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Abstract

Facility location and its many variants are well-studied NP-hard problems in the

operations research and theoretical computer science communities. In the Classical

Facility Location (FL) problem, we are given a set of clients and a set of potential

facilities. Every facility has an opening cost, referred to as the facility cost. For every

client and facility, the cost of serving the client by the facility is given by the distance

between them, which is referred to as the service cost. The objective is to determine

a subset of facilities to open and assign clients to the selected facilities in such a way

that the total cost, which includes both the facility opening costs and the service costs, is

minimized. We assume that the distances form a metric, i.e., the distances are symmetric

and satisfy the triangle inequality. When the underlying distances do not form a metric,

the facility location problem is at least as hard to approximate as the set cover. Hence, in

this thesis, we will rely on the crucial assumption that the distances, and consequently

the service costs, form a valid metric.

Facility location problems often arise in practical settings where additional constraints

naturally arise. For example, in many real-world applications, a facility may have a

limited capacity, restricting the number of clients it can serve. This gives rise to the

Capacitated Facility Location (CFL) problem, where each facility has a maximum

capacity, and the goal is to minimize the total cost of opening the facilities and serving

clients while respecting these capacity constraints.

Consider scenarios where some clients are far away from majority of the clients, these

clients might disproportionately affect the cost of the overall solution, leading to solutions

that are not robust. To handle such cases, Charikar et al. (2001) introduced a variant of

facility location problem where a certain number of clients can be left unserved. These

clients are popularly called as the outliers, and the respective facility location problem is

called as the Facility Location with Outliers (FLO) problem. This is particularly useful

when distant clients could significantly increase the overall cost or when the goal is to

focus on serving a more representative subset of clients.

Though capacity and outlier constraints have been studied individually, it is quite nat-
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ural to seek solutions that satisfy both constraints simultaneously, especially in complex

real-world scenarios. For instance, in a logistics network, there may be a fixed number of

distribution centers (facilities), each with limited capacity, but some remote customers

may need to be excluded from the solution to keep costs manageable. Thus, a unified

model that captures both capacity limitations and the ability to exclude outliers is highly

relevant. This motivates us to study a generalization of CFL and FLO in this thesis,

the Capacitated Facility Location with Outliers (CFLO) problem, which handles both

capacity and outliers constraints simultaneously.

We first study the case when the facility opening costs are uniform, meaning all

facilities have the same opening cost. We present a (6.373 + ϵ)-approximation algorithm

using a 2-operation local search approach, where ϵ > 0 is a fixed constant. To the best of

our knowledge, this is the first approximation algorithm for this problem. Furthermore,

a simplified version of our local search algorithm and analysis leads to a (3.733 + ϵ)-

approximation algorithm for the Capacitated Facility Location with Uniform Facility

Cost problem, improving the current best-known factor of 4 by Kao (2023a) (which was

achieved in a parallel work).

Next, we relax the assumption of uniform facility costs. We conjecture that the

locality gap for Facility Location with Outliers in case non-uniform facility costs are

unbounded, even in the uncapacitated setting and with constant factor violation in outliers.

To support this conjecture, we provide an example where escaping the unbounded locality

gap involves solving another instance of facility location with outliers problem itself. The

unbounded locality gap example illustrates that obtaining a constant-factor approximation

for CFLO, even with outlier and capacity violations, is difficult using the local search

technique. Therefore, we turn our attention to LP-based algorithms. Both CFL (even

with uniform capacities) and FLO are known to exhibit unbounded integrality gaps with

respect to standard LP formulations. As a result, any algorithm that relies on the LP

optimal solution as a lower bound will inevitably incur violations in both the capacity

and outlier constraints. To make some progress on the problem, we focus on uniform

capacities and introduce a tri-criteria approximation, where the solution approximates

the cost within a constant factor while allowing small violations in both the capacity
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and outlier constraints. Specifically, we provide a O(1/ϵ2) factor approximation for

the problem, with violations in both capacities and outliers by a factor of (1 + ϵ), for

a fixed constant ϵ > 0. This tri-criteria approximation could be useful in the future for

eliminating violations in capacities, outliers, or both.

We then study the popular k-Median (kM) problem, which is similar to the Facility

Location problem but instead of facility opening costs, it imposes a hard constraint on

the number of facilities that can be opened. Both the k-Median and the k-Median with

Outliers problems have been studied in the literature of approximation algorithms to

obtain constant factor approximations. However, obtaining a constant-factor approxi-

mation for the Capacitated k-Median (CkM) problem remains one of the major open

questions in the field. This challenge has led recent research to explore alternatives to

traditional polynomial-time approximations. One promising direction is the study of

fixed-parameter tractable (FPT) approximations1. Not only have researchers managed

to obtain constant-factor approximations (without violations) for the CkM problem, but

they have also improved approximations for the k-Median and k-Median with Outliers

problems by allowing the running time to be FPT in parameters like k and the number

of outliers. Building on these advances in FPT approximations, we study FPT approxi-

mation for the Capacitated k-Median with Outliers (CkMO) problem. Specifically, we

present an approximation-preserving reduction from CkMO to CkM, which runs in FPT

time with respect to k, the number of outliers, and ϵ, where ϵ > 0 is a small constant. As

a corollary, by using the best-known approximation for the CkM problem, we obtain a

(3 + ϵ)-approximation algorithm for CkMO, which runs in FPT time with respect to k,

the number of outliers, and ϵ.

This thesis thus contributes to the ongoing effort to understand and improve the

approximation algorithms for capacitated facility location problems, particularly when

outliers are allowed.

1An algorithm is considered Fixed-Parameter Tractable (FPT) in a parameter p if its running time is of

the form f(p) · |I|O(1), where |I| is the input size and f is an arbitrary function of p.
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Chapter 1

Introduction

In operations research, a key challenge lies in optimizing the costs associated with

setting up infrastructure and serving a potential set of customers. Organisations strive

to find solutions to these optimization problems, aiming to minimize costs and enhance

the overall effectiveness of their operations. Examples of such operations include the

establishment of cell phone towers, internet hubs, polling stations, COVID-19 vaccination

centers, warehouses, and ATMs, among others. We build towards the definition of the

famous Facility Location problem by discussing one of these examples.

Suppose a telecommunication company wants to expand its internet services to a new

city. The company has identified potential locations across the city to set up internet

distribution hubs, each with an associated set-up cost. The company has also collected

data on potential consumers of the service in each locality. One of the major objectives

of the company in this scenario is to set up hubs in a manner that minimizes their

total expenditure, which includes both the cost of installing the hubs and serving their

consumers via fibre connection.

