k the contribution of the edgés;, 0),0 € Ky(s;) is at most2y(s;, 0)cs,,

since2y(s;, o) clients are assigned towhens; is closed.

. the contribution of the edgés;,0),0 € K,(s;), i # 1,k is at most2y(s;, 0)cs,,

since at mosy(s;, o) clients are assigned tponce whens; is closed and once
whens,_; is closed. The contribution of the edge,0),0 € K,(s;) is at most

y(s1,0)cs,, and that of(sy, 0), 0 € K, (si) is at mosty(sg, 0)cs,o-

. fori # 1, k, an up-facilityo € K,(s;) is opened at most twice when considering

facilities of S which are not descendants®fA down-facilityo € K,(s;) is opened

once when considering facilities 6fwhich are not descendants @f

. fori =1, an up-facilityo € K,(s1) is opened once when considering facilitiessof

which are not descendants @f A down-facility o € K,(s;) is opened once when

considering facilities ob which are not descendants @f

. for i = k, an up-facilityo € K,(s;) is opened once when considering facilities of

S which are not descendants @f
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Figure 4.3: Thamulti operation considered whens an up-facility.

8. tis not opened in these operations.

Case 2:Now consider the facilities iti, (¢) U { s }.

Case 2(a):If ¢ is an up-facility then Zhangt al. perform amulti operation
multi (s, K(sk),t, K,(t)) which can be viewed as a combinatioroplen (¢, K, (t)) and
close (sk, K(si)) (Figure 4.3). In this operation clients servedsby K, (t) are assigned
tot¢, thusatmosk_ ., u(s,t) clients served by facilities i, () are assigned tq

andy(s, o) clients served by, are assigned to facilities me K (s;) U {t}. Note that

1. the multi operation is feasible because the total number of clients assigred to
atmos®2 Y- . y(s,t) + y(sk,t) which is at most the capacity ofincet is an

up-facility.

2. the contribution of the edg€s, t), s € K,(t) to the reassignment cost is at most

2y(s, t)cs and that of the edgésy,, 0), 0 € K(si) U {t} is at mosty(sy, 0)cs, o

3. the up-facilityt is opened once when considering facilitiesSoivhich are descen-

dants oft.
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4. afacility o € K(sx), whethero is an up-facility or a down-facility, is opened once

in this operation when considering facilities fwhich are not descendantsof

Case 2(b): Next consider the case wheris a down-facility. Zhangpt al. partition
the facilities inK,(t) into two setsA U {1'}, B such that

> 2y(s,t) +y(h 1) < [No(t)]

seA

> 2y(st) +ylsit) < [No(t)l

seB

whereh’ € K,(t) andh’ ¢ AU B. This can be done as follows:

1. Leth € K,(t) be the facility for whichy(s, ) is the maximum fog € K,(t). First
partition K, (¢) \ {h} into two setsA’ and B’ as follows:

Consider the facilities of<,(¢) \ {k#} in an arbitrary order and continue assigning
them to the setd’ until °__, 2y(s,t) > [No(t)|. The last facility considered
and the remaining facilities are assignedo If > __, 2y(s,t) > [No(t)| then
ZseA’UB’u{h} 2y(s,t) > 2|No(t)| which is a contradiction. Hence’ ., 2y(s, t)

< [No(t)]

2. Next, construct the set$ and B as follows:
Let ZseA' y(87 t) Z ZSGB’ y(sa t)'

@) if > e 2y(s, t)+y(sk,t) > | No(t)| then, since ., p 2y(s, t)+2y(h,t)+
2y(sp,t) < 2|No(t)| therefored " . 2y(s,t) +2y(h,t) +y(sk,t) < [No(t)|.
In this case, we tak& = B’ U {h}, note that) " _,2y(s,t) + y(sp,t) <
|No(t)|. Leth’ be any facility in A’ then we takeA = A’ \ {/’}. Since
Yosea 2y(s,t) < [No(t)|, therefored " _, 2y(s,t) + y(h',t) < [No(t)].

(b) 1> cu 2y(s, t)+y(si,t) < [No(t)],and)" 4 2y(s, t)+y(h,t) > |No(t)],
thenwe musthav® _, 2y(s,t)+2y(sk, t)+y(h,t) < |No(t)|. Thisimplies
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Figure 4.4: The partition oK, (¢) and themulti operations considered wheis a down-
facility.

Yoeen 2y(s,t) +y(h,t) < |No(t)| . Inthis case we takd = B, b’ = h and
B = A'. Clearly A, B andh’ satisfy the desired property.

(©) I Y e 20(s.8) +y(s. ) < [No(t)] andy, 4 2y(s. ) +y(h.1) < [No(t)]
then this also implies th3t__,, 2y(s,t) + y(sk, t) < [No(t)| and
Yosen 2y(s,t) +y(h,t) < |No(t)| (by the assumption given above). In this
case we cantakd = A', k' = handB = B'. Clearly A, B andh’ satisfy the
desired property

If > cpy(s,t) > > .cay(s t), then by interchanging the role of and B’ in
the above construction, we can obtain the se&nd B which satisfy the desired
property.

Zhanget al. now consider twanulti operations (Figure 4.4). The firstis

multi  (sx, K(sg), t, B) which is a combination oflose (sx, K(sx)) andopen (¢, B) in

whichy(sy, o) clients ofs, are assigned to facilitiesc K (s;) Ut and clients of facilities

in B are assigned ta Thus at mosd ___, 2y(s,t) + y(sk, t) clients are assigned tan
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this operation. The second operatiomislti (»’, K (h'), t, A) which is a combination of
close (W', K(h')) andopen (t, A) in whichy(h/, o) clients ofh’ are assigned to facilities
o € K(h")Ut and clients of facilities im are assigned to Thus at mos} ___ , 2y(s, ) +
y(h',t) clients are assigned toin this operation. The properties of the setsand B
ensure that the capacity ois not violated as the facilities id and B are up-facilities.

This implies that both thenulti operations are feasible. Note that

1. the contribution of an edgés, t), s € K,(t) to the reassignment cost is at most
2y(s,t)cg.

2. the contribution of an edgey, 0), 0 € K(sx) U {t} is at mosty(sg, 0)cs,o-
3. the contribution of an edg@’, 0), 0 € K (k') U {t} is at mosty(h’, 0)cp,.

4. the down-facilityt is opened at most twice when considering facilitiesSaihich

are descendants of

5. afacility o € K(s;), whethero is an up-facility or a down-facility, is opened once
inmulti (sg, K(s), t, B) operation when considering facilities 8fwhich are not

descendants of.

6. a facility o € K(h'), whethero is an up-facility or a down-facility, is opened once
inmulti  (r', K(Rh'),t, A) operation when considering facilities 6fwhich are not

descendants of.

From the above discussion we can conclude that a faeili&éyO is opened at most

three times in all the operations considered, as summarized below:

1. Wheno is an up-facility: While considering the facilities of which are descen-
dants ofo, o would be opened once when it is part afailti operation
multi (s, K(sx), 0, K,(0)) as discussed in case 2(a). While considering the facil-

ities of S which are not descendants @fo would be opened at most twicejifo)
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is a down-facility, as discussed in case 1 and would be opened at most giicg if

is an up-facility.

2. wheno is a down-facility While considering the facilities 6f which are descen-
dants ofo, o would be opened twice, as discussed in case 2(ljould be opened
at most once while considering the facilities ®fwhich are not descendants of

irrespective of whethes(o) is an up-facility or a down-facility.

4.2 Improving the Operations

The key contribution of this chapter is to modify tleeose and openoperations (and

consequently thenulti operation) to exploit the following observation.

Claim 4.2 In the analysis of Zhangt al.a facility o € O is assigned a total of at most

2>, y(s,0) = 2|No(0)| < 2u, clients over all operations considered.

Proof We will first prove the claim for the case wheris an up-facility which is fol-

lowed by the case whenis a down-facility.
1. Wheno is an up-facility

(a) While considering the facilities o which are descendants of o would be
part of amulti operationmulti  (sx, K (sx), 0, K, (0)) (as discussed in case
2(a)) and assigned at masd_ . ., y(s,0) + y(sk,0) clients wheres;, €
Kg(0). Note that this is at moX> ., ¥(s,0) <23 y(s,0).

(b) We next consider the number of clients assignedwdnen considering facili-
ties of S which are not descendantswflf the pareni (o) of o is an up-facility
theno could be assigned at magip(o), o) clients in amulti operation involv-
ing p(o)(whenp(o) is k') as discussed in case 2(b).plfo) is a down-facility

theno would be assigned at mogy(p(o), o) clients and this can be argued
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as follows: consider the ordering of the down-facilities which are siblings of
p(0).

i. if p(o) is the first facility in the ordering (referred to ag) theno is only
part ofclose (s1, K(s1) U K,(s2)) and is assignedl(si, o) clients as is
discussed in case 1.

ii. if p(o)is theith facility in the ordering (referred to as) and is neither the
first nor the last facility them is part ofclose (s;_1, K(s;—1) U Ky(s;))
andclose (s;, K(s;) U K,(s;1+1)) and is assigned(s;, o) clients in each
of these operations as discussed in case 1.

iii. if p(o) is the last facility in the ordering (referred to ag theno is part
of close (si_1, K(sx_1) U K,(sx)) as discussed in case 1 andnalti
operation involvings, as discussed in case 2(a)/case 2(b). In both these

operations is assigned (s, o) clients.

Hence the total number of clients assigned tehen considering facilities of

S which are not descendants®is at mosty(p(o), o).

Therefore the total number of clients assigned t@heno is an up-facility is at

most2 > y(s, o).
2. wheno is a down-facility

(a) While considering the facilities o$ which are descendants of o would be
part of two multi operations: first isnulti (h', K(h'), 0, A) and second is
multi  (sx, K(sk), o, B) and the number of clients assignedto these oper-
ations is2) ., y(s,0) +y(h';0) and2 )" 5 y(s,0) + y(sk, 0) respectively
as discussed in case 2(b). Sinte) BU {h'} = K, (0) ands; € K,(o), the
total number of clients assigned 4an these twomulti operations is at most

2 ZSGK(O) y(57 0) S 2 Zs y<S7 O)'
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(b) We next consider the number of clients assigned tohen considering fa-
cilities of S which are not descendants ef If the parent ofo, p(0), is an
up-facility theno would be assigned at mogtp(o), o) clients in amulti op-
eration involvingp(o) as discussed in case 2(b). 7ifo) is a down-facility
theno would be assigned at mogy(p(o), o) clients and this can be argued
as follows. As before, consider the ordering of the down-facilities which are

siblings ofp(o).

i. if p(o)is theqth facility in the ordering (referred to as) and is not the
last facility thero is part ofclose (s;, K(s;) U K,(s;+1)) and is assigned

2y(s;, 0) clients as discussed in case 1.

ii. if p(o) is the last facility in the ordering (referred to ag theno is part
of amulti operation involvings, in which o is assigned(sy, o) clients as

discussed in case 2(a)/case 2(b).
Hence the total number of clients assigned tehen considering facilities of

S which are not descendants®is at mosty(p(o), o).

