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Abstract

Given a set of facilitiesF , a set of clientsC, demanddj with each clientj, facility opening

costfi for a facility i andcij, the service cost of assigning a clientj to facility i, the aim

of facility location problemis to open a set of facilities such that the total cost of opening

these facilities together with the service cost of all the clients is minimized. The problem

addressed in the thesis is a metric facility location problem in which the service costs

satisfy the metric property.

We discuss the capacitated version of the problem in which a capacity constraint

is associated with each facility. Local search based approximation results are presented

for three variants of the problem. First isuniform capacitated facility location problem

in which all facilities in F have the same capacity, denoted byU . We analyze a lo-

cal search based heuristic proposed by Kuehn and Hamburger [KH63] to show that this

heuristic provides a (3+ε)-factor approximation (for the problem) which improves upon

the (5.83+ε)-factor of Chudak and Williamson [CW99, CW05]. We give an example to

show that the analysis is tight.

In the second variant different facilities have different capacities and it is callednon-

uniform capacitated facility location problemor just capacitated facility location problem.

For this problem, we give a (5+ε)-factor approximation algorithm which improves the

current best of (5.83+ε) given by Zhang, Chen and Ye [ZCY05]. For this algorithm also

we provide a tight example.

The third problem we consider isuniversal facility location problemwhich is a gen-



eralization of many variants of facility location problem including the first two problems.

In this problem facility cost of a facilityi ∈ F is given by a functionfi(.) and is deter-

mined by the capacity allocated at the facility. For this problem, we give a simpler algo-

rithm and show that the cost of the solution is bounded by (5+ε) times the cost of the opti-

mum solution. The result is an improvement upon the (6.702+ε)-factor of Vygen [Vyg07]

and also upon the (5.83+ε)-factor given by Angel, Thang and Regnault [ATR13] in a par-

allel work. This also implies a simpler algorithm for non-uniform capacitated facility

location with the same factor.

The key ideas of our analysis are: after assigning the clients of facility being closed

to the facility being opened in the operation if the opened facility has some capacity

remaining, clients of other facilities in our solution are assigned to it if it results in cost

saving; we take a linear combination of some inequalities in a smart way to obtain the

claimed approximation guarantees.

We also performed some experiments with our third algorithm for a particular case

of nonuniform capacitated facility location problem and found that the algorithm works

well in practice. The cost of solutions were found to be within(1 + 0.12) times the

optimum solution’s cost.
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Chapter 1

Introduction

Consider a situation in which a retailer is interested in opening supermarket stores at

strategic locations so that the cost of establishing the desired infrastructure is not too high

while maintaining close vicinity to a large number of customers/clients. Consider another

example where a bank wants to set up its ATMs across the city. Since installation of an

ATM machine incurs a cost apart from the price of the land, it is not possible to open a

large number of ATMs. Bank needs to choose the locations in such a manner so that the

cost of setting up ATMs together with the cost incurred by its customers in traveling to an

ATM is minimized. Consider a network service provider interested in providing wireless

services to its customers. He would like to select the locations to install the base stations

so as to maximize the coverage area. Similarly, a government of a state may want to select

locations for schools, hospitals, fire stations and other such utilities so as to provide an

easy and fast access to a large number of citizens. These are typical examples of what is

called afacility location problem (FLP). What is common among these examples is that

the locations for facilities need to be identified in a cost efficient manner (set of potential

locations may be fixed). The goal is to minimize the cost incurred (if any) in setting up

the facilities at the selected locations with an objective to meet the demand of customers

in the best possible way.
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Facility location problems have been widely studied since 1960’s. These problems

are known to be strongly NP-hard. An instance of a minimum weight set cover problem

with unit weights, which is an NP-hard problem, can be transformed into metric unca-

pacitated facility location problem [KV05]. Metric uncapacitated FLP is the simplest

amongst the various variants of the problem. Earlier studies discuss different heuristic

methods to solve these problems. Kuehn and Hamburger [KH63] suggested one of the

earliest heuristic to solve plant location problem. The drawback of heuristic methods is

that they do not guarantee the quality of the solution.

First algorithm for FLP with performance guarantee was given by Shmoys, Tardos

and Aardal [STA97]. Many different variants of FLP have been studied since then. A

variety of approximation algorithmic techniques have been applied to solve these prob-

lems. In this work, we present (3+ε)-factor approximation foruniform capacitated facility

location problemwhich improves the current best of (5.83+ε)-factor due to Chudak and

Williamson [CW99, CW05] (using the scaling techniques of Charikar and Guha [CG99,

CG05]); (5+ε)-factor for non-uniform capacitated facility location problemwhich im-

proves the (5.83+ε) factor given by Zhang, Chen, and Ye [ZCY05]; and (5+ε)-factor for

universal facility location problemwhich improves (5.83+ε) factor given by Angel, Thang

and Regnault [ATR13].

In this chapter we discuss some variants of facility location problems, different tech-

niques which have given good approximation factors for these type of problems and our

contributions in brief.

1.1 Facility Location Problem

In a facility location problemwe are given a set of clientsC = {1, . . . ,m} and a set of

facilitiesF = {1, . . . , n}. A client j has a demanddj which needs to be serviced by some

facility. Opening a facility at a locationi ∈ F costsfi (the facility opening cost). The cost

2



of servicing a clientj ∈ C by a facility i is given bycij (the service cost). The objective is

to determine a setF ′ ⊆ F and an assignment of clients to facilities inF ′ so that the total

cost of opening the facilities inF ′ along with the total cost of serving the demands of the

clients is minimized. For the rest of the thesis, we assume that service costs form a metric

and whenever we sayfacility location problemwe meanmetric facility location problem.

Thus, for facilitiesi, i′ and clientsj, j′, ci′j′ ≤ ci′j + cij + cij′. Further let, fori, i′ ∈ F

i 6= i′, cii′ be the cost of the shortest path betweeni andi′, i.e. cii′ = minj∈C(cji + cji′).

1.1.1 Uncapacitated Facility Location Problem (UFLP)

Consider a manufacturing company which wants to set up regional warehouses in every

state so as to minimize the sum of the fixed set up costs of warehouses and the cost of

transportation to its customers. It is assumed that a warehouse has sufficient supplies so

that any number of customers can be served at a particular instant of time. This is an ex-

ample of anuncapacitated facility location problem (UFLP). As mentioned earlier, UFLP

is the simplest variant of the problem. This problem can be formulated as the following

Integer Linear Program, where the indicator variablesyi represent whether a facility is

open or not and the indicator variablesxij represent whether a clientj is assigned to

facility i or not.

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijdjxij

s.t.

xij ≤ yi ∀ i ∈ F, j ∈ C∑
i∈F

xij = 1 ∀ j ∈ C

xij ∈ {0, 1} ∀ i ∈ F, j ∈ C

yi ∈ {0, 1} ∀ i ∈ F

A feasible solution to this integer program is a setF ′ ⊆ F and an assignment

3



σ : C → F ′ whereF ′ = {i : yi = 1} andσ(j) = i if xij = 1. In fact onceF ′ is known,

each client can be assigned to the nearest open facility. ThusF ′, the set of open facilities,

completely defines a solution to the uncapacitated problem.

1.1.2 Capacitated Facility Location Problem (CFLP)

Consider an example in which there is a need to set up wired LANs to satisfy the con-

nectivity needs of an institution. Let us assume that the switches are facilities which

facilitate connections among the computers connected through that switch. Each switch

has a limited number of slots available which restricts the number of computers that can

be connected through it. Since the facilities (switches) have capacities (number of slots)

on the number of clients (computers) it can serve, it makes an instance ofcapacitated

facility location problem (CFLP).

More formally, in capacitated facility location, each facilityi has a capacityui spec-

ifying the maximum amount of demand it can serve. There are two variants of this prob-

lem: CFLP with unsplittable demands (all the demand of a client must be served by the

same facility) and CFLP with splittable demands (demand of a client can be split and

assigned to multiple open facilities). The first variant is even hard to approximate unless

P = NP [BH12]. When capacities of all the facilities are same, the problem is known as

uniform capacitated facility location problem (UCFLP). Rightly so, when capacities are

not necessarily the same, it is callednon-uniform capacitated facility location problemor

justcapacitated facility location problem.

The problem variant with splittable demands can be formulated as the following

mixed integer linear program (MILP), whereinxij variables are allowed to be non-integral

4



to capture the splittable nature of demands.

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijdjxij

s.t.

xij ≤ yi ∀ i ∈ F, j ∈ C∑
i∈F

xij = 1 ∀ j ∈ C∑
j∈C

djxij ≤ uiyi ∀ i ∈ F

xij ≥ 0 ∀ i ∈ F, j ∈ C

yi ∈ {0, 1} ∀ i ∈ F

A feasible solution to the above MILP is given by a setF ′ ⊆ F and an assignment

of clients to the facilities inF ′ which obeys the capacity constraints whereF ′ is the set

of facilities i for which yi = 1. Note that in CFLP clients cannot always be assigned to

the nearest open facilities as it may lead to violation of capacity constraints. OnceF ′ is

known, best assignment of clients can still be found in polynomial time by just solving an

assignment problem. Thus any solution to CFLP is also completely defined by the set of

open facilities.

1.1.3 Universal Facility Location Problem (UniFLP)

Many a times facilities do not have fixed facility costs. For example suppose a corporation

office needs to develop playgrounds in a city. The number of children under 15, whose

playing needs are to be addressed by these playgrounds, is known in advance. Various

locations identified for the purpose have different per-square feet rates. Locations and

their sizes need to be identified in such a manner so that every child has easy access to

a playground and total cost of establishing playgrounds is minimized. In this particular

example, cost of a playground depends both on its location as well as its size. This

is an example ofuniversal facility location problem (UniFLP). Formally, FLP is said

5



to be UniFLP if the facility opening costfi of a facility i is a function of the capacity

allocated to the facility. Thus ifui is the capacity allocated at a facility locationi then the

cost incurred for opening the facility isfi(ui), which is a monotonically non-decreasing

function. The objective is to minimize the sum of the total facility cost
∑

i∈F fi(ui) plus

the total service cost.

This problem can be formulated as the following non-linear program (NLP), where

variablesui denote the amount of capacity allocated to facilityi andxij variables are

non-integral and denote the amount of demand of client j served by facilityi.

min
∑
i∈F

fi(ui) +
∑
i∈F

∑
j∈C

cijdjxij

s.t.∑
i∈F

xij = 1 ∀ j ∈ C∑
j∈C

djxij ≤ ui ∀ i ∈ F

xij ≥ 0 ∀ i ∈ F, j ∈ C

ui ≥ 0 ∀ i ∈ F

A solution to UniFLP is characterized by(U, σ) whereU = 〈u1, u2, · · · , un〉 is an

allocation vector andσ : C → F is an assignment which obeys the capacity constraints.

Universal facility location problem generalizes many other facility location problems in-

cluding UFLP and CFLP. It reduces to UFLP whenfi(ui) = f ′
i for ui > 0 and to CFLP

when we definefi(ui) = f ′
i for 0 < ui ≤ ci, ci is the capacity of facilityi, andfi(ui) =∞

otherwise.

1.1.4 k-Median Problem

Consider the warehouse example again. Suppose there is a licensing authority which gives

fixed number of licenses sayk for warehouses and no cost of establishing warehouses is

6



incurred by the company. The aim of the company is now to choose the locations intelli-

gently within the budget constraint on the number of licenses for the warehouses available

to it so as to minimize the total cost of transportation to its customers. A warehouse can

serve any number of customers. This is an example ofuncapacitatedk-median problem.

The problem is better known as justk-median problem.

This problem can be formulated as the following Integer Linear Program:

min
∑
i∈F

∑
j∈C

cijdjxij

s.t.

xij ≤ yi ∀ i ∈ F, j ∈ C∑
i∈F

xij = 1 ∀ j ∈ C∑
i∈F

yi ≤ k (1.1)

xij ∈ {0, 1} ∀ i ∈ F, j ∈ C

yi ∈ {0, 1} ∀ i ∈ F

A solution to this problem is described by a setF ′ ⊆ F where|F ′| ≤ k and an assign-

mentσ : C → F ′ whereF ′ andσ are as defined earlier for UFLP. Since there are no

capacities associated with a facility, a client gets assigned to the nearest open facility.

Therefore solution to thek-median problem is also completely determined by the set of

open facilities.

1.1.5 Other variants

Some other existing variants of FLP which are similar to these problems in some way or

the other are:k-facility location problem [Zha07], soft capacitated facility location prob-

lem [CS03, AGK+01], red-blue median problem [HKK12] and mobile facility location

problem [AFS13].k-facility location problem is UFLP with an added constraint which

7



specifies the maximum number of open facilities in a solution. Red-blue median prob-

lem is a generalization ofk-median where the facility setF is partitioned into two sets:

red and blue, at mostkr red facilities and at mostkb blue facilities can be opened in any

solution. Mobile facility location problem is also a generalization ofk-median problem.

Soft-capacitated FLP is an easier version of CFLP where we can open multiple copies of

a facility.

1.2 Algorithmic Techniques for Approximation Algorithms

for FLP

The problems discussed in the previous section are known to be the NP-hard [KV05].

One common approach to solve these problems is to provide approximate solutions. An

α-approximation algorithm is a polynomial time algorithm which finds a solution whose

cost is withinα-factor of the cost of an optimum solution. For a minimization problem

α > 1 and for a maximization problemα < 1.

Many techniques have been used for the design of approximation algorithms for

FLP. These include LP-rounding, primal-dual approach, greedy approach, local search

technique to name a few. Each of these techniques has its own advantages as well as

disadvantages. The first approximation algorithm for a facility location problem uses LP-

rounding approach [STA97]. This approach involves solving LP relaxation of an Integer

programming formulation of the problem and hence is generally quite time consuming.

Primal-dual algorithms are relatively faster. Greedy and local search algorithms are gen-

erally simple to implement but hard to analyze. There are very few problems to which

local search technique has been applied successfully. We next review these techniques

briefly.
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1.2.1 LP-Rounding

Linear programming has been used extensively in designing approximation algorithms.

Many of the optimization problems can be formulated as an Integer Linear Program.

Some of them admit a polynomial time solution but many of them are NP-hard. LP-

relaxation followed by rounding the solution of the relaxed LP is often used to get good

approximation algorithms for these problems. Sometimes the rounding technique is trivial

as is the case in Vertex Cover problem [Hoc82a] but more often than not, it requires

sophisticated techniques to round the fractional solution of the linear program to obtain

an integral solution.

First approximation algorithm for uncapacitated facility location problem by Shmoys,

Tardos and Aardal [STA97] uses LP-rounding to give 3.16-factor approximation algo-

rithm. The technique has since been used to develop several approximation algorithms

for UFLP with improved approximation factors [CS03, Svi02, Byr07] with the current

best being 1.488 by Shi Li [Li13]. This is a very recent result which shows that the at-

tempts are on to close the gap between the lower bound of 1.463 [GK99] and the upper

bound for the problem.

LP-rounding has been applied to obtain good approximation factors for other vari-

ants of the problem as well. For example, Charikar and Li [CL12] gave a 3.25-factor for

thek-median problem in a recent result and, Chudak and Shmoys [SC99] gave a 3-factor

approximation for the soft-capacitated version. Levi, Shmoys and Swamy [LSS12] gave

a 5-factor algorithm for CFLP for a restricted version of the problem in which all facility

costs are same. This algorithm is a combination of rounding approach in the first phase

followed by greedy in the second phase. More approximation algorithms for other re-

lated problems which have used LP-rounding technique can be found in [BSS10, XX05,

BGRS10, SS02, CCGG98, AAK99, HJC08].
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1.2.2 Primal-Dual Approach

Primal-dual approach is a technique that uses the dual of the problem to obtain a good

integral solution to the relaxed linear program. Starting with a feasible solution of the

dual and an infeasible solution to the primal, a feasible solution to the primal is built in

steps. Iteratively the feasibility of the primal solution is improved, which is guided by the

successive improvements in the optimality of the dual solution. Primal solution is always

modified integrally in every iteration, so that the resultant solution is an integral solution.

The cost of the primal solution is bounded by an appropriate factor of the dual feasible

thereby providing an approximation of the primal optimal.

Jain and Vazirani [JV01] used primal-dual approach to give a 3-factor algorithm for

uncapacitated facility location problem and a 6- factor algorithm for thek-median prob-

lem. There are many network design problems which have used primal-dual successfully

[AKR95, SK04, KGR02, AZ02]. For a survey on approximation algorithms based on

primal-dual refer to [Wil02].

1.2.3 Greedy Approach

Greedy approach is one of the simplest techniques used to design algorithms for the opti-

mization problems. At any point in time, we have a partially constructed solution and the

solution is extended based on some greedy choice that is the current best without bother-

ing about its impact on the future solutions. For many problems likeminimum spanning

tree, shortest path, Huffman codesto name a few, the technique provides a global opti-

mum.

For its simplicity, the technique has been applied to obtain approximation algorithms

also. For example, the best known approximation algorithm for the classical problem of

set coveris greedy [Joh73, Lov75, Chv79]. Surprisingly, this is the best that is possible

for the problem [Fei98]. The technique has also been used to provide several results for
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UFLP [Hoc82b, JMS02, GK99, MYZ02, MMSV01] and a 4-factor approximation fork-

median problem by Charikar and Guha [CG99]. Some other approximation results using

greedy approach can be found in [CEK06, Cha00].

1.2.4 Local Search Algorithms

Local search as an algorithm design technique has been around since 1950’s. However

for the design of approximation algorithms, the success using this approach came only

during the last 15 years. The technique of local search is straightforward and simple to

apply but notoriously hard to analyze. In this approach we begin with an initial feasible

solution which is improved iteratively in every step doing some local improvements. This

process is repeated until it is no more possible to improve the cost of the solution locally.

The solution thus obtained is said to be locally optimal solution. In the next chapter we

discuss the various aspects of local search paradigm in more detail.

1.3 Our contribution

In this thesis, we use local search technique to provide improved results for two variants

of facility location problem: CFLP and UniFLP. We consider CFLP with splittable de-

mands in two flavors: uniform (capacities of all the facilities are same) and non-uniform

(capacities of different facilities may be different). In all the problems discussed, we have

made an assumption that demand of a clientj ∈ C is one i.e.dj = 1. Since demands are

splittable this assumption can be easily gotten rid of.

Korupolu, Plaxton and Rajaraman [KPR00, KPR98] first analyzed theadd-delete-

swapheuristic of Kuehn and Hamburger to show that it is an (8+ε)-factor algorithm for

the uniform capacitated case. Later Chudak and Williamson [CW05, CW99] improved

the analysis to improve the factor for the same heuristic to (5.83+ε). We further improve

the analysis for the same algorithm to give factor (3+ε). The key ideas of our analysis are:
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1. instead of assigning the clients of the facilities being closed only to the facilities

being opened, we also assign them to other facilities in our solution using a mapping

similar to the one discussed in Aryaet al.[AGK+01].

2. after assigning the clients of facility being closed to the facility being opened in

the operation if the opened facility has some capacity remaining, clients of other

facilities in our solution are assigned to it if it results in cost saving.

3. we take a linear combination of some inequalities in a smart way to obtain the

claimed approximation guarantees.

We also give a tight example to show that this factor cannot be further reduced for

this heuristic.

A simple add-delete-swapheuristic of Kuehnet al., which is so appropriate for

CFLP with uniform capacities, is not so good for the case when the capacities are non-

uniform. Pal, Tardos and Wexler [PTW01] gave an algorithm with two new operations:

openandclose, which are extensions of swap operation in the changed scenario of non-

uniform capacities, and Zhanget al. [ZCY05] added another operation calledmulti to

these operations. We modify these operations to be able to use our key ideas developed

for the uniform capacity case to obtain a (5+ε)-factor for the problem. We also show that

the analysis is tight by providing a tight example.

For the universal facility location problem we suggest two operationsopenandclose

similar tomopenandmclose, drop the expensivemmultioperation altogether and provide

a (5+ε)-factor approximation for the problem. As a particular case, it provides a simpler

algorithm for (non-uniform) CFLP.

All the three results given by us are currently the best results for the respective

problems. The results are consolidated in Table 1.3. We also performed an experimental

study of our algorithm for the case of non-uniform capacities. The aim of this study is

to show that the (5+ε)-factor for this algorithm is just an upper bound and in practice the
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results are much closer to the optimum solution. In this study we present results for the

random instances. The results obtained are within(1 + 0.12)-factor of the cost of the

optimum solution.

Problem Current best Our results

1 uniform capacitated facility location problem 5.83+ε [CW05] 3+ε

2 non-uniform capacitated facility location problem5.83+ε [ZCY05] 5+ε

3 universal facility location problem 5.83+ε [ATR13] 5+ε

Table 1.1: Results presented in the thesis

The thesis is organized as follows: in Chapter 2 we discuss the local search paradigm

in detail; in Chapter 3 we give an improved analysis of the algorithm for uniform capac-

itated facility location problem; Chapter 4 discusses the (5+ε)-factor algorithm for non-

uniform capacitated facility location problem; in Chapter 5 we present the (5+ε)-factor

algorithm for universal facility location problem and the experimental study of the algo-

rithm. At the end we give our conclusive remarks in Chapter 6.
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Chapter 2

Local Search Technique

Local search technique (denoted by LS for brevity) has been applied to various combi-

natorial optimization problems as a solution method. LS is quite powerful, but difficult

to analyze. Johnson, Papadimitriou and Yannakakis [JPY85] studied some local search

heuristics and defined a class called PLS for them. A local search heuristic for a problem

belongs to the class PLS if the local optimal can be verified in polynomial time. Yan-

nakakis [Yan90] gave a detailed study of local search algorithms. For some problems

the technique is known to provide good solutions in practice but without any perfor-

mance guarantees. Famous Kerninghan-Lin algorithm for Graph Partitioning [KL70] and

Lin-Kerninghan algorithm for traveling salesman problem (TSP) [LK73] are known to

produce good solutions quickly and are widely used and implemented [Hel00, BS89];

however no known performance guarantees exist for these heuristics.

The technique is also known to provide good approximation factors for some well

known problems like Max-Cut, satisfiability [Ali94], and various variants of facility loca-

tion problem. Most of the problems for which local search has been successfully applied

with guaranteed quality of solution are different variants of facility location problems

[CG99, KPR00, AGK+01, CW05, PTW01, MP03, Vyg07, ALB+13, BGG12, AFS13,

BSSS13]. In fact the only approximation algorithms for capacitated facility location prob-
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lem with constant approximation factors are based on local search technique.

2.1 The general outline of the technique

Many combinatorial optimization problems can be described as: given a setF , find a fea-

sible setS ⊆ F that (satisfies certain criteria and) minimizes/maximizes the cost/value of

the solution. Each instance is associated with a finite set of feasible solutions, each solu-

tion has some cost. Finding optimal solutions for many of these problems (for example

set-cover, vertex-cover etc.) is NP-hard. One way to get around this problem is to look

for locally optimal solutions which are known to be optimal/close to optimal for many of

them.

A local search algorithm starts with a feasible solution and improves upon it locally

as long as it is possible to do so. When it is not possible to further improve the solution

locally we arrive at a local optimal. Starting with a different (initial) feasible solution

might lead to a different local optimal solution. For an instanceI, let LOPT (I) be the

cost of a locally optimal solution andOPT (I) be the cost of a globally optimum solution.