This problem is a typical example of the facility location problem, which have been

extensively studied in the literature of computer science and operations research since

the early 1960s. Various facility location problems can be modelled by the following

four key components:

• A potential set of facilities to open where every facility location might have an
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associated facility opening cost (facility cost), like the cost of installing hubs in the

above example.

• A set of clients that need to be served by one of the opened facilities. Serving a

client from a facility incurs a cost (service cost), such as the expense of providing

a fibre connection from the hub to the customer’s location in the above example.

• A set of conditions that must be fulfilled by the opened facilities or by allocation

of clients to these facilities. One of the examples can be an upper limit on the

maximum number of connections that can be provided from any hub.

• A cost function that calculates the expense associated with a solution, which

comprises a subset of facilities and the assignment of clients to these facilities.

The objective of facility location problems is to find a solution that fulfils the specified

conditions and minimizes the cost function. One of the simplest variants that can be

modelled with the above components is the classical facility location problem, where

the objective is to find an optimal set of facility locations and assign all clients to these

facilities so as to minimize the total cost, without any specific conditions imposed. The

problem is referred to as Uncapacitated Facility Location Problem (FL) in the literature.

In the more realistic setup, there are natural conditions that are imposed on facilities

or on the assignment of clients. For instance, in our example each hub installed has a

maximum limit on the number of connections it can provide. FL with upper bounds

on the number of clients that can be served from any facility is popularly called as

Capacitated Facility Location Problem (CFL).

In another practical situation, certain distant clients can significantly impact the

overall solution, either because the installation cost of a hub at these distant locations is

prohibitively high or because connecting these clients to any other hub incurs excessive

costs. In such cases, excluding these clients from being served can substantially reduce

the company’s expenditure. Such clients are called as outliers. However, leaving too many

clients unserved can be detrimental to the company’s reputation and service commitments.

This scenario motivates another well-known generalisation of FL, known as the Facility
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Location with Outliers (FLO) problem. In FLO, an upper limit is imposed on the number

of clients that can remain unserved. The objective is to select a subset of facilities and

identify a set of outliers such that the combined cost of opening these facilities and

serving only the non-outlier clients from these selected facilities is minimized.

Sometimes, the company might impose a constraint on the maximum number of

hubs that can be installed. This hard bound on the number of facilities is referred

to as cardinality constraint, leading to the k-Facility Location (kFL) problem. If the

problem involves only a cardinality constraint and the facility opening costs are all zero,

it simplifies to the well-known k-Median (kM) problem.

Facility Location problems are NP-Hard, so we can not hope for a polynomial time

algorithm that solves every instance of the problem, under the assumption P ̸= NP.

Most of the literature on FL and other related problems, therefore, centers on designing

approximation algorithms. An α-approximation algorithm for an optimization problem is

a polynomial-time algorithm that guarantees, for any instance of the problem, the cost of

the solution it produces is at most α times the cost of the optimal solution. The constant

α is referred to as the approximation factor of the algorithm. Approximation algorithms

have been one of the most successful techniques to deal with NP-hard problems for many

decades. However, for certain variants of the problem, achieving a polynomial-time

approximation is extremely challenging and has been open for many years in the literature

of approximation algorithms. As a result, recent research has shifted focus to exploring

alternatives beyond polynomial-time approximations. One such direction is the study of

fixed-parameter tractable (FPT) approximations, where an algorithm is considered FPT

with respect to a parameter p if its running time can be expressed as f(p) · |I|O(1), with

|I| denoting the input size and f(p) is an arbitrary function of p. FPT approximations

have also been employed to achieve improvements over the best-known (polynomial

time) approximation results for several problems.

Approximation algorithms for facility location problems have been extensively stud-

ied in the fields of Operations Research and Theoretical Computer Science, leading to

the development of various techniques. Following are some of the common techniques.

• LP-Rounding: In the LP-rounding technique, the algorithm rounds an optimal
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solution of an underlying linear programming (LP) formulation of the problem to

an integral solution. The integrality gap of an LP formulation is defined as the

maximum ratio of the optimal solution value of the integer program to the optimal

solution value of its relaxation. A significant advantage of using LP-rounding

techniques is their versatility, as they often extend to other related problems with

similar relaxations.

• Primal-Dual: The Primal-Dual approach implicitly relies on an LP formulation of

the problem. It typically constructs a feasible dual solution and a feasible (integral)

primal solution simultaneously, then bounds the cost of the constructed primal

solution in terms of the cost of the constructed dual solution.

• Local Search: In the local search technique, the algorithm iteratively moves from

one feasible solution to a neighbouring solution with a lower cost, terminating

with a locally-optimal solution. The maximum ratio of the solution quality of a

local optimum to global optimum is known as the locality gap. Due to their ease

of understanding and implementation, local search methods are often the preferred

choice for practitioners.

• Reduction: In the reduction technique, the problem to be solved is transformed

into another (generally simpler) problem for which an approximation algorithm

is already known. Some loss in cost may occur during this transformation. This

known algorithm is then used as a black box to obtain a solution, which is subse-

quently modified to derive a solution for the original problem.

• Combination: Solutions (or approximate solutions) of two or more subproblems

of the given problem are combined to obtain an approximate solution for the

original problem.

• Greedy: The greedy technique is an iterative method for constructing a solution.

At each step, the algorithm makes the choice that seems best at that moment,

extending the partially constructed solution incrementally.
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If the facilities and clients are not located in a metric space, the facility location

problem and its variants are at least as hard to approximate as set-cover, that is, (log n)

hard to approximate where n is input size, as proved by Hochbaum (1982). Hence, like

most of the literature on FL, in this thesis we will be assuming and crucially using that

the distances (and hence the service costs) form a metric.

Before discussing the problems studied in this thesis, we will briefly review the

related work on the aforementioned facility location problems (detailed related work

appears in Chapter 2).

FL and kM are relatively well-studied and well-understood in metric spaces. For FL,

the best-known approximation ratio of 1.488, due to Li (2011), is nearly tight, as it is

hard to approximate FL within a factor of 1.463, as proved by Guha and Khuller (1999).

For kM, a series of advancements in approximation algorithms has culminated in a 2.613

approximation in polynomial time by Gowda et al. (2023). On the negative side, Jain et

al. (1998; 2002) proved that kM is hard to approximate within a factor of 1.736.