Therefore the total number of clients assignea teheno is a down-facility is at

most2 > y(s, o).

Since each facility € O is opened thrice in the analysis of Zhagigal. the above claim

implies that when a facility is opened we do not use it to its full capacity.

4.2.1 mopen The Modified Open

Recall that, given a feasible solutid#i, in the operatioropen (¢, 7') we open a facility
t € F'\ S’ and close a subset of faciliti@s C .S’. Our operatiomopernis defined in such

a manner so that if the capacity ©fs more than the total capacity of the facilitiesih
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we use the remaining capacity ofo service clientg for which S’; the service cost of
jin S, is larger tharr;;. HoweverT is not known beforehand but is computed as a part
of the procedure. Thus, we don’t know how much capacity @dn be utilized this way.
Thus we make a guess for the capacity afich will be utilized for this purpose ard

is computed for the remaining capacityicds explained below.

1. Let k£ be a guess of the difference in the capacity ahd the total capacity of the

facilities inT'.

2. We reduce the capacity oby k and using the procedure of Rlal.find the subset

T C S which minimizes the estimated cost.

3. To utilize the remaining capacity of ¢ we do the following: order the clients in
decreasing order & — ¢;; discarding those for which this quantity is negative. Let
k' be the total number of clients for whic§§ — c;; is positive. The firstnin{k, &'}
clients in this ordering are assignedtt@and the savings arising from this step is

reduced from the estimated cost computed in step 2.

4. The process is repeated for all the valueg @f[0..«;] and the solution for which

the cost is minimum gives the optimum get

For a choice of facilityt, steps 1-3 are repeategl = O(m) times. Each time a
knapsack problem is solved which can be done in polynomial time. Step 3 can be easily
done in polynomial time. Therefore the above procedure runs in polynomial time.

Let S be a locally optimal solution with respect to our algorithm @ndbe an op-
timum solution. Note that a solution which is locally optimal with respect to our al-
gorithm is also locally optimal with respect to Zhaagal’s algorithm. To bound the
facility cost, we consider an operatiomopen(t, 7) wheret € O andT C S, such that
Y ser INs(s)| < [No(t)]. Sincemopen(t,T) does not reduce the cost of the current so-

lution, open(t, T') operation (of Zhangt al) also does not reduce the cost. In thfgen
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k clients u(t) -k clients

Figure 4.5: Sefl’ = {s3,s4} is closed and is opened in the operatiomopen(t,T).
Unshaded portion of facility shows the capacity dgfutilized for accommodating clients
earlier served by facilities iff".

operation Ng(s)| clients ofs € T are assigned to Let z(s, t) denote this quantity. This

operation then yields the inequality

fe=> fat > 2(s,t)ea =0

seT seT
In the modified operatiomopen(t, T'), z(s,t) number of clients served by each

s € T'and|No(t)| — >, 2(t, s) more clients served by facilities i#l are assigned tt

We can then formulate the following inequality

Fo= S+ D 2l t)eq + No(®)] = 2 ser 2(5,1) S (0,-5)20 (42)

seT seT [No()] jeNo(t)

The last term in the above inequality arises from the argument that instead of uti-

lizing the remaining capacityNo(t)| — > .. 2(s, ), in the best possible way we could

INo(t)| -3 ,er 2(s,t)
[No ()]

in doing this we would not have reduced the estimated cost of the new solution. In fact

have assigned each client ¥y (t) to the facility ¢ to an extent and

the extent up to which we assign each client\ef(¢) to ¢t can be any value between 0
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and |No(t)u|vfo%|” %) " For the moment we assume that each client is assigned up to

INo(t)|-.cr2(s.t)
No ()]

inequalities, if the need arises. The purpose of doing this will become clear at the time

the extent of . We might reduce this quantity when we add all such

this is required to be done.

4.2.2 mclose The Modified Close

In close (s,T) we close a facilitys € S and open a set of faciliti€s C F'\ S. As in
themodified opermperation, if the total capacity of the facilitiesThexceeds the number
of clients served by in the solutionS, then we would like to use the remaining capacity
in T" to reduce the estimated cost of the operation.

Note that at most one facility i could have some remaining capacity. We call this
facility the pivot facility and denote it by*. Since we don’t know this pivot facility, we
guess*. Also since we don’'t know the excess capacity available withve guess that
also.

Thus, given a facilitys € S, to determine the séft for which the estimated cost of

the new solution is minimum we proceed as follows:

1. Lett* € F'\ S be a guess of the pivot facility and letin [0..u<] be a guess of the
difference in the capacity afand the total capacity of the facilitiesT\ {¢*}, i.e. k
is the guess of the number of clientssaghat will be served by* andT"\ {¢* }should
have sufficient capacity to serve the remainig- % clients ofs i.e. if the capacity
of s is u, then setl” of facilities is computed such th@teT\{t*} uy > ug — k or

equivalentlyu, — >, 7\ (. w < k. Refer to the Figure 4.6.

2. We reduce the capacity ety k& and using the procedure of Rdlal.find the subset
T" C F\ (S U{t*}) which minimizes the estimated cost.

3. The remainingt clients ofs are assigned t¢* and the estimated cost is increased

by kcg-.
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k clients

u(t”) -k clients N

Figure 4.6: Sefl" is opened and; is closed in the operatiomclose(ss, T'). Unshaded
portion of facility t* shows the capacity af utilized for accommodating clients earlier
served byss.

4. To utilize the remaining capacity of do the following: order clients in decreasing
order ofS; — ¢;+; discarding those for which this quantity is negative. L'dbe this
number. The firstnin(k’, u;« — k) clients in this ordering are assigned:tand the
savings arising from this step is reduced from the estimated cost computed in step
3.

5. The process is repeated for all choicesofe F'\ S and values of: in [0..u]
and the solution for which the estimated cost is minimum gives the optimum set
T=TUt"

Given a choice of, steps 1-4 of the above procedure are repeated for all possible choices
of t* and k. Since the number of choices fér is O(n) and that fork is O(m), the
procedure is repeated(nm) times. Step 2 which involves solving a covering knapsack
problem runs in polynomial time, step 3 and 4 can be easily done in polynomial time.
Therefore the overall running time of the procedure is polynomial.

Recall thatO is an optimum solution andl is a locally optimal solution. Let(s, ¢)
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be the number of clients served by the facilityc S which are assigned to a facility
t € T C Oin the original operatiomlose (s,T) then)_, . z(s,t) = |Ng(s)| and this
operation yields the inequality
—fs + Z fe + Z z(s,t)cg > 0
teT tel
Claim 4.3 For the modified operatiomclose (s,7T) we can instead formulate the in-
equality

LAY fi D asteat > |NO(|2]|O_(;|(S’ ‘) (0;=5) =20 (4.3

teT teT teT jeNo(t)
Proof Consider the facilities of" in decreasing order of(s,t)/|No(t)| and keep in-

cluding them into a sef) until the total capacity of the facilities i, exceedgNs(s)].
Let ¢; be the last facility to be included intd;,. Then anmclose (s,77) operation in
which ¢, is the pivot and is assigned = [Ns(s)| — >_,cr, _y, [No(t)| clients which are
served bys and| Ny (t1)| — k1 more clients served by other facilities $hwould yield the
inequality

_fs + Z ft+ Z |N0(t)|cst + klcstl—’_

teT) tel)—t

|No(t1)| — k1
L e . S5 >
Notl E (O;—8;) >0
JENO(t1)

(4.4)

The last term in the above inequality arises from the argument that instead of utilizing

the remaining capacity/No(t1)| — k1, in the best possible way we could have assigned

each client inNy(t) to the facility¢; to an exten ’Nﬁv(j(lt?’)fkl. In fact the extent up to
No(t1)|-k

which we assign each client 6fy (1) to ¢; can be any value between 0 Nl

For the moment we assume that each clief«f, ) is assigned to; up to the extent of

[No(ty)|-k:
[N ()]

arises. The purpose of doing this will become clear at the time this is required to be done.

. We will reduce this quantity when we add all such inequalities, if the need

We take a linear combination of a sequence of inequalities of the form 4.4. In the

linear combination we take Inequality 4.4 up to an extent,adnd at the same time for
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all facilitiest € T3 \ {t1} we reduce:(s,t) by & - |[No(t)| and reduce (s, t1) by & - k1,

. . . z(s,t) k1
Where§1 = mn <mmt€Tl\{t1} ‘NO@)’) ) |N0<t1)|)

Next inequality in the sequence is obtained by again following the above procedure

of selecting a subset of facilities ifi with sufficient capacity to accommodat&s(s)|
clients. However this time the new(s,¢) values are used. [f; is the set of facilities
now selected ant}, is the facility with smallest(s,t)/|No(t)| value then we can write

another inequality similar to 4.4

—fo+ Y ft Y INo(®)|es + kaca,+

teTy teTr—to
|No(ta)| — k2
|No(t2)|

(4.5)
Y. (0;=-5)=0

JENo(t2)

Inequality 4.5 is included up to an extent&fin the linear combination ands, t) values
are again reduced as earlier. This procedure is repeated untilsal) values become

Zero.

This process can be viewed as sendjng|Ng(s)| units of flow froms to facilities
in T; with facility ¢t € T; \ {t;} receiving¢; - |No(t)| flow and facility ¢; receivingg; - k;
flow. The edgess, t) have capacity (s, t) which is reduced by the amount of flow sent.
Initially the total capacity of all edges, ;. z(s, t) equals the amount of flow that needs
to be sent i.e.|Ns(s)|, and this property is maintained with each step. By picking the
facilities with the largest values af(s, t) /| No(t)| we are ensuring that the maximum of
these quantities never exceeds the fraction of the flow that remains to be sent. This implies
that when the procedure terminateszdH, ¢) are zero andVs(s)| units of flow have been

sent.