The supremum of the ratioLOPT (I)
OPT (I)

, over all such instancesI, is called thelocality gap.

In a local improvement step of a local search procedure, we move from the current

solution to a neighboring solution. A neighboring solution to a solutionS is determined

by a neighborhood relation. The neighborhood relation determines the structure of the

neighborhood of a solution. As an example, for the vertex cover problem neighbor of a

solutionS is another solutionT such that|S − T | = 1. Different local search heuristics

may lead to different neighborhood structures for the same problem.

A local search procedure restricts the search space of the problem instance, thus

making it possible to find a locally optimal solution quickly in comparison to the global

optimum solution. To perform a local search algorithm in polynomial time it is important

that:

15



• the number of iterations performed by the procedure is polynomial.

• a local improvement step can be performed in polynomial time.

Many a times, the local search heuristic does not lead to locally optimal solution

in polynomial number of iterations. Johnson, Papadimitriou and Yannakakis [JPY85]

and Yannakakis [Yan90] discuss these type of algorithms and put them in PLS class of

algorithms. Lin-Kerninghan and Kerninghan-Lin heuristics also belong to this class. A

well known technique, to reduce the number of iterations to polynomial, is to perform

an improvement step only when the improvement is substantial. In the lemma below,

we show that if the cost of the solution is decreased by at leastc(S)
p(n,ε)

for a minimization

problem then the algorithm terminates in polynomial number of iterations, whereS is the

current solution andp(n, ε) is a polynomial inn, size of the problem instance, and1
ε

for a

carefully chosen valueε. With this modification the algorithm can be made to terminate

in polynomial time.

Lemma 2.1 Let S0 be an initial feasible solution with costc(S0) and letS∗ be a global

optimum solution with costc(S∗). A local search procedure terminates in at most

O
(
p(n, ε) · log c(S0)

c(S∗)

)
iterations if a local search move is performed only when the cost of

the current solutionS is reduced by at leastc(S)
p(n,ε)

.

Proof Local search procedure begins with an initial feasible solutionS0 of costc(S0).

In each iteration cost is reduced by at leastc(S)
p(n,ε)

, whereS is the current solution. A

local search procedure cannot reduce the cost of solution to less thanC(S∗). Let t be the

number of iterations used to obtain a local optimal solutionS, then

c(S) ≤
(

1− 1

p(n, ε)

)t

· c(S0)

and

c(S) ≥ c(S∗)
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therefore, (
1− 1

p(n, ε)

)t

· c(S0) ≥ c(S∗)

For t = p(n, ε).l the cost would be(
1− 1

p(n, ε)

)p(n,ε)·l

· c(S0) ≈
c(S0)

el

This implies
c(S0)

el
≥ c(S∗)

or

l ≤ log
c(S0)

c(S∗)

This means that the procedure terminates inO
(
p(n, ε) · log c(S0)

c(S∗)

)
iterations. �

2.2 Local search heuristics with no performance guaran-

tees

Kuehn and Hamburger [KH63] in early 1960’s gave a simple local search heuristic for

uncapacitated and capacitated facility location problems. For the capacitated version they

gave experimental results for the case when the capacities are uniform. It was much later,

almost after 35 years, shown by Korupoluet al. [KPR00] that this heuristic provides a

locality gap of 8 for the case of uniform capacities.

The other well known local search heuristics which evolved during 1960’s to 1990’s

are for graph partitioning problem and traveling salesman problem. These heuristics

evolved from 2-opt heuristic for traveling salesman problem given by Croes [Cro58] in

1958. 2-opt is a simple local search heuristic: a) it starts with a traveling salesman tour,

b) swaps 2 edges in the tour with two edges not in the tour so that result is a cheaper tour,

c) continues this way until no more improvements are possible. If the number of edges

exchanged in each step isλ then the algorithm is said to beλ-opt. Kerninghan-Lin (KL)
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gave a generalization ofλ-opt for graph partitioning problem in 1969. This is an adaptive

algorithm and decides a new value ofλ in each iteration.

Lin-Kerninghan’s algorithm (LK) for traveling salesman problem was designed in

1971 which draws ideas from KL’s graph partitioning algorithm and is a generalization of

λ-opt for TSP. KL and LK are known to be the most successful heuristic procedures for

these problems which use local search approach. These algorithms are very sophisticated.

Both these algorithms are known to provide good solutions which are within1% − 2%

of the optimal solution for most instances. Even after 40 years since its inception LK

is one of the best heuristics for the TSP. It has also been adapted to solve generalised

travelling salesman problem [KG11]. Chandra, Karloff and Tovey [CKT99] show that

λ-opt heuristic for TSP can have an arbitrarily large locality gap. The same result applies

to Lin-Kerninghan algorithm also.

2.3 Approximation algorithms based on local search tech-

nique

Beginning with an approximation algorithm for satisfiability in 1994 by Alimonti [Ali94]

several approximation algorithms have been designed using local search. As mentioned

in the previous section, Korupoluet al. [KPR00, KPR98] in 1998 analyzed the local

search heuristic of Kuehnet al. to show that it is within an (8+ε)-factor of the optimal

for CFLP with uniform capacities and within (5+ε)-factor of the optimal for UFLP. Arya

et al. [AGK+04, AGK+01] improved the locality gap for UFLP from (5+ε) to (3+ε) and

gave a tight example for the same. Chudaket al.[CW99, CW05] improved the analysis of

Korupoluet al. for CFLP to give a factor of (5.83+ε) for uniform capacities. In our work

we have further improved the analysis to obtain (3+ε)-factor [ALB+13, AAB+10]. We

also provide a tight example to put to rest any further scope of improvement in the analysis

of the heuristic given by Kuehnet al.. This means that to seek any further improvement
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in the locality gap for the problem, we need to devise new local search heuristics for the

problem.

Kuehn et al. deals with CFLP only with uniform capacities. The neighborhood

structure of the approach does not deal with the case of non-uniform capacities. In 2001

Pál, Tardos and Wexler [PTW01] gave a different local search algorithm which is well

suited for the case of non-uniform capacities and is the first such result for this problem.

They showed that their algorithm has a locality gap of (8.53+ε). Mahdian and Ṕal [MP03]

gave an LS algorithm for universal facility location problem with (7.88+ε)-factor. Since

UniFL is a generalization of capacitated facility location problem, the result also implied

an improvement for non-uniform capacities. Local search algorithm by Zhang, Chen and

Ye [ZCY05] improved the locality gap to (5.83+ε) in 2004. We modify the operations of

Palet al. [PTW01] and Zhanget al. [ZCY05] and give a solution which is at most (5+ε)

times the cost of an optimum solution [BGG12]. By giving a tight example, we prove that

the analysis for our algorithm cannot be strengthened any further.

Result of Mahdianet al. [MP03] for universal facility location problem was im-

proved by Vygen in 2007 [Vyg07] to (6.702+ε). The line of their analysis is very similar

to that of Zhanget al.. Recently in a parallel work with ours, Angel, Thang and Regnault

in [ATR13] have reduced this factor further to (5.83+ε). However, we give a better factor

of (5+ε) for the problem by extending our results for CFLP to this problem.

There are other variants of facility location problems which have benefited from

the local search paradigm. Charikar and Guha [CG99, CG05] gave a local search based

algorithm with (2.414 +ε)-factor for soft-capacitated version in 1999. In 2001, Aryaet

al. [AGK+04, AGK+01] gave first LS algorithm for thek-median problem with (3+ε)-

factor. Gupta and Kanat [GT08] simplified the analysis given by Aryaet al. for the same

factor. In 2005 Devanuret al. [DGK+05] gave a (5+ε)-factor algorithm fork-facility

location problem and showed that it can be used to bound the price of anarchy of the

defined game. In 2007, we saw a result, a (2+
√

3)-factor, onk-facility location by Zhang

19



[Zha07] . In 2010, a constant factor on budgeted red-blue median problem was given

by Hajiaghayi, Khandekar and Kortsarz [HKK10, HKK12]. Ahmadian, Friggstad and

Swamy gave a (3+ε)-factor algorithm for the mobile facility location problem [AFS13]

and suggest that any improvement in factor for this problem means a similar improvement

for thek-median problem. Currently their factor matches the best known fork-median

problem using local search.

Other problems for which local search heuristic has provided approximation algo-

rithms include k-means clustering problem [KMN+02]. Microprocessor scheduling by

Shuurmanet al. [SV07], balls into bins by Bogdanet al. in [BSSS13], Maximum cover-

age over a matroid by Filmuset al. [FW12], max 3-cover problem by Caragianniset al.in

[CM13], k-exchange systems [FNSW11], ranking tournaments [CW09], the Maximum

Set Packing Problem [SW13]. Refer to [Ang06] for more approximation results using

local search.
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Chapter 3

A (3+ε)-Approximation Algorithm for

the Facility Location Problem with

Uniform Capacities

In this chapter we deal with theuniform capacitated facility location problemin which the

number of clients that a facilityi can serve is bounded byui andui = U , for all i. For this

problem of uniform capacities the first approximation factor was due to Korupolu, Plaxton

and Rajaraman [KPR00, KPR98] who analyzed the local search algorithm by Kuehnet

al. [KH63] and proved that any locally optimal solution has cost no more than (8+ε)

times cost of an (global) optimum solution. Chudak and Williamson [CW05, CW99]

strengthened the analysis in [KPR00, KPR98] to obtain a (5.83+ε)-approximation.

Given a set of open facilities, the best way of serving the clients, can be determined

by solving an assignment problem [STA97]. Thus any solution is completely determined

by the set of open facilities. The local search procedure proposed by Kuehnet al. starts

with an arbitrary set of open facilities and then updates this set, using one of the operations

add, delete, swap, whenever that operation reduces the total cost of the solution. We show

that a solution which is locally optimal with respect to this same set of operations is a
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(3+ε)-approximation. We then show that our analysis of this local search algorithm is

best possible by demonstrating an instance where the locally optimum solution is three

times the (global) optimum solution.

All earlier work for capacitated facility location (uniform or non-uniform), in their

analysis, is able to capture rerouting all the clients in a swap operation from the facility

which is being closed to the one being opened. This however can be quite expensive and

cannot lead to the tight bounds that we achieve. We use the idea of Arya et.al. [AGK+01,

AGK+04] to reassign some clients of the facility being closed in a swap operation to other

facilities in our current solution. However, to be able to handle the capacity constraints

in this reassignment we need to extend the notion of the mapping between clients used

in [AGK+01, AGK+04] to a fractional assignment. We also show rerouting of clients

from their current facilities to the facility opened in the swap operation to better utilize its

remaining available capacity.

As in earlier work, we use the fact that when we have a local optimal, no opera-

tion leads to an improvement in cost. However, we now take carefully definedlinear

combinationof the inequalities capturing this local optimality. All previous work that

we are aware of seems to only use thesumof such inequalities and therefore requires

additional properties like the integrality of the assignment polytope to identify suitable

swaps [CW05, CW99]. Our approach is therefore more general and amenable to better

analysis. The idea of doing things fractionally appears more often in our analysis. Thus,

when analyzing the cost of an operation we assign clients fractionally to the facilities

and rely on the fact that such a fractional assignment cannot be better than the optimum

assignment which follows from the integrality of the assignment polytope.

In Section 3.5 we give a tight example that requires the construction of a suitable

set-system. While this construction itself is quite straightforward, this is the first instance

we know of where such an idea has been applied to prove a large locality gap.
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3.1 Preliminaries

Let C be the set of clients,F denote the facility locations andU be the capacity of each

facility in F . Let |C| = m and|F | = n. LetS (resp.O) be the set of open facilities in our

solution (resp. optimum solution). With abuse of notation we useS (resp.O) to denote

our solution (resp. optimum solution). InitiallyS is an arbitrary set of facilities which can

serve all the clients. Letc(S) = cf (S) + cs(S) denote the total cost (facility cost plus the

service cost) of solutionS. The three operations that make up the local search algorithm

of Kuehnet al.are

add For s /∈ S, if c(S + {s}) < c(S) thenS ← S + {s}.

delete For s ∈ S, if c(S − {s}) < c(S) thenS ← S − {s}.

Swap For s ∈ S ands′ /∈ S, if c(S − {s}+ {s′}) < c(S) thenS ← S − {s}+ {s′}.

S is locally optimal if none of the three operations are possible and at this point the

algorithm stops.

Recall thatfi, i ∈ F is used to denote the cost of opening a facility at locationi and

cij is used to denote the cost of assigning clientj to facility i. Let Sj andOj denote the

service-cost of clientj in the solutionsS andO respectively. The presence of theadd

operation ensures that the total service cost of the clients in any locally optimal solution

is at most the total cost of the optimum solution [KPR00]. Formally,

Lemma 3.1 ([KPR00]) For any locally optimal solutionS,
∑

j∈C Sj ≤
∑

j∈C Oj +∑
o∈O fo.

For the sake of completeness we prove this lemma in Section 3.2 for the case whenS ∩

O = φ and again in Section 3.4 for the general case.

We next show that the facility cost of a locally optimal solution is no more than 2

times the cost of an optimum solution. We prove this by identifying a suitable set of local
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operations and determine the increase in cost if these operations were to be performed.

Since the solution is locally optimal, the increase in cost due to these operations is non-

negative1. This gives us a set of inequalities and a suitable linear combination of these

inequalities yields the bound on the facility cost of the locally optimal solution. Note that

the inequalities generated are only for the purpose of analysis; we do not actually perform

those local operations since we are already at a locally optimal solution.

Combining the bounds of the service cost and the facility cost of a locally optimal

solution then gives us our main theorem:

Theorem 3.2 For any locally optimal solutionS and an optimum solutionO to the fa-

cility location problem with uniform capacities,c(S) ≤ 3c(O).

To ensure that our procedure has a polynomial running time we use an idea first

proposed in [KPR00] — a local step is performed only if the cost of a solutionS ′ reduces

by more than(ε/4n)c(S ′) whereε > 0 andn = |F | is the number of facility locations.

It is immediate from Lemma 2.1 that as a result of this modification the number of lo-

cal search steps done is at most4nε−1 log(c(S0)/c(O)) whereS0 is the initial solution.

In Section 3.3 we argue that the approximation guarantee of this modified local search

procedure increases to at most3/(1− ε).

The rest of the chapter is organized as follows. In Section 3.2 we give a little loose

bound of (3,2) on the facility costs of the locally optimal solution which means that the

facility cost ofS is at most 3 times the facility cost plus 2 times the service cost of the

optimal solution. We improve upon this bound in Section 3.3 by giving a better utilization

of opened facilities. In both these sections we assume that the facilities in the locally

optimal solutionS are disjoint from the facilities in the optimum solutionO. Most of the

new ideas for this problem appear in these two sections. In Section 3.4 we extend the

argument to the case when the facilities inS andO are not disjoint. In Section 3.5 we

1In fact, we do not determine the exact increase in cost when a local operation is performed but only an

upper bound on this quantity.
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give an example of a solution which is locally optimal with respect to the operations of

add, delete, swapand has cost three times the optimum. This establishes that our analysis

is tight.

3.2 Bounding the cost whenS ∩ O = φ: A loose bound

on facility cost

For this section and the next, we assume that the setsS andO are disjoint. This as-

sumption allows us to add any facility ofO or to swap any facility inS with a facility

in O without worrying about the possibility that the facility ofO included in our solu-

tion might already be a part ofS. Let NS(s) denote the clients served by facilitys in

the solutionS andNO(o) denote the clients served by facilityo in solutionO. Let N o
s

denote the set of clients served by facilitys in solutionS and by facilityo in solutionO

i.e. N o
s = NS(s) ∩ NO(o). For a clientj ∈ C, let σ(j)(respectivelyτ(j)) be the facility

which servesj in solutionS(respectivelyO).

We first give the proof of Lemma 3.1 to bound the service cost of solutionS under

the assumption thatS ∩O = φ.

Proof Consider the operationadd (o) for a facility o ∈ O. SinceS is a locally optimal

solution therefore by assigning clients fromNO(o) to o, instead of best assignment of

clients to facilities inS∪{o}, would not improve the cost of the solution. We can therefore

write the following inequality due to this operation:

fo +
∑

j∈NO(o)

(Oj − Sj) ≥ 0 (3.1)

We can write one such inequality w.r.t. eacho ∈ O. Adding all these inequalities,

we get ∑
o∈O

fo +
∑
o∈O

∑
j∈NO(o)

(Oj − Sj) ≥ 0
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or ∑
o∈O

fo +
∑
j∈C

(Oj − Sj) ≥ 0

This implies for a locally optimal solutionS,

∑
j∈C

Sj ≤
∑
j∈C

Oj +
∑
o∈O

fo (3.2)

�

To bound the facility cost ofS, we will considerswap/deleteoperations in which

we close a facilitys and assign the clients served bys to other facilities inS and, some

facility in O if required. Recall that this is done only for the purpose of analysis and

to help generate inequalities which arise from the fact thatS is locally optimal. The

reassignment of a clientj served bys to the facilities inS is done using afractional

assignmentπo : NO(o) × NO(o) → <+ whereo = τ(j). πo(j, j
′) defines the extent up

to whichj is assigned to the facilityσ(j′) when the facilityσ(j) = s is closed. Clearly,

for this fractional assignment we need to choosej′ such thatσ(j′) 6= s (we call this the

separation propertyof the fractional assignment). For the purpose of analysis, we also

require thatπo(j
′, j) = πo(j, j

′).

Let wt (j) denote the total extent up to whichj is assigned to other facilities inS

using this assignment. Therefore forj ∈ NS(s)

∑
j′∈C:j′ 6=j

πo(j
′, j) =

∑
j′∈C:j′ 6=j

πo(j, j
′) = wt (j)

We call these equalities as thebalance propertyof the fractional assignment.

Note that1−wt (j) fraction ofj remains unassigned. We define theresidual weight

of j as1−wt (j) and denote it byres-wt (j). This much extent ofj will be assigned to

some facility inO.

Before we formally explain how to computewt (j) andπo, let’s consider the follow-

ing examples (U = 100):
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1. A facility s1 is serving 80 clients inS, i.e. |NS(s1)| = 80. Whens1 is closed,

at most 80 clients froms1 can be reassigned using the fractional assignment, to

other facilities inS. But s1 can receive at most 20 clients, through the fractional

assignment, from other facilities inS − {s1} when they are closed. Therefore due

to the balance property of fractional assignment, whens1 is closed only 20 clients

can be reassigned using fractional assignment.

2. a facility s2 is serving 20 clients inS, i.e. |NS(s2)| = 20. Thoughs2 can receive 80

clients from other facilities inS when they are closed, but at most 20 clients from

s2 can be reassigned using fractional assignment, to other facilities inS whens2 is

closed. Again, due to the balance property of fractional assignments2 can receive

atmost 20 clients from other facilities using fractional assignment.

The above examples show that at mostmin (U − |NS(s)|, |NS(s)|) clients from a

facility s can be reassigned using the fractional assignment. However instead of assigning

these many clients froms, whens is closed, we will assign all clientsj ∈ NS(s) up to at

mostmin

(
1,

U−|NS(s)|
|NS(s)|

)
extent, i.e.

wt (j) ≤ min

(
1,

U − |NS(s)|
|NS(s)|

)
.

In order to be able to define a valid fractional assignment, we require that for all

o ∈ O ands ∈ S, wt (N o
s ) ≤ wt (NO(o))/2. Here forX ⊆ C, wt (X) denotes the sum of

the weights of the clients inX.

Therefore,wt (j) for eachj ∈ C satisfies the following two properties:

1. wt (j) ≤ min

(
1,

U−|NS(σ(j))|
|NS(σ(j))|

)
.

2. For allo ∈ O ands ∈ S, wt (N o
s ) ≤ wt (NO(o))/2.

Now we will explain how to computewt (j) that satisfies these properties. Let

init-wt (j) = min

(
1,

U−|NS(σ(j))|
|NS(σ(j))|

)
. Since|NS(σ(j))| ≤ U , we have that0 ≤
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init-wt (j) ≤ 1. To determinewt (j) so that the above two properties are satisfied

we start by assigningwt (j) = init-wt (j). However, this assignment might vio-

late the second property. We say that a facilitys ∈ S capturesa facility o ∈ O if

init-wt (N o
s ) > init-wt (NO(o))/2. Note that at most one facility inS can capture

a facility o. If s does not captureo then for allj ∈ N o
s definewt (j) = init-wt (j).

However ifs captureso then for allj ∈ N o
s definewt (j) = α · init-wt (j) whereα < 1

is such thatwt (N o
s ) = wt (NO(o))/2. Note that ifN o

s = NO(o) thenα = 0.

Next, we proceed to formally define fractional assignmentπo : NO(o) × NO(o) →

<+ for a facility o ∈ O with the following properties.

separation πo(j, j
′) > 0 only if j andj′ are served by different facilities inS.

balance
∑

j′∈NO(o) πo(j
′, j) =

∑
j′∈NO(o) πo(j, j

′) = wt (j) for all j ∈ NO(o).

0 NO(o)

0 NO(o)

j

j

j’

j’

πo(j,j’)

Figure 3.1: Definingπo. The lower arrangement is obtained by splitting the top arrange-
ment at the central dotted line and swapping the two halves.

The fractional assignmentπo can be obtained along the same lines as the mapping

in [AGK+04]. Associate an interval of lengthwt (j) for eachj ∈ NO(o) and arrange

these intervals on a line segment of lengthwt (NO(o)) (see Figure 3.1). The intervals are

ordered so that intervals corresponding to clients served by the same facility inS appear

together. Consider another arrangement of intervals obtained from the first by splitting the

line segment at the center and swapping the two halves. As a consequence, one interval
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o

j j’

s’s

Oj

Sj

Oj’

Sj’

cj,s’

Figure 3.2:σ(j) = s andσ(j′) = s′. τ(j) = τ(j′) = o

might be split and be non-contiguous in the second arrangement. Superimpose these two

arrangements.πo(j, j
′) is now defined as the overlap between the interval corresponding

to j in the first arrangement and the intervalj′ in the second. The second property of the

weights ensures that there is no overlap between an interval in the first arrangement and

the corresponding interval in the second arrangement. Further, it is easy to see that the

mappingπo as defined here satisfies the properties of separation and balance.

The fractional assignmentsπo are extended to a fractional assignment (over all

clients),π : C × C → <+ in the obvious way —π(j, j′) = πo(j, j
′) if j, j′ ∈ NO(o) and

is 0 otherwise.

Thus when a facilitys is closed, a clientj ∈ NS(s) is assigned toσ(j′) to an extent

of π(j, j′). Let ∆(s) denote the increase in the service-cost of the clients served bys due

to this reassignment. Recall thatOj andSj denote the service costs of clientj in solution

O andS respectively. In the following lemma we bound the cost of this reassignment.

Lemma 3.3
∑

s∈S ∆(s) ≤
∑

j∈C 2Ojwt (j).