Introducing capacity constraints significantly increases the complexity of these prob-

lems. For instance, the standard linear program (LP) for CFL is known to have an

unbounded integrality gap even when the capacities are uniform1. Local search tech-

niques have shown particular success with CFL, achieving the best-known ratio of 3

by Aggarwal et al. (2010) and 5 by Bansal et al. (2012) for uniform and non-uniform

capacities. In cases where facility opening costs are uniform2, the current best approxi-

mation ratio is 4, as achieved by Kao (2023a) 3 in case of general capacities. Capacity

constraints become notoriously hard in the presence of cardinality constraint– indeed,

obtaining a constant-factor approximation for Capacitated k-Median (CkM) problem

has been a long-standing open question in the area of approximation algorithms. There is

partial progress toward this goal by designing so-called bi-criteria approximations that

approximate the cost up to a constant factor, while also violating either the cardinality

constraints or the capacity constraints by a small factor (1999; 2016; 2005; 2016; 2014;

2015a; 2018a). Recently, attempts have been made to overcome the polynomial-time

1Capacities are said to be uniform if they are the same for all facilities.
2Facility opening costs are uniform if they are the same for all facilities.
3The result is obtained in parallel to our result discussed later.
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approximability of CkM by the introduction of FPT approximation algorithms. Adam-

czyk et al. (2019) designed a (7+ ϵ)-factor approximation for CkM that runs in time FPT

in parameter k and some constant ϵ which was later improved by Cohen-Addad and Li

(2019) to a (3 + ϵ)-approximation.

Outliers were introduced in FL and kM by Charikar et al. (2001). They gave a 3 factor

approximation for FLO as well as a bi-criteria for k-Median with Outliers (kMO) that

approximates the cost up to 4(1 + 1
ϵ
) factor while violating outliers by a factor of (1 + ϵ).

The 3 factor for FLO was later improved to 2 by Jain et al. (2003). The first constant

(unspecified large) approximation for kMO was obtained by Chen (2008), and the current

best is (6.994 + ϵ)-approximation by Gupta et al. (2021). Agrawal et al. (2023) designed

an approximation preserving reduction from kMO to k-Median that is FPT in k, number

of outliers and ϵ. As a corollary, they obtained a (1 + 2/e+ ϵ)-approximation for kMO

that is FPT in k, number of outliers and ϵ where ϵ > 0 is a small constant.

Though capacity and outlier constraints have been studied individually as well as with

cardinality constraint in the literature, it is quite natural to seek a solution that satisfies

both capacity and outlier constraints simultaneously. To the best of our knowledge, the

only work that simultaneously handles both of these constraints is in the context of k-

Center4. Cygan and Kociumaka (2014) gave 25 and 23 factor approximations for uniform

and non-uniform capacities case respectively. On the other hand, Goyal and Jaiswal

(2023) designed a 2-factor tight FPT approximation for the problem parameterized by

k and the number of outliers. This motivates us to study FL and kM in the presence of

both outlier and capacity constraints. In parallel, Jaiswal and Kumar (2023) also studied

kM in the presence of both capacity and outlier constraints and obtained a (3 + ϵ) FPT

approximation, parameterized by k, the number of outliers, and ϵ. We present the same

result in this thesis using a different technique.

We will next discuss the two problems studied in this thesis in detail.

4k-Center is same as k-Median except in k-Center the objective is to minimize the maximum service

cost instead of total service cost.
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1.1 Problems Studied in the Thesis

In this section, we introduce the two problems studied in this thesis: Capacitated Facility

Location with Outliers (CFLO) and Capacitated k-Median with Outliers (CkMO). These

problems provide more realistic models for real-world scenarios. Each subsection begins

with defining the problem, followed by highlights of our contributions to the respective

problem. A summary of our results is provided in Table 1.1.

1.1.1 Capacitated Facility Location with Outliers (CFLO)

In CFLO, we are given a set of clients and (potential) facilities in a metric space. Every

facility has an opening cost (facility cost) and a capacity specifying the maximum number

of clients it can serve. For each client-facility pair, we are provided with the cost of

serving the client by the facility (referred to as the service cost). We are also given a hard

bound on the number of outliers allowed. The objective is to open a subset of facilities

and select a subset of clients to serve so that the cost of opening these facilities and

serving the selected clients from the open facilities is minimized while respecting the

capacity and outlier bounds.

In Chapter 3, we present our first result on CFLO with uniform facility opening costs.

The facility opening costs are called uniform if they are the same for all the facilities.

The results are obtained using the local search technique. We conjecture that the locality

gap for the facility location problem with outliers in case non-uniform facility opening

costs is unbounded, even in the uncapacitated case. The locality gap, of course, depends

on the specific set of local search operations allowed. Friggstad et al. (2019) gave an

example to show that any constant size multi-swap operation can not yield a local search

algorithm with a bounded locality gap when the facility opening costs are general. The

example provided in Friggstad et al. (2018) can be overcome by employing one of the

non-constant swap operations introduced in our algorithm. However, in Section 3.7, we

present a challenging example that highlights an issue even with the non-constant size

swaps. In this case, escaping the unbounded locality gap in the example requires an

operation that, in essence, involves solving an instance of the FLO itself. We are, in fact,
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able to modify our example to show that even after allowing constant factor violation in

outliers, escaping the locality gap involves solving an instance of FLO.

For easy disposition of ideas, we first present a result for CFL problem and then

extend it to CFLO. The result is a (3.733 + ϵ) approximation for CFL with uniform

facility costs as stated in Theorem 1.1. The algorithm is a very simple 2-operation local

search algorithm. Our result is interesting not only because it lends itself to an extension

to CFLO but also because the analysis of the algorithm is quite simple and allows us to

argue a sharper approximation for CFL with uniform facility costs.

Theorem 1.1. There exists a polynomial time local search procedure with 2 operations

that yields a locally optimal solution which is a (3.733+ϵ)-approximation to the optimum

solution of the capacitated facility location problem with uniform facility opening costs.

We next extend the ideas of CFL to obtain a (6.373 + ϵ)- approximation for CFLO

assuming uniform facility opening costs as stated in Theorem 1.2. The hard constraints

of capacities and number of outliers make the CFLO problem very challenging, and to

the best of our knowledge, no approximation is known for this problem.

Theorem 1.2. There exists a polynomial time local search procedure with 2 operations

that yields a locally optimal solution which is a (6.373+ϵ)-approximation to the optimum

solution of the capacitated facility location problem with outliers and uniform facility

opening costs.

Next, in Chapter 4, we relax the assumption of uniform facility opening costs. Much

of the existing literature on facility location problems with outliers employs the primal-

dual technique or a combination of primal-dual/dual-fitting with greedy/local search

schemes. However, the primal-dual method has not been very successful in handling ca-

pacities, making it unlikely that these approaches for outliers can be effectively extended

to include capacity constraints. For instance, despite the unbounded integrality gap for

FLO, Charikar et al. (2001) managed to circumvent the gap by estimating the maximum

facility opening cost in an optimal solution and subsequently providing a primal-dual

solution for the problem. Conversely, no primal-dual solution has been able to overcome

the integrality gap for CFL. On the other hand, as stated above, the local search technique
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is unlikely to succeed when dealing with outliers and non-uniform facility opening costs,

even with constant factor violations in outliers and capacities.