Let us suppose that this process is carried/omimber of times, then the linear
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combination looks like

G+ + &) §:¢(§p§

={1...l} teT;

oG D INo@les + kica, | + (4.6)

i={1...1} teTi\{t:}

Z & % Z (Oj—Sj) > 0.

i={1...1} JENo(ti)

Note that(¢, +... + &) = 1.

Second term in the Inequality 4.6 can be written as

dfi D> &=> M- 4.7)

teT  i={1..1}€T; teT

whered, =3, puer &
Third term in the Inequality 4.6 can be written as

cht Z & - |NO(75)|7L

teT i={1...1}:teT; t#t; (4 8)
Z Cst Z é—zkz - Z CstZ(87 t)
teT i:{l...l}ItGTi,t:ti teT

Right hand side of the inequality follows from the construction of the linear combi-

nation.

For eacht € T, fourth term in the Inequality 4.6 can be written as
N — k.
Z (0; - 3;) Z &.% (4.9)
jENO (1) = {11 t=t; [No(t)]

Whent is not pivot facility in7; then we can consider fourth term to be zero. Let
= |No(t)| if ¢ is not a pivot facility inT; andk; = k; if ¢ is pivot facility in 7;. 4.9 can

now be written as
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s 1No()] ~ No(t) ki
2., 5])( DR U NP DR o0 )

jENo(t) i:{l...l}:tETi,t;ﬁti i:{l...l}:tETi,t:ti
1
= Z (05 = Si) 7 Z &i|No (1) — Z Eiky
‘ (NoWI \ _, o 1 Ter
JENo () i={1...1}:teT; i={1...1}:teT;
Ae| No(t)| — =(s,t)
© JeNo(?)
(4.10)
Using 4.7 to 4.10, Inequality 4.6 can now be written as:
- fs + Z /\t ' ft+
teT
4.11)
At - [No(t)] — z(s,t (
S ety + 3 2O S (0,25 2 0
teT teT ol JENO ()

A facility ¢ would contribute\, f; + z(s, t)cs + A"|N‘ON(£()J)|_Z(S’” deNO (0; —S;)

to the left hand side of Inequality 4.3. We add & \; multiple of the inequality

fit D (0;=8;) =0 (4.12)

JENO(1)
which corresponds to the operatiadd (¢), to the linear combination to match the contri-

bution oft in Inequality 4.3. [ |

4.2.3 mmulti;: The Modified multi

Recall thatmulti (r, R,t,T) is a combination otlose (r, R) andopen (¢, 7)) with an
added provision that clients servedibgnay be assigned to facilityas well. Therefore the
modification toopenandcloseoperations also implies modification to thrulti operation
which we refer to asnmulti For a choice of facilities, ¢, modified multioperation can

be performed as follows:
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1. Let k£, be a guess on the number of clients servicea bHyat will be assigned te.
We make another guess of the difference in remaining capacity, i®.— k,, of ¢

and total capacity of facilities ii’, as we did formopenoperation.

2. We reduce the capacity oby k, + k, and using the procedure of Ralalfind the

subsefl’ C S which minimizes the estimated cost.

3. Next guess a pivot facility* € F'\ (S U {t}) and letk. be a guess on the number

of clients ofr that will be assigned t¢'.

4. We reduce the capacity ofby &, + k. and find a subse®’ C '\ (S U {t,t*}) by

using the procedure faloseoperation of Paét al.

5. Of the remaining clients of, k, of them are assigned toband k. of them are

assigned te*. The estimated cost is increasediy,; + k..

6. Computeb-(j) = S; — ¢»; andb,(j) = S; — ¢,; values for each client, discarding
those for which these quantities are negative. Assign— k. clients tot* and
ky, clients tot by finding a matching of maximum cost on the basi$ef;) and
b:(j) values. The savings arising out of this step is reduced from the estimated cost

computed in the previous steps.

7. The process is repeated for all choicesk@fin [0 - ul, ky In [0---u, — k], @
facility ¢* andk,. in [0---w-]. The solution for which the cost is minimum gives
the sets? = R’ U {t*} andT".

The total number of possible choices fQr, ks, k. areO(m) and that fort* is O(n).
Thus the procedure is repeat®dnm?) times. Steps 2 and 4 can be done in polynomial
time using knapsack and covering knapsack procedures respectively. Remaining steps
can be easily performed in polynomial time. Therefore the overall procedure can be

performed in polynomial time.
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Let z(r, 0) be the number of clients served byvhich are assigned toc {t} U R
andz(s, t) be the number of clients served by 7" which are assigned tan the original

operationmulti(r, R,t,T") operation, then this operation would yield the inequality

Zfs+ft+2fo Z rocm%—z (s,t)cse >0

seT 0€ER oc{t}UR seT

Claim 4.4 For the modified operatiommulti (r, R, ¢,T) we can instead formulate the

inequality
—fe= D LA O+ D f0)+ Y 2(r o)+ Y 2(s, t)ew
seT 0€ER oe{t}UR seT
 Wolt) — ) B o) ¥ 05 w13
IR  UROEL

0€R jeNp (o)
Proof Consider the facilities of? in decreasing order of(r, 0) /| No(0)| and keep in-

cluding them into a sek’ until the total capacity of the facilities iR’ exceed$Ng(r)| —
z(r,t). Lett* be the last facility to be included int8’. Then amnmmulti (r, R’,t,T") op-
No(t)| ==(r,1)

clients which are served byand|Ny(t*)| — k. more clients served by other facilities in

eration in whicht* is the pivot and is assignéd = |Ns(r)| = >, g 1+

S would yield the inequality

=Y SO FO)+ D INo(0)lero + kecre + > 2(s )

seT oER/ o€R\{t*} seT
[No(®)] = 2(r,1) = > ser 2(5: 1)
+ z(r,t)en + = E 0; — 5,
( ) t |No<t)’ jENO(t)( J J)
[No(t")] — ke
T N (0, 85) 20
No(®) Q==

JENoO(t*)

(4.14)
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The second last term in the above inequality arises from the argument that instead
of utilizing the remaining capacity,No(t)| — z(r,t) — >, 2(s,t), in the best pos-

sible way we could have assigned each client\ig(t) to the facility ¢ to an extent
’NO(t)‘_Z(Tvt)_ZseTZ(Svt

[No (1)

of the new solution.

) and in doing this we would not have reduced the estimated cost

The last term in the above inequality arises from the argument that instead of utiliz-

ing the remaining capacityNo (t*)| — k., in the best possible way we could have assigned
No(t*)| ke

[No(t*)| ~
We take a linear combination of a sequence of inequalities of the form 4.14.

Afacility o € Rwould contribute\, f,+z(r, o)cm+A°'|N|OJ\,(OO()O|)I_Z(T’O) > ieno(o(Oi—

each client inNy (t*) to the facility¢* to an exten

S;) to the left hand side of Inequality 4.13. We add & A\, multiple of the inequality
fot > (0;=5;) >0 (4.15)
JENo(0)
which corresponds to the operatiadd (o), to the linear combination to match the con-

tribution of o in Inequality 4.13. [ |

4.2.4 Putting Things Together

Inequalities 4.2, 4.3 and 4.13 have an additional term due to the modifications we have
suggested for operatiompen closeandmulti. These additional terms when taken over
all the operations considered involving a facilitg O equals(a — m> ZjGNO(O)
(O; — S;) wherea is the number of times is opened and is the total number of clients
assigned to in the operations defined by Zhargal.. Recall that3 is at mos| Ny (o)
anda is at most 3. If a facilityo € O is opened less than 3 times in these operations
then we add the inequality correspondingatid (o) to our linear combination so that
becomes exactly 3.

Thus (a — L) >1Vo€O. If (a — L) > 1 then we will reduce the

[No(o)] [No(o)]
extent up to which term correspondingX9,. v, (O; — S;) is included in the respective
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inequality, so that this quantitéa — m> is exactly 1.
O
Thus we obtain an additional term of(O) — ¢s(S) on the right hand side of In-

equality 4.1 i.e.
cr(S) < 3¢ (0) +2(cs(S) + ¢5(0)) + ¢5(0) — ¢5(S)

which together with the bound on the service cosspf,(S) < c¢¢(O) + ¢5(O), implies
that
cr(S) + ¢o(S) <5(¢r(0) + ¢5(0)) = 5¢(0).

Theorem 4.5 The local search procedure with operaticadd, mclose, mopemdmmulti

yields a locally optimal solution that is a 5-approximation to an optimum solution.

To ensure that the local search procedure has a polynomial running time we need
to modify the local search procedure so that a step is performed only when the cost of
the solution decreases by at le@st5n)c(S). This modification implies that the right
hand sides of inequalities 4.2, 4.3, 4.12,4.13,4.15 which are all zero should instead be
(—e/bn)c(S). Note that eacls € S is closed in either anmopen mcloseor a mmulti
operation and therefore appears in exactly one of the inequalities of type 4.2(for mopen),
4.3(for mclose) or 4.13(for mmulti). Further, for everye O, we add(1 — A\, <= 1)
multiple of inequality 4.12/4.15 at most 3 times( because every o appears in atmost 3
inequalities of type 4.3 or 4.13 arid — \,) multiple of inequality 4.12/4.15 is added to
4.3/4.13).

Putting all these modifications together gives rise to an extra term of at most
(4e/5)c(S). This implies that the facility cost of solutiosiis at mostic(O)+ (4¢/5)c(S).
Similarly, the service cost of solutigfican now be bounded kyO)+(¢/5)c(S). Adding
these yieldg1 — €)c(S) <= 5¢(O) which implies thatS is a5/(1 — €) approximation to
the optimum solution.

At the beginning of the chapter, we made an assumptionstira® = ¢. When we

remove this assumption, we need to do small modification to the operations as follows:
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Figure 4.7: The tight example

Step 3 ofmopen step 4 ofmcloseand step 6 ommultiare replaced by computatation
of min-cost flow. In this general scenario, with the help of path decomposition, it can be

shown that

cr(S) +¢s(5) < 5(cr(O) + ¢5(0)) = 5¢(0).

This is explained in detail in Chapter 5.