Proof Let π(j, j′) > 0. When the facilityσ(j) is closed andπ(j, j′) fraction of client
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j assigned to facilityσ(j′), the increase in service cost isπ(j, j′)(cjσ(j′) − cjσ(j)). Since

cjσ(j′) ≤ Oj + Oj′ + Sj′ (see Figure 3.2) we have∑
s∈S

∆(s) =
∑

j,j′∈C

π(j, j′)(cjσ(j′) − cjσ(j))

≤
∑

j,j′∈C

π(j, j′)(Oj + Oj′ + Sj′ − Sj)

= 2
∑
j∈C

Ojwt (j)

where the last equality follows from the balance property. �

Let S ′ ⊆ S be the set of facilities such that fors ∈ S ′ wt (j) = 1 ∀j ∈ NS(s) i.e.

res-wt (j) = 0 ∀j ∈ NS(s). We perform adeleteoperation for each of the facilities in

S ′.

A facility s ∈ S ′ can be deleted fromS using operationdelete(s) and its clients

reassigned completely to the other facilities inS. SinceS is locally optimal, therefore

cost of this operation is non-negative, i.e.

−fs − cs(S) + cs(S − {s}) ≥ 0

where the reassignment of clients is done in best possible way. Cost of reassigning

clients ofs usingπ assignment, whens is deleted, will only be more or equal. Therefore

∆(s) ≥ −cs(S) + cs(S − {s})

and hence

−fs + ∆(s) ≥ 0

We write such an inequality for eachs ∈ S ′ and add all of them to get

∑
s∈S′

(−fs + ∆(s)) ≥ 0. (3.3)
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For s ∈ S − S ′, facilities for whichres-wt (j) > 0 for somej ∈ NS(s), delete

operation is not sufficient asres-wt (j) extent ofj needs to be assigned to a facility not

in S. Thus fors ∈ S−S ′, we need to perform aswapoperation by swappings with some

facility o ∈ O. res-wt (j) extent of a clientj will be assigned too andwt (j) extent of

client j will be assigned to facilities inS \ s, as is determined by theπ assignment. The

total extent to which clients are assigned too in this operation equalsres-wt (NS(s))

which is at mostU .

Let us consider swapping of facilitiess, o wheres ∈ S − S ′ ando ∈ O. The service

cost of a clientj, which is assigned too instead ofs would increase bycjo − cjs. Since

cjo− cjs ≤ cso, the total increase in service cost of all clients inNS(s) which are assigned

(partly) too is at mostcsores-wt (NS(s)).

SinceS is locally optimal we have

fo − fs + cs(S − {s} ∪ {o})− cs(S) ≥ 0.

Let 〈s, o〉 denote swapping of facilitiess, o together with reassignment of clients

served bys to facilities inS−{s}∪{o} as follows:wt (j) extent of each clientj ∈ NS(s)

is reassigned to facilities inS usingπ assignment andres-wt (j) extent ofj is assigned

to o. Since in the actual operationswap(s,o) the reassignment of clients is done in

best possible way, cost of reassignment of clients in〈s, o〉 will only be more or equal.

Therefore,

csores-wt (NS(s)) + ∆(s) ≥ cs(S − {s} ∪ {o})− cs(S).

and therefore

fo − fs + csores-wt (NS(s)) + ∆(s) ≥ 0. (3.4)

The above inequalities are written for every pair(s, o), s ∈ S − S ′, o ∈ O. We take a

linear combination of these inequalities with the inequality corresponding to〈s, o〉 having
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a weightλs,o in the combination to get∑
s∈S−S′,o

λs,ofo−
∑

s∈S−S′,o

λs,ofs +
∑

s∈S−S′,o

λs,ocsores-wt (NS(s))+
∑

s∈S−S′,o

λs,o∆(s) ≥ 0.

(3.5)

We need to defineλs,o values carefully to ensure that the reassignment costs of

res-wt (NS(s)) clients is not very high. Define

λs,o =
res-wt (N o

s )

res-wt (NS(s))

if res-wt (NS(s)) 6= 0 and is 0 ifres-wt (NS(s)) = 0. Note that for alls ∈ S − S ′,∑
o λs,o = 1. We show that with these values ofλs,o third term of Inequality 3.5 is

bounded by
∑

j∈C res-wt (j)(Oj + Sj). This is proved in the following lemma.

Lemma 3.4
∑

s,o λs,ocsores-wt (NS(s)) ≤
∑

j∈C res-wt (j)(Oj + Sj)

Proof The left hand side in the inequality is∑
s,o

λs,ocsores-wt (NS(s)) =
∑
s,o

csores-wt (N o
s ).

Next, recall thatcso = minj∈C(cjs + cjo) ≤ minj∈No
s
(Oj + Sj). Therefore

csores-wt (N o
s ) =

∑
j∈No

s

csores-wt (j)

≤
∑
j∈No

s

res-wt (j)(Oj + Sj)

Therefore

∑
s,o

csores-wt (N o
s ) ≤

∑
s,o

∑
j∈No

s

res-wt (j)(Oj + Sj)

=
∑
s∈S

∑
j∈NS(s)

res-wt (j)(Oj + Sj)

=
∑
j∈C

res-wt (j)(Oj + Sj)

�
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We add the Inequality 3.3 to Inequality 3.5 and get

∑
s∈S′

(−fs + ∆(s)) +
∑

s∈S−S′,o

λs,ofo −
∑

s∈S−S′,o

λs,ofs

+
∑

s∈S−S′,o

λs,ocsores-wt (NS(s)) +
∑

s∈S−S′,o

λs,o∆(s) ≥ 0. (3.6)

As
∑

o λs,o = 1 for all s ∈ S − S ′, we have

∑
s∈S′

fs +
∑

s∈S−S′,o

λs,ofs =
∑

s

fs (3.7)

and ∑
s∈S′

∆(s) +
∑

s∈S−S′,o

λs,o∆(s) =
∑

s

∆(s) ≤
∑
j∈C

2Ojwt (j) (3.8)

Where the last inequality follows from Lemma 3.3.

Incorporating equations (3.7), (3.8) and Lemma 3.4 into inequality (3.6) we get

−
∑

s

fs +
∑
s,o

λs,ofo +
∑
j∈C

res-wt (j)(Oj + Sj) +
∑
j∈C

2Ojwt (j) ≥ 0

or

∑
s

fs ≤
∑
s,o

λs,ofo +
∑
j∈C

res-wt (j)(Oj + Sj) +
∑
j∈C

2Ojwt (j)

=
∑
s,o

λs,ofo + 2
∑
j∈C

Oj +
∑
j∈C

res-wt (j)(Sj −Oj) (3.9)

We will now bound
∑

s λs,o the coefficient offo in the Inequality 3.9, which provides

us with the number of times a facility of the optimum solution may be opened.

Lemma 3.5 For all o ∈ O,
∑

s λs,o ≤ 2.

Proof We begin with the following observations.

1. For all s, o, λs,o ≤ 1.
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2. Let I ⊆ S be the facilitiess such thats does not capture anyo ∈ O and|NS(s)| ≤

U/2. Let s ∈ I, o ∈ O then∀ j ∈ N o
s , wt (j) = init-wt (j) (becauses does

not captureo) and init-wt (j) = 1 (becauseNS(s) ≤ U/2). Thus∀ j ∈ N o
s

wt (j) = init-wt (j) = 1 and thereforeres-wt (j) = 0. This implies that

res-wt (N o
s ) = 0 and henceλs,o = 0 for all s ∈ I.

Thus we only need to show that
∑

s/∈I λs,o ≤ 2. We now consider two cases.

1. o is not captured by anys ∈ S.

Let’s partitionS − I further into two setsI
′

andI
′′
, where fors ∈ I

′
we have

NS(s) ≤ U/2 and fors ∈ I
′′

we haveNS(s) > U/2. Let s ∈ I
′
. Sinceo is not

captured by any facility inS therefore in particular it is not captured bys. Thus

for all j ∈ N o
s , wt (j) = init-wt (j) = 1 and sores-wt (j) = 0 by the same

argument as for the case ofs ∈ I. This implies thatλs,o = 0 for all s ∈ I
′
.

Let s be a facility in I
′′
. Sinces does not captureo, for j ∈ N o

s , wt (j) =

init-wt (j). Thus

res-wt (j) = 1− wt (j) = 1− init-wt (j) = 2− U

|NS(s)|
.

However, forj ∈ NS(s) we havewt (j) ≤ init-wt (j). Thus

res-wt (j) = 1− wt (j) ≥ 1− init-wt (j) = 2− U

|NS(s)|
.

Therefore

λs,o =
res-wt (N o

s )

res-wt (NS(s))
≤ |N o

s |
|NS(s)|

Hence

∑
s

λs,o =
∑
s∈I′′

λs,o ≤
∑
s∈I′′

|N o
s |

|NS(s)|
≤
∑
s∈I′′

|N o
s |

U/2
≤ |NO(o)|

U/2
≤ 2.
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2. o is captured bys′ ∈ S.

This implies

init-wt (N o
s′) ≥

∑
s 6=s′

init-wt (N o
s )

≥
∑

s/∈I∪{s′}

init-wt (N o
s )

=
∑

s/∈I∪{s′}

|N o
s |

U − |NS(s)|
|NS(s)|

=
∑

s/∈I∪{s′}

(
U
|N o

s |
|NS(s)|

− |N o
s |
)

Sinceinit-wt (N o
s′) ≤ |N o

s′| rearranging we get,∑
s/∈I∪{s′}

|N o
s |

|NS(s)|
≤
∑
s/∈I

|N o
s |

U
≤ 1.

Now ∑
s/∈I∪{s′}

λs,o ≤
∑

s/∈I∪{s′}

|N o
s |

|NS(s)|
≤ 1

and sinceλs′,o ≤ 1 we have∑
s

λs,o =
∑

s/∈I∪{s′}

λs,o + λs′,o ≤ 2.

This completes the proof. �

Incorporating Lemma 3.5 into Inequality (3.9) we get

∑
s

fs ≤ 2

(∑
o

fo +
∑
j∈C

Oj

)
+
∑
j∈C

res-wt (j)(Sj −Oj)

Note that
∑

j∈C res-wt (j)(Sj − Oj) is at most
∑

j∈C(Sj − Oj) which in turn can be

bounded by
∑

o fo by Lemma 3.1 and thus we have

∑
s

fs ≤ 3
∑

o

fo + 2
∑
j∈C

Oj (3.10)
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This gives us the result of this section. In the next section we will prove the following

bound on facility cost ofS. ∑
s

fs ≤ 2
∑

o

fo + 2
∑
j∈C

Oj

3.3 Our main result

The key to obtaining a sharper bound on the facility cost of our solution is the observation

that in the swap〈s, o〉 facility o gets onlyres-wt (NS(s)) clients and can accommodate

additionalU − res-wt (NS(s)) clients.

Claim 3.6 A facility o ∈ O is opened at most twice and gets at mostU clients in all the

swap operations considered.

Proof Total clients that a facilityo ∈ O gets over all the operations is∑
s

λs,ores-wt (NS(s)) =
∑

s

res-wt (N o
s )) (3.11)

= res-wt (NO(o)) ≤ U (3.12)

�

In swap〈s, o〉, we assign a clientj ∈ NS(s) to other facilities inS up to the extent

of wt (j) and too up to the extent ofres-wt (j). We have considered the reassignment

of clients served only by facilitys in thisswap. Note that

1. o is assigned a total ofres-wt (NS(s)) clients in this reassignment.

2. o can get an additionalU − res-wt (NS(s)) clients.

3. we can assign, too, additional clients which are served by other facilities inS

and byo in the optimal. wt (j) extent for all the clientsj ∈ C is kept aside to

participate inπ assignment only, therefore onlyres-wt (j) extent ofj is avail-

able for any other type of reassignment ofj. Thus additional clients fromNO(o)
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are assigned too up to a total extent of at mostres-wt (NO(o)) This means

min (res-wt (NO(o)), U − res-wt (NS(s))) clients can be assigned too due to

this reassignment.

However, instead of assigningmin(res-wt (NO(o)), U−res-wt (NS(s))) clients

to o, residual weight of each clientj ∈ NO(o) is assigned up to an extent of

min

(
1,

U−res-wt (NS(s))
res-wt (NO(o))

)
in this reassignment. Call this quantityβs,o, i.e.

βs,o = min

(
1,

U − res-wt (NS(s))

res-wt (NO(o))

)
.

Let ∆′(s, o) denote the increase in service cost of the clients ofNO(o) due to this

reassignment. i.e.

∆′(s, o) = βs,o

∑
j∈NO(o)

res-wt (j)(Oj − Sj). (3.13)

We will now put the pieces together to prove the following theorem:

Theorem 3.7 WhenS ∩ O = φ, the total cost of open facilities in any locally optimal

solution is at most twice the cost of an optimum solution.

Proof The Inequality (3.4) corresponding to theswap〈s, o〉 would now get an addi-

tional term∆′(s, o) on the left. Hence the term
∑

s,o λs,o∆
′(s, o) would appear on the left

in Inequality (3.6) and on the right in Inequality (3.9).

Now

∑
s

λs,o∆
′(s, o) =

∑
s

λs,oβs,o

∑
j∈NO(o)

res-wt (j)(Oj − Sj)


=

(∑
s

λs,oβs,o

) ∑
j∈NO(o)

res-wt (j)(Oj − Sj).

If
∑

s λs,oβs,o > 1 then we reduce someβs,o so that the sum is exactly 1 (we will later

show that this does not affect the analysis). On the other hand if
∑

s λs,oβs,o = 1 − γo,
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γo > 0, then we take the inequalities corresponding to the operation of adding the facility

o ∈ O

fo +
∑

j∈NO(o)

res-wt (j)(Oj − Sj) ≥ 0 (3.14)

and add these to Inequality (3.6) with a weightγo. Hence the total increase in the left

hand side of Inequality (3.6) is

∑
s,o

λs,o∆
′(s, o) +

∑
o

γo

fo +
∑

j∈NO(o)

res-wt (j)(Oj − Sj)


=

∑
o

∑
j∈NO(o)

(1− γo)res-wt (j)(Oj − Sj)

+
∑

o

γofo +
∑

o

∑
j∈NO(o)

γores-wt (j)(Oj − Sj)

=
∑

o

∑
j∈NO(o)

res-wt (j)(Oj − Sj) +
∑

o

γofo

=
∑
j∈C

res-wt (j)(Oj − Sj) +
∑

o

γofo

and so Inequality (3.9) now becomes

∑
s

fs ≤
∑

o

∑
s

λs,ofo + 2
∑
j∈C

Oj +
∑

o

γofo

+
∑
j∈C

res-wt (j)(Sj −Oj) +
∑
j∈C

res-wt (j)(Oj − Sj)

=
∑

o

(
γo +

∑
s

λs,o

)
fo + 2

∑
j∈C

Oj

=
∑

o

(
1 +

∑
s

λs,o(1− βs,o)

)
fo + 2

∑
j∈C

Oj

≤ 2

(∑
o

fo +
∑
j∈C

Oj

)

where the last inequality follows from the next lemma. This completes the proof of the

theorem. �
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Lemma 3.8
∑

s λs,o(1− βs,o) ≤ 1.

Proof When
∑

s λs,oβs,o > 1 we reduced someβs,o to ensure that the sum is exactly 1.

In this case ∑
s

λs,o(1− βs,o) =
∑

s

λs,o − 1 ≤ 1,

since by Lemma 3.5,
∑

s λs,o ≤ 2.

We now assume that noβs,o was reduced. Since

res-wt (NO(o)) ≤ |NO(o)| ≤ U

we have

βs,o = min

(
1,

U − res-wt (NS(s))

res-wt (NO(o))

)
≥ min

(
1, 1− res-wt (NS(s))

res-wt (NO(o))

)
= 1− res-wt (NS(s))

res-wt (NO(o))

Hence ∑
s

λs,o(1− βs,o) ≤
∑

s

res-wt (N o
s )

res-wt (NO(o))
= 1.

�

Recall that to ensure that the local search procedure has a polynomial running time

we modified the local search procedure so that a step was performed only when the cost

of the solution decreases by at least(ε/4n)c(S). This modification implies that the right

hand sides of inequalities (3.4), (3.3) and (3.14) which are all zero should instead be

(−ε/4n)c(S). Note that for every choice ofs ∈ S ando ∈ O we add aλs,o multiple of

Inequality (3.4) to obtain Inequality (3.6). Since
∑

o λs,o = 1, hence
∑

o,s λs,o = |S| ≤ n.

We also add Inequality (3.3) for everys ∈ S to Inequality (3.6). Similarly, for every

o ∈ O, aγo (γo ≤ 1) multiple of Inequality (3.14) is added to Inequality (3.6).

Putting all these modifications together gives rise to an extra term of at most

(3ε/4)c(S). This implies that the facility cost of solutionS is at most2c(O)+(3ε/4)c(S).
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S

O

C

so1 so2 so3

so3so2so1

s1
s2 so4

so4o1

Figure 3.3: An instance showing the decomposition into cycles (dotted arcs), swap paths
(solid arcs) and transfer paths (dashed arcs). The facilities labeledso1, so2, so3 andso4 are
in S ∩ O and have been duplicated. The cycle isso1, so2, so3, so1. The transfer paths are
(s1, so2, so1), (s2, so2) and(s2, so3). The swap paths ares1, so1, so3, o1 ands2, so4, o1.

Similarly, the service cost of solutionS can now be bounded byc(O)+(ε/4)c(S). Adding

these yields

(1− ε)c(S) ≤ 3c(O)

which implies thatS is a3/(1− ε) approximation to the optimum solution.

3.4 WhenS ∩O 6= φ

We now consider the case whenS ∩ O 6= φ. We construct a bipartite graph,G, on

the vertex setC ∪ F as in [CW05]. Every clientj ∈ C has an edge from the facility

σ(j) ∈ S and an edge to the facilityτ(j) ∈ O. Thus each client has one incoming and

one outgoing edge. A facilitys ∈ S has|NS(s)| outgoing edges and a facilityo ∈ O has

|NO(o)| incoming edges. Decompose the graphG into a set of maximal paths,P, and

cycles,C, as is explained in Appendix A.1.

Note that all facilities on a cycle are fromS ∩ O. Consider a maximal path,P ∈ P

which starts at a vertexs ∈ S and ends at a vertexo ∈ O. Let head(P ) denote the

client served bys on this path and tail(P ) be the client served byo on this path. Let

s0, j0, s1, j1, . . . , sk, jk, o be the sequence of vertices on this path wheres = s0. Note
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that {s1, s2, . . . , sk} ⊆ S ∩ O. A shift along this path is a reassignment of clients so

that ji which was earlier assigned tosi is now assigned tosi+1 wheresk+1 = o. As a

consequence of this shift, facilitys serves one client less while facilityo serves one client

more. Let shift(P ) denote the increase in service cost due to a shift along the pathP .

Then

shift(P ) =
∑

j∈C∩P

(Oj − Sj).

We can similarly define a shift along a cycle. The increase in service cost equals the sum

of Oj − Sj for all clientsj in the cycle and since the assignment of clients to facilities is

done optimally in our solution and in the global optimum this sum is zero. Thus∑
Q∈C

∑
j∈Q

(Oj − Sj) = 0.

As we did for the case whenS ∩O = φ, for this case also we prove the bound on service

cost and facility cost separately. Following is the proof of Lemma 3.1 which provides the

bound on service cost of a locally optimal solutionS whenS ∩O 6= φ.

Proof Consider the operation of adding a facilityo ∈ O. We shift along all the paths

which end ato. The increase in service cost due to these shifts equals the sum ofOj − Sj

for all clientsj on these paths and this quantity is at least−fo.∑
P∈P

∑
j∈P

(Oj − Sj) ≥ −
∑
o∈O

fo.

Thus∑
j∈C

(Oj − Sj) =
∑
P∈P

∑
j∈P

(Oj − Sj)(Oj − Sj) +
∑
Q∈C

∑
j∈Q

(Oj − Sj) ≥ −
∑
o∈O

fo

which implies that the service cost ofS is bounded by
∑

o∈O fo +
∑

j∈C Oj. �

To bound the cost of facilities inS − O we only need the paths that start from a

facility in S − O. Hence we throw away all cycles and all paths that start at a facility in

S ∩ O; this is done by removing all clients on these cycles and paths. LetP denote the
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remaining paths andC the remaining clients. Every client inC either belongs to a path

which ends inS ∩O (transferpath) or to a path which ends inO− S (swappath). LetT

denote the set of transfer paths andS the set of swap paths (see Figure 3.3).

We now defineN o
s to be the set of paths that start ats ∈ S and end ato ∈ O. Further,

define

NS(s) = ∪o∈O−SN o
s .

Note that we do not include the transfer paths in the above definition. Similarly for all

o ∈ O define

NO(o) = ∪s∈S−ON o
s .

Just as we defined theinit-wt (), wt () andres-wt () of a client, we can define

the init-wt (), wt () and res-wt () of a swap path. Thus for a pathP which starts

from s ∈ S −O we define

init-wt (P ) = min

(
1,

U − |NS(s)|
|NS(s)|

)
.

The notion ofcaptureremains the same and we reduce the initial weights on the paths

to obtain their weights. Thuswt (P ) ≤ init-wt (P ) and for everys ∈ S ando ∈ O,

wt (N o
s ) ≤ wt (NO(o))/2. For everyo ∈ O − S we define a fractional mappingπo :

NO(o)×NO(o)→ <+ such that

separation πo(P, P ′) > 0 only if P andP ′ start at different facilities inS −O.

balance
∑

P ′∈NO(o) πo(P
′, P ) =

∑
P ′∈NO(o) πo(P, P ′) = wt (P ) for all P ∈ NO(o).

This fractional mapping can be constructed in the same way as done earlier. The way we

use this fractional mapping,π, will differ slightly. When facility s is closed, we will use

π to partly reassign the clients served bys in the solutionS to other facilities inS. If P

is a path starting froms andπ(P, P ′) > 0, then we shift alongP and the client tail(P ) is

assigned tos′, wheres′ is the facility from whichP ′ starts. This whole operation is done
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Figure 3.4: The figure shows the assignment of clients to facilities after facilitys1 has
been closed (U = 3) in the instance given in Figure 3.3. The dotted lines show the earlier
assignment while the solid lines show the new assignment. Those assignments which do
not change are shown with dashed lines. Note thato serves two clientsj, k which are
the heads of swap pathss1, so1, so3, o1 ands2, so4, o1. These two clients are mapped to
each other in the mappingπ. When facilitys1 is closed we perform a shift along transfer
paths1, so2, so1. We also perform a shift along the swap paths1, so1, so3, o1 with the last
client on this path,j now assigned tos2. Since,s2 was already serving 3 clients, we move
one of its clients along a transfer path (s2, so2).

to an extent ofπ(P, P ′). The cost of assigning client tail(P ) to s′ can be bounded by the

sum of the service cost of tail(P ) in solutionO and thelengthof the pathP ′ where

length(P ′) =
∑

j∈C∩P ′

(Oj + Sj).