Furthermore, both the CFL (even with uniform capacities) and FLO problems are

known to have unbounded integrality gaps with respect to standard linear programming

relaxations, as shown by Shmoys et al. (1997) and Charikar et al. (2001), respectively.

Thus, obtaining even a bi-criteria solution seems difficult by rounding the solution to the

standard LP. We make some progress for the problem by obtaining a tri-criteria approxi-

mation algorithm when the capacities are uniform. A tri-criteria solution approximates

the cost up to a constant factor while violating the outlier and the capacity constraints by

a small factor. In particular, we present the result stated in Theorem 1.3. The tri-criteria

solution could be beneficial in the future for eliminating violations in capacities, outliers,

or both.

Theorem 1.3. There is a polynomial time algorithm that approximates capacitated

facility location problem with outliers and uniform capacities within a constant factor

(O(1/ϵ2)) violating the capacities and outliers by a factor of at most (1 + ϵ), for a given

constant ϵ > 0.

Another natural question that arises is whether an FPT approximation solution can

be obtained for CFLO without any violations. The obvious parameter is the number

of outliers but it is unclear whether such a solution can be achieved FPT solely in the

number of outliers. If the number of facilities opened in an optimal solution is known, it

is possible to develop an approximation algorithm FPT in the number of outliers and the

solution size. However, we do not know the optimal solution size. One standard approach

to using solution size as an FPT parameter is to give a bound k on the solution size as

a parameter in the input. This reduces the problem to obtaining a solution to CkFLO

(Capacitated k-Facility Location with Outliers), a common generalization of CFLO and

CkMO. In Chapter 5 (Section 5.6), we give a (3 + ϵ) FPT approximation for CkFLO

that runs in time FPT in k, the number of outliers and ϵ where ϵ > 0 is a small constant

(Theorem 1.4).
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Theorem 1.4. There exists a (3 + ϵ) approximation for CkFLO that runs in time FPT in

k, the number of outliers and ϵ where ϵ > 0 is a small constant.

1.1.2 Capacitated k-Median with Outliers (CkMO)

In CkMO, we are given a set of clients and (potential) facilities in a metric space. For

each client-facility pair, we are provided with the cost of serving the client by the facility

(service cost). Each facility has a capacity specifying the maximum number of clients

it can serve. Additionally, there are hard bounds on the number of facilities that can

be opened and the number of outliers allowed. Recall that the bound on the maximum

number of facilities allowed to be open is referred to as the cardinality constraint. The

objective is to open a subset of facilities and select a subset of clients to serve such that

the total cost of serving the selected clients from the open facilities is minimized while

respecting the cardinality, capacity, and outlier bounds.

Note that CkMO generalizes CkM, and the polynomial-time approximability of the

latter itself remains open. Therefore, inspired by FPT approximations on CkM, we aim

for FPT approximation for CkMO and present Theorem 1.5 in Chapter 5.

Theorem 1.5. [Informal] There exists a randomized approximation-preserving reduction

from CkMO to CkM that runs in time FPT in k, the number of outliers and ϵ, where the

underlying metric space remains unchanged and ϵ > 0 is a small constant.

By plugging in the best-known approximations for the CkM, we obtain Corollary 1.6.

Corollary 1.6. There exists a randomized algorithm that runs in time FPT in k, the num-

ber of outliers and ϵ where ϵ > 0 is a small constant and returns a (3 + ϵ) approximation

with high probability.
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Problem

Facility

Opening

Costs

Capacities Factor Violations
Previous

Result

Polynomial Time Approximations

CFL

(Chapter 3)
U NU (3.733 + ϵ) Nil

4

Kao (2023a)

CFLO

(Chapter 3)
U NU (6.373 + ϵ) Nil Nil

CFLO

(Chapter 4)
NU U O(1/ϵ2)

(1 + ϵ)u

(1 + ϵ)L
Nil

FPT Approximations (FPT in k, L and ϵ)

CkMO

(Chapter 5)
NA NU (3 + ϵ) Nil Nil

CkFLO

(Chapter 5)
NU NU (3 + ϵ) Nil Nil

Table 1.1: Summary of our results. U and NU are used to denote uniform and non-uniform respectively.

NA stands for ‘Not Applicable ’. u denotes the uniform capacity, L is the number of outliers and ϵ > 0 is a

small constant.

1.2 Notations and Preliminaries

In this section, we introduce notations that will be used consistently throughout the thesis.

We will use N, R and, R+ to denote the set of non-negative integers, the set of reals

and the set of non-negative reals. We denote the metric space as (P , d), where P is a

finite set of points and d : P × P → R+ is a distance function satisfying the triangle

inequality and symmetry property. We will use distance and service cost interchangeably

to denote distances in metric space. F ⊆ P and X ⊆ P denote the sets of m facilities

and n clients, respectively. Typically, indices i and j are used for facilities and clients,

respectively.

For a facility i, fi denotes the opening cost of that facility. If facility opening costs
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are uniform, we use f as the notation. The capacity of facility i is denoted by u(i), while

u represents uniform capacities. L represents the maximum number of outliers allowed,

and k denotes the number of facilities that can be opened under the cardinality constraint.

Finally, ϵ > 0 is used to denote a small constant which may vary for different algorithms

described in the thesis.

Definition 1.1 (Minimum Cost Flow Problem). Given a directed graph G = (V,E) with

a source vertex s ∈ V and a sink vertex t ∈ V , a capacity function u : E → R+, a cost

function d : E → R, and a demand D ∈ R+, the goal is to find a flow f : E → R+ that

satisfies the following conditions:

i Capacity constraints: For all (u, v) ∈ E, 0 ≤ f(u, v) ≤ u(u, v).

ii Flow conservation: For all v ∈ V \ {s, t},

∑
(u,v)∈E

f(u, v) =
∑

(v,w)∈E

f(v, w).

iii Flow value: The total flow from s to t is exactly D, i.e.,

∑
(s,v)∈E

f(s, v) = D.

iv Objective: Minimize the total cost of the flow:

∑
(u,v)∈E

d(u, v) · f(u, v).

The minimum cost flow problem can be solved optimally in polynomial time (1993).

Lemma 1.7. Once the set of open facilities (say F ⊆ F ) is fixed, the outliers and the

assignment of clients to facilities in F can be determined in polynomial time using

minimum cost flow problem.