4.3 The Tight Example

Zhanget al[ZCY05] provide an example (see Figure 4.7) to show that their analysis is
tight. The rectangular boxes (respectively circles) in the Figure are the facilities in the

optimum solutionO (respectivelyS). The optimum solution ha®n facilities each with
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facility cost0 and capacity: — 1 and one facility with facility cost and capacitgn. The
solution.S has2n facilities each having a facility codtand a capacity.. The clients are
represented by triangles and there aumeclients each having a demandsof- 1 and2n
clients with1 demand each. The numbers on the edges represent edge costs.

Zhanget al. argue that the solutiofd' is locally optimal with respect to thadd,
open, closeandmulti operations. The cost of the optimal solutiontis- 2n and that of
S is 10n which gives a ratio of. However, scaling costs, as done in Zhal. would
destroy the local optimality of this solution.

It is easy to confirm that this example is tight with respect toatiéoperation and
the modified operationmopen, mclose, mmudperations. We will one by one show that

the solutionS is locally optimal with respect taddand three modified operations.

1. Local optimality with respect to add operation: Adding a facility with facility
cost 4 increases the facility cost of solution by 4 and total reassignment cost of
clients does not change. Net cost of operation is positive and therefore does not
reduce the cost of the solution. Adding a facility with facility cost 0 does not lead
to any change in cost of the solution. Therefore we can conclude that sofuison

locally optimal with respect taddoperation.

2. Local optimality with respect to mopenoperation mopen(¢, 7): If ¢ is a rect-
angle facility with capacity: — 1, then|T'| = ¢ due to capacity constraints. This
operation is then equivalent &mld () and we have already argued about this case.
If ¢ is facility with capacity 2n and cost 4, thefi| < 2. The case whefi’| = ¢,
is equivalent toadd (). When|T| = 1, which means only one circle facility is
closed, then cost of the operation is determined by change in facility cost which is
4-4, estimated change in assignment cost of clients which consists of rerouting cost
of n clients served by € T which is2n. Therefore cost of cost of operation when
IT| =1is4—4+2n>0.
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If |T'| = 2 which means any two circle facilities are closed in the operation, then
change in facility cost is -8+4, estimated change in assignment cost is 4n. Therefore

cost of this operation whefi’| = 2is —8 + 4 + 4n > 0.

From the above discussion we can conclude that locally optimal with respect

to mopenoperation.

. Local optimality with respect to mcloseopeartion: If we considemclose (s, T)
wheres is any facility of S, then|T'| > 1. If |T'| = 1, then facility with facility cost

4 must be there iff". Let us call this facilityt’. For this case we have already argued
that the estimated cost of the operation is positive. For the case [@hen1 and

t' € T, thenmcloseoperation with minimum estimated cost is one in which square
facility which is at a distance 0 from sayt”, is included inT". Now if |T'| = 2 and

T = {t',t"}, then change in facility cost is 0, estimated change in assignment cost
of clients is 2. Therefore the estimated cost of the operati@nis0. If |77 > 2

then also estimated cost of operation is 2 which is positive.

If ¢ ¢ T, thenmcloseoperation has minimum cost when facility at distance O
from s belongs tdl’, and at least one more facility should be therd'ito satisfy
capacity constraints. [f"| = 2 then change in facility cost is -4. Estimated change
in assignment cost is 4. Therefore estimated cost of the operation i§70. ¥ 2

then also estimated cost of operation is 0.

If facility at distance O frons is not included inf” then estimated cost of the oper-

ation is at least 4n-4 which is positive.

All these cases are exhaustive and imply that solution is locally optimal with respect
to mcloseoperation.

. Local optimality with respect to mmulti operation:

When we consider modified operationulti (r, R,¢,7T"), r can be any circle fa-
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cility. If ¢t is a square facility at distance O or 4 from then|T| = ¢ irre-
spective of whatR is due to capacity constraints. And this case is essentially
mclose (r, R U {t}) which we have already discussed,.tl= ¢, then|T| = 1

and all the demand of facility ifil"| will be routed tot = ¢'. Change in facility cost
due to this operation is -8+4, minimum rerouting cost of clients f2 if facility

at distance 0 belongs #® and because client at a distance 1 frooan be assigned
tot = t’ at cost 2. Cost of rerouting clients of facility ifi is 2n and any other
reassignment of any other client from facilitiesSn {r +¢” } has 0 cost. Therefore
this mmultioperation would cost-8 + 4 + 2 + 2n > 0. Any othermulti operation

would cost even more.

From all the above arguments it is clear that the given solution is locally optimal.
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Chapter 5

A (5+¢)-Approximation Algorithm for
Universal Facility location (UniFL)

Problem

Universal facility location (UniFL) problem is a generalization of many variants of facility
location problem. Facility location problem is said to beir@versal facility location
problem when facility cost of every facilityc F'is defined by a cost functiofj(.), which

is a monotonically non-decreasing function, that is dependent on the capacity allocated
at facility i. Therefore ifu; is the capacity allocated at facility then f;(u;) is its facility
opening cost. The aim is to determine a capacity allocation vétter (uq, us, - - -, uy)

such that the total allocated capacity of the facilities is sufficient to serve all the clients and
the total cost of opening facilities and assignment of clients to open facilities is minimized.
Once the allocation vectdr is known it is easy to determine the assignment of clients by
solving a mincost flow problem. Therefore the capacity allocation vé¢toompletely
determines the solution. Uncapacitated FLP, CFLP, and the k-median problem are all
restricted variants of UniFLP. If;(u;) = f/ for all u; > 0, then it is just another way to

describe uncapacitated facility location problem. Facility location problem is capacitated
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when f;(u;) = oo for w; > ¢; and f;(u;) = f! otherwise, where; is the fixed capacity of
facility 7.

The problem was introduced by Mahdian and Pal [MP0O3] who gave a (#)-88+
factor approximation which was improved by Vygen [Vyg07] to (6.762Zactor. Re-
cently, in a parallel work, Angett al. [ATR13] proposed a new algorithm with (5.83+
approximation factor.

In this chapter we propose two operations for the problepenandclosethat are
extensions ofnopenand mcloserespectively. Using the ideas developed in chapters 3
and 4 we show that the algorithm provides a solution whose cost is withi) {fres
the cost of an optimum solution. The arguments presented in this chapter suggest that we
can achieve the same (§+approximation factor for non-uniform CFLP without using
themmultioperation.

The remainder of this chapter is organized as follows: in Section 5.1, we first give
a broad overview of the arguments to show that we can achiewg {&etor for non-
uniform CFLP without thenmultioperation. And this fact is the main motivation behind
the (5+)-factor algorithm for UniFLP. In Section 5.2 we describe our proposed algorithm.
In Section 5.3 we prove the upper bound on the cost of the solution computed by the
proposed algorithm. In Section 5.4 we give preliminary results on the basis of experiments

done on the algorithm for the particular case of (hon-uniform) CFLP.

5.1 A (5+)-factor algorithm for (non-uniform) CFLP with-

out mmulti

In this section we’ll give a broad idea as to how we can obtaire)(5actor for (non-
uniform) CFL by droppingmmultioperation. Recall thahmultiis used at three places
in the analysis given in chapter 4: case 2(aymulti (s, K(s),t, K,(t)), case 2(b) -
mmulti (s, K (sg),t, B), mmulti (2, K(h'),t, A). Now, suppose instead of assigning
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y(sk,t) (ly(K', 1)) clients ofs (/h') to t in ammultioperation, we openfor s (/h’) and
utilize the remaining capacity ofin an efficient manner i.enmulti (s, K (sy), t, K,(t))
operation is replaced witmopen(t, K, (t)) andmclose (s, K(sx) U {t}) operations;
mmulti (sx, K (sg),t, B) operation is replaced with two operation®pen(t, B) and
mclose (sg, K(si) U{t}); and,mmulti (', K(h'),t, A) is replaced withmopen(t, A)
andmclose (', K(h') U {t}). For each such replacement we pay an additional cost of
opening? but we also get an additive term f ;(O; — S;) which leads to saving an

additive term in the service cosf(.S). The net result remains the same.

5.2 The local search operations

A solution to the UniFL problem consists of a capacity allocation vector and an assign-
ment of the clients to the facilities which obey capacity constraints. Let us consider an
allocation vectotV = (uq,us, ..., u,) for a given instance. With abuse of notation we
useU to denote both the solution and the allocation vector. The cost of a soltition

is denoted by:(U) = cf(U) + ¢,(U), wherec,(U) is the facility cost and;(U) is the
service cost of the solutioti.

Starting with a feasible solutioff, we performadd, openandcloseoperations to
improve the solutionV if possible. Given a solutio/, we can assume that for each
facility i € U, u; is exactly equal to the number of clients it is serving for if it is not true
then we can reduce; and hence the cost of the solutiofl. is locally optimal if none
of these operations improve the cost of the solution and at this point the algorithm stops.
addoperation is the same as given by Mahd&ral. We propose two new operations:

openandclose The operations are as given below:

e add(s,d): In this operation capacity allocated at a facilitysayu, is increased by
an amound > 0. Mincost flow problem is then solved to find the best assignment

of clients to the facilities. Cost of the operation is given y(u, + 0) — fs(us) +
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cs(U') — ¢s(U) wherelU’ is the new solution after increasing the capacity.of

For a combinatioris, §), add operation, which mainly involves solving a mincost

flow problem to find an assignment of clients, can be performed in polynomial time.

open(t, T, A): In this operation, capacity allocatedta& F'\ T is increased from

the current, to u; + Ay, A, > 0 andT C F'\ {t} is such that capacity allocated at

a facility s € 7' is decreased from, to u, — |A,|, A, < 0, and}___, |A] < A,

A is an n-dimensional vector which defines the change in capacity allocation at

facilities.