Let ∆(s) denote the total increase in service cost due to the reassignment of clients

on all swap paths starting froms. Then∑
s

∆(s) ≤
∑

s

∑
P∈NS(s)

∑
P ′∈P

π(P, P ′)(shift(P ) + length(P ′))

=
∑
P∈S

wt (P )(shift(P ) + length(P )) (3.15)

As a result of the above reassignment a facilitys′ ∈ S − O, s′ 6= s might get

additional clients whose ”number” is at mostwt (NS(s′)). Note that this is less than

init-wt (NS(s′)) which is at mostU − |NS(s′)|. The number of clientss′ was serving

equals|NS(s′)| + |T (s′)| whereT (s′) is the set of transfer paths starting froms′. This
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implies that the total number of clientss′ would have after the reassignment could exceed

U . To prevent this violation of our capacity constraint, we also perform a shift along these

transfer paths (Figure 3.4).

Supposes′ gets an additional client, say tail(P ), to an extent ofπ(P, P ′), where

P ′ ∈ NS(s′). Then for all pathsq ∈ T (s′), we would shift along pathq to an extent

π(P, P ′)/wt (NS(s′)). This ensures that

1. The total extent to which we will shift along a pathq ∈ T (s′) is given by∑
p

∑
P ′∈NS(s′)

π(P, P ′)

wt (NS(s′))

which is at most 1. This in turn implies that we do not violate the capacity of any

facility in S ∩ O. This is because, if there aret transfer paths ending at a facility

o ∈ S∩O theno servest more clients in solutionO than inS. Hence, in solutionS,

o serves at mostU − t clients. Since the total extent to which we could shift along

a transfer path ending ato is 1, even if we were to perform shift along all transfer

paths ending ino, the capacity ofo in our solutionS would not be violated.

2. The capacity constraint of no facility inS − O is violated. If a facilitys′ ∈ S − O

gets an additionalx clients as a result of reassigning the clients of some facility

s 6= s′, then it would also lose some clients, sayy, due to the shifts along the

transfer paths. Now

y = |T (s′)|
∑

p

∑
P ′∈NS(s′)

π(P, P ′)

wt (NS(s′))
=

x|T (s′)|
wt (NS(s′))

and hence the additional number of clients served bys′ is x− y which equals

x

(
1− |T (s′)|

wt (NS(s′))

)
≤ wt (NS(s′))− |T (s′)| ≤ U − |NS(s′)| − |T (s′)|,

where the first inequality follows from the fact thatx ≤ wt (NS(s′)) and the second

inequality by definition ofwt. Since, initially,s′ was serving|NS(s′)| + |T (s′)|
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clients, the total number of clients thats′ is serving after the reassignment is at

mostU .

Note that when we close facilitys we shift on transfer paths starting froms as well

as on some transfer paths starting ats′ 6= s. Let Γ(s) denote the total increase in service

cost due to shifts on all transfer paths when facilitys is closed. Consider a transfer path,

q, starting froms. We would shift once along pathq when we close facilitys. We would

also be shifting alongq to an extent of
∑

P

∑
P ′∈NS(s) π(P, P ′)/wt (NS(s)) (which is at

most 1) when facilities other thans are closed. Hence,∑
s

Γ(s) ≤ 2
∑
q∈T

shift(q) (3.16)

For a swap pathP , defineres-wt (P ) = 1− wt (P ). Let j be head(P ) and define

wt (j) = wt (P ) andres-wt (j) = res-wt (P ). Let P start from facilitys. Whens is

closed, clientj is assigned to an extentwt (j) to other facilities inS. We will be assigning

the remaining part ofj to a facilityo ∈ O−S that will be opened whens is closed. Hence

the total number of clients that will be assigned too is res-wt (NS(s)) which is less than

U . The increase in service cost due to this reassignment is at mostcsores-wt (NS(s)).

As done earlier, the inequality corresponding to theswap〈s, o〉 is counted to an extentλs,o

in the linear combination. Sincecso ≤ length(P ) for all P ∈ N o
s , we have the following

equivalent of Lemma 3.4∑
s,o

λs,ocsores-wt (NS(s)) ≤
∑
P∈S

res-wt (P )length(P ). (3.17)

The remaining available capacity ofo is utilized by assigning each clientj ∈ NO(o)

to an extentβs,ores-wt (j), whereβs,o is defined as before. This assignment is actually

done by shifting along each path,P ∈ NO(o), by an extentβs,ores-wt (P ). Let ∆′(s, o)

be the increase in cost due to this reassignment of clients inNO(o). Then

∆′(s, o) ≤ βs,o

∑
P∈NO(o)

res-wt (P )shift(P ).
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This operation is a part of〈s, o〉 and hence is counted to an extentλs,o in the linear com-

bination. Therefore the contribution of this term is∑
s,o

λs,o∆
′(s, o) ≤

∑
o

(∑
s

λs,oβs,o

) ∑
P∈NO(o)

res-wt (P )shift(P ). (3.18)

Adding facility o ∈ O − S and shifting each pathP ∈ NO(o) by an extentres-wt (P )

gives us the following inequality.

fo +
∑

P∈NO(o)

res-wt (P )shift(P ) ≥ 0 (3.19)

As before, if
∑

s λs,oβs,o > 1 then we reduce someβs,o so that the sum is exactly 1. Else,

we add a1−
∑

s λs,oβs,o multiple of Inequality (3.19) to Inequality (3.18) to get∑
s,o

λs,o∆
′(s, o) ≤

∑
o

γofo +
∑

o

∑
P∈NO(o)

res-wt (P )shift(P ). (3.20)

whereγo = max {0, 1−
∑

s λs,oβs,o}.

The inequality corresponding to theswap〈s, o〉 is

fo − fs + csores-wt (NS(s)) + ∆(s) + Γ(s) + ∆′(s, o) ≥ 0,

and taking a linear combination of the inequalities corresponding to the swaps〈s, o〉,

s ∈ S −O, o ∈ O − S with weightsλs,o yields∑
s,o

λs,ofo −
∑
s,o

λs,ofs +
∑
s,o

λs,ocsores-wt (NS(s))

+
∑
s,o

λs,o(∆(s) + Γ(s)) +
∑
s,o

λs,o∆
′(s, o) ≥ 0.

Since, for alls,
∑

o λs,o = 1, we get∑
s∈S−O

fs ≤
∑
s,o

λs,ofo +
∑
s,o

λs,o∆
′(s, o)

+
∑
s,o

λs,ocsores-wt (NS(s)) +
∑

s

(∆(s) + Γ(s)) (3.21)
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Putting the bounds from inequalities (3.15),(3.16),(3.17) and (3.20) into the right hand

side of Inequality (3.21), yields

∑
s∈S−O

fs ≤
∑

o∈O−S

(
γo +

∑
s

λs,o

)
fo +

∑
P∈S

res-wt (P )shift(P )

+
∑
P∈S

res-wt (P )length(P ) +
∑
P∈S

wt (P )(shift(P ) + length(P ))

+2
∑
P∈T

shift(P )

≤ 2
∑

o∈O−S

fo +
∑
P∈S

res-wt (P )(shift(P ) + length(P ))

+
∑
P∈S

wt (P )(shift(P ) + length(P )) + 2
∑
P∈T

shift(P )

= 2
∑

o∈O−S

fo +
∑
P∈S

(shift(P ) + length(P )) + 2
∑
P∈T

shift(P )

≤ 2

( ∑
o∈O−S

fo +
∑
j∈C

Oj

)

where the first inequality follows from Lemma 3.8 and Lemma 3.5. This implies that

∑
s∈S

fs ≤ 2

( ∑
o∈O−S

fo +
∑
j∈C

Oj

)
+
∑

o∈S∩O

fo ≤ 2

(∑
o∈O

fo +
∑
j∈C

Oj

)

which is the statement of Theorem 3.7 whenS ∩O 6= φ

3.5 A tight example

Our tight example consists ofr facilities in the optimum solutionO, r facilities in the

locally optimum solutionS and rU clients. The facilities areF = O ∪ S. Since no

facility can serve more thanU clients, each facility inS andO serves exactlyU clients.

Our instance has the property that a facility inO and a facility inS share at most one

client.
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We can view our instance as a set-system — the set of facilitiesO is the ground set

and for every facilitys ∈ S we have a subsetXs of this ground set.o ∈ Xs iff there is a

client which is served bys in the solutionS and byo in the solutionO. This immediately

implies that each element of the ground set is in exactlyU sets and that each set is of

size exactlyU . A third property we require is that two sets have at most one element in

common.

We now show how to construct a set system with the properties mentioned above.

With everyo ∈ O we associate a distinct pointxo = (xo
1, x

o
2, . . . x

o
U) in a U -dimensional

space where for alli, xo
i ∈ {1, 2, 3, . . . , U}. For every choice of coordinatei, 1 ≤ i ≤ U

we formUU−1 sets, each of which contains all points differing only in coordinatei. Thus

the total number of sets we form isr = UU which is the same as the number of points.

Each set can be viewed as a line inU -dimensional space. To see that this set system

satisfies all the properties note that each line containsU points and each point is on exactly

U lines. It also follows from our construction that two distinct lines meet in at most one

point.

We now define the facility and the service costs. For a facilityo ∈ O, fo = 2U while

for facility s ∈ S, fs = 6U − 6. For a clientj ∈ N o
s , we havecsj = 3 andcoj = 1. All

other service costs are given by the metric property.

Lemma 3.9 For a clientj and facilitys ∈ S, the three smallest values thatcsj can have

are 3,5 and 11. Similarly, the three smallest values thatcoj, o ∈ O can have are 1,7 and

9.

Proof A client j can be served at a cost 1 by exactly one facility inO and at a cost 3

by exactly one facility inS. The distance between a facility inO and a facility inS is at

least 4. �

Since the service cost of each client inO is 1 and the facility cost of each facility

in O is 2U , we havec(O) = 3UU+1. Similarly, c(S) = (3 − 2/U)3UU+1 and hence

c(S) = (3 − 2/U)c(O). We now need to prove thatS is indeed a locally optimum
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solution with respect to the local search operations ofadd, deleteandswap.

Adding a facilityo ∈ O to the solutionS, would incur an opening cost of2U . The

optimum assignment would reassign only the clients inNo(O), and all these are assigned

to o. The reduction in the service cost due to this is exactly2U which is offset by the

increase in the facility cost. Hence the cost of the solution does not improve.

If we delete a facility in the solutionS, the solution is no longer feasible since the

total capacity of the facilities is nowUU+1 − U and the number of clients isUU+1.

Now, consider swapping a facilitys ∈ S with a facility o ∈ O. The net decrease in

the facility cost is4U − 6. To bound the increase in service costs we consider a bipartite

graph with the facilitiesS∪{o} and the clientsC forming the two sides of the bipartition.

Let E be the edges corresponding to the original assignment of clients to facilities andE ′

be the edges of the new assignment. The symmetric difference ofE andE ′ is a collection

of U edge-disjoint paths betweens ando. LetP be this collection andP be one of these

paths. We define thenet-costof P as the difference between the costs of the edges ofE ′

andE in P .

Lemma 3.10 The two paths inP with the smallest net-cost have a total net-cost of at

least 2. All other paths inP have net-cost of at least 4.

Note that the increase in service cost as a result of the swap〈s, o〉 equals the total net-cost

of the paths inP. The lemma implies that the net-cost of the paths is at least4(U − 2) +

2 which is exactly equal to the decrease in facility cost. Hence, swapping any pair of

facilitiess ∈ S ando ∈ O does not improve the solution.

Proof The edges ofE on pathP have cost 3. From Lemma 3.9 it follows that the edge

on pathP incident too has cost 1,7 or higher while the remaining edges ofP ∩ E ′ have

cost 5,9 or higher. Edges onP alternate between setsE andE ′. Hence starting froms

we can pair consecutive edges ofP with the first edge of each pair fromE and the other

from E ′. Note that every pair, except the last, contributes at least 2 to the net-cost ofP

while the last pair contributes at least -2.
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Figure 3.5:U = 3.The figure shows the three cases corresponding toP0 having length 1, 2 and
3. P0 is the dotted path,P1 is the path with small dashes whileP2 is the path with longer dashes.

1. If the edge ofP incident too has cost 7 or higher than the last pair contributes at

least 4 to the net-cost ofP and hence the net-cost ofP is at least 4.

2. If any edge ofP ∩ E ′ has cost 9 or higher than the corresponding pair contributes

at least 6 to the net-cost. Since the last pair contributes at least -2, the net-cost ofP

is at least 4.

As a consequence of the above we can assume that all edges ofP ∩E ′ have cost 5, except

the edge incident too which has cost 1. This implies that the pathP corresponds to a path

S1, S2, . . . Sk in our set-system where consecutive sets have a common element andS1

corresponds to facilitys while Sk contains the element corresponding too. Alternatively,

in our construction of the set-system, the pathP corresponds to a sequence of lines where

consecutive lines in the sequence intersect and the first line is the one corresponding to

facility s while the last line contains the point corresponding too. Note that the paths in

P are edge-disjoint but not vertex-disjoint. Hence the sequence of lines corresponding to

two paths inP may have common lines but no pair of consecutive lines can be common

in the two sequences. Further, the sequences should end in different lines.

A path P containingk sets, corresponds to a sequence of lines containingk lines

and has a net-cost of2(k− 2) and we say that its length isk. Hence paths with 4 or more

lines have a net-cost at least 4 and so to prove the lemma we need to argue that there are

at most 2 paths inP having less than 4 lines. LetP0, P1 be the two paths with the smallest

lengths withP0 being the smallest.
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1. If P0 has length 1 then the line corresponding tos, sayys, contains the point corre-

sponding too, sayxo. From our construction it follows that any other sequence of

lines which starts withys and ends with a line containingxo which is different from

ys must contain at least 4 lines (including lineys). Hence pathP1 has a net-cost at

least 4. Thus the total net-cost of pathsP0 andP1 is at least 2 (see Figure 3.5).

2. If P0 has length 2 then the lineys and the pointxo, have identical values forU − 2

coordinates. Letya be the line inP0 containingxo. Once again, from our construc-

tion it follows that any other sequence of lines which starts withys and ends with a

line containingxo which is different fromya must contain at least 3 lines. HenceP1

has length at least 3 and so the total net-cost of pathsP0 andP1 is at least 2. Further

the other paths ofP would end with lines which are in dimensions other than the

last lines ofP0, P1 and so the length of these paths is at least 4 (see Figure 3.5).

3. If P0 has length 3 thenys andxo have identical values forU − 3 coordinates. In

this case, the net-cost of pathsP0, P1 is at least 2 and the other paths ofP have at

least 4 lines (see Figure 3.5).

�

51



Chapter 4

A (5+ε)-Approximation for Capacitated

Facility Location

In this chapter we apply our ideas developed in Chapter 3 to the setting of non-uniform

capacities. The first local search algorithm for non-uniform capacities problem was due

to Pal, Tardos and Wexler [PTW01] who gave a (8.53+ε)-approximation for this problem.

Mahdian and Pal [MP03] reduced this to a (7.88+ε)-approximation and simultaneously

extended it to the more generaluniversal facility locationproblem. The approximation

guarantee for the capacitated facility location problem was further reduced by Zhang,

Chen and Ye [ZCY05] to (5.83+ε).

Zhanget al. use three operationsadd, openandcloseof Palet al. and introduce a

new operation calledmulti. We modify theopen, closeandmulti operations so that apart

from the clients served by facilities being closed, some more clients, served by other

facilities in the current solution, are assigned to the facilities being opened to utilize them

more efficiently. We show that with these modifications we are able to achieve a factor of

(5+ε).

The remainder of this chapter is organized as follows. In Section 4.1 we present

a brief overview of the algorithm and analysis of Zhanget al.. In Section 4.2 we first
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show the underutilization of the opened facilities withopen, closeandmulti operations

and then suggest the improved operationsmopen, mcloseandmmulti. We then bound the

facility cost of our solution obtained with these new operations in the same section. We

also present a tight example in Section 4.3 where we give a locally optimal solutionS

whose cost is 5 times the cost of the optimum solution. Throughout this chapter we have

made an assumption thatS ∩ O = φ. This assumption helps us in building new ideas for

the problem and putting them in a simpler way. In the next chapter we will get rid of this

assumption when we discuss a more general version of the problem.

4.1 Preliminaries and Previous Work

As is true for the uniform capacity case, for a set of facilitiesS ⊆ F , the optimal as-

signment of clients to the facilities inS can be done by solving a mincost flow problem.

Therefore we only need to determine a good subsetS ⊆ F of facilities. We reuse the

notations of chapter 3 whereS denotes both the solution and the set of open facilities in

the solution; the cost of the solutionS is denoted byc(S) = cf (S) + cs(S), wherecf (S)

is the facility cost andcs(S) is the service cost of the solutionS.

Pal, Tardos and Wexler [PTW01] suggested a local search algorithm to find a good

approximate solution for the problem. Starting with a feasible solutionS the following

operations are performed to improve the solution if possible.

• add(s): S ← S ∪ {s}, s 6∈ S. In this operation a facilitys which is not in the

current solutionS is added if its addition improves the cost of the solution.

• open(t, T): S ← (S ∪ {t}) \ T , t /∈ S, T ⊆ S. In this operation a facilityt 6∈ S

is opened and a subset of facilitiesT ⊆ S is closed. Since the possibilities for

the setT are exponentially large, to make the procedure polynomial, instead of

computing the exact cost of the new solution only an estimated cost is computed

which overestimates the exact cost. The operation is then performed if the estimated
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cost is less than the cost of the solutionS. In computing the estimated cost it

is assumed that for anys ∈ T , all clients served bys are assigned tot and that

each such reassignment costscts wherects = minj∈C ctj + cjs. Working with the

estimated cost allows to find in polynomial time, for a givent, the setT for which

the estimated cost of(S \ T ) ∪ {t} is minimum [PTW01] by solving a knapsack

problem.

• close(s, T):S ← (S ∪ T ) \ {s}, s ∈ S, T ⊆ F \ S. In this operation a facility

s ∈ S is closed and a subset of facilitiesT (disjoint from S) is opened. Once again,

an estimated cost of the operation is computed, in which it is assumed that a client

which was assigned tos in the solutionS will now be assigned to somet ∈ T and

that this reassignment costscst. As before, working with the estimated cost allows

to find in polynomial time, for a givens, the setT for which the estimated cost of

(S ∪ T ) \ {s} is minimum [PTW01] by computing a covering knapsack problem.

Zhanget al.added the following operation to the above set of operations:

• multi(r, R, t, T): S ← (S ∪R∪{t}) \ ({r}∪T ), r ∈ S \T, T ⊆ S \ {r}, R ⊆ F \

(S ∪{t}), t /∈ S ∪R. This operation is essentially a combination of aclose (r, R)

andopen (t, T ) with the added provision that clients served byr may be assigned

to facility t. For a choice ofr andt the operation can be implemented by guessing

the number of clients serviced byr that will be assigned tot and then determining

the setsR andT which minimize the total expected cost.

S is locally optimal if none of the four operations improve the cost of the solution

and at this point the algorithm stops. Polynomial running time can be ensured at the

expense of an additiveε in the approximation factor by doing a local search operation

only if the cost reduces by more than a1− ε/5n factor, forε > 0.

Let S ⊆ F be a locally optimal solution andO ⊆ F be an optimum solution. As

in the case of uniform capacities, theaddoperation allows us to bound theservice costof
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the solutionS, i.e.

Lemma 4.1 ([MP03, ZCY05]) cs(S) ≤ cs(O) + cf (O) = c(O).

To bound thefacility costof S, a suitable set of inequalities is formulated which

arise from the fact thatS is locally optimal. To identify these inequalities, Palet al.build

an exchange graphG whose vertices are the set of facilities inS and the facilities in the

optimum solutionO. G has an edge(s, o), s ∈ S, o ∈ O if there are clients served bys

in the solutionS and byo in O and the value of this edge,y(s, o), is the number of such

clients. Note thaty(s, o) = |N o
s |, whereN o

s is the set of clients served bys ∈ S and by

o ∈ O as defined in Section 3.2. As defined in Section 3.2NS(s) (NO(o)) denote the

set of clients served bys in S (o in O). Also NO(o) = ∪s∈SN o
s andNS(s) = ∪o∈ON o

s .

Also recall thatOj denotes the service cost of clientj in the solutionO andSj denotes

the service cost of clientj in the solutionS. The cost of the edge(s, o) is cso. Recall that

cso = minj∈C(cjs + cjo) ≤ minj∈No
s )(Oj + Sj). Note that

1.
∑

s∈S,o∈O csoy(s, o) ≤ cs(S) + cs(O).

Proof Sincey(s, o) = |N o
s |∑

o∈O

∑
s∈S

cso |N o
s | ≤

∑
o∈O

∑
s∈S

∑
j∈No

s

(Oj + Sj)

=
∑
s∈S

∑
j∈NS(s)

(Oj + Sj)

=
∑
j∈C

(Oj + Sj)

= cs(S) + cs(O)

�

2. G is a bipartite graph withS andO defining the sets of the partition.

3. ∀s ∈ S,
∑

o∈O y(s, o) = |NS(s)| and∀o ∈ O,
∑

s∈S y(s, o) = |NO(o)|.
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The graphG may contain cycles, therefore it is now modified to make it acyclic.

Consider a cycle inG and letC be the edges on the cycle. Partition the edges ofC

into setsC1, C2 such that the edges ofC1 (andC2) are alternate edges on the cycle. Let

γ be the minimum value of an edge inC. Consider two operations: one in which we

increase the value of edges inC1 and decrease the value of edges inC2 by an amountγ

and the other in which we do the inversei.e.,decrease the value of the edges inC1 and

increase the value of the edges inC2. Note that in one of these operations the total cost∑
s∈S,o∈O csoy(s, o) would not increase and the value of one of the edges would reduce to

zero thereby removing it from the graph. This process is continued till the graph becomes

acyclic. Note that the modified values of the edges continue to satisfy the three properties

listed above (see Appendix A.2 for proof). However, now it is no more the case that value

of an edge(s, o) is the number of clients which are served bys ∈ S ando ∈ O.

Consider a subtreeT in G of height 2 rooted att ∈ O. Figure 4.1 shows one such

subtree. Recall that the aim is to formulate a set of inequalities that will let us bound the

total facility costcf (S) of the solutionS. Each inequality is obtained by considering a

potential local step and using the fact thatS is a locally optimal solution. The inequalities

are written such that

1. each facility inS is closed exactly once.

2. each facility inO is opened at most thrice.

3. the total cost of reassigning clients is bounded by2
∑

s∈S,o∈O csoy(s, o).

and when added yield

−cf (S) + 3cf (O) + 2(cs(S) + cs(O)) ≥ 0

or

cf (S) ≤ 3cf (O) + 2(cs(S) + cs(O)) (4.1)
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t

Kd(t)Ku(t)

O

S

O

Figure 4.1: The subtree of height 2 showing up-facilities and down-facilities. The square
facilities are in the optimum solution while the circular facilities are in the locally optimal
solution. The arrow in the facility identifies it as an up/down facility

We now discuss the choice of inequalities as given by Zhanget al. in greater de-

tail. For a facility i, let p(i) be the parent andK(i) be the children ofi. A facility i

is anup-facility if y(i, p(i)) ≥
∑

j∈K(i) y(i, j) and adown-facilityotherwise. LetKu(i)

(respectivelyKd(i)) denote the children ofi which are up-facilities (respectively down-

facilities). For a facilityo ∈ O we further insist that

1. if o is an up-facility it is opened at most once in the operations involving facili-

ties which are descendants ofo in the tree and is opened at most twice in other

operations.