Proof. Once the set of open facilities (say F) is fixed, the outliers and the assignment

of clients to facilities are easily determined by solving a minimum cost flow problem as

follows. Refer Figure 1.1. We set up a bipartite graph with vertex sets X and F ∪ {o};
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Figure 1.1: Minimum cost flow problem.

the vertex o will allow us to identify outliers. An edge from every client j ∈ X to every

facility i ∈ F is added with cost d(j, i) and capacity 1 while an edge from the client

every j ∈ X to vertex o is added cost 0 and capacity 1. There is a zero-cost edge from

every vertex i ∈ F to the sink, t, of capacity u(i) and a zero-cost edge from vertex o

to t of capacity L. Similarly, there is an edge from the source, s, to all vertices in X of

cost 0 and capacity 1. A min-cost flow that routes |X| demand from s to t gives the best

assignment of clients to facilities. Note that, it is no loss of generality to assume that the

number of outliers made are exactly L. In case the flow from o to t is less than L, we can

reroute some additional clients from o to t without increasing the cost. Thus an optimal

flow routes L units through the edge (o, t), thus identifying the L outliers.

1.3 Organisation of the Thesis

We begin by presenting a detailed related work in Chapter 2. In Chapter 3, we present

our results for the case of uniform opening costs. For ease of disposition of ideas, we

13



first discuss the result for CFL with uniform opening costs (Theorem 1.1), followed

by the result for CFLO with uniform opening costs (Theorem 1.2). We then relax the

assumption of uniform facility opening cost and present our tri-criteria approximation

for CFLO with uniform capacities (Theorem 1.3) in Chapter 4. In Chapter 5, we give the

FPT approximation results; all the ideas are first presented for CkMO (Theorem 1.5 and

Corollary 1.6), and then in Section 5.6, we discuss the modifications required to account

for facility opening costs (Theorem 1.4). Finally, we conclude in Chapter 6, where we

discuss open questions and potential directions for future research.
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Chapter 2

Related Work

2.1 Classical Facility Location (FL)

The Facility Location (FL) problem is NP-hard and has gained significant attention

in the literature. Hochbaum (1982) introduced a greedy algorithm with an O(log n)

approximation guarantee, where n denotes the input size. LP rounding and greedy

algorithms have proven effective in providing constant-factor approximations for the

classical facility location problem. The first constant-factor approximation algorithm

for this problem was proposed by Shmoys et al. (1997), who used the LP rounding

techniques of Lin and Vitter (1992) to achieve an approximation ratio of 3.16.

Subsequent work has progressively improved the approximation factor. Guha and

Khuller (1998; 1999) enhanced the approximation to 2.41 by combining LP rounding

with greedy augmentation which was further improved to 1.736 by Chudak and Shmoys

(1998; 2003) using the LP rounding technique. Jain et al. (2002; 2003) achieved an

approximation ratio of 1.61 using a greedy algorithm, while Sviridenko (2002) improved

this result to 1.582 through LP rounding. Mahdian et al. (2002) combined Jain et al.’s

greedy algorithm (2002; 2003) with cost scaling to reach a 1.52 approximation. Byrka

(2007) modified the LP rounding algorithm of Chudak and Shmoys (1998; 2003) to

obtain a 1.50 approximation, which was later used by Li (2011; 2013) in conjunction

with Jain et al.’s greedy algorithm (2002; 2003) to achieve the current best approximation

ratio of 1.488 for the FL problem.
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Other techniques, such as the (5 + ϵ) factor local search algorithm by Korupolu et

al. (1998; 2000), have also been explored. The primal-dual method, first used by Jain

and Vazirani (1999; 2001) to achieve a 3-factor approximation, was later enhanced by

Charikar and Guha (1999) to achieve 1.853 and 1.728 approximation factors through

the combination of greedy augmentation and LP rounding. A summary of the results is

provided in Table 2.1.

Regarding hardness results, Guha and Khuller (1999) proved that it is impossible to

obtain an approximation ratio better than 1.463, assuming NP /∈ DTIME(nO(log logn)).

Approximation

Factor
Reference Technique

O(log n) Hochbaum (1982) Greedy

3.16 Shmoys et al. (1997) LP rounding

2.41 Guha and Khuller (1998; 1999) LP rounding and greedy

1.736 Chudak and Shmoys (1998; 2003) LP rounding

5 + ϵ Korupolu et al. (1998; 2000) Local Search

3 Jain and Vazirani (1999; 2001) Primal Dual

1.853 Charikar and Guha (1999) Primal Dual and greedy

1.728 Charikar and Guha (1999) LP rounding, primal-dual and greedy

1.61 Jain et al. (2002; 2003) Greedy

1.582 Sviridenko (2002) LP rounding

1.52 Mahdian et al. (2002) Greedy and cost scaling

1.50 Byrka (2007) LP rounding

1.488 Li (2011; 2013) LP rounding and greedy

Table 2.1: State of the Art: Classical Facility Location
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2.2 Capacitated Facility Location (CFL)

The capacitated facility location problem (CFL) was first addressed by Shmoys et al.

(1997) for the case of uniform capacities. They used the LP rounding technique for

rounding the solution of the standard LP. Since the standard LP for CFL is known to

have an unbounded integrality gap, they provided a bi-criteria approximation, achieving

a 7-factor approximation with a 7/2 factor violation in capacities. Korupolu et al. (1998;

2000) introduced the first local search-based algorithm, focusing on uniform capacities

and achieving an approximation factor of (8+ϵ). Since then, most results for this problem

have been based on local search heuristics. Chudak and Williamson (1999) improved

the factor to (5.83 + ϵ) by using simpler analysis for the same heuristic. The best-known

approximation for the uniform capacity case, (3 + ϵ), was achieved by Aggarwal et

al. (2010), who also used the local search procedure but with strengthened analysis. A

summary of these results is provided in Table 2.2.

Approximation

Factor

Violation in

Capacities
Reference Technique

7 7/2 Shmoys et al. (1997) LP Rounding

8 + ϵ Nil Korupolu et al. (1998; 2000) Local Search

5.83 + ϵ Nil Chudak and Williamson (1999) Local Search

3 + ϵ Nil Aggarwal et al. (2010) Local Search

Table 2.2: State of the Art: Uniform Capacitated Facility Location

Local search for the general capacity setting was first explored by Pal et al. (2001),

who proposed a (9 + ϵ)-factor approximation algorithm. This was followed by improve-

ments to (8 + ϵ) and (5.83 + ϵ) by Mahdian and Pal (2003) and Zhang et al. (2005),

respectively. The approximation ratio was then reduced to (5+ ϵ) by Bansal et al. (2012),

which remains the best-known approximation for the problem. Unlike the extensive

LP-based techniques developed for FL, it was surprising that no LP-based algorithm with

a constant approximation guarantee for the CFL had been found for a long time. In fact,

the development of an LP-based approximation algorithm with an O(1) guarantee for
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CFL was considered one of the ten open problems in the textbook by Williamson and

Shmoys (2011). This challenge was ultimately addressed in the influential work of An

et al. (2014), who introduced a novel multi-commodity flow network (MFN) relaxation

to obtain a 288 factor approximation algorithm. In a subsequent paper, Kao (2023b)

presented an iterative rounding approach and demonstrated that the integrality gap of the

MFN relaxation is at most 9.0297. A summary of these results can be found in Table 2.3.