Finding best such operation in polynomial time is not possible because exploring
all the possibilities for sef” and vectorA cannot be done in polynomial time.
We therefore search for a sBtand a vectorA for a given(t, A;) combination as

follows:

1. Letk < A, be a guess on the total capacity to be decreased at facilitiés in

2. We solve a knapsack problem with capaditio find a set/” and vectorA. A
dynamic programming solution similar to that of Mahdian and Pal is used for
the purpose. Let,(—ds) = s - 05 + fs(us — ds) — fs(us) be the estimated

decrease in cost of solution whénnumber of clients served by facilityare

reassigned to facility. Rename facilities ik’ \ {t} as{z1, z2,- -+ , z,_1}. Let
b(i, w) denote the best possible benefit of moving= 0, - - - , k) amount of
demand ta from the set of facilitieq 21, zo, - - - , z;}. b(i, w) can be computed
as follows:
Czl —w Z = 1
iy — | (i=1)

Ming—o o w(Cs,(—0) + (i — 1L, w—=196)) (i=2,--- ,n—1)
BestT is computed by backtracking frofin — 1, k) including facilities for
which 6,, = argmin(ming_g ¢, (c.,(=9) + b(i — 1,w — §))) > 0 for an

appropriatev (determined while backtracking).
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3. Once we have determined the $eand change in allocation of capacities for
facilities in 7', we can solve the mincost flow problem to assign the clients
to facilities with their new capacity allocation. This is done to utilize the
additional capacity\, — k available with the facility. Cost of the operation is
given by: f,(u+A) — fu(ur) + e (fulus— A = fulus)) +e(U) =, (U)
whereU’ is the new solution after increasing the capacity ahd decreasing

the capacity of facilities irT".

4. The process is repeated for all values:af [0, A;] and the solution for which

the cost is minimum gives the optimum getaind vectorA.

Steps 1, 2 and 3 of the above procedure can be performed in polynomial time.
Further these steps are repeated for all the valuésrofo, A;]. SinceA, could be
at mostm, therefore these steps are repeated at M¢st) times for one choice of

A;. Thus theopenoperation can be performed in polynomial time.

close(s, T,A): In this operation, capacity allocation at facilityc F'is decreased

by amountA,|, A; < 0 and capacity allocation ate 7' C F'is increased by\,,

Ay > 0and), A, > |A,]. Also, afacilityt* € T is selected as a pivot facility

to utilize the excess capacity of the §gti.e. >, ., A, — |A,] in a similar manner

as we did in the case oficloseoperation discussed in chapter 4. We cannot explore
all possible set§” and vectorA in polynomial time. Also pivot facilityt* is not
known beforehand. Therefore to perform the operation in polynomial time, we fix

A, and determind’, pivot t* and vectorA as follows:

1. Lett* € F'\ {s} be a guess of a pivot facility anti;- be the guess of increase
in capacity at*. Letk < A; be a guess on the number of clientssahat

will be assigned to*.

2. We solve a covering knapsack problem of capalekty] — k£ and find a subset

T'" and vectorA’ as follows: Letc;(0;) = cg - 0 + fi(ug + 6;) — fi(ug) be
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the estimated increase in cost of solution whemumber of clients served
by the facility s are reassigned to facility Rename facilities irf" \ {s,t*}
as{z, 2, -+, 2n—2}. Letb(i,w) denote the best possible benefit of moving
w(=0,---,]As] — k) amount of demand fromto facilities{z, zo, - - - , 2},
which can be computed as follows:

iy - | @ (i=1)

ming_g o w(cs,(0) + (i — Lw—19)) (i=2,---,n—2)
Best sefl” is computed by backtracking frobtn — 2, |A,| — k) including the
facilities for whichd,. = argmin(ming—g o (¢, (0) + b(i — 1,w — 6))) > 0

for an appropriatev (determined while backtracking). SBt= 7" U {¢*}.

3. Once we have determined the §eand change in allocation of capacities for
facilities in 7', we can solve the mincost flow problem to assign the clients
to facilities with their new capacity allocation. This is done to utilize the
additional capacity);« — k available with the facility*. Cost of the operation
is given by: f, (us—|Ag|) = fo(us) 4> e (frlwet-Ay) = fi(ug) ) e (U') —c (U)
wherel’ is the new solution after decreasing the capacity and increasing

the capacity of facilities iff".

4. The process is repeated for all choicestofe F'\ {s} and valuesA; in
[0,m — u;]. For each choice oft*, A;+), the process is repeated fbrin
[0, A«]. The solution for which the cost is minimum gives the $eaind

vectorA.

Steps 1, 2, 3 and 4 of the above procedure can be performed in polynomial time.
Further these steps are repeated for all choices ef F' \ {s} and valuesA;- in
[0, m — u;+] and for each choice @t*, A;+), the process is repeated for a valug: of

in [0, As]. Since there could be at maS{mn) choices for(t*, A;) pair, andA;
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could be at mostn, therefore these steps are repeated at 06st°n) . Thus the

closeoperation can be performed in polynomial time.

Whenever a local search operation is performegalues are updated to the number of
clients assigned to by the operation.U is locally optimal if none of these operations
improve the cost of the solution and at this point the algorithm stops. The local search

algorithm described above runs in polynomial time as:
1. each operation can be performed in polynomial time.

2. number of iterations performed by the algorithm can be bounded by a polynomial
at the expense of an additiven the approximation factor by doing a local search

operation only if the cost reduces by more than-ae/4n factor, fore > 0.

5.3 Bounding the cost of our solution

Let U be a locally optimal solution and™* be an optimum solution. For eashe F, u,
(respectivelyu?) denotes the capacity allocatedstan the locally optimal (respectively
optimum) solution. Lef#;; (respectivelyFi;-) be the set of facilities for which, (respec-
tively u?) is greater than zero. Without loss of generalityudet= | Ny (s)| be the number
of clients served by in U, similarly uf = |Ny«(s)| be the no. of clients served Byin
U*.

First of all we construct a bipartite grapfi, on the vertex sef' U F' as explained in

Section 3.4. Recall that:

1. Every clientj € C has an edge from the facility(j) € Fy, whereo(j) is the
facility which servegj in U, and an edge to the facility(j) € Fy«, wherer(j) is
the facility serving;j in U*. Thus each client has one incoming and one outgoing

edge.
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. Afacility s € Fy has|Ny(s)| outgoing edges and a facilitye Fy« has|Ny- (o)

incoming edges.

. The graphG is decomposed into a set of maximal patfs,and cyclesC. Note

that all facilities on a cycle are fromfy; N Fy«.

. Ina pathP € P with a sequence of vertices, jo, s1, j1, - - - , Sk, J&, 0, Which starts
at a vertexs = sy € Fy and ends at a vertex € Fy«, headf) denotes the
client served by and tail(P) denotes the client served byon this path. Note that

{81,82,...,8k} Q FUﬂFU*.

. Thelengthof a pathP is given by

length®) = > (U} + 1))

jecnpP
where U7 (U;) is the service cost of client in the solutionU*(U). Note that

> pep length®) +5° ¢ lengthQ)) = cs(U) + ¢s(U*).

. A shiftalong P is a reassignment of clients so thatvhich was earlier assigned to
s; IS now assigned te;,; wheres,.; = o. As a consequence of this shift, facility
s serves one client less while facilityserves one client more. shiftf denotes the

increase in service cost due to a shift aldhge.

shift(P) = )~ (U7 = Uj).

jecnp

. Foracycle inC the increase in service cost equals the suiti;of U; for all clients
j in the cycle and since the assignment of clients to facilities is done optimally in

our solution and in the global optimum this sum is zero. Thus

Z Z(U; —U;) =0.

QGC JjEQ
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We remove all the edges and clients in the cycles fédnNote that total number of
paths beginning from a facility € F; is equal tomaxz (0, [Ny (s)| — | Nu«(s)|) and total
number of paths terminating at a facilitye F« is at mostnaz (0, | Ny« (0)| — | Ny (0)]).

Let N? be the set of paths that begin atc F; and end ab € Fy-. We redefine
Ny (s) = Uper,. N2 and Ny«(0) = User, N2. Let S be the set of those facilities for
which | Ny (s)| > 0 andO be the set of facilities for whichVy«(0)| > 0. Note that for a
facility s € S, us > u* and for a facilityo € O, v’ > u,. Hence,5 N1 O = ¢. For the rest
of the facilities inF"i.e. fori € F'\ (SUO), u; = u}.

To formulate a suitable set of inequalities an exchange g€aghbuilt whose ver-
tices are the set of facilities ifi and the facilities irO.

The exchange graph:An exchange graph is a bipartite graph witlandO defining
the two partitions. In order to bound the facility cost of facilities9nwe would close
every facility in S and transfer its clients to facilities i. Here the notion of closing a
facility s means that the capacity of facilityis decreased from the current capacifyto
uf, i.e. by an amountNy (s)|. Note that when a facility € S is closed, total number
of clients that needs to be reassignedNg (s)|. A facility o € O can take in at most
| Nu«(0)| number of clients along the paths that terminate. &io obtain a set of feasible
operations, we seek a flow in this exchange graph such that the amount of flow leaving a
facility s € S is equal to| Ny (s)| and the amount of flow that enters a facilitye O is
at most|Ny-(0)|. A feasible solution and hence in particular an optimal solution to the

following linear program provides such a flow.

min Z Cso Y(s,0)

s€S,0€0
S.t.
S y(s0) = |Nu(s)| VseS
0eO
S yls.0) < INp-(0)] VoeO
seS

y(s,0) > 0 VseS,o0eO
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The path decomposition of graghas discussed above provides us with such a flow

y whose cost is at most (U) + ¢,(U*). This is proved in the following lemma.

Lemma 5.1 The cost of an optimal floyis bounded by, (U) + ¢,(U*).

Proof To bound the cost of, a flow 7 is constructed whose cost is at mestU) +
cs(U*). Consider afacility € S and afacilityo € O. LetP = s;—01—s2—0s . . . Sg— 0k,
wheres = s; ando = o, be a path frons to o as defined by the path decomposition
of G. Letj(s,0), a flow on edgds, 0) be equal to the number of paths that begin from
s and terminate ab . Note that flowy defined in this manner is a feasible flow which
satisfies the constraints of the LP given abové as, 7(s,0) = > ., |N¢| = |Nu(s)]
and) _c9(s,0) = > .. IN2| = |Ny-(0)|. Also by triangle inequality;, < length(P)

VP € P such thatP begins ats and ends ab. Thus,

CsoY(8,0) Z length(P).

PEN?
Therefore

S cuifso) < 3OS length)

s o s o PeNg?