2. if o is a down-facility it is opened at most twice in the operations involving facil-

ities which are descendants ofo in the tree and is opened at most once in other

operations.

Consider a facilitys ∈ S which is a child oft ∈ O.

Case 1: Let s be a down-facility and leto ∈ O be a child ofs. Whens is closed

we can assign2y(s, o) clients served bys to facility o if o is a down-facility. Else we can
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s1 si Si+1 sk

t

Kd(t)

…

Figure 4.2: The ordering of facilities inKd(t) and the reassignment of clients when one
of these facilities is closed.

assigny(s, o) clients served bys to o. Thus we need to assign∑
o∈O

y(s, o)−
∑

o∈Ku(s)

y(s, o)− 2
∑

o∈Kd(s)

y(s, o) = y(s, t)−
∑

o∈Kd(s)

y(s, o)

to facilities other than the children ofs; we refer to the above quantity asrem(s). To

assign these clients, Zhanget al.order the facilities inKd(t) in increasing order ofrem(s);

let s1, s2, . . . , sk be the order (Figure 4.2). Fori 6= k, they assign the remainingrem(si)

clients ofsi to facilities in Ku(si+1) with at mosty(si+1, o) clients assigned to facility

o ∈ Ku(si+1). This takes care of all the remaining demand because

rem(si) ≤ rem(si+1) = y(si+1, t)−
∑

o∈Kd(si+1)

y(si+1, o) ≤
∑

o∈Ku(si+1)

y(si+1, o)

where the last inequality follows from the fact thatsi+1 is a down-facility and hence

y(si+1, t) ≤
∑

o∈Kd(si+1)

y(si+1, o) +
∑

o∈Ku(si+1)

y(si+1, o).

Thus Zhanget al.performclose (si, K(si) ∪Ku(si+1)) for i 6= k and assign the clients

of si as described above. The discussion above shows that the operation is feasible. The
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last facility in the order, i.e.sk needs to be handled differently. In fact,sk is closed

together with the facilities inKu(t).

To bound the cost of reassigning clients served by facilities inKd(t) \ {sk}, note

that

1. since edge costs form a metric,csio, o ∈ Ku(si+1) is at mostcsit + ctsi+1
+ csi+1o.

2. the contribution of the edge(si, t) i 6= 1, k to the reassignment cost is at most

(rem(si) + rem(si−1))csit. Since bothrem(si) andrem(si−1) are at mosty(si, t)

the total contribution is at most2y(si, t)csit. The contribution of the edge(s1, t) to

the reassignment cost is at mostrem(s1)cs1t ≤ y(s1, t)cs1t and the contribution of

the edge(sk, t) to the reassignment cost is at mostrem(sk−1)cskt ≤ rem(sk)cskt ≤

y(sk, t)cskt

3. for i 6= k the contribution of the edge(si, o), o ∈ Kd(si) is at most2y(si, o)csio

since2y(si, o) clients are assigned too whensi is closed.

4. the contribution of the edge(si, o), o ∈ Ku(si), i 6= 1, k is at most2y(si, o)csio

since at mosty(si, o) clients are assigned toj once whensi is closed and once

whensi−1 is closed. The contribution of the edge(s1, o), o ∈ Ku(s1) is at most

y(s1, o)cs1o and that of(sk, o), o ∈ Ku(sk) is at mosty(sk, o)csko.

5. for i 6= 1, k, an up-facilityo ∈ Ku(si) is opened at most twice when considering

facilities ofS which are not descendants ofo. A down-facilityo ∈ Kd(si) is opened

once when considering facilities ofS which are not descendants ofo.

6. for i = 1, an up-facilityo ∈ Ku(s1) is opened once when considering facilities ofS

which are not descendants ofo. A down-facility o ∈ Kd(s1) is opened once when

considering facilities ofS which are not descendants ofo.

7. for i = k, an up-facilityo ∈ Ku(sk) is opened once when considering facilities of

S which are not descendants ofo.
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Ku(t)

sk

t

Figure 4.3: Themulti operation considered whent is an up-facility.

8. t is not opened in these operations.

Case 2:Now consider the facilities inKu(t) ∪ {sk}.

Case 2(a):If t is an up-facility then Zhanget al.perform amulti operation

multi (sk, K(sk), t, Ku(t)) which can be viewed as a combination ofopen (t,Ku(t)) and

close (sk, K(sk)) (Figure 4.3). In this operation clients served bys ∈ Ku(t) are assigned

to t, thus at most2
∑

s∈Ku(t) y(s, t) clients served by facilities inKu(t) are assigned tot,

andy(sk, o) clients served bysk are assigned to facilities ino ∈ K(sk) ∪ {t}. Note that

1. the multi operation is feasible because the total number of clients assigned tot is

at most2
∑

s∈Ku(t) y(s, t) + y(sk, t) which is at most the capacity oft sincet is an

up-facility.

2. the contribution of the edges(s, t), s ∈ Ku(t) to the reassignment cost is at most

2y(s, t)cst and that of the edge(sk, o), o ∈ K(sk) ∪ {t} is at mosty(sk, o)csko.

3. the up-facilityt is opened once when considering facilities ofS which are descen-

dants oft.
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4. a facility o ∈ K(sk), whethero is an up-facility or a down-facility, is opened once

in this operation when considering facilities ofS which are not descendants ofo.

Case 2(b):Next consider the case whent is a down-facility. Zhanget al. partition

the facilities inKu(t) into two setsA ∪ {h′}, B such that∑
s∈A

2y(s, t) + y(h′, t) ≤ |NO(t)|∑
s∈B

2y(s, t) + y(sk, t) ≤ |NO(t)|

whereh′ ∈ Ku(t) andh′ /∈ A ∪B. This can be done as follows:

1. Let h ∈ Ku(t) be the facility for whichy(s, t) is the maximum fors ∈ Ku(t). First

partitionKu(t) \ {h} into two setsA′ andB′ as follows:

Consider the facilities ofKu(t) \ {h} in an arbitrary order and continue assigning

them to the setA′ until
∑

s∈A′ 2y(s, t) ≥ |NO(t)|. The last facility considered

and the remaining facilities are assigned toB′. If
∑

s∈B′ 2y(s, t) > |NO(t)| then∑
s∈A′∪B′∪{h} 2y(s, t) > 2|NO(t)| which is a contradiction. Hence

∑
s∈B′ 2y(s, t)

≤ |NO(t)|

2. Next, construct the setsA andB as follows:

Let
∑

s∈A′ y(s, t) ≥
∑

s∈B′ y(s, t).

(a) if
∑

s∈A′ 2y(s, t)+y(sk, t) > |NO(t)| then, since
∑

s∈A′∪B′ 2y(s, t)+2y(h, t)+

2y(sk, t) ≤ 2|NO(t)| therefore
∑

s∈B′ 2y(s, t)+2y(h, t)+y(sk, t) ≤ |NO(t)|.

In this case, we takeB = B′ ∪ {h}, note that
∑

s∈B 2y(s, t) + y(sk, t) ≤

|NO(t)|. Let h′ be any facility inA′ then we takeA = A′ \ {h′}. Since∑
s∈A′ 2y(s, t) ≤ |NO(t)|, therefore

∑
s∈A 2y(s, t) + y(h′, t) ≤ |NO(t)|.

(b) If
∑

s∈A′ 2y(s, t)+y(sk, t) ≤ |NO(t)|, and
∑

s∈A′ 2y(s, t)+y(h, t) > |NO(t)|,

then we must have
∑

s∈B′ 2y(s, t)+2y(sk, t)+y(h, t) ≤ |NO(t)|. This implies
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t

BA
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Figure 4.4: The partition ofKu(t) and themulti operations considered whent is a down-
facility.

∑
s∈B′ 2y(s, t) + y(h, t) ≤ |NO(t)| . In this case we takeA = B′, h′ = h and

B = A′. ClearlyA, B andh′ satisfy the desired property.

(c) if
∑

s∈A′ 2y(s, t)+ y(sk, t) ≤ |NO(t)| and
∑

s∈A′ 2y(s, t)+ y(h, t) ≤ |NO(t)|

then this also implies that
∑

s∈B′ 2y(s, t) + y(sk, t) ≤ |NO(t)| and∑
s∈B′ 2y(s, t) + y(h, t) ≤ |NO(t)| (by the assumption given above). In this

case we can takeA = A′, h′ = h andB = B′. ClearlyA, B andh′ satisfy the

desired property

If
∑

s∈B′ y(s, t) ≥
∑

s∈A′ y(s, t), then by interchanging the role ofA′ andB′ in

the above construction, we can obtain the setsA andB which satisfy the desired

property.

Zhanget al.now consider twomulti operations (Figure 4.4). The first is

multi (sk, K(sk), t, B) which is a combination ofclose (sk, K(sk)) andopen (t, B) in

whichy(sk, o) clients ofsk are assigned to facilitieso ∈ K(sk)∪ t and clients of facilities

in B are assigned tot. Thus at most
∑

s∈B 2y(s, t) + y(sk, t) clients are assigned tot in
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this operation. The second operation ismulti (h′, K(h′), t, A) which is a combination of

close (h′, K(h′)) andopen (t, A) in whichy(h′, o) clients ofh′ are assigned to facilities

o ∈ K(h′)∪t and clients of facilities inA are assigned tot. Thus at most
∑

s∈A 2y(s, t)+

y(h′, t) clients are assigned tot in this operation. The properties of the setsA andB

ensure that the capacity oft is not violated as the facilities inA andB are up-facilities.

This implies that both themulti operations are feasible. Note that

1. the contribution of an edge(s, t), s ∈ Ku(t) to the reassignment cost is at most

2y(s, t)cst.

2. the contribution of an edge(sk, o), o ∈ K(sk) ∪ {t} is at mosty(sk, o)csko.

3. the contribution of an edge(h′, o), o ∈ K(h′) ∪ {t} is at mosty(h′, o)ch′o.

4. the down-facilityt is opened at most twice when considering facilities ofS which

are descendants oft.

5. a facility o ∈ K(sk), whethero is an up-facility or a down-facility, is opened once

in multi (sk, K(sk), t, B) operation when considering facilities ofS which are not

descendants ofo.

6. a facility o ∈ K(h′), whethero is an up-facility or a down-facility, is opened once

in multi (h′, K(h′), t, A) operation when considering facilities ofS which are not

descendants ofo.

From the above discussion we can conclude that a facilityo ∈ O is opened at most

three times in all the operations considered, as summarized below:

1. Wheno is an up-facility: While considering the facilities ofS which are descen-

dants ofo, o would be opened once when it is part of amulti operation

multi (sk, K(sk), o, Ku(o)) as discussed in case 2(a). While considering the facil-

ities of S which are not descendants ofo, o would be opened at most twice ifp(o)

63



is a down-facility, as discussed in case 1 and would be opened at most once ifp(o)

is an up-facility.

2. wheno is a down-facility While considering the facilities ofS which are descen-

dants ofo, o would be opened twice, as discussed in case 2(b).o would be opened

at most once while considering the facilities ofS, which are not descendants ofo

irrespective of whetherp(o) is an up-facility or a down-facility.

4.2 Improving the Operations

The key contribution of this chapter is to modify thecloseand openoperations (and

consequently themulti operation) to exploit the following observation.

Claim 4.2 In the analysis of Zhanget al.a facility o ∈ O is assigned a total of at most

2
∑

s y(s, o) = 2|NO(o)| ≤ 2uo clients over all operations considered.

Proof We will first prove the claim for the case wheno is an up-facility which is fol-

lowed by the case wheno is a down-facility.

1. Wheno is an up-facility

(a) While considering the facilities ofS which are descendants ofo, o would be

part of amulti operationmulti (sk, K(sk), o, Ku(o)) (as discussed in case

2(a)) and assigned at most2
∑

s∈Ku(o) y(s, o) + y(sk, o) clients wheresk ∈

Kd(o). Note that this is at most2
∑

s∈K(o) y(s, o) ≤ 2
∑

s y(s, o).

(b) We next consider the number of clients assigned too when considering facili-

ties ofS which are not descendants ofo. If the parentp(o) of o is an up-facility

theno could be assigned at mosty(p(o), o) clients in amulti operation involv-

ing p(o)(whenp(o) is h′) as discussed in case 2(b). Ifp(o) is a down-facility

theno would be assigned at most2y(p(o), o) clients and this can be argued
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as follows: consider the ordering of the down-facilities which are siblings of

p(o).

i. if p(o) is the first facility in the ordering (referred to ass1) theno is only

part ofclose (s1, K(s1) ∪Ku(s2)) and is assignedy(s1, o) clients as is

discussed in case 1.

ii. if p(o) is theith facility in the ordering (referred to assi) and is neither the

first nor the last facility theno is part ofclose (si−1, K(si−1) ∪Ku(si))

andclose (si, K(si) ∪Ku(si+1)) and is assignedy(si, o) clients in each

of these operations as discussed in case 1.

iii. if p(o) is the last facility in the ordering (referred to assk) theno is part

of close (sk−1, K(sk−1) ∪Ku(sk)) as discussed in case 1 and amulti

operation involvingsk as discussed in case 2(a)/case 2(b). In both these

operationso is assignedy(sk, o) clients.

Hence the total number of clients assigned too when considering facilities of

S which are not descendants ofo is at most2y(p(o), o).

Therefore the total number of clients assigned too wheno is an up-facility is at

most2
∑

s y(s, o).

2. wheno is a down-facility

(a) While considering the facilities ofS which are descendants ofo, o would be

part of two multi operations: first ismulti (h′, K(h′), o, A) and second is

multi (sk, K(sk), o, B) and the number of clients assigned too in these oper-

ations is2
∑

s∈A y(s, o) + y(h′, o) and2
∑

s∈B y(s, o) + y(sk, o) respectively

as discussed in case 2(b). SinceA ∪ B ∪ {h′} = Ku(o) andsk ∈ Kd(o), the

total number of clients assigned too in these twomulti operations is at most

2
∑

s∈K(o) y(s, o) ≤ 2
∑

s y(s, o).
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(b) We next consider the number of clients assigned too when considering fa-

cilities of S which are not descendants ofo. If the parent ofo, p(o), is an

up-facility theno would be assigned at mosty(p(o), o) clients in amulti op-

eration involvingp(o) as discussed in case 2(b). Ifp(o) is a down-facility

theno would be assigned at most2y(p(o), o) clients and this can be argued

as follows. As before, consider the ordering of the down-facilities which are

siblings ofp(o).

i. if p(o) is theith facility in the ordering (referred to assi) and is not the

last facility theno is part ofclose (si, K(si) ∪Ku(si+1)) and is assigned

2y(si, o) clients as discussed in case 1.

ii. if p(o) is the last facility in the ordering (referred to assk) theno is part

of amulti operation involvingsk in whicho is assignedy(sk, o) clients as

discussed in case 2(a)/case 2(b).

Hence the total number of clients assigned too when considering facilities of

S which are not descendants ofo is at most2y(p(o), o).

Therefore the total number of clients assigned too wheno is a down-facility is at

most2
∑

s y(s, o).

. �

Since each facilityo ∈ O is opened thrice in the analysis of Zhanget al. the above claim

implies that when a facility is opened we do not use it to its full capacity.

4.2.1 mopen: The Modified Open

Recall that, given a feasible solutionS ′, in the operationopen (t, T ) we open a facility

t ∈ F \S ′ and close a subset of facilitiesT ⊆ S ′. Our operationmopenis defined in such

a manner so that if the capacity oft is more than the total capacity of the facilities inT
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we use the remaining capacity oft to service clientsj for which S ′
j; the service cost of

j in S ′, is larger thanctj. HoweverT is not known beforehand but is computed as a part

of the procedure. Thus, we don’t know how much capacity oft can be utilized this way.

Thus we make a guess for the capacity oft which will be utilized for this purpose andT

is computed for the remaining capacity oft as explained below.

1. Let k be a guess of the difference in the capacity oft and the total capacity of the

facilities inT .

2. We reduce the capacity oft by k and using the procedure of Palet al.find the subset

T ⊆ S which minimizes the estimated cost.

3. To utilize the remaining capacityk of t we do the following: order the clients in

decreasing order ofS ′
j−ctj discarding those for which this quantity is negative. Let

k′ be the total number of clients for whichS ′
j − ctj is positive. The firstmin{k, k′}

clients in this ordering are assigned tot and the savings arising from this step is

reduced from the estimated cost computed in step 2.

4. The process is repeated for all the values ofk in[0..ut] and the solution for which

the cost is minimum gives the optimum setT .

For a choice of facilityt, steps 1-3 are repeatedut = O(m) times. Each time a

knapsack problem is solved which can be done in polynomial time. Step 3 can be easily

done in polynomial time. Therefore the above procedure runs in polynomial time.

Let S be a locally optimal solution with respect to our algorithm andO be an op-

timum solution. Note that a solution which is locally optimal with respect to our al-

gorithm is also locally optimal with respect to Zhanget al.’s algorithm. To bound the

facility cost, we consider an operationmopen(t, T ) wheret ∈ O andT ⊆ S, such that∑
s∈T |NS(s)| ≤ |NO(t)|. Sincemopen(t, T ) does not reduce the cost of the current so-

lution, open(t, T ) operation (of Zhanget al.) also does not reduce the cost. In thisopen
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Figure 4.5: SetT = {s3, s4} is closed andt is opened in the operationmopen(t, T ).
Unshaded portion of facilityt shows the capacity oft utilized for accommodating clients
earlier served by facilities inT .

operation|NS(s)| clients ofs ∈ T are assigned tot. Let z(s, t) denote this quantity. This

operation then yields the inequality

ft −
∑
s∈T

fs +
∑
s∈T

z(s, t)cst ≥ 0

In the modified operationmopen(t, T ), z(s, t) number of clients served by each

s ∈ T and|NO(t)| −
∑

s∈T z(t, s) more clients served by facilities inS are assigned tot.

We can then formulate the following inequality

ft −
∑
s∈T

fs +
∑
s∈T

z(s, t)cst +
|NO(t)| −

∑
s∈T z(s, t)

|NO(t)|
∑

j∈NO(t)

(Oj − Sj) ≥ 0 (4.2)

The last term in the above inequality arises from the argument that instead of uti-

lizing the remaining capacity,|NO(t)| −
∑

s∈T z(s, t), in the best possible way we could

have assigned each client inNO(t) to the facility t to an extent
|NO(t)|−∑

s∈T z(s,t)

|NO(t)| and

in doing this we would not have reduced the estimated cost of the new solution. In fact

the extent up to which we assign each client ofNO(t) to t can be any value between 0
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and
|NO(t)|−∑

s∈T z(s,t)

|NO(t)| . For the moment we assume that each client is assigned up to

the extent of
|NO(t)|−∑

s∈T z(s,t)

|NO(t)| . We might reduce this quantity when we add all such

inequalities, if the need arises. The purpose of doing this will become clear at the time

this is required to be done.

4.2.2 mclose: The Modified Close

In close (s, T ) we close a facilitys ∈ S and open a set of facilitiesT ⊆ F \ S. As in

themodified openoperation, if the total capacity of the facilities inT exceeds the number

of clients served bys in the solutionS, then we would like to use the remaining capacity

in T to reduce the estimated cost of the operation.

Note that at most one facility inT could have some remaining capacity. We call this

facility the pivot facility and denote it byt∗. Since we don’t know this pivot facility, we

guesst∗. Also since we don’t know the excess capacity available witht∗, we guess that

also.

Thus, given a facilitys ∈ S, to determine the setT for which the estimated cost of

the new solution is minimum we proceed as follows:

1. Let t∗ ∈ F \ S be a guess of the pivot facility and letk in [0..ut∗ ] be a guess of the

difference in the capacity ofs and the total capacity of the facilities inT \{t∗}, i.e. k

is the guess of the number of clients ofs that will be served byt∗ andT \{t∗}should

have sufficient capacity to serve the remainingus−k clients ofs i.e. if the capacity

of s is us then setT of facilities is computed such that
∑

t∈T\{t∗} ut ≥ us − k or

equivalentlyus −
∑

t∈T\{t∗} ut ≤ k. Refer to the Figure 4.6.

2. We reduce the capacity ofs by k and using the procedure of Palet al.find the subset

T ′ ⊆ F \ (S ∪ {t∗}) which minimizes the estimated cost.

3. The remainingk clients ofs are assigned tot∗ and the estimated cost is increased

by kcst∗.
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S
64 2

T
t1 t2

s3s2s1

t*k clients

u(t*) -k clients

Figure 4.6: SetT is opened ands3 is closed in the operationmclose(s3, T ). Unshaded
portion of facility t∗ shows the capacity oft∗ utilized for accommodating clients earlier
served bys3.

4. To utilize the remaining capacity oft∗ do the following: order clients in decreasing

order ofSj − ct∗j discarding those for which this quantity is negative. Letk′ be this

number. The firstmin(k′, ut∗−k) clients in this ordering are assigned tot∗ and the

savings arising from this step is reduced from the estimated cost computed in step

3.

5. The process is repeated for all choices oft∗ ∈ F \ S and values ofk in [0..ut∗ ]

and the solution for which the estimated cost is minimum gives the optimum set

T = T ′ ∪ t∗.

Given a choice ofs, steps 1-4 of the above procedure are repeated for all possible choices

of t∗ andk. Since the number of choices fort∗ is O(n) and that fork is O(m), the

procedure is repeatedO(nm) times. Step 2 which involves solving a covering knapsack

problem runs in polynomial time, step 3 and 4 can be easily done in polynomial time.

Therefore the overall running time of the procedure is polynomial.

Recall thatO is an optimum solution andS is a locally optimal solution. Letz(s, t)
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be the number of clients served by the facilitys ∈ S which are assigned to a facility

t ∈ T ⊆ O in the original operationclose (s, T ) then
∑

t∈T z(s, t) = |NS(s)| and this

operation yields the inequality

−fs +
∑
t∈T

ft +
∑
t∈T

z(s, t)cst ≥ 0

Claim 4.3 For the modified operationmclose (s, T ) we can instead formulate the in-

equality

−fs +
∑
t∈T

ft +
∑
t∈T

z(s, t)cst +
∑
t∈T

∑
j∈NO(t)

|NO(t)| − z(s, t)

|NO(t)|
(Oj − Sj) ≥ 0 (4.3)

Proof Consider the facilities ofT in decreasing order ofz(s, t)/|NO(t)| and keep in-

cluding them into a setT1 until the total capacity of the facilities inT1 exceeds|NS(s)|.

Let t1 be the last facility to be included intoT1. Then anmclose (s, T1) operation in

which t1 is the pivot and is assignedk1 = |NS(s)| −
∑

t∈T1−t1
|NO(t)| clients which are

served bys and|NO(t1)| − k1 more clients served by other facilities inS would yield the

inequality

−fs +
∑
t∈T1

ft+
∑

t∈T1−t1

|NO(t)|cst + k1cst1+

|NO(t1)| − k1

|NO(t1)|
∑

j∈NO(t1)

(Oj − Sj) ≥ 0
(4.4)

The last term in the above inequality arises from the argument that instead of utilizing

the remaining capacity,|NO(t1)| − k1, in the best possible way we could have assigned

each client inNO(t1) to the facility t1 to an extent
|NO(t1)|−k1

|NO(t1)| . In fact the extent up to

which we assign each client ofNO(t1) to t1 can be any value between 0 and
|NO(t1)|−k1

|NO(t1)| .