Approximation Factor Reference Technique

9 + ϵ Pal et al. (2001) Local Search

8 + ϵ Mahdian and Pal (2003) Local Search

5.83 + ϵ Zhang et al. (2005) Local Search

5 + ϵ Bansal et al. (2012) Local Search

288 An et al. (2014) Strengthened LP

9.0927 Kao (2023b) Strengthened LP

Table 2.3: State of the Art: Capacitated Facility Location

In the pursuit of determining the approximability of the CFL problem, an important

variation, where the facility cost is uniform, was studied by Levi et al. (2012). They gave

a 5 factor approximation for this special case via the LP-rounding technique. On the other

hand, Aardal et al. (2015) presented a 4.562- approximation based on the local search

technique. Recently, Kao (2023a) presented an LP-based 4-approximation algorithm for

the problem. In a parallel work, we gave a (3.733 + ϵ) factor approximation using the

local search technique, which is also the current best ratio. Refer Table 2.4.

Approximation Factor Reference Technique

5 Levi et al. (2012) LP-Rounding

4.562 Aardal et al. (2015) Reduction + Combinatorial

4 Kao (2023a) LP-Rounding

3.733 + ϵ Dabas et al. (2024) Local Search

Table 2.4: State of the Art: Capacitated Facility Location with Uniform Facility Costs

18



2.3 Facility Location with Outliers (FLO)

The concept of outliers in facility location was first introduced by Charikar et al. (2001).

The standard linear programming (LP) formulation for the Facility Location with Outliers

(FLO) has an unbounded integrality gap, making it impossible to achieve a bounded

approximation guarantee using the standard LP as a lower bound for the optimal solution.

To address this challenge, Charikar et al. (2001) guessed the cost of the most expensive

facility in an optimal solution. Building on the primal-dual framework of Jain and

Vazirani (1999), they proposed a 3- factor approximation algorithm. The algorithm is

applied to a modified instance where the guessed facility has a facility-opening cost

of 0, while the opening costs of facilities more expensive than the guessed facility are

set to infinity. The algorithm is run only until (n − L) clients are connected, rather

than connecting all clients as done in Jain and Vazirani’s primal-dual algorithm (2001).

The costs associated with the most expensive facility and the last facility opened in the

solution are then separately bounded.

The approximation factor was subsequently improved to 2 by Jain et al. (2003) using

a simple greedy algorithm. This algorithm iteratively selects the most cost-effective

facility at each step, where cost-effectiveness is defined as the ratio of the incurred cost to

the number of new clients covered. The analysis of the algorithm employs the dual-fitting

technique. To leverage LP-duality in analyzing this approach, the authors provide an

alternative description of the greedy algorithm, which can be viewed as a modification of

Jain and Vazirani’s original method. Specifically, when a client is connected to an open

facility, it withdraws its contribution towards the opening cost of other facilities. This

withdrawal step is crucial as it ensures that the primal solution is fully covered by the

dual. A further distinction is that a client may change its connection to a different, closer

facility, and in such cases, it contributes to the difference in cost towards the opening of

the new facility.

Refer to Table 2.5 for related work on FLO.
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Approximation Factor Reference Technique

3 Charikar et al. (2001) Primal-Dual

2 Jain et al. (2003)
Greedy algorithm analyzed

using dual-fitting

Table 2.5: State of the Art: Facility Location with Outliers

2.4 Classical k-Median (kM)

The problem of k-median (kM) has been studied extensively, and several approaches

have been developed to obtain constant-factor approximations. Three primary methods

include LP rounding, local search, and bi-point rounding. The LP rounding approach,

which utilizes a half-integral solution as an intermediate step, was first applied by

Charikar et al. (1999) to achieve the first constant-factor approximation with a ratio of 62
3
.

Later, Charikar and Li (2012) enhanced this method by employing dependent rounding,

improving the approximation to a factor of 3.25.

The second approach, local search, was initially used by Arya et al. (2001) to obtain

a (3 + ϵ)-approximation. This analysis was later simplified by Gupta and Tangwongsan

(2008). Cohen-Addad et al. (2022) improved the local search ratio to (2.836 + ϵ).

The third approach involves generating an intermediate fractional solution, called a

bi-point solution, which is then rounded to an integral solution. Jain and Vazirani (2001)

introduced this technique, achieving a 6-approximation. This was later improved by Jain

et al. (2003) to 4-approximation. Further improvements were made by Li and Svensson

(2013), Byrka et al. (2015b), and Cohen et al. (2023), who reduced the factor to 2.7322,

2.674, and 2.6705 respectively.

The current best approximation factor of 2.613 is due to Gowda et al. (2023) using

the bi-point solution technique. On the other hand, a hardness lower bound of 1.736 by

Jain et al. (2002) has been known for over 20 years. A summary of approximation results

is provided in Table 2.6.
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Approximation Factor Reference Technique

62
3

Charikar et al. (1999) LP rounding

6 Jain and Vazirani (2001) Bi-point rounding

4 Jain et al. (2003) Bi-point rounding

3 + ϵ Arya et al. (2001) Local Search

3 + ϵ Gupta and Tangwongsan (2008) Local Search

3.25 Charikar and Li (2012) LP rounding

2.7322 Li and Svensoon (2013) Bi-point rounding

2.674 Byrka et al. (2015b) Bi-point rounding

2.836 + ϵ Cohen-Addad et al. (2022) Local Search

2.6705 Cohen-Addad et al. (2023) Bi-point rounding

2.613 Gowda et al. (2023) Bi-point rounding

Table 2.6: State of the Art: Classical k-Median

2.5 Capacitated k-Median (CkM)

Finding a (true) constant factor approximation for capacitated k-Median problem (kM)

is one of the biggest open questions in the literature of theoretical computer science. The

standard LP of the problem has an unbounded integrality gap when either of the two

constraints - capacity or cardinality, is allowed to be violated by a factor of less than

2 without violating the other. Indeed, polynomial time constant factor approximation

algorithms are known if the capacities or the cardinality can be violated.

Charikar et al. (1999) first studied CkM for the case of uniform capacities and gave a

16 factor approximation algorithm violating capacities by a factor of 3. Li (2014) and

Grover et al. (2018a) reduced the violation in capacities to (2 + ϵ) at a O(1/ϵ2) loss in

approximation factor, for a fixed ϵ > 0. The barrier of 2 in capacity violation was broken

by Byrka et al. (2016) by giving a O(1/ϵ2) approximation algorithm at (1+ ϵ) factor loss

in capacity using strengthened LP. With regard to cardinality violation, Korupolu et al.