< > Z length(P)

S PENS

= Zlength(P)
peP
< cs(U) +es(U7)

which proves the claimed bound on the cost of an optimal flow [

Let G’ be the bipartite graph witlf andO defining the partitions of the graph and
the edges be those which have non-zero floan them whereg, is an optimum flow of
the above LP. If this graph is not acyclic, then by modifying the fligvit can be turned
into one without increasing the cost of the flow as follows: Consider a cyol& #nd

let C'r be the edges on the cycle. Partition the edgeSofnto setsC’, C, such that the

92



edges ofC; (and(s) are alternate edges on the cycle. bebe the minimum value of
an edge inC'g. Consider two operations: one in which we increase the value of edges in
C: and decrease the value of edge€inby an amounty and the other in which we do
the inversd.e. decrease the value of the edgesinand increase the value of the edges
in C; by 7. Note that in one of these operations the total ¢ost ., cso¥(s, 0) would
not increase and the value of one of the edges would reduce to zero thereby removing
it from the graph. This process is continued till the graph becomes acyclic. Note that
Y ses¥(s,0) = |Ny-(o)| andd_ ., y(s,0) = |Ny(s)| still holds. Howevery(s, o) is no
more equal taN?|.

We consider potential local steps and using the factthat a locally optimal so-
lution, formulate suitable inequalities which help us bound the cost of our solution. The

inequalities are written such that
1. each facility inS'is closed once.
2. each facility inO is opened at most five times.

3. the total cost of reassigning clients is bounded by

2 ) coy(s,0)+3> Y shift(P)

s€85,0€0 0€0 PeNy«(0)

and when added yield

_Z(fs(us s +5Z fo — Jo uo))

sesS 00 (5 1)
+2 Z Csoy(s,0) + 32 Z shift(P) > 0
s€S,0€0 0€0 PeNy« (o)

Alsofori e A= F\ (SUO), fi(u}) = fi(u;), therefore we get

93



_Z(fs<us s +5Z fo fo Uo))

SES 0€0
+2 ) coyl(s,0)+3) Y shift(P)
s€8,0€0 0€O PeNy«(0)
+5) (filw) = filw) >
€A
or
=3 Rl =5 folu) =5 filws)
seSs 0e0 i€EA
+ > F@) 45D fowl) +5 filu))
ses 0€0 €A
+2 Z Csoy(8,0 —1—32 Z Shlft(P) >0
s€8,0€0 0€0 PNy« (
since
Yo flu) ==Y filw) =5 folue) =5 filw) (5.2)
seSUOUA seS 0e0 €A
and

50> fowl) = ful) +5) ) folup) +5 ) filuf) (5.3)

s€SUOUA ses ocO €A

Therefore, we get

=Y filws) +5) filu

1€F 1€l

+ 2 Z Csol(S,0) —1—32 Z Shlft(P)>O

s€8,0€0 0€0 PENy«(

Third term in the above inequality can be bounde@fy (U )+c,(U*)) by Lemma5.1.

Also, fourth term can be written as

3 ) shift(P)=3) > (U —Uj)+3> > (Ur —U;) =3 (U; —

0€0 PeNy« (o) peP jeP QeC ieQ jeC
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where second term in the middle equality is due to the factthat, ., c(U; —U;) =0

Thus we get,

—cf(U) +5cp(U") 4+ 2(cs(U) + ¢5(U")) + 3(cs(U*) — cs(U)) > 0 (5.4)

and finally we get the following bound on the cost of our solution
ci(U) + cs(U) < 5ep(U*) + bes(U) (5.5)

Consider a subtre® in G’ of height 2 rooted at € O. Figure 4.1 shows one such
subtree. We use the same terminology as was used in chapter 4 to denote the parent child
relationship. Recall that for a facility p(i) is the parent and () are the children of.

A facility ¢ is anup-facility if y(i,p(i)) > >_;c k() v(i,7) and adown-facilityotherwise.
K, (i) (respectivelyK,(i)) denote the children of which are up-facilities (respectively
down-facilities). The operations that we consider for the analysis are such that for a

facility o € O:

1. If o is anup-facility, then it is opened at most twice in operations involving facil-
ities which are descendants @fin the tree and is opened at most twice in other

operations.

2. If o is adown-facilitythen it is opened at most four times in operations involving
facilities which are descendants®in the tree and is opened at most once in other

operations.

5.3.1 Closingup-facilities which are children of ¢

Considerup-facilities of S which are children of. If ¢ is an up-facility then all the
facilities s € K,(t) can be closed in a single operatigren(t, K, (t), A) in which clients
of a facility s € K,(t) are assigned toandA; = —|Ny(s)| Vs € K,(t) andA; =

| Ny« (t)|, refer to Figure 5.1. Note that
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Figure 5.1:0penoperation considered for handling facilities i, (¢) whent is an up-
facility.

1. the operation is feasible since

[No-()] = > yls,t) +yp(t), )

sEK(t)

> yls,t) +y(p(1),t)

sEK,(t)

Z 2y(s,t)

SEK(t)

> INu(s)l

SEK(t)

v

v

Vv

where second last inequality is due to the fact thest anup-facility and the last

inequality follows from

INu(s)| =y(s,t) + Z y(s,0) < 2y(s,t) Vs e K,(t)

0€K (s)

ass is an up-facility.

2. the contribution of an edgés, t), wheres € K,(t), to the reassignment cost is at

most2y(s, t)cs.
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3. If [Ny (D) [ =X se ko) [Nu(s)| > 0 then we can assigiVy- (¢)|—>_ ¢ k., 1) [N ()]
more clients ta by shifting along these many paths ¥y« (¢). SinceU is locally
optimal, this operation will not improve the cost Gt This operation then yields

the inequality

Filu) = flu) = > (folus) = folud) +
SEK,(t)

(5.6)
N+ — N,
> INU(s>|cst+’ o- ()] \NZUS*E(S]G)’ v(s)| > shift(P) > 0

SEK,(t) PeNy«(t)

The last term in the above inequality arises from the argument that instead of utiliz-

ing the remaining capacityNu-(¢)| — >_ . o) [Nu(s)

, in the best possible way

we could shift along each path iV, (¢) up to an extent " (t)"_]%se’zgﬁ [Ny ()]
U*

and assign the client taiK) to ¢ up to this much extent only and in doing so the

cost would not reduce. We can reduce this quantity, if required, to get the desired

inequalities.

If ¢ is a down-facility, then let, € K, (t) be the facility with largesy(h, t) value.
Rest of the facilitiess € K,(t) \ h can be partitioned into two sets and B such that
Yosea I Nu(s)| < |Nu-(t)| and )" 5 [Nu(s)| < |Ny-(t)|. The partitioning procedure
similar to the one described in Section 4.1(case 2b) is used for the purpose. The facilities
in A andB are closed in tw@penoperationspen(t, A, A’) andopen(t, B, A") respec-
tively where A, = A} = |Ny-(t)|; AL, = —|Ng(s)| for s € AandA] = —|Ng(s)| for
s € B, refer to Figure 5.2. Feasibility of the operations follows from the construction.
Inequalities similar to the Inequality 5.6 are formulated due to these operations in which
K,(t) is replaced withA and B respectively. Also note that the contribution of an edge
(s,t), wheres € K,(t) \ {h}, to the reassignment cost is at m?gts, t)c;.

The facilities inkK,(t) andh are handled usingloseoperations as discussed next.
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Figure 5.2: closeoperations considered for facilities #,(¢) \ {h} whent is a down
facility.

5.3.2 Closing facility h and down-facilitieswhich are children of ¢

Now we discuss the operations to close facilittes K,(t) U {h}, refer to Figure 5.3.
Consider the facilities irf<,;(¢). Order the facilities ini;(¢) according to theirem(s)
values as discussed in chapter 4. Recall that(s) = y(s,t) — > ,cx, (5 ¥(s;0). Let
s1,892,- -+, Sx be the order so defined. A facility, € K,(t) for i < k can be closed
in an operationlose(s;, K(s;) U K,(si+1),A). In this operatiom\,, = —|Ny(s;)| and
A, = |Ny«(o)], Yo € K(s;) U K,(s:;4+1). The operation is feasible as can be argued
on the same lines as in case 1 of Section 4.1. In this operatigno) flow is sent to
o € Ku(s;), 2y(s;,0) flow is sent too € K,(s;) (sinceo is a down-facility, therefore
Y(8i,0) <3 gek(o) ¥(8',0)). The remaining flow from; i.e. rem(s;) is sent to facilities
in K,(s;+1). Let's denote amount of flow sent on an edggo), o € K(s;) U K, (s;41)
in this operation by(s;, 0).

f > ek (siyura(sien) [Nu(0)] > [Nu(s;)| then we can find a subsét C K (s;) U
K. (si41) such thaty ., |[Ny-(o)| > |Ny(s;)| and setl” is such that except for one

facility t* € 7", available capacity i.e|Ny+(0)|, of all facilities in 7" \ {¢*} is fully
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Figure 5.3:closeoperations for facilities irk(;(¢) and facilityh showing the reassignment
of clients when one of these facilities are closed.

exhausted in accommodating the clients coming fromSome capacity of* sayk is
used to accommodate the clientsspfind the remaining available capadityy - (t*)| — k

is filled with clients which are assigned towhen we shift along some paths Ny« (¢*).

Claim 5.2 For the operationclose(s;, K(s;) U K,(s;+1),A) we can formulate the in-
equality

—(fulus) = futs )+ D (folw) = folw)) + D 2(s1,0)c00

OEK(Si)UKu(Si+1 OGK(SZ')UKU(S,H.l)

)
|Ny+(0)] — 2(s;,0) .
+ . > o) ShiftP) 2 0

OGK(Si)UKu(S¢+1) PeNy« (O)

(5.7)
Proof Denote the sek(s;) U K,(s;+1) by T'. Consider the facilities df’ in decreasing
order ofz(s;,0)/|Ny~(0)| and keep including them into a s&t until the total capacity

of the facilities in7", i.e. Y . |[Ny-(o)

, exceedgNy(s;)|. Lett* be the last facil-
ity to be included intdl”. Then aclose(s;, 7', A’) operation, where\! = |Ny-(0)|
VYo € T" and A, = —|Ny(s;)], t* is thepivot facility and is assigned = [Ny (s;)| —
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> oern i1y [ Nu+(0)] clients served by;, would yield the inequality

= (falus,) = forwl)) + D (folug) = foluo))+

oeT”

Z [Ny« (0)|Csy0 + ks +

o€T"\{t*}

[No= ()] — k (5-8)

Vo] > shift(P) > 0

PENy« ()

The last term in the above inequality arises from the argument that instead of utilizing the

remaining capacity,Ny-(t*)| — k, in the best possible way we could have assigned for
NU* (t*) —k

—~— without
| Nu=(t)]

each path inVy- (¢*) the client tailP) to the facility¢* to an exten

We take a linear combination of a sequence of inequalities of the form 5.8 in a
similar way as done in Section 4.2.2. In the linear combination we take 5.8 up to an extent
of ¢ and at the same time for all facilitiesc 7"\ {¢*} we reduce:(s;,0) by & - [Ny« (0)|
and reduce(s;,t*) by ¢ - k, where€ = mi ) * 2(51,0) k.