For the moment we assume that each client ofNO(t1) is assigned tot1 up to the extent of
|NO(t1)|−k1

|NO(t1)| . We will reduce this quantity when we add all such inequalities, if the need

arises. The purpose of doing this will become clear at the time this is required to be done.

We take a linear combination of a sequence of inequalities of the form 4.4. In the

linear combination we take Inequality 4.4 up to an extent ofξ1 and at the same time for
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all facilities t ∈ T1 \ {t1} we reducez(s, t) by ξ1 · |NO(t)| and reducez(s, t1) by ξ1 · k1,

whereξ1 = min

(
min

t∈T1\{t1}

(
z(s,t)

|NO(t)|

)
, k1

|NO(t1)|

)
.

Next inequality in the sequence is obtained by again following the above procedure

of selecting a subset of facilities inT with sufficient capacity to accommodate|NS(s)|

clients. However this time the newz(s, t) values are used. IfT2 is the set of facilities

now selected andt2 is the facility with smallestz(s, t)/|NO(t)| value then we can write

another inequality similar to 4.4

−fs +
∑
t∈T2

ft+
∑

t∈T2−t2

|NO(t)|cst + k2cst2+

|NO(t2)| − k2

|NO(t2)|
∑

j∈NO(t2)

(Oj − Sj) ≥ 0
(4.5)

Inequality 4.5 is included up to an extent ofξ2 in the linear combination andz(s, t) values

are again reduced as earlier. This procedure is repeated until allz(s, t) values become

zero.

This process can be viewed as sendingξi · |NS(s)| units of flow froms to facilities

in Ti with facility t ∈ Ti \ {ti} receivingξi · |NO(t)| flow and facilityti receivingξi · ki

flow. The edges(s, t) have capacityz(s, t) which is reduced by the amount of flow sent.

Initially the total capacity of all edges
∑

t∈T z(s, t) equals the amount of flow that needs

to be sent i.e.|NS(s)|, and this property is maintained with each step. By picking the

facilities with the largest values ofz(s, t)/|NO(t)| we are ensuring that the maximum of

these quantities never exceeds the fraction of the flow that remains to be sent. This implies

that when the procedure terminates allz(s, t) are zero and|NS(s)| units of flow have been

sent.

Let us suppose that this process is carried outl number of times, then the linear
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combination looks like

(ξ1 + . . . + ξl) (−fs) +
∑

i={1...l}

ξi

(∑
t∈Ti

ft

)
+

∑
i={1...l}

ξi

 ∑
t∈Ti\{ti}

|NO(t)|cst + kicsti

+

∑
i={1...l}

ξi

 |NO(ti)| − ki

|NO(ti)|
∑

j∈NO(ti)

(Oj − Sj)

 ≥ 0.

(4.6)

Note that(ξ1 + . . . + ξl) = 1.

Second term in the Inequality 4.6 can be written as

∑
t∈T

ft

∑
i={1...l}:t∈Ti

ξi =
∑
t∈T

λt · ft (4.7)

whereλt =
∑

i={1...l}:t∈Ti
ξi

Third term in the Inequality 4.6 can be written as∑
t∈T

cst

∑
i={1...l}:t∈Ti,t6=ti

ξi · |NO(t)|+

∑
t∈T

cst

∑
i={1...l}:t∈Ti,t=ti

ξiki =
∑
t∈T

cstz(s, t)
(4.8)

Right hand side of the inequality follows from the construction of the linear combi-

nation.

For eacht ∈ T , fourth term in the Inequality 4.6 can be written as

∑
j∈NO(t)

(Oj − Sj)
∑

i={1...l}:t=ti

ξi
|NO(t)| − ki

|NO(t)|
(4.9)

Whent is not pivot facility inTi then we can consider fourth term to be zero. Let

k′
t = |NO(t)| if t is not a pivot facility inTi andk′

t = ki if t is pivot facility in Ti. 4.9 can

now be written as
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∑
j∈NO(t)

(Oj − Sj)

 ∑
i={1...l}:t∈Ti,t6=ti

ξi
|NO(t)| − k′

t

|NO(t)|
+

∑
i={1...l}:t∈Ti,t=ti

ξi
|NO(t)| − k′

t

|NO(t)|


=

∑
j∈NO(t)

(Oj − Sj)
1

|NO(t)|

 ∑
i={1...l}:t∈Ti

ξi|NO(t)| −
∑

i={1...l}:t∈Ti

ξik
′
t


=

λt|NO(t)| − z(s, t)

|NO(t)|
∑

j∈NO(t)

(Oj − Sj)

(4.10)

Using 4.7 to 4.10, Inequality 4.6 can now be written as:

− fs +
∑
t∈T

λt · ft+

∑
t∈T

cstz(s, t) +
∑
t∈T

λt · |NO(t)| − z(s, t)

|NO(t)|
∑

j∈NO(t)

(Oj − Sj) ≥ 0
(4.11)

A facility t would contributeλtft + z(s, t)cst +
λt·|NO(t)|−z(s,t)

|NO(t)|
∑

j∈NO(t)(Oj −Sj)

to the left hand side of Inequality 4.3. We add a1− λt multiple of the inequality

ft +
∑

j∈NO(t)

(Oj − Sj) ≥ 0 (4.12)

which corresponds to the operationadd (t), to the linear combination to match the contri-

bution oft in Inequality 4.3. �

4.2.3 mmulti: The Modified multi

Recall thatmulti (r, R, t, T ) is a combination ofclose (r, R) andopen (t, T ) with an

added provision that clients served byr may be assigned to facilityt as well. Therefore the

modification toopenandcloseoperations also implies modification to themulti operation

which we refer to asmmulti. For a choice of facilitiesr, t, modified multioperation can

be performed as follows:
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1. Let ka be a guess on the number of clients serviced byr that will be assigned tot.

We make another guesskb of the difference in remaining capacity, i.e.ut − ka, of t

and total capacity of facilities inT , as we did formopenoperation.

2. We reduce the capacity oft by ka + kb and using the procedure of Palet al.find the

subsetT ⊆ S which minimizes the estimated cost.

3. Next guess a pivot facilityt∗ ∈ F \ (S ∪ {t}) and letkc be a guess on the number

of clients ofr that will be assigned tot∗.

4. We reduce the capacity ofr by ka + kc and find a subsetR′ ⊆ F \ (S ∪ {t, t∗}) by

using the procedure forcloseoperation of Palet al..

5. Of the remaining clients ofr, ka of them are assigned tot and kc of them are

assigned tot∗. The estimated cost is increased bykacrt + kccrt∗.

6. Computebt∗(j) = Sj − ct∗j andbt(j) = Sj − ctj values for each client, discarding

those for which these quantities are negative. Assignut∗ − kc clients tot∗ and

kb clients tot by finding a matching of maximum cost on the basis ofbt∗(j) and

bt(j) values. The savings arising out of this step is reduced from the estimated cost

computed in the previous steps.

7. The process is repeated for all choices ofka in [0 · · ·ut], kb in [0 · · ·ut − ka], a

facility t∗ andkc in [0 · · ·ut∗ ]. The solution for which the cost is minimum gives

the setsR = R′ ∪ {t∗} andT .

The total number of possible choices forka, kb, kc areO(m) and that fort∗ is O(n).

Thus the procedure is repeatedO(nm3) times. Steps 2 and 4 can be done in polynomial

time using knapsack and covering knapsack procedures respectively. Remaining steps

can be easily performed in polynomial time. Therefore the overall procedure can be

performed in polynomial time.
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Let z(r, o) be the number of clients served byr which are assigned too ∈ {t} ∪ R

andz(s, t) be the number of clients served bys ∈ T which are assigned tot in the original

operationmulti(r, R, t, T ) operation, then this operation would yield the inequality

−fr −
∑
s∈T

fs + ft +
∑
o∈R

fo +
∑

o∈{t}∪R

z(r, o)cro +
∑
s∈T

z(s, t)cst ≥ 0

Claim 4.4 For the modified operationmmulti (r, R, t, T ) we can instead formulate the

inequality

− fr −
∑
s∈T

fs + f(t) +
∑
o∈R

f(o) +
∑

o∈{t}∪R

z(r, o)cro +
∑
s∈T

z(s, t)cst

+
|NO(t)| − z(r, t)−

∑
s∈T z(s, t)

|NO(t)|
∑

j∈NO(t)

(Oj − Sj)

+
∑
o∈R

∑
j∈NO(o)

|NO(o)| − z(r, o)

|NO(o)|
(Oj − Sj) ≥ 0

(4.13)

Proof Consider the facilities ofR in decreasing order ofz(r, o)/|NO(o)| and keep in-

cluding them into a setR′ until the total capacity of the facilities inR′ exceeds|NS(r)| −

z(r, t). Let t∗ be the last facility to be included intoR′. Then anmmulti (r, R′, t, T ) op-

eration in whicht∗ is the pivot and is assignedkc = |NS(r)|−
∑

t∈R′\{t∗} |NO(t)|−z(r, t)

clients which are served byr and|NO(t∗)| − kc more clients served by other facilities in

S would yield the inequality

− fr −
∑
s∈T

fs + f(t) +
∑
o∈R′

f(o) +
∑

o∈R′\{t∗}

|NO(o)|cro + kccrt∗ +
∑
s∈T

z(s, t)cst

+ z(r, t)crt +
|NO(t)| − z(r, t)−

∑
s∈T z(s, t)

|NO(t)|
∑

j∈NO(t)

(Oj − Sj)

+
|NO(t∗)| − kc

|NO(t∗)|
∑

j∈NO(t∗)

(Oj − Sj) ≥ 0

(4.14)
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The second last term in the above inequality arises from the argument that instead

of utilizing the remaining capacity,|NO(t)| − z(r, t) −
∑

s∈T z(s, t), in the best pos-

sible way we could have assigned each client inNO(t) to the facility t to an extent
|NO(t)|−z(r,t)−

∑
s∈T z(s,t)

|NO(t)| and in doing this we would not have reduced the estimated cost

of the new solution.

The last term in the above inequality arises from the argument that instead of utiliz-

ing the remaining capacity,|NO(t∗)|−kc, in the best possible way we could have assigned

each client inNO(t∗) to the facilityt∗ to an extent
|NO(t∗)|−kc

|NO(t∗)| .

We take a linear combination of a sequence of inequalities of the form 4.14.

A facility o ∈ R would contributeλofo+z(r, o)cro+
λo·|NO(o)|−z(r,o)

|NO(o)|
∑

j∈NO(o)(Oj−

Sj) to the left hand side of Inequality 4.13. We add a1− λo multiple of the inequality

fo +
∑

j∈NO(o)

(Oj − Sj) ≥ 0 (4.15)

which corresponds to the operationadd (o), to the linear combination to match the con-

tribution ofo in Inequality 4.13. �

4.2.4 Putting Things Together

Inequalities 4.2, 4.3 and 4.13 have an additional term due to the modifications we have

suggested for operationsopen, closeandmulti. These additional terms when taken over

all the operations considered involving a facilityo ∈ O equals

(
α− β

|NO(o)|

)∑
j∈NO(o)

(Oj −Sj) whereα is the number of timeso is opened andβ is the total number of clients

assigned too in the operations defined by Zhanget al.. Recall thatβ is at most2|NO(o)|

andα is at most 3. If a facilityo ∈ O is opened less than 3 times in these operations

then we add the inequality corresponding toadd (o) to our linear combination so thatα

becomes exactly 3.

Thus

(
α− β

|NO(o)|

)
≥ 1 ∀o ∈ O. If

(
α− β

|NO(o)|

)
> 1 then we will reduce the

extent up to which term corresponding to
∑

j∈NO(o)(Oj−Sj) is included in the respective

77



inequality, so that this quantity

(
α− β

|NO(o)|

)
is exactly 1.

Thus we obtain an additional term ofcs(O) − cs(S) on the right hand side of In-

equality 4.1 i.e.

cf (S) ≤ 3cf (O) + 2(cs(S) + cs(O)) + cs(O)− cs(S)

which together with the bound on the service cost ofS, cs(S) ≤ cf (O) + cs(O), implies

that

cf (S) + cs(S) ≤ 5(cf (O) + cs(O)) = 5c(O).

Theorem 4.5 The local search procedure with operationsadd, mclose, mopenandmmulti

yields a locally optimal solution that is a 5-approximation to an optimum solution.

To ensure that the local search procedure has a polynomial running time we need

to modify the local search procedure so that a step is performed only when the cost of

the solution decreases by at least(ε/5n)c(S). This modification implies that the right

hand sides of inequalities 4.2, 4.3, 4.12,4.13,4.15 which are all zero should instead be

(−ε/5n)c(S). Note that eachs ∈ S is closed in either anmopen, mcloseor a mmulti

operation and therefore appears in exactly one of the inequalities of type 4.2(for mopen),

4.3(for mclose) or 4.13(for mmulti). Further, for everyo ∈ O, we add(1 − λo <= 1)

multiple of inequality 4.12/4.15 at most 3 times( because every o appears in atmost 3

inequalities of type 4.3 or 4.13 and(1 − λo) multiple of inequality 4.12/4.15 is added to

4.3/4.13).

Putting all these modifications together gives rise to an extra term of at most

(4ε/5)c(S). This implies that the facility cost of solutionS is at most4c(O)+(4ε/5)c(S).

Similarly, the service cost of solutionS can now be bounded byc(O)+(ε/5)c(S). Adding

these yields(1− ε)c(S) <= 5c(O) which implies thatS is a5/(1− ε) approximation to

the optimum solution.

At the beginning of the chapter, we made an assumption thatS ∩ O = φ. When we

remove this assumption, we need to do small modification to the operations as follows:
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Figure 4.7: The tight example

Step 3 ofmopen, step 4 ofmcloseand step 6 ofmmulti are replaced by computatation

of min-cost flow. In this general scenario, with the help of path decomposition, it can be

shown that

cf (S) + cs(S) ≤ 5(cf (O) + cs(O)) = 5c(O).

This is explained in detail in Chapter 5.

4.3 The Tight Example

Zhanget al.[ZCY05] provide an example (see Figure 4.7) to show that their analysis is

tight. The rectangular boxes (respectively circles) in the Figure are the facilities in the

optimum solutionO (respectivelyS). The optimum solution has2n facilities each with

79



facility cost0 and capacityn−1 and one facility with facility cost4 and capacity2n. The

solutionS has2n facilities each having a facility cost4 and a capacityn. The clients are

represented by triangles and there are2n clients each having a demand ofn − 1 and2n

clients with1 demand each. The numbers on the edges represent edge costs.

Zhanget al. argue that the solutionS is locally optimal with respect to theadd,

open, closeandmulti operations. The cost of the optimal solution is4 + 2n and that of

S is 10n which gives a ratio of5. However, scaling costs, as done in Zhanget al.would

destroy the local optimality of this solution.

It is easy to confirm that this example is tight with respect to theaddoperation and

the modified operationsmopen, mclose, mmultioperations. We will one by one show that

the solutionS is locally optimal with respect toaddand three modified operations.

1. Local optimality with respect to add operation: Adding a facility with facility

cost 4 increases the facility cost of solution by 4 and total reassignment cost of

clients does not change. Net cost of operation is positive and therefore does not

reduce the cost of the solution. Adding a facility with facility cost 0 does not lead

to any change in cost of the solution. Therefore we can conclude that solutionS is

locally optimal with respect toaddoperation.

2. Local optimality with respect to mopenoperation mopen(t, T ): If t is a rect-

angle facility with capacityn − 1, then|T | = φ due to capacity constraints. This

operation is then equivalent toadd (t) and we have already argued about this case.

If t is facility with capacity 2n and cost 4, then|T | ≤ 2. The case when|T | = φ,

is equivalent toadd (t). When |T | = 1, which means only one circle facility is

closed, then cost of the operation is determined by change in facility cost which is

4-4, estimated change in assignment cost of clients which consists of rerouting cost

of n clients served byt′ ∈ T which is2n. Therefore cost of cost of operation when

|T | = 1 is 4− 4 + 2n > 0.
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If |T | = 2 which means any two circle facilities are closed in the operation, then

change in facility cost is -8+4, estimated change in assignment cost is 4n. Therefore

cost of this operation when|T | = 2 is−8 + 4 + 4n > 0.

From the above discussion we can conclude thatS is locally optimal with respect

to mopenoperation.

3. Local optimality with respect to mcloseopeartion: If we considermclose (s, T )

wheres is any facility ofS, then|T | ≥ 1. If |T | = 1, then facility with facility cost

4 must be there inT . Let us call this facilityt′. For this case we have already argued

that the estimated cost of the operation is positive. For the case when|T | > 1 and

t′ ∈ T , thenmcloseoperation with minimum estimated cost is one in which square

facility which is at a distance 0 froms, sayt
′′
, is included inT . Now if |T | = 2 and

T = {t′, t′′}, then change in facility cost is 0, estimated change in assignment cost

of clients is 2. Therefore the estimated cost of the operation is2 > 0. If |T | > 2

then also estimated cost of operation is 2 which is positive.

If t′ /∈ T , thenmcloseoperation has minimum cost when facility at distance 0

from s belongs toT , and at least one more facility should be there inT to satisfy

capacity constraints. If|T | = 2 then change in facility cost is -4. Estimated change

in assignment cost is 4. Therefore estimated cost of the operation is 0. If|T | > 2

then also estimated cost of operation is 0.

If facility at distance 0 froms is not included inT then estimated cost of the oper-

ation is at least 4n-4 which is positive.

All these cases are exhaustive and imply that solution is locally optimal with respect

to mcloseoperation.

4. Local optimality with respect to mmulti operation:

When we consider modified operationmulti (r, R, t, T ), r can be any circle fa-
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cility. If t is a square facility at distance 0 or 4 fromr, then |T | = φ irre-

spective of whatR is due to capacity constraints. And this case is essentially

mclose (r, R ∪ {t}) which we have already discussed,. Ift = t′, then |T | = 1

and all the demand of facility in|T | will be routed tot = t′. Change in facility cost

due to this operation is -8+4, minimum rerouting cost of clients ofr is 2 if facility

at distance 0 belongs toR and because client at a distance 1 fromr can be assigned

to t = t′ at cost 2. Cost of rerouting clients of facility inT is 2n and any other

reassignment of any other client from facilities inS \{r+ t”} has 0 cost. Therefore

this mmultioperation would cost−8 + 4 + 2 + 2n > 0. Any othermulti operation

would cost even more.

From all the above arguments it is clear that the given solution is locally optimal.
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Chapter 5

A (5+ε)-Approximation Algorithm for

Universal Facility location (UniFL)

Problem

Universal facility location (UniFL) problem is a generalization of many variants of facility

location problem. Facility location problem is said to be auniversal facility location

problem when facility cost of every facilityi ∈ F is defined by a cost functionfi(.), which

is a monotonically non-decreasing function, that is dependent on the capacity allocated

at facility i. Therefore ifui is the capacity allocated at facilityi, thenfi(ui) is its facility

opening cost. The aim is to determine a capacity allocation vectorU = 〈u1, u2, · · · , un〉

such that the total allocated capacity of the facilities is sufficient to serve all the clients and

the total cost of opening facilities and assignment of clients to open facilities is minimized.

Once the allocation vectorU is known it is easy to determine the assignment of clients by

solving a mincost flow problem. Therefore the capacity allocation vectorU completely

determines the solution. Uncapacitated FLP, CFLP, and the k-median problem are all

restricted variants of UniFLP. Iffi(ui) = f ′
i for all ui > 0, then it is just another way to

describe uncapacitated facility location problem. Facility location problem is capacitated
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whenfi(ui) =∞ for ui > ci andfi(ui) = f ′
i otherwise, whereci is the fixed capacity of

facility i.

The problem was introduced by Mahdian and Pal [MP03] who gave a (7.88+ε)-

factor approximation which was improved by Vygen [Vyg07] to (6.702+ε)-factor. Re-

cently, in a parallel work, Angelet al. [ATR13] proposed a new algorithm with (5.83+ε)

approximation factor.

In this chapter we propose two operations for the problem:openandclosethat are

extensions ofmopenandmcloserespectively. Using the ideas developed in chapters 3

and 4 we show that the algorithm provides a solution whose cost is within (5+ε) times

the cost of an optimum solution. The arguments presented in this chapter suggest that we

can achieve the same (5+ε)-approximation factor for non-uniform CFLP without using

themmultioperation.

The remainder of this chapter is organized as follows: in Section 5.1, we first give

a broad overview of the arguments to show that we can achieve (5+ε) factor for non-

uniform CFLP without themmultioperation. And this fact is the main motivation behind

the (5+ε)-factor algorithm for UniFLP. In Section 5.2 we describe our proposed algorithm.

In Section 5.3 we prove the upper bound on the cost of the solution computed by the

proposed algorithm. In Section 5.4 we give preliminary results on the basis of experiments

done on the algorithm for the particular case of (non-uniform) CFLP.

5.1 A (5+ε)-factor algorithm for (non-uniform) CFLP with-

out mmulti

In this section we’ll give a broad idea as to how we can obtain (5+ε) factor for (non-

uniform) CFL by droppingmmultioperation. Recall thatmmulti is used at three places

in the analysis given in chapter 4: case 2(a) -mmulti (sk, K(sk), t, Ku(t)), case 2(b) -

mmulti (sk, K(sk), t, B), mmulti (h′, K(h′), t, A). Now, suppose instead of assigning
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y(sk, t) (/y(h′, t)) clients ofsk (/h′) to t in a mmultioperation, we opent for sk (/h′) and

utilize the remaining capacity oft in an efficient manner i.e.mmulti (sk, K(sk), t, Ku(t))

operation is replaced withmopen(t,Ku(t)) and mclose (sk, K(sk) ∪ {t}) operations;

mmulti (sk, K(sk), t, B) operation is replaced with two operationsmopen(t, B) and

mclose (sk, K(sk) ∪ {t}); and,mmulti (h′, K(h′), t, A) is replaced withmopen(t, A)

andmclose (h′, K(h′) ∪ {t}). For each such replacement we pay an additional cost of

openingt but we also get an additive term of
∑

j(Oj − Sj) which leads to saving an

additive term in the service costcs(S). The net result remains the same.

5.2 The local search operations

A solution to the UniFL problem consists of a capacity allocation vector and an assign-

ment of the clients to the facilities which obey capacity constraints. Let us consider an

allocation vectorU = 〈u1, u2, . . . , un〉 for a given instance. With abuse of notation we

useU to denote both the solution and the allocation vector. The cost of a solutionU

is denoted byc(U) = cf (U) + cs(U), wherecf (U) is the facility cost andcs(U) is the

service cost of the solutionU .