(2000) used local search to give a (1 + 5ϵ) factor approximation, violating the cardinality

constraint by a factor of (5 + ϵ). They also gave another (1 + ϵ) factor approximation at
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(5 + 5ϵ) factor violation in the cardinality. The loss in cardinality was reduced to 3 factor

by Grover et al. (2018b) for a (5 + ϵ) factor approximation algorithm using a similar

local search technique. Li (2015) further reduced the violation in cardinality to (1 + ϵ) at

O(1/ϵ2) factor loss in approximation factor by rounding the solution to a strengthened LP.

Refer to Table 2.7 for the summary of the results on the uniform capacitated k-Median

problem.

Approximation

Factor

Capacity

Violation
Reference Technique

16 3 Charikar et al. (1999) LP rounding

O(1/ϵ2) 2 + ϵ Li (2014) LP rounding

O(1/ϵ2) 2 + ϵ Grover et al. (2018a) LP rounding

O(1/ϵ2) 1 + ϵ Bryka et al. (2016)
Rounding with

strengthened LP

Approximation

Factor

Cardinality

Violation
Reference Technique

1 + 5ϵ 5 + ϵ Korupolu et al. (2000) Local Search

1 + ϵ 5 + ϵ Korupolu et al. (2000) Local Search

O(1/ϵ2) 1 + ϵ Li (2015)
Rounding with

strengthened LP

5 + ϵ 3 Grover et al. (2018b) Local Search

Table 2.7: State of the Art: Uniform Capacitated k-Median

Byrka et al. (2015a) studied the problem with general capacities to obtain a O(1/ϵ) factor

approximation algorithm with (3 + ϵ) factor violation in capacities, for a fixed ϵ > 0, by

using LP rounding. The violation in capacity was reduced to (1 + ϵ) by Demirci and Li

(2016) at O(1/ϵ5) factor loss in approximation factor by using strengthened LP. With

regard to cardinality violation, O( 1
ϵ2
log 1

ϵ
) factor approximation algorithm with (1 + ϵ)

factor violation in cardinality was given by Li (2016), again by using strengthened LP.

Adamczyk et al. (2019) were the first ones to break the barrier of constant-factor
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approximability by designing a (7 + ϵ) factor approximation that runs in time FPT in k

and ϵ. This was later improved by Cohen-Addad and Li (2019) to a (3+ϵ)-approximation

for CkM, in time FPT in k and ϵ.

Refer Table 2.8 to see the summary of the results for CkM with general capacities.

Polynomial Time Approximations

Approximation

Factor

Capacity

Violation
Reference Technique

O(1/ϵ) 3 + ϵ Bryka et al. (2015a) LP rounding

O(1/ϵ5) 1 + ϵ Demirci and Li (2016)
Rounding with

strengthened LP

Approximation

Factor

Cardinality

Violation
Reference Technique

O( 1
ϵ2
log 1

ϵ
) 1 + ϵ Li (2016)

Rounding with

strengthened LP

FPT Approximation (FPT in k and ϵ)

Approximation

Factor
Reference Technique

7 + ϵ Adamczyk et al. (2019) Combinatorial

3 + ϵ Cohen-Addad and Li (2019) Using Coresets

Table 2.8: State of the Art: Capacitated k-Median

2.6 k-Median with Outliers (kMO)

Similar to the facility location, the standard linear programming (LP) formulation for

the k-Median with Outliers (kMO) problem has an unbounded integrality gap. How-

ever, unlike FLO, it is not straightforward to overcome this challenge using techniques

like guessing the most expensive facility. As a result, the kMO problem remains less

understood in the literature.
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The problem was first introduced by Charikar et al. (2001) in their pioneering work

on outliers and penalties. They presented a bi-criteria approximation algorithm for kMO,

achieving an approximation factor of 4(1+ 1
ϵ
) and a (1+ ϵ) factor violation in the number

of outliers, using a primal-dual framework. Their approach involves guessing the cost of

the optimal solution (since the exact optimal cost cannot be determined, they approximate

it within a factor of (1 + ϵ′) for some small ϵ′ > 0). This guessed cost is then used to

construct a new instance of the k-Median problem with penalties, and the algorithm for

k-Median with penalties is applied to this transformed instance to obtain the desired

approximation result.

Friggstad et al. (2018) employed natural multiswap local search heuristics to address

outliers in the k-Median problem. Their approach provides a (3+ϵ)-factor approximation

with a (1+ ϵ)-factor violation in the cardinality. One of the key challenges in local search

algorithms for k-Median with Outliers is handling clients that are not necessarily outliers

in both global and local solutions. This is difficult because bounding their service cost

does not directly (or indirectly) follow from the triangle inequality. To overcome this

challenge, they introduce a novel mapping between the outliers in a global optimal

solution and those in the local optimal solution. Furthermore, they demonstrate that

natural local search heuristics with constant size operations, which do not violate the

number of clusters and outliers for kMO, lead to an unbounded locality gap.

The first true constant approximation for the problem was achieved by Chen (2008),

although the approximation factor is relatively large and unspecified. Chen’s algorithm is

based on the Lagrangian relaxation framework developed by Jain and Vazirani (2001)

for the k-Median problem. Two solutions are computed for the Facility Location (FLO)

problem, which corresponds to the Lagrangian relaxation of kMO: one solution with at

most k facilities (S−) and another with at least k + 1 facilities (S+). When S+ uses at

least k+2 facilities, a greedy algorithm is employed to merge the two solutions. However,

when S+ uses exactly k+1 facilities, merging the solutions becomes challenging because

the cost of S− cannot be directly bounded by the cost of the optimal solution. To address

this issue, Chen (2008) employs a successive local search algorithm for kMO with

penalties, where the penalties are gradually increased over the iterations.
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Krishnaswamy et al. (2018) applied iterative rounding on a strengthened linear

program (LP) to achieve a 7.081-approximation, significantly improving upon the large

implicit constant approximation factor of Chen (2008). While the standard LP for kMO

has an unbounded integrality gap, they demonstrate that the gap arises primarily from

the difference between an almost-integral solution (those with at most two fractionally

open facilities) and a fully-integral solution. In fact, a key technical contribution of

their work is showing that the standard LP performs well when we are willing to accept

solutions that open at most k + 1 facilities. They propose an iterative algorithm that

rounds the solution of the standard LP to achieve a (7.081 + ϵ)-factor approximation

with the addition of only one extra facility. Furthermore, through a preprocessing and

sparsification technique, they show how to convert this almost-integral solution into a

fully-integral one, introducing only a small additive loss of ϵ in the cost, where ϵ > 0 is a

small constant.