(37 ) yf § min (mlnoeT/\{t } <|NU*(O>|>7’NU*(t )|

This process can be viewed as sendingNy (s;)| units of flow froms; to facilities

in 7" with facility o € 7"\ {t*} receiving¢ - | Ny« (o)| flow and facility¢* receiving¢ - k
flow. The edgess;, o) have capacity(s;, o) which is reduced by the amount of flow sent.
Initially the total capacity of all edgeys_ ., z(s;, 0) equals the amount of floWNy (s;)|
that needs to be sent and this property is maintained at each step. By picking the facilities
with the largest values of(s;, 0)/| Ny-(0)| we are ensuring that the maximum of these
guantities never exceeds the fraction of the flow that remains to be sent. This implies that
when the procedure terminates alk;, o) are zero andNy (s;)| units of flow have been
sent.

If a facility o was opened to an exteij then its contribution in the linear combina-
tion would beX, (f,(uz) — fo(uo)) + 2(si,0)Csi0+ A”’N‘%gi)(‘o_ﬂ(s“o) > peny- (o) SHIft(P).
We add al — )\, multiple of the inequality

folug) = folu,) + Y shift(P) > 0 (5.9)

PGNU* (O)
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which corresponds to the operatiadd (o, | Ny (0)]), to the linear combination to match

the contribution ob in Inequality 5.7. |

Next we will closes; and openK(s;) U {t} in an operatiorclose(sg, K(s;) U
{t}, A). In this operatiom\;, = —|Ny(si)| andA, = |Ny-(0)| Vo € K(si) U {t}. Op-
eration for closings; is feasible sinc&_ ¢, i [N+ (0)] = D e k(syuiny Y(sk:0) =
|Nu(sk)| and by sending(sy, o) flow to eacho € K(s;) U {t} we are done. We can
now formulate the following inequality for this operation, as we did in case when we
consideredloseoperation for facilitys;.

= (falug) = fo s )+ D (folug) = foluy)) + Y(8k,0)Cspo

o€ K (s, )U{t} 0EK (sy)U{t}

oy s Welle e o) gy

0€K (s)U{t} PENy= (o) [N+ (0)]

(5.10)

Note that, due to the operations considered above in which we close facilities of
Ky(t),

1. since edge costs form a metrig,,, 0 € K, (s;11) iS at mosic,,; + i, , + Co;y 100

2. the contribution of the edgés;,t) i # 1,k to the reassignment cost is at most
(rem(s;) +rem(s;_1))cs,¢. Since bothrem(s;) andrem(s;_;) are less than(s;, t)

the total contribution is at mog&t(s;, t)cs,;.

3. The contribution of the edge; , ¢) to the reassignment cost is at moesh (s1)cg, ¢ <

y(81,1)Csyt-

4. The contribution of the edge;, t) to the reassignment cost is at m@stm (s;_1)+

y(3k7 t))cskt S Q?J(Sk, t)cskt

5. the contribution of the edge;, 0), 0 € K,(s;) is at mosRy(s;, o)cs,, Since2y(s;, o)

clients are assigned towhens; is closed.
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6. the contribution of the edge;, 0),0 € K,(s;), i # 1 is at mosRy(s;, 0)cs,, Since
at mosty(s;, o) clients are assigned toonce whers; is closed and once when_;

is closed. The contribution of the edgg, 0), 0 € K,(s1) is at mosty(s1, 0)cs,o-

Facility h can be closed in the operatiatose(h, K(h) U {t}, A) where A, =
|Ny«(0)| Yo € K(h)U{t} andA; = —|Ny(h)| . This operation is feasible because
> oermuiy 1 Nu=(0)] = 2 oc knyugy Y(hs 0) = [Ny(h)|. For this operation we can for-
mulate the following inequality:
= (falun) = flwi)) + Y (foluh) = folw) + D y(hio)en
o€ K (h)U{t} o€ K (h)U{t}

[Ny (0)| = y(h,0) .
+ ( > Nl shift(P) > 0

o€ K (h)U{t} PENyx (o)

(5.11)

Note that in this operation, the contribution of an edbe), o € K(h) U {t} is at

mosty(h, 0)cpe.

5.3.3 Putting Things Together

In all the operations considered in the analysis discussed in the previous section, a facility

o € Ois opened at most 5 times and cost of reassignment of clients in all these operations

is small. We prove these things in the following lemmas.

Lemma 5.3 A facility o € O is opened at most 5 times in all the operations considered.

Proof

1. Wheno is an up-facility: While considering the facilities of which are descen-
dants ofo, o would be opened twice, once when it is part o€lase operation
close(sy, K (sx) U {o}, A) wheres, € K,(o) and once when it is part of avpen
operationopen(o, K,(0), A). While considering the facilities of which are not
descendants af, o would be opened at most twicejifo) is a down facility and

would be opened at most oncepifo) is an up facility.
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2. Wheno is a down-facility: While considering the facilities 6fwhich are descen-
dants ofo, o would be opened four times: once when it is part af@seoperation
close(sy, K(sx) U {0}, A) wheres, € K,(0), once when facilityh € K,(o) is
closed in an operatiodose(h, K (h) U {o}, A), and twice as a part of twapen
operations in which setd, B C K, (o) are closedo would be opened at most once
while considering the facilities of, which are not descendants®irrespective of

whetherp(o) is an up-facility or a down-facility.

Claim 5.4 A facility o € O is assigned a total of at mo&t) - y(s,0) < 2|Ny-(o)|
clients from the facilities closed in the respective operations involviager all the op-

erations considered.

Proof
1. Wheno is an up-facility

(a) While considering the facilities o$ which are descendants of o would be
part of aclose(sy, K (sx) U {o}, A) wheres; € K,(0) and anopenoperation
open(o, Ky(0), A) and assigned at most ., ., ¥(s,0) + y(si, o) clients
wheres, € K4(o). Note that this is at mogty ., y(s, 0).

(b) We next consider the number of clients assigned tohen considering fa-
cilities of S which are not descendants af If the parent ofo, p(0), is an
up-facility theno could be assigned at magip(o), o) clients in acloseopera-
tion involvingp(o). If p(o) is a down-facility therv would be assigned at most
2y(p(0), o) clients and this can be argued as follows. Consider the ordering of

the down-facilities which are siblings pfo).

i. if p(o) is the first facility in the ordering (referred to ag) theno is only

part ofclose(sy, K(s1) U K,(s2), A) and is assigneg(s;, o) clients.
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ii. if p(o)is theith facility in the ordering (referred to as) and is neither the
first nor the last facility thew is part ofclose(s;—1, K (s;—1) UK, (), A)
andclose(s;, K(s;)UK,(s;+1), A) and is assigned(s;, o) clients in each
of these operations.

iii. if p(o) is the last facility in the ordering (referred to a9 theno is part
of close(sy_1, K(sp_1) U K,(sx), A) and acloseoperation
close(sg, K (sx) U{p(sk)}, A) involving s.. In both these operationss

assigned(sy, o) clients.

Hence the total number of clients assigned tehen considering facilities of

S which are not descendants®is at mosty(p(o), o).

Therefore the total number of clients assigned t@heno is an up-facility is at

most2 > y(s, o).
2. wheno is a down-facility

(a) While considering the facilities of which are descendants of o would
be part of twoopen operationsopen(o, A, A) and open(o, B, A) and two
closeoperations:close(h, K(h) U {o}, A) and close(sy, K(s;) U {o}, A).
The number of clients assigned 4oin these operations i8> __, ¥(s,0),
23 .cp¥(s,0),y(h, o) andy(sy, o) respectively. Sincel U BU{h} = K,(0)
ands; € K,4(0), the total number of clients assignedaton these four opera-

tionsis at mose > x(, y(s,0).

(b) We next consider the number of clients assigned then considering fa-
cilities of S which are not descendants af If the parent ofo, p(0), is an
up-facility theno would be assigned at mogtp(o), o) clients in acloseop-
eration involvingp(o). If p(o) is a down-facility thero would be assigned at
most2y(p(o), o) clients and this can be argued as follows. As before, consider

the ordering of the down-facilities which are siblingspdé).
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i. if p(o)is theith facility in the ordering (referred to as) and is not the last
facility theno is part ofclose(s;, K(s;) U K,(si+1),A) and is assigned
2y(s;, 0) clients.

ii. if p(o) is the last facility in the ordering (referred to ag theno is part

of acloseoperation involvings, in whicho is assigned(s, o) clients.

Hence the total number of clients assigned tehen considering facilities of

S which are not descendants®is at mosty(p(o), o).

Therefore the total number of clients assignea teheno is a down-facility is at

most2 ) y(s,0).

Lemma 5.5 The total reassignment cost of all the operations is bounded by

2 ) coy(s,0)+3> > shift(P)

$€S,0€0 0€0 PeNyx(0)
Proof The first term in the required expression follows from the fact that in all the

operations considered, the contribution of an edge) of the exchange graph is at most
2¢50Y(8,0).

When all the inequalities are added, the t@geNU* 0) shift(P) for a facilityo € O
appears up to the extento@f- 3 /| Ny- (0)| wherea is the number of timesis opened and
(3 is the total number of clients assignedttyxom the facilities whose capacity allocation
decreases in the operation in whicks opened. From Claim 5.4, is at mos2| Ny« (o)|
and from Lemma 5.3v is at most 5. If a facilityo € O is opened less than five times
in these operations then we add the inequality correspondingd@, Ny-(0)) to our
linear combination so that each facility is now opened exactly five times. Therefore, the
coefficient of the termy _ . . ., shift(P) is at least 3. Ifits greater than 3 for some O
then we will reduce the coefficient of .. ., shift(?’) in some of the inequalities

involving o to make this contribution exactly 3. [ |
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From Lemma 5.3 and Lemma 5.5, we can conclude that

_Z(fs(us s +5Z fo fo uo))

ses 0€0
+2 ) coyls,0)+3) Z shlft(P)>O
s€8,0€0 0€0 PeNy«(

Recall that to ensure that the local search procedure has a polynomial running time
we need to modify the local search procedure so that a step is performed only when the
cost of the solution decreases by at Igagtin)c(U). This modification implies that the
right hand sides of inequalities 5.6, 5.7, 5.9, 5.10, 5.11 which are all zero should instead
be(—e/4n)c(U). Note that each € S is closed in either ampenor acloseoperation and
therefore appears in exactly one of the inequalities of type 5.6, 5.7, 5.10, 5.11. Further,
everyo € O appears in at most 3 close operations and therefore wéladd\, <= 1)

multiple of inequality 5.9 atmost 3 times.