Starting with a feasible solutionU , we performadd, openandcloseoperations to

improve the solutionU if possible. Given a solutionU , we can assume that for each

facility i ∈ U , ui is exactly equal to the number of clients it is serving for if it is not true

then we can reduceui and hence the cost of the solution.U is locally optimal if none

of these operations improve the cost of the solution and at this point the algorithm stops.

addoperation is the same as given by Mahdianet al.. We propose two new operations:

openandclose. The operations are as given below:

• add(s,δ): In this operation capacity allocated at a facilitys, sayus is increased by

an amountδ > 0. Mincost flow problem is then solved to find the best assignment

of clients to the facilities. Cost of the operation is given by:fs(us + δ)− fs(us) +
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cs(U
′)− cs(U) whereU ′ is the new solution after increasing the capacity ofs.

For a combination(s, δ), addoperation, which mainly involves solving a mincost

flow problem to find an assignment of clients, can be performed in polynomial time.

• open(t, T, ∆): In this operation, capacity allocated att ∈ F \ T is increased from

the currentut to ut + ∆t, ∆t > 0 andT ⊆ F \ {t} is such that capacity allocated at

a facility s ∈ T is decreased fromus to us − |∆s|, ∆s < 0, and
∑

s∈T |∆s| ≤ ∆t.

∆ is an n-dimensional vector which defines the change in capacity allocation at

facilities.

Finding best such operation in polynomial time is not possible because exploring

all the possibilities for setT and vector∆ cannot be done in polynomial time.

We therefore search for a setT and a vector∆ for a given(t, ∆t) combination as

follows:

1. Let k ≤ ∆t be a guess on the total capacity to be decreased at facilities inT .

2. We solve a knapsack problem with capacityk to find a setT and vector∆. A

dynamic programming solution similar to that of Mahdian and Pal is used for

the purpose. Letcs(−δs) = cts · δs + fs(us − δs) − fs(us) be the estimated

decrease in cost of solution whenδs number of clients served by facilitys are

reassigned to facilityt. Rename facilities inF \{t} as{z1, z2, · · · , zn−1}. Let

b(i, w) denote the best possible benefit of movingw(= 0, · · · , k) amount of

demand tot from the set of facilities{z1, z2, · · · , zi}. b(i, w) can be computed

as follows:

b(i, w) =

 cz1(−w) (i = 1)

minδ=0 to w(czi
(−δ) + b(i− 1, w − δ)) (i = 2, · · · , n− 1)

BestT is computed by backtracking fromb(n − 1, k) including facilities for

which δzi
= argmin(minδ=0 to w(czi

(−δ) + b(i − 1, w − δ))) > 0 for an

appropriatew (determined while backtracking).
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3. Once we have determined the setT and change in allocation of capacities for

facilities in T , we can solve the mincost flow problem to assign the clients

to facilities with their new capacity allocation. This is done to utilize the

additional capacity∆t−k available with the facilityt. Cost of the operation is

given by:ft(ut+∆t)−ft(ut)+
∑

s∈T (fs(us−|∆s|)−fs(us))+cs(U
′)−cs(U)

whereU ′ is the new solution after increasing the capacity oft and decreasing

the capacity of facilities inT .

4. The process is repeated for all values ofk in [0, ∆t] and the solution for which

the cost is minimum gives the optimum setT and vector∆.

Steps 1, 2 and 3 of the above procedure can be performed in polynomial time.

Further these steps are repeated for all the values ofk in [0, ∆t]. Since∆t could be

at mostm, therefore these steps are repeated at mostO(m) times for one choice of

∆t. Thus theopenoperation can be performed in polynomial time.

• close(s, T,∆): In this operation, capacity allocation at facilitys ∈ F is decreased

by amount|∆s|, ∆s < 0 and capacity allocation att ∈ T ⊆ F is increased by∆t,

∆t > 0 and
∑

t∈T ∆t ≥ |∆s|. Also, a facilityt∗ ∈ T is selected as a pivot facility

to utilize the excess capacity of the setT , i.e.
∑

t∈T ∆t − |∆s| in a similar manner

as we did in the case ofmcloseoperation discussed in chapter 4. We cannot explore

all possible setsT and vector∆ in polynomial time. Also pivot facilityt∗ is not

known beforehand. Therefore to perform the operation in polynomial time, we fix

∆s and determineT , pivot t∗ and vector∆ as follows:

1. Let t∗ ∈ F \{s} be a guess of a pivot facility and∆t∗ be the guess of increase

in capacity att∗. Let k ≤ ∆t∗ be a guess on the number of clients ofs that

will be assigned tot∗.

2. We solve a covering knapsack problem of capacity|∆s| − k and find a subset

T ′ and vector∆′ as follows: Letct(δt) = cst · δt + ft(ut + δt) − ft(ut) be
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the estimated increase in cost of solution whenδt number of clients served

by the facilitys are reassigned to facilityt. Rename facilities inF \ {s, t∗}

as{z1, z2, · · · , zn−2}. Let b(i, w) denote the best possible benefit of moving

w(= 0, · · · , |∆s| − k) amount of demand fromt to facilities{z1, z2, · · · , zi},

which can be computed as follows:

b(i, w) =

 cz1(w) (i = 1)

minδ=0 to w(czi
(δ) + b(i− 1, w − δ)) (i = 2, · · · , n− 2)

Best setT ′ is computed by backtracking fromb(n−2, |∆s|−k) including the

facilities for whichδzi
= argmin(minδ=0 to w(czi

(δ) + b(i− 1, w − δ))) > 0

for an appropriatew (determined while backtracking). SetT = T ′ ∪ {t∗}.

3. Once we have determined the setT and change in allocation of capacities for

facilities in T , we can solve the mincost flow problem to assign the clients

to facilities with their new capacity allocation. This is done to utilize the

additional capacity∆t∗−k available with the facilityt∗. Cost of the operation

is given by:fs(us−|∆s|)−fs(us)+
∑

t∈T (ft(ut+∆t)−ft(ut))+cs(U
′)−cs(U)

whereU ′ is the new solution after decreasing the capacity ofs and increasing

the capacity of facilities inT .

4. The process is repeated for all choices oft∗ ∈ F \ {s} and values∆t∗ in

[0, m − ut∗ ]. For each choice of(t∗, ∆t∗), the process is repeated fork in

[0, ∆t∗ ]. The solution for which the cost is minimum gives the setT and

vector∆.

Steps 1, 2, 3 and 4 of the above procedure can be performed in polynomial time.

Further these steps are repeated for all choices oft∗ ∈ F \ {s} and values∆t∗ in

[0, m−ut∗ ] and for each choice of(t∗, ∆t∗), the process is repeated for a value ofk

in [0, ∆t∗ ]. Since there could be at mostO(mn) choices for(t∗, ∆t∗) pair, and∆∗
t

88



could be at mostm, therefore these steps are repeated at mostO(m2n) . Thus the

closeoperation can be performed in polynomial time.

Whenever a local search operation is performedui values are updated to the number of

clients assigned toi by the operation.U is locally optimal if none of these operations

improve the cost of the solution and at this point the algorithm stops. The local search

algorithm described above runs in polynomial time as:

1. each operation can be performed in polynomial time.

2. number of iterations performed by the algorithm can be bounded by a polynomial

at the expense of an additiveε in the approximation factor by doing a local search

operation only if the cost reduces by more than a1− ε/4n factor, forε > 0.

5.3 Bounding the cost of our solution

Let U be a locally optimal solution andU∗ be an optimum solution. For eachs ∈ F , us

(respectivelyu∗
s) denotes the capacity allocated tos in the locally optimal (respectively

optimum) solution. LetFU (respectivelyFU∗) be the set of facilities for whichus (respec-

tively u∗
s) is greater than zero. Without loss of generality, letus = |NU(s)| be the number

of clients served bys in U , similarly u∗
s = |NU∗(s)| be the no. of clients served bys in

U∗.

First of all we construct a bipartite graph,Ĝ, on the vertex setC ∪F as explained in

Section 3.4. Recall that:

1. Every clientj ∈ C has an edge from the facilityσ(j) ∈ FU , whereσ(j) is the

facility which servesj in U , and an edge to the facilityτ(j) ∈ FU∗, whereτ(j) is

the facility servingj in U∗. Thus each client has one incoming and one outgoing

edge.
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2. A facility s ∈ FU has|NU(s)| outgoing edges and a facilityo ∈ FU∗ has|NU∗(o)|

incoming edges.

3. The graphĜ is decomposed into a set of maximal paths,P, and cycles,C. Note

that all facilities on a cycle are fromFU ∩ FU∗.

4. In a pathP ∈ P with a sequence of verticess0, j0, s1, j1, . . . , sk, jk, o, which starts

at a vertexs = s0 ∈ FU and ends at a vertexo ∈ FU∗, head(P ) denotes the

client served bys and tail(P ) denotes the client served byo on this path. Note that

{s1, s2, . . . , sk} ⊆ FU ∩ FU∗.

5. The lengthof a pathP is given by

length(P ) =
∑

j∈C∩P

(U∗
j + Uj)

whereU∗
j (Uj) is the service cost of clientj in the solutionU∗(U ). Note that∑

P∈P length(P ) +
∑

Q∈C length(Q) = cs(U) + cs(U
∗).

6. A shiftalongP is a reassignment of clients so thatji which was earlier assigned to

si is now assigned tosi+1 wheresk+1 = o. As a consequence of this shift, facility

s serves one client less while facilityo serves one client more. shift(P ) denotes the

increase in service cost due to a shift alongP i.e.

shift(P ) =
∑

j∈C∩P

(U∗
j − Uj).

7. For a cycle inC the increase in service cost equals the sum ofU∗
j −Uj for all clients

j in the cycle and since the assignment of clients to facilities is done optimally in

our solution and in the global optimum this sum is zero. Thus

∑
Q∈C

∑
j∈Q

(U∗
j − Uj) = 0.
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We remove all the edges and clients in the cycles fromĜ. Note that total number of

paths beginning from a facilitys ∈ FU is equal tomax(0, |NU(s)| − |NU∗(s)|) and total

number of paths terminating at a facilityo ∈ FU∗ is at mostmax(0, |NU∗(o)| − |NU(o)|).

Let N o
s be the set of paths that begin ats ∈ FU and end ato ∈ FU∗. We redefine

NU(s) = ∪o∈FU∗N
o
s andNU∗(o) = ∪s∈FU

N o
s . Let S be the set of those facilities for

which |NU(s)| > 0 andO be the set of facilities for which|NU∗(o)| > 0. Note that for a

facility s ∈ S, us > u∗
s and for a facilityo ∈ O, u∗

o > uo. Hence,S ∩O = φ. For the rest

of the facilities inF i.e. for i ∈ F \ (S ∪O), ui = u∗
i .

To formulate a suitable set of inequalities an exchange graphG is built whose ver-

tices are the set of facilities inS and the facilities inO.

The exchange graph:An exchange graph is a bipartite graph withS andO defining

the two partitions. In order to bound the facility cost of facilities inS, we would close

every facility inS and transfer its clients to facilities inO. Here the notion of closing a

facility s means that the capacity of facilitys is decreased from the current capacityus to

u∗
s, i.e. by an amount|NU(s)|. Note that when a facilitys ∈ S is closed, total number

of clients that needs to be reassigned is|NU(s)|. A facility o ∈ O can take in at most

|NU∗(o)| number of clients along the paths that terminate ato. To obtain a set of feasible

operations, we seek a flow in this exchange graph such that the amount of flow leaving a

facility s ∈ S is equal to|NU(s)| and the amount of flow that enters a facilityo ∈ O is

at most|NU∗(o)|. A feasible solution and hence in particular an optimal solution to the

following linear program provides such a flow.

min
∑

s∈S,o∈O

cso y(s, o)

s.t.∑
o∈O

y(s, o) = |NU(s)| ∀s ∈ S∑
s∈S

y(s, o) ≤ |NU∗(o)| ∀o ∈ O

y(s, o) ≥ 0 ∀s ∈ S, o ∈ O
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The path decomposition of grapĥG as discussed above provides us with such a flow

y whose cost is at mostcs(U) + cs(U
∗). This is proved in the following lemma.

Lemma 5.1 The cost of an optimal flowy is bounded bycs(U) + cs(U
∗).

Proof To bound the cost ofy, a flow ŷ is constructed whose cost is at mostcs(U) +

cs(U
∗). Consider a facilitys ∈ S and a facilityo ∈ O. LetP = s1−o1−s2−o2 . . . sk−ok,

wheres = s1 ando = ok, be a path froms to o as defined by the path decomposition

of Ĝ. Let ŷ(s, o), a flow on edge(s, o) be equal to the number of paths that begin from

s and terminate ato . Note that flowŷ defined in this manner is a feasible flow which

satisfies the constraints of the LP given above as
∑

o∈O ŷ(s, o) =
∑

o∈O |N o
s | = |NU(s)|

and
∑

s∈S ŷ(s, o) =
∑

s∈S |N o
s | = |NU∗(o)|. Also by triangle inequalitycso ≤ length(P )

∀P ∈ P such thatP begins ats and ends ato. Thus,

csoŷ(s, o) ≤
∑

P∈No
s

length(P ).

Therefore ∑
s

∑
o

csoŷ(s, o) ≤
∑

s

∑
o

∑
P∈No

s

length(P )

≤
∑

s

∑
P∈NS(s)

length(P )

=
∑
P∈P

length(P )

≤ cS(U) + cS(U∗)

which proves the claimed bound on the cost of an optimal flowy. �

Let G′ be the bipartite graph withS andO defining the partitions of the graph and

the edges be those which have non-zero flowy on them wherey is an optimum flow of

the above LP. If this graph is not acyclic, then by modifying the flowy, it can be turned

into one without increasing the cost of the flow as follows: Consider a cycle inG′ and

let CE be the edges on the cycle. Partition the edges ofCE into setsC1, C2 such that the
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edges ofC1 (andC2) are alternate edges on the cycle. Letγ be the minimum value of

an edge inCE. Consider two operations: one in which we increase the value of edges in

C1 and decrease the value of edges inC2 by an amountγ and the other in which we do

the inversei.e.,decrease the value of the edges inC1 and increase the value of the edges

in C2 by γ. Note that in one of these operations the total cost
∑

s∈S,o∈O csoy(s, o) would

not increase and the value of one of the edges would reduce to zero thereby removing

it from the graph. This process is continued till the graph becomes acyclic. Note that∑
s∈S y(s, o) = |NU∗(o)| and

∑
o∈O y(s, o) = |NU(s)| still holds. Howevery(s, o) is no

more equal to|N o
s |.

We consider potential local steps and using the fact thatU is a locally optimal so-

lution, formulate suitable inequalities which help us bound the cost of our solution. The

inequalities are written such that

1. each facility inS is closed once.

2. each facility inO is opened at most five times.

3. the total cost of reassigning clients is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P )

.

and when added yield

−
∑
s∈S

(fs(us)− fs(u
∗
s)) + 5

∑
o∈O

(fo(u
∗
o)− fo(uo))

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0
(5.1)

Also for i ∈ A = F \ (S ∪O), fi(u
∗
i ) = fi(ui), therefore we get

93



−
∑
s∈S

(fs(us)− fs(u
∗
s)) + 5

∑
o∈O

(fo(u
∗
o)− fo(uo))

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P )

+ 5
∑
i∈A

(fi(u
∗
i )− fi(ui)) ≥ 0

or

−
∑
s∈S

fs(us)− 5
∑
o∈O

fo(uo)− 5
∑
i∈A

fi(ui)

+
∑
s∈S

fs(u
∗
s) + 5

∑
o∈O

fo(u
∗
o) + 5

∑
i∈A

fi(u
∗
i )

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0

since

−
∑

s∈S∪O∪A

fs(us) ≥ −
∑
s∈S

fs(us)− 5
∑
o∈O

fo(uo)− 5
∑
i∈A

fi(ui) (5.2)

and

5
∑

s∈S∪O∪A

fs(u
∗
s) ≥

∑
s∈S

fs(u
∗
s) + 5

∑
o∈O

fo(u
∗
o) + 5

∑
i∈A

fi(u
∗
i ) (5.3)

Therefore, we get

−
∑
i∈F

fi(ui) + 5
∑
i∈F

fi(u
∗
i )

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0

Third term in the above inequality can be bounded by2(cs(U)+cs(U
∗)) by Lemma 5.1.

Also, fourth term can be written as

3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) = 3
∑
P∈P

∑
j∈P

(U∗
j − Uj) + 3

∑
Q∈C

∑
j∈Q

(U∗
j − Uj) = 3

∑
j∈C

(U∗
j − Uj)
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where second term in the middle equality is due to the fact that
∑

j∈Q: Q∈C(U
∗
j −Uj) = 0

Thus we get,

−cf (U) + 5cf (U
∗) + 2(cs(U) + cs(U

∗)) + 3(cs(U
∗)− cs(U)) ≥ 0 (5.4)

and finally we get the following bound on the cost of our solution

cf (U) + cs(U) ≤ 5cf (U
∗) + 5cs(U

∗) (5.5)

Consider a subtreeT in G′ of height 2 rooted att ∈ O. Figure 4.1 shows one such

subtree. We use the same terminology as was used in chapter 4 to denote the parent child

relationship. Recall that for a facilityi, p(i) is the parent andK(i) are the children ofi.

A facility i is anup-facility if y(i, p(i)) ≥
∑

j∈K(i) y(i, j) and adown-facilityotherwise.

Ku(i) (respectivelyKd(i)) denote the children ofi which are up-facilities (respectively

down-facilities). The operations that we consider for the analysis are such that for a

facility o ∈ O:

1. If o is anup-facility, then it is opened at most twice in operations involving facil-

ities which are descendants ofo in the tree and is opened at most twice in other

operations.

2. If o is adown-facilitythen it is opened at most four times in operations involving

facilities which are descendants ofo in the tree and is opened at most once in other

operations.

5.3.1 Closingup-facilitieswhich are children of t

Considerup-facilities of S which are children oft. If t is an up-facility then all the

facilitiess ∈ Ku(t) can be closed in a single operationopen(t,Ku(t), ∆) in which clients

of a facility s ∈ Ku(t) are assigned tot and∆s = −|NU(s)| ∀s ∈ Ku(t) and∆t =

|NU∗(t)|, refer to Figure 5.1. Note that
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t

Ku(t)

Figure 5.1:openoperation considered for handling facilities inKu(t) whent is an up-
facility.

1. the operation is feasible since

|NU∗(t)| =
∑

s∈K(t)

y(s, t) + y(p(t), t)

≥
∑

s∈Ku(t)

y(s, t) + y(p(t), t)

≥
∑

s∈Ku(t)

2y(s, t)

≥
∑

s∈Ku(t)

|NU(s)|

where second last inequality is due to the fact thatt is anup-facility and the last

inequality follows from

|NU(s)| = y(s, t) +
∑

o∈K(s)

y(s, o) ≤ 2y(s, t) ∀s ∈ Ku(t)

ass is an up-facility.

2. the contribution of an edge(s, t), wheres ∈ Ku(t), to the reassignment cost is at

most2y(s, t)cst.
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3. If |NU∗(t)|−
∑

s∈Ku(t) |NU(s)| > 0 then we can assign|NU∗(t)|−
∑

s∈Ku(t) |NU(s)|

more clients tot by shifting along these many paths inNU∗(t). SinceU is locally

optimal, this operation will not improve the cost ofU . This operation then yields

the inequality

ft(u
∗
t )− ft(ut)−

∑
s∈Ku(t)

(fs(us)− fs(u
∗
s)) +

∑
s∈Ku(t)

|NU(s)|cst +
|NU∗(t)| −

∑
s∈Ku(t) |NU(s)|

|NU∗(t)|
∑

P∈NU∗ (t)

shift(P ) ≥ 0

(5.6)

The last term in the above inequality arises from the argument that instead of utiliz-

ing the remaining capacity,|NU∗(t)| −
∑

s∈Ku(t) |NU(s)|, in the best possible way

we could shift along each path inNU∗(t) up to an extent
|NU∗(t)|−∑

s∈Ku(t) |NU(s)|
|NU∗(t)|

and assign the client tail(P ) to t up to this much extent only and in doing so the

cost would not reduce. We can reduce this quantity, if required, to get the desired

inequalities.

If t is a down-facility, then leth ∈ Ku(t) be the facility with largesty(h, t) value.

Rest of the facilitiess ∈ Ku(t) \ h can be partitioned into two setsA andB such that∑
s∈A |NU(s)| ≤ |NU∗(t)| and

∑
s∈B |NU(s)| ≤ |NU∗(t)|. The partitioning procedure

similar to the one described in Section 4.1(case 2b) is used for the purpose. The facilities

in A andB are closed in twoopenoperationsopen(t, A, ∆′) andopen(t, B, ∆
′′
) respec-

tively where∆′
t = ∆

′′
t = |NU∗(t)|; ∆′

s = −|NS(s)| for s ∈ A and∆
′′
s = −|NS(s)| for

s ∈ B, refer to Figure 5.2. Feasibility of the operations follows from the construction.

Inequalities similar to the Inequality 5.6 are formulated due to these operations in which

Ku(t) is replaced withA andB respectively. Also note that the contribution of an edge

(s, t), wheres ∈ Ku(t) \ {h}, to the reassignment cost is at most2y(s, t)cst.

The facilities inKd(t) andh are handled usingcloseoperations as discussed next.
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t

A B

t

Figure 5.2:closeoperations considered for facilities inKu(t) \ {h} when t is a down
facility.

5.3.2 Closing facilityh and down-facilitieswhich are children of t

Now we discuss the operations to close facilitiess ∈ Kd(t) ∪ {h}, refer to Figure 5.3.

Consider the facilities inKd(t). Order the facilities inKd(t) according to theirrem(s)

values as discussed in chapter 4. Recall thatrem(s) = y(s, t) −
∑

o∈Kd(s) y(s, o). Let

s1, s2, · · · , sk be the order so defined. A facilitysi ∈ Kd(t) for i < k can be closed

in an operationclose(si, K(si) ∪ Ku(si+1), ∆). In this operation∆si
= −|NU(si)| and

∆o = |NU∗(o)|, ∀o ∈ K(si) ∪ Ku(si+1). The operation is feasible as can be argued

on the same lines as in case 1 of Section 4.1. In this operationy(si, o) flow is sent to

o ∈ Ku(si), 2y(si, o) flow is sent too ∈ Kd(si) (sinceo is a down-facility, therefore

y(si, o) ≤
∑

s′∈K(o) y(s′, o)). The remaining flow fromsi i.e. rem(si) is sent to facilities

in Ku(si+1). Let’s denote amount of flow sent on an edge(si, o), o ∈ K(si) ∪Ku(si+1)

in this operation byz(si, o).

If
∑

o∈K(si)∪Ku(si+1) |NU∗(o)| > |NU(si)| then we can find a subsetT ′ ⊆ K(si) ∪

Ku(si+1) such that
∑

o∈T ′ |NU∗(o)| ≥ |NU(si)| and setT ′ is such that except for one

facility t∗ ∈ T ′, available capacity i.e.|NU∗(o)|, of all facilities in T ′ \ {t∗} is fully

98



s1 si Si+1 sk

t

Kd(t)

sk

t

h

t

…

Figure 5.3:closeoperations for facilities inKd(t) and facilityh showing the reassignment
of clients when one of these facilities are closed.

exhausted in accommodating the clients coming fromsi. Some capacity oft∗ sayk is

used to accommodate the clients ofsi and the remaining available capacity|NU∗(t∗)| − k

is filled with clients which are assigned tot∗ when we shift along some paths inNU∗(t∗).