The (7.081 + ϵ) approximation ratio achieved by Krishnaswamy et al. (2018) was

further improved to (6.994+ϵ) by Gupta et al. (2021) through a refined iterative rounding

algorithm. This improvement is based on an analysis of the extreme points of certain

set-cover-like LPs. These extreme points emerge during the intermediate steps of the

iterative rounding process, and by exploiting their structural properties, Gupta et al.

(2021) obtain a (6.387 + ϵ)-approximate solution with at most k + 1 facilities. To

address the issue of opening an additional facility, they complement the sparsification

and preprocessing techniques from Krishnaswamy et al. (2018) with a post-processing

step. This post-processing step introduces a small additional loss in the approximation

ratio, ultimately yielding a final (6.994 + ϵ)-factor approximation algorithm.

Goyal et al. (2020) obtained a (3+ ϵ) approximation algorithm, FPT in k, the number

of outliers and ϵ. Later, Agrawal et al. (2023) introduced an approximation-preserving

reduction from the kMO to the k-Median problem, which is FPT in k, the number of

outliers, and ϵ. As a result, they achieved an improved (1 + 2/e + ϵ)-approximation

for kMO, which is also FPT in k, the number of outliers, and ϵ but the running time is

slightly worse than Goyal et al. (2020). Their approach begins by creating an instance of

k′-median problem with k′ = k + L and obtaining a constant-factor approximation for
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the instance by using any approximation algorithm for k-Median problem. They then

perform a sampling process to obtain a weighted set of points, where the cost of the

weighted set can be related to the service cost of the original set of points. Specifically,

for any set of k centers, with high probability, the difference between the original and

the weighted costs remains “small,” even after excluding up to L outliers from both sets.

This concentration bound intuitively holds because the sample size is sufficiently large

relative to both k and the number of outliers, ensuring that the approximation remains

accurate.

Refer to Table 2.9 for a summary of approximation algorithms for kMO.

Polynomial Time Approximations

Approximation

Factor

Outlier

Violation
Reference Technique

4(1 + 1
ϵ
) 1 + ϵ Charikar et al. (2001) Primal Dual

Approximation

Factor

Cardinality

Violation
Reference Technique

3 + ϵ 1 + ϵ Friggstad et al. (2018) Local Search

Approximation

Factor
Reference Technique

Large, unspecified Chen (2008)
Successive Local Search

and greedy

7.081 + ϵ Krishnaswamy et al. (2018) Iterative rounding

6.994 + ϵ Gupta et al. (2021) Iterative rounding

FPT Approximations (FPT in k, L and ϵ)

Approximation

Factor
Reference Technique

3 + ϵ Goyal et al. (2020) Combinatorial

1 + 2/e+ ϵ Agrawal et al. (2023) Combinatorial

Table 2.9: State of the Art: k-Median with Outliers
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2.7 Other Related Work

The k-Center problem is a fundamental facility location problem that closely resembles

the k-Median problem, with the key difference being that in the k-Center problem,

the objective is to minimize the maximum service cost, rather than the total service

cost. The approximation complexity of this problem is well-established, with a simple

2-approximation greedy algorithm known to be optimal unless P = NP , by Hochbaum

(1985). Building upon this, various extensions of the k-Center problem have been

explored in the literature.

The k-Center with Outliers (kCO) problem was introduced by Charikar et al. (2001),

who developed a (3 + ϵ)-approximation algorithm using a greedy approach. Similar to

other work on the k-Center problem, the algorithm first guesses the optimal solution

value, denoted as R. Disks of radius R are constructed around each point. Initially, all

points are uncovered. The algorithm then selects the point that covers the maximum

number of uncovered points within its disk. After each selection, all points within a

distance of 3R from the chosen point are marked as covered. This process is repeated

k times. The key distinction from the greedy algorithm for the non-outlier version of

the problem lies in selecting disks that cover the maximum number of uncovered points

within a radius of R, but marking all points within a 3R radius as covered. Interestingly,

the algorithm fails when attempting to mark points within a 2R radius instead.

After 15 years, the ratio for kCO was improved to 2 by Chakrabarty et al. (2016)

which is best possible unless P = NP . They give this result as a special case of a

problem called as non-uniform k-Center (NUkC) problem. To give a bi-criteria for

NUkC, which in turn gives a 2-approximation for kC, they show a strong connection

between NUkC and the so-called resource minimization for fire containment problem on

trees. This connection is one of the main findings of their paper.

To the best of our knowledge, the only work that combines capacity constraints

to the outliers constraint is in the context of k-Center. Cygan and Kociumaka (2014)

developed 25-factor and 23-factor approximation algorithms for the Capacitated k-Center

with Outliers problem, addressing non-uniform and uniform capacities, respectively.
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They demonstrate that the standard LP formulation for the problem has an unbounded

integrality gap, and therefore, they strengthen the LP to obtain the desired approximation

results. For strengthening the LP, a key concept introduced in their work is the notion of

a skeleton. The skeleton can be thought of as a solution that is structurally similar to at

least one optimal solution. The process of rounding the solution of the strengthened LP

uses techniques similar to those employed in Capacitated k-Center algorithm (2015). On

the other hand, Goyal and Jaiswal (2023) designed a 2-factor tight FPT approximation

for the problem parameterized by k and the number of outliers.

In this thesis, we handle both the capacity and outlier constraint simultaneously

in the context of FL and kM. In parallel, Jaiswal and Kumar (2023) also studied kM

in the presence of both capacity and outlier constraints and obtained a (3 + ϵ) FPT

approximation, parameterized by k, the number of outliers, and ϵ. We present the same

result in this thesis using a different technique.
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Chapter 3

(6.373 + ϵ)-Approximation for CFLO

with Uniform Facility Opening Costs1

3.1 Introduction

In this chapter, we study Capacitated Facility Location with Outliers (CFLO) when

facility opening costs are uniform. For ease of disposition of ideas, we first present a

result for the Capacitated Facility Location problem (CFL) and then extend it to the

CFLO problem. We start with a formal definition of CFL problem. Recall that (P , d)

denotes a metric space where P is a finite set of points and d : P ×P → R+ is a distance

function satisfying triangle inequality and symmetry.

Definition 3.1 (Capacitated Facility Location with Uniform Opening Costs). We are

given a set, X ⊆ P , of n clients and a set, F ⊆ P of m facility locations. A facility

i ∈ F has a facility opening cost f and a capacity u(i) ∈ N. The objective is to find,

• a set S ⊆ F of facilities to open and,

• an assignment σ : X → S respecting the capacities, i.e., for each facility i ∈ S,

|σ