Putting all these modifications together gives rise to an extra term of at most
(4e/4)c(U). This implies that the cost of solutidii is at mostsc(U*) + € - ¢(U) which

implies thatU is a5/(1 — €) approximation to the optimum solution.

Thus we arrive at our main result:

Theorem 5.6 The local search procedure with operatioadd, open and closgelds a

locally optimum solution that is a (59-approximation to the optimum solution.

5.4 Experimental study for non-uniform CFLP

In this section, we show that the algorithm performs well in practice. The experiments
were performed for the non-uniform CFLP on the data sets used in earlier studies [CST91,
Aar98, BC05, ABSVO09].
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5.4.1 Data sets used

We performed experiments on three types of random instances which have been used in
earlier studiestype A type Bandtype C To construct problem instances of type A, we
used the procedure as in [CST91, Aar98, BC05, ABSV09] which is as follows:

1. For a problem instance of sizex m, wheren is the number of facilities anad is
the number of clients, points are generated uniformly at random in a unit square to

represent these many facilities and clients.

2. Euclidean distances are computed between every point representing a facility say

and every point representing a client gagnd multiplied by10.

3. Demands for each client are generated from interval [5,35] uniformly at random i.e.
from U5, 35].

4. Capacity for a facility; is generated from interval [10,160] uniformly at random.

5. Facility costs are computed to reflect economies of scale using the forfnuta
U[0,90] + U[100, 110]/5;

Problem instances of type B are constructed by multiplying the Euclidean distances,
computed in step 2 of the above procedure] tiyand for type C instances these distances
are multiplied by1000. Rest of the steps remain same for these two instance types. For
the problem instances of type A, facility cost component of a solution dominates the
cost of the solution. For problem instances of type C, its the service cost component
that dominates the cost. Type B instances are somewhere in between the two types of
instances.

We give our computational experience for instances of siges 50, 100 x 100
and 200 x 200. For these instances we computed optimal solution using LINGO 13

optimization software from LINDO Systems, Inc. and we give the % error i.e. percentage
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by which the locally optimal solution differs from the optimum solution, thereby giving

the quality of the solution produced by the algorithm. Tables 5.4.1, 5.4.1 and 5.4.1 provide

these results.

5-approx for non-uniform CFLP

Filename| Optimum | Local Opt| %error
ndatlQ50 | 10272.66) 11456.7, 11.53
ndatl1150 | 10840.81) 11830.3] 9.13
ndat1250 | 11404.18) 11526.8 1.08
ndat1350 | 10182.61 10840, 6.46
ndat1450 | 11018.23| 12073.2| 9.57
ndat1Q100 | 19762.46| 20665.2| 4.57
ndatl1100| 20731.4| 21837.9] 5.34
ndat12100 | 21465.68] 23270.5| 8.41
ndat13100 | 20152.34| 21484.6 6.61
ndat14100 | 20209.24 21990 8.81
ndat10200 36288| 38395.1f 5.81
ndatl1200| 38902.9] 40748.9] 4.75
ndat12200 38215| 41317.6| 8.12
ndat13200| 41318.7| 43718.6| 5.81
ndatl4200| 37783.4| 40162.6] 6.30

Table 5.1: Results for type A instances

These experiments show that the algorithm provides solutions w(thin 0.12)
factor of the optimal solution for the instances tested. These experiments are performed
mainly to study the quality of solution. We observe that for a problem of a given size,
instances of type A take largest amount of time as compared to the time required by an

instance of the same size but of type B or type C to reach a locally optimal solution.
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5-approx for non-uniform CFLP

Filename| Optimum | Local Opt| %error
ndat2050 | 22068.7, 23036.2| 4.38
ndat2150 | 20444.49, 20892.1, 2.19
ndat2250 | 25399.5| 26620.2] 4.81
ndat2350 | 22472.35| 23623.5| 5.12
ndat2450 | 23746.76) 25109.6) 5.74

ndat20100 | 38044.36] 39431.5| 3.65
ndat21100| 35951.7| 37258.9] 3.64
ndat22100 | 38028.82| 39462.6| 3.77
ndat23100 | 36253.68 38050 4.95
ndat24100 | 38746.52] 39661.8| 2.36
ndat20200 65204| 69723.2] 6.93
ndat21200 65706, 68270.7| 3.90
ndat22200 65176| 68475.1] 5.06
ndat23200| 58552.4] 61072.5| 4.30
ndat24200| 60108.4| 62017.7| 3.18

Table 5.2: Results for type B instances
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5-approx for non-uniform CFLP

Filename| Optimum | Local Opt| %error
ndat3050 | 92713.86) 93907.9 1.29
ndat3150 100713 104694 3.95
ndat3250 111647 113486 1.65
ndat3350 | 92403.3| 949815 2.79
ndat3450 | 99659.35 100759 1.10

ndat3Q100 167878 170408 1.51
ndat31100 | 178072.3] 186263 4.60
ndat32100 | 149689.6] 154382 3.13
ndat33100 | 143649.4] 145917 1.58
ndat34100 | 141551.7] 145525 2.81
ndat30200| 261738 270211, 3.24
ndat31200| 226732 230567 1.69
ndat32200| 230017 236346 2.75
ndat33200| 222940 228150 2.34
ndat34200| 222948 232892 4.46

Table 5.3: Results for type C instances
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Chapter 6

Conclusion

In this work we presented local search based approximation results for three variants
of facility location problem. The first problem we discussed is uniform capacitated fa-
cility location problem for which we analyzed the local search heuristic of Kuehn and
Hamburger. We showed that the algorithm is {Bfactor approximation and also pro-
vided a tight example to show that the analysis cannot be strengthened any further. Thus,
new operations would be required to improve the approximation factor using local search
paradigm.

For non-uniform capacitated facility location problem, we improvedaden, close
operations of Paét aland multi operation of Zhangpt alto obtainmopen, mclosand
mmultioperations. It was shown that the cost of the local optimal is no more tha (5+
times the cost of the optimum solution. An example was presented to show that the
analysis is tight for the algorithm.

For universal facility location problem, we extended our ideas developed for the
second problem and presented ad)sfactor approximation algorithm which improved
the current best result. The arguments given for the problem suggested that we can obtain
(5+¢) factor for (non-uniform) CFL withoutmmulti operation as well. We performed

an experimental study of the algorithm for the particular case of non-uniform capacities
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which showed that in practice the results are much closer to the optimum solution.

For the results presented in the thesis we consider the case when demand of a client
j € Cisone, i.e.d; = 1. Arbitrary demands can be easily handled by the algorithms
preseted in chapters 4 and 5 by doing slight modifications, details of which can be found
in Palet al. [PTWO01] (for non-uniform capacitated facility location problem) and Mah-
dianet al.[MPO3] (for universal facility location problem).

For the problems discussed in the thesis, no constant approximation algorithm based
on LP is known. The only known LP-based approximation algorithm for capacitated
facility location problem is for the special case whenfadility opening costs are equal
by Levi, Shmoys and Swamy [LSS12]. They gave a 5-factor algorithm for this restricted
version of the problem. While the local search algorithms for these problems are not
difficult to specify, the analysis, even for the case of uniform capacities, can be quite
involved. It would be interesting to explore other, non-local-search approaches to these

facility location problems.
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Appendix A

A.1 Path decomposition of graphG

Path decomposition of graph can be performed as follows:

Take a grapidz’ which is initialised toGG. Now perform the following steps:

'_\

. If G’ has cycles, pick an arbitrary cyaléin G’ and add it tcC.
2. Drop the edges that occureddhfrom G'.
3. Repeat steps 1 and 2 until there is any cycle lefffirelse go to the next step.

4. Let i be an arbitrary node i’ with atleast one outgoing edge and no incoming

edges. Lef? be a maximal path which beginsiat
5. Add P to Pand remove the edges idfrom G'.

6. Continue with steps 4 and 5 until graph has no edges.

A.2 Removing cycles from the graph

Lemma A.1 The exchange grapfi, whose vertices are the set of facilities in the locally
optimal solutionS and the facilities in the optimum soluti@n, when modified to make it

acyclic continue to satisfy the following three properties:
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1. ZSGS,OEO Cso¥(8,0) < ¢s(S) + ¢5(0).
2. (G is a bipartite graph withS and O defining the sets of the partition.

3.Vs€ S8, covyls,0)=|Ns(s)|andVo € O, s y(s,0) = |No(o)|.

Proof

1. Note that whenever a cycle is removed, total Qp%t g, ¢so¥(s; 0) does not in-

crease. Therefore first property holds when procedure terminates.
2. Property 2 is trivially satisfied.

3. Consider a cycl€' and its two partition€’; andC, as described. Consider a vertex
s € S which lies onC and lete; € C; ande, € C; be two edges incident with
Let o, (respectively,) be the other vertex incident with (respectivelye,). Note

that01,02 € 0. Inltla”y

Y yls,0) +yls,01) +y(s, 00) = [Ns(s)]

0€0O—{o1,02}
Suppose, by increasing the value of edge§'irand decreasing the value of edges
in Cy by an amount, the cycleC' is removed. Then the edge has an increased
valuey(s, 01) + € and the edge, has a reduced valufs, 02) — €. Therefore

S y(s.0)+ (u(s.00) + )+ (y(s.00) )
0€O—{o1,02}

= Z y(s,0) +y(s,01) +y(s, 02)

0€0O—{o1,02}

= |Ns(s)]

In the same manner we can argue that. . y(s, 0) = | No(0)| even with the mod-
ified values of edges. With this we have proved that property 2 still holds.
|

126