Claim 5.2 For the operationclose(si, K(si) ∪ Ku(si+1), ∆) we can formulate the in-

equality

− (fsi
(usi

)− fsi
(u∗

si
)) +

∑
o∈K(si)∪Ku(si+1)

(fo(u
∗
o)− fo(uo)) +

∑
o∈K(si)∪Ku(si+1)

z(si, o)csio

+
∑

o∈K(si)∪Ku(si+1)

∑
P∈NU∗ (o)

|NU∗(o)| − z(si, o)

|NU∗(o)|
shift(P ) ≥ 0

(5.7)

Proof Denote the setK(si)∪Ku(si+1) by T . Consider the facilities ofT in decreasing

order ofz(si, o)/|NU∗(o)| and keep including them into a setT ′ until the total capacity

of the facilities inT ′, i.e.
∑

o∈T ′ |NU∗(o)|, exceeds|NU(si)|. Let t∗ be the last facil-

ity to be included intoT ′. Then aclose(si, T
′, ∆′) operation, where∆′

o = |NU∗(o)|

∀o ∈ T ′ and∆′
si

= −|NU(si)|, t∗ is thepivot facility and is assignedk = |NU(si)| −
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∑
o∈T ′\{t∗} |NU∗(o)| clients served bysi, would yield the inequality

− (fsi
(usi

)− fsi
(u∗

si
)) +

∑
o∈T ′

(fo(u
∗
o)− fo(uo))+

∑
o∈T ′\{t∗}

|NU∗(o)|csio + kcsit∗ +
|NU∗(t∗)| − k

|NU∗(t∗)|
∑

P∈NU∗ (t∗)

shift(P ) ≥ 0
(5.8)

The last term in the above inequality arises from the argument that instead of utilizing the

remaining capacity,|NU∗(t∗)| − k, in the best possible way we could have assigned for

each path inNU∗(t∗) the client tail(P ) to the facilityt∗ to an extent
|NU∗(t∗)|−k

|NU∗(t∗)| without

reducing the cost by shifting along these paths up to an extent
|NU∗(t∗)|−k

|NU∗(t∗)| .

We take a linear combination of a sequence of inequalities of the form 5.8 in a

similar way as done in Section 4.2.2. In the linear combination we take 5.8 up to an extent

of ξ and at the same time for all facilitieso ∈ T ′ \ {t∗} we reducez(si, o) by ξ · |NU∗(o)|

and reducez(si, t
∗) by ξ · k, whereξ = min

(
min

o∈T ′\{t∗}

(
z(si,o)

|NU∗(o)|

)
, k

|NU∗(t∗)|

)
.

This process can be viewed as sendingξ · |NU(si)| units of flow fromsi to facilities

in T ′ with facility o ∈ T ′ \ {t∗} receivingξ · |NU∗(o)| flow and facilityt∗ receivingξ · k

flow. The edges(si, o) have capacityz(si, o) which is reduced by the amount of flow sent.

Initially the total capacity of all edges
∑

o∈T z(si, o) equals the amount of flow|NU(si)|

that needs to be sent and this property is maintained at each step. By picking the facilities

with the largest values ofz(si, o)/|NU∗(o)| we are ensuring that the maximum of these

quantities never exceeds the fraction of the flow that remains to be sent. This implies that

when the procedure terminates allz(si, o) are zero and|NU(si)| units of flow have been

sent.

If a facility o was opened to an extentλo then its contribution in the linear combina-

tion would beλo

(
fo(u

∗
o)− fo(uo)

)
+ z(si, o)csio +

λo|NU∗(o)|−z(si,o)

|NU∗(o)|
∑

P∈NU∗ (o) shift(P ).

We add a1− λo multiple of the inequality

fo(u
∗
o)− fo(uo) +

∑
P∈NU∗ (o)

shift(P ) ≥ 0 (5.9)
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which corresponds to the operationadd (o, |NU∗(o)|), to the linear combination to match

the contribution ofo in Inequality 5.7. �

Next we will closesk and openK(sk) ∪ {t} in an operationclose(sk, K(sk) ∪

{t}, ∆). In this operation∆sk
= −|NU(sk)| and∆o = |NU∗(o)| ∀o ∈ K(sk) ∪ {t}. Op-

eration for closingsk is feasible since
∑

o∈K(sk)∪{t} |NU∗(o)| ≥
∑

o∈K(sk)∪{t} y(sk, o) =

|NU(sk)| and by sendingy(sk, o) flow to eacho ∈ K(sk) ∪ {t} we are done. We can

now formulate the following inequality for this operation, as we did in case when we

consideredcloseoperation for facilitysi.

− (fsk
(usk

)− fsk
(u∗

sk
)) +

∑
o∈K(sk)∪{t}

(fo(u
∗
o)− fo(uo)) +

∑
o∈K(sk)∪{t}

y(sk, o)csko

+
∑

o∈K(sk)∪{t}

∑
P∈NU∗ (o)

|NU∗(o)| − y(sk, o)

|NU∗(o)|
shift(P ) ≥ 0

(5.10)

Note that, due to the operations considered above in which we close facilities of

Kd(t),

1. since edge costs form a metric,csio, o ∈ Ku(si+1) is at mostcsit + ctsi+1
+ csi+1o.

2. the contribution of the edge(si, t) i 6= 1, k to the reassignment cost is at most

(rem(si) + rem(si−1))csit. Since bothrem(si) andrem(si−1) are less thany(si, t)

the total contribution is at most2y(si, t)csit.

3. The contribution of the edge(s1, t) to the reassignment cost is at mostrem(s1)cs1t ≤

y(s1, t)cs1t.

4. The contribution of the edge(sk, t) to the reassignment cost is at most(rem(sk−1)+

y(sk, t))cskt ≤ 2y(sk, t)cskt

5. the contribution of the edge(si, o), o ∈ Kd(si) is at most2y(si, o)csio since2y(si, o)

clients are assigned too whensi is closed.
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6. the contribution of the edge(si, o), o ∈ Ku(si), i 6= 1 is at most2y(si, o)csio since

at mosty(si, o) clients are assigned toj once whensi is closed and once whensi−1

is closed. The contribution of the edge(s1, o), o ∈ Ku(s1) is at mosty(s1, o)cs1o.

Facility h can be closed in the operationclose(h,K(h) ∪ {t}, ∆) where∆o =

|NU∗(o)| ∀o ∈ K(h) ∪ {t} and∆h = −|NU(h)| . This operation is feasible because∑
o∈K(h)∪{t} |NU∗(o)| ≥

∑
o∈K(h)∪{t} y(h, o) = |NU(h)|. For this operation we can for-

mulate the following inequality:

− (fh(uh)− fh(u
∗
h)) +

∑
o∈K(h)∪{t}

(fo(u
∗
o)− fo(uo)) +

∑
o∈K(h)∪{t}

y(h, o)cho

+
∑

o∈K(h)∪{t}

∑
P∈NU∗ (o)

|NU∗(o)| − y(h, o)

|NU∗(o)|
shift(P ) ≥ 0

(5.11)

Note that in this operation, the contribution of an edge(h, o), o ∈ K(h) ∪ {t} is at

mosty(h, o)cho.

5.3.3 Putting Things Together

In all the operations considered in the analysis discussed in the previous section, a facility

o ∈ O is opened at most 5 times and cost of reassignment of clients in all these operations

is small. We prove these things in the following lemmas.

Lemma 5.3 A facility o ∈ O is opened at most 5 times in all the operations considered.

Proof

1. Wheno is an up-facility: While considering the facilities ofS which are descen-

dants ofo, o would be opened twice, once when it is part of acloseoperation

close(sk, K(sk) ∪ {o}, ∆) wheresk ∈ Kd(o) and once when it is part of anopen

operationopen(o,Ku(o), ∆). While considering the facilities ofS which are not

descendants ofo, o would be opened at most twice ifp(o) is a down facility and

would be opened at most once ifp(o) is an up facility.
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2. Wheno is a down-facility: While considering the facilities ofS which are descen-

dants ofo, o would be opened four times: once when it is part of acloseoperation

close(sk, K(sk) ∪ {o}, ∆) wheresk ∈ Kd(o), once when facilityh ∈ Ku(o) is

closed in an operationclose(h,K(h) ∪ {o}, ∆), and twice as a part of twoopen

operations in which setsA, B ⊆ Ku(o) are closed.o would be opened at most once

while considering the facilities ofS, which are not descendants ofo irrespective of

whetherp(o) is an up-facility or a down-facility.

�

Claim 5.4 A facility o ∈ O is assigned a total of at most2
∑

s y(s, o) ≤ 2|NU∗(o)|

clients from the facilities closed in the respective operations involvingo over all the op-

erations considered.

Proof

1. Wheno is an up-facility

(a) While considering the facilities ofS which are descendants ofo, o would be

part of aclose(sk, K(sk) ∪ {o}, ∆) wheresk ∈ Kd(o) and anopenoperation

open(o,Ku(o), ∆) and assigned at most2
∑

s∈Ku(o) y(s, o) + y(sk, o) clients

wheresk ∈ Kd(o). Note that this is at most2
∑

s∈K(o) y(s, o).

(b) We next consider the number of clients assigned too when considering fa-

cilities of S which are not descendants ofo. If the parent ofo, p(o), is an

up-facility theno could be assigned at mosty(p(o), o) clients in acloseopera-

tion involvingp(o). If p(o) is a down-facility theno would be assigned at most

2y(p(o), o) clients and this can be argued as follows. Consider the ordering of

the down-facilities which are siblings ofp(o).

i. if p(o) is the first facility in the ordering (referred to ass1) theno is only

part ofclose(s1, K(s1) ∪Ku(s2), ∆) and is assignedy(s1, o) clients.
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ii. if p(o) is theith facility in the ordering (referred to assi) and is neither the

first nor the last facility theno is part ofclose(si−1, K(si−1)∪Ku(si), ∆)

andclose(si, K(si)∪Ku(si+1), ∆) and is assignedy(si, o) clients in each

of these operations.

iii. if p(o) is the last facility in the ordering (referred to assk) theno is part

of close(sk−1, K(sk−1) ∪Ku(sk), ∆) and acloseoperation

close(sk, K(sk)∪ {p(sk)}, ∆) involving sk. In both these operationso is

assignedy(sk, o) clients.

Hence the total number of clients assigned too when considering facilities of

S which are not descendants ofo is at most2y(p(o), o).

Therefore the total number of clients assigned too wheno is an up-facility is at

most2
∑

s y(s, o).

2. wheno is a down-facility

(a) While considering the facilities ofS which are descendants ofo, o would

be part of twoopen operationsopen(o, A, ∆) and open(o,B, ∆) and two

closeoperations:close(h,K(h) ∪ {o}, ∆) and close(sk, K(sk) ∪ {o}, ∆).

The number of clients assigned too in these operations is2
∑

s∈A y(s, o),

2
∑

s∈B y(s, o), y(h, o) andy(sk, o) respectively. SinceA∪B∪{h} = Ku(o)

andsk ∈ Kd(o), the total number of clients assigned too in these four opera-

tions is at most2
∑

s∈K(o) y(s, o).

(b) We next consider the number of clients assigned too when considering fa-

cilities of S which are not descendants ofo. If the parent ofo, p(o), is an

up-facility theno would be assigned at mosty(p(o), o) clients in acloseop-

eration involvingp(o). If p(o) is a down-facility theno would be assigned at

most2y(p(o), o) clients and this can be argued as follows. As before, consider

the ordering of the down-facilities which are siblings ofp(o).
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i. if p(o) is theith facility in the ordering (referred to assi) and is not the last

facility then o is part ofclose(si, K(si) ∪ Ku(si+1), ∆) and is assigned

2y(si, o) clients.

ii. if p(o) is the last facility in the ordering (referred to assk) theno is part

of acloseoperation involvingsk in whicho is assignedy(sk, o) clients.

Hence the total number of clients assigned too when considering facilities of

S which are not descendants ofo is at most2y(p(o), o).

Therefore the total number of clients assigned too wheno is a down-facility is at

most2
∑

s y(s, o).

. �

Lemma 5.5 The total reassignment cost of all the operations is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P )

Proof The first term in the required expression follows from the fact that in all the

operations considered, the contribution of an edge(s, o) of the exchange graph is at most

2csoy(s, o).

When all the inequalities are added, the term
∑

P∈NU∗ (o) shift(P ) for a facility o ∈ O

appears up to the extent ofα−β/|NU∗(o)|whereα is the number of timeso is opened and

β is the total number of clients assigned too from the facilities whose capacity allocation

decreases in the operation in whicho is opened. From Claim 5.4,β is at most2|NU∗(o)|

and from Lemma 5.3α is at most 5. If a facilityo ∈ O is opened less than five times

in these operations then we add the inequality corresponding toadd(o,NU∗(o)) to our

linear combination so that each facility is now opened exactly five times. Therefore, the

coefficient of the term
∑

P∈NU∗ (o) shift(P ) is at least 3. If its greater than 3 for someo ∈ O

then we will reduce the coefficient of
∑

P∈NU∗ (o) shift(P ) in some of the inequalities

involving o to make this contribution exactly 3. �
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From Lemma 5.3 and Lemma 5.5, we can conclude that

−
∑
s∈S

(fs(us)− fs(u
∗
s)) + 5

∑
o∈O

(fo(u
∗
o)− fo(uo))

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0

Recall that to ensure that the local search procedure has a polynomial running time

we need to modify the local search procedure so that a step is performed only when the

cost of the solution decreases by at least(ε/4n)c(U). This modification implies that the

right hand sides of inequalities 5.6, 5.7, 5.9, 5.10, 5.11 which are all zero should instead

be(−ε/4n)c(U). Note that eachs ∈ S is closed in either anopenor acloseoperation and

therefore appears in exactly one of the inequalities of type 5.6, 5.7, 5.10, 5.11. Further,

everyo ∈ O appears in at most 3 close operations and therefore we add(1 − λo <= 1)

multiple of inequality 5.9 atmost 3 times.

Putting all these modifications together gives rise to an extra term of at most

(4ε/4)c(U). This implies that the cost of solutionU is at most5c(U∗) + ε · c(U) which

implies thatU is a5/(1− ε) approximation to the optimum solution.

Thus we arrive at our main result:

Theorem 5.6 The local search procedure with operationsadd, open and closeyields a

locally optimum solution that is a (5+ε)-approximation to the optimum solution.

5.4 Experimental study for non-uniform CFLP

In this section, we show that the algorithm performs well in practice. The experiments

were performed for the non-uniform CFLP on the data sets used in earlier studies [CST91,

Aar98, BC05, ABSV09].
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5.4.1 Data sets used

We performed experiments on three types of random instances which have been used in

earlier studies:type A, type Bandtype C. To construct problem instances of type A, we

used the procedure as in [CST91, Aar98, BC05, ABSV09] which is as follows:

1. For a problem instance of sizen×m, wheren is the number of facilities andm is

the number of clients, points are generated uniformly at random in a unit square to

represent these many facilities and clients.

2. Euclidean distances are computed between every point representing a facility sayi

and every point representing a client sayj and multiplied by10.

3. Demands for each client are generated from interval [5,35] uniformly at random i.e.

from U [5, 35].

4. Capacity for a facilityi is generated from interval [10,160] uniformly at random.

5. Facility costs are computed to reflect economies of scale using the formulafi =

U [0, 90] + U [100, 110]
√

sj

Problem instances of type B are constructed by multiplying the Euclidean distances,

computed in step 2 of the above procedure, by100 and for type C instances these distances

are multiplied by1000. Rest of the steps remain same for these two instance types. For

the problem instances of type A, facility cost component of a solution dominates the

cost of the solution. For problem instances of type C, its the service cost component

that dominates the cost. Type B instances are somewhere in between the two types of

instances.

We give our computational experience for instances of sizes50 × 50, 100 × 100

and 200 × 200. For these instances we computed optimal solution using LINGO 13

optimization software from LINDO Systems, Inc. and we give the % error i.e. percentage
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by which the locally optimal solution differs from the optimum solution, thereby giving

the quality of the solution produced by the algorithm. Tables 5.4.1, 5.4.1 and 5.4.1 provide

these results.

5-approx for non-uniform CFLP

Filename Optimum Local Opt %error

ndat1050 10272.66 11456.7 11.53

ndat1150 10840.81 11830.3 9.13

ndat1250 11404.18 11526.8 1.08

ndat1350 10182.61 10840 6.46

ndat1450 11018.23 12073.2 9.57

ndat10100 19762.46 20665.2 4.57

ndat11100 20731.4 21837.9 5.34

ndat12100 21465.68 23270.5 8.41

ndat13100 20152.34 21484.6 6.61

ndat14100 20209.24 21990 8.81

ndat10200 36288 38395.1 5.81

ndat11200 38902.9 40748.9 4.75

ndat12200 38215 41317.6 8.12

ndat13200 41318.7 43718.6 5.81

ndat14200 37783.4 40162.6 6.30

Table 5.1: Results for type A instances

These experiments show that the algorithm provides solutions within(1 + 0.12)

factor of the optimal solution for the instances tested. These experiments are performed

mainly to study the quality of solution. We observe that for a problem of a given size,

instances of type A take largest amount of time as compared to the time required by an

instance of the same size but of type B or type C to reach a locally optimal solution.
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5-approx for non-uniform CFLP

Filename Optimum Local Opt %error

ndat2050 22068.7 23036.2 4.38

ndat2150 20444.49 20892.1 2.19

ndat2250 25399.5 26620.2 4.81

ndat2350 22472.35 23623.5 5.12

ndat2450 23746.76 25109.6 5.74

ndat20100 38044.36 39431.5 3.65

ndat21100 35951.7 37258.9 3.64

ndat22100 38028.82 39462.6 3.77

ndat23100 36253.68 38050 4.95

ndat24100 38746.52 39661.8 2.36

ndat20200 65204 69723.2 6.93

ndat21200 65706 68270.7 3.90

ndat22200 65176 68475.1 5.06

ndat23200 58552.4 61072.5 4.30

ndat24200 60108.4 62017.7 3.18

Table 5.2: Results for type B instances
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5-approx for non-uniform CFLP

Filename Optimum Local Opt %error

ndat3050 92713.86 93907.9 1.29

ndat3150 100713 104694 3.95

ndat3250 111647 113486 1.65

ndat3350 92403.3 94981.5 2.79

ndat3450 99659.35 100759 1.10

ndat30100 167878 170408 1.51

ndat31100 178072.3 186263 4.60

ndat32100 149689.6 154382 3.13

ndat33100 143649.4 145917 1.58

ndat34100 141551.7 145525 2.81

ndat30200 261738 270211 3.24

ndat31200 226732 230567 1.69

ndat32200 230017 236346 2.75

ndat33200 222940 228150 2.34

ndat34200 222948 232892 4.46

Table 5.3: Results for type C instances
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Chapter 6

Conclusion

In this work we presented local search based approximation results for three variants

of facility location problem. The first problem we discussed is uniform capacitated fa-

cility location problem for which we analyzed the local search heuristic of Kuehn and

Hamburger. We showed that the algorithm is (3+ε)-factor approximation and also pro-

vided a tight example to show that the analysis cannot be strengthened any further. Thus,

new operations would be required to improve the approximation factor using local search

paradigm.

For non-uniform capacitated facility location problem, we improved theopen, close

operations of Palet al.andmulti operation of Zhanget al.to obtainmopen, mcloseand

mmultioperations. It was shown that the cost of the local optimal is no more than (5+ε)

times the cost of the optimum solution. An example was presented to show that the

analysis is tight for the algorithm.

For universal facility location problem, we extended our ideas developed for the

second problem and presented a (5+ε)-factor approximation algorithm which improved

the current best result. The arguments given for the problem suggested that we can obtain

(5+ε) factor for (non-uniform) CFL withoutmmulti operation as well. We performed

an experimental study of the algorithm for the particular case of non-uniform capacities
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which showed that in practice the results are much closer to the optimum solution.

For the results presented in the thesis we consider the case when demand of a client

j ∈ C is one, i.e.dj = 1. Arbitrary demands can be easily handled by the algorithms

preseted in chapters 4 and 5 by doing slight modifications, details of which can be found

in Palet al. [PTW01] (for non-uniform capacitated facility location problem) and Mah-

dianet al. [MP03] (for universal facility location problem).

For the problems discussed in the thesis, no constant approximation algorithm based

on LP is known. The only known LP-based approximation algorithm for capacitated

facility location problem is for the special case when allfacility opening costs are equal

by Levi, Shmoys and Swamy [LSS12]. They gave a 5-factor algorithm for this restricted

version of the problem. While the local search algorithms for these problems are not

difficult to specify, the analysis, even for the case of uniform capacities, can be quite

involved. It would be interesting to explore other, non-local-search approaches to these

facility location problems.
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Appendix A

A.1 Path decomposition of graphG

Path decomposition of graphG can be performed as follows:

Take a graphG′ which is initialised toG. Now perform the following steps:

1. If G′ has cycles, pick an arbitrary cycleC in G′ and add it toC.

2. Drop the edges that occured inC from G′.

3. Repeat steps 1 and 2 until there is any cycle left inG′ else go to the next step.

4. Let i be an arbitrary node inG′ with atleast one outgoing edge and no incoming

edges. LetP be a maximal path which begins ati.

5. Add P toPand remove the edges inP from G′.

6. Continue with steps 4 and 5 until graphG′ has no edges.

A.2 Removing cycles from the graph

Lemma A.1 The exchange graphG, whose vertices are the set of facilities in the locally

optimal solutionS and the facilities in the optimum solutionO, when modified to make it

acyclic continue to satisfy the following three properties:
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1.
∑

s∈S,o∈O csoy(s, o) ≤ cs(S) + cs(O).

2. G is a bipartite graph withS andO defining the sets of the partition.

3. ∀s ∈ S,
∑

o∈O y(s, o) = |NS(s)| and∀o ∈ O,
∑

s∈S y(s, o) = |NO(o)|.

Proof

1. Note that whenever a cycle is removed, total cost
∑

s∈S,o∈O csoy(s, o) does not in-

crease. Therefore first property holds when procedure terminates.

2. Property 2 is trivially satisfied.

3. Consider a cycleC and its two partitionsC1 andC2 as described. Consider a vertex

s ∈ S which lies onC and lete1 ∈ C1 ande2 ∈ C2 be two edges incident withs.

Let o1 (respectivelyo2) be the other vertex incident withe1 (respectivelye2). Note

thato1, o2 ∈ O. Initially∑
o∈O−{o1,o2}

y(s, o) + y(s, o1) + y(s, o2) = |NS(s)|

Suppose, by increasing the value of edges inC1 and decreasing the value of edges

in C2 by an amountε, the cycleC is removed. Then the edgee1 has an increased

valuey(s, o1) + ε and the edgee2 has a reduced valuey(s, o2)− ε. Therefore∑
o∈O−{o1,o2}

y(s, o) + (y(s, o1) + ε) + (y(s, o2) + ε)

=
∑

o∈O−{o1,o2}

y(s, o) + y(s, o1) + y(s, o2)

= |NS(s)|

In the same manner we can argue that
∑

s∈S y(s, o) = |NO(o)| even with the mod-

ified values of edges. With this we have proved that property 2 still holds.
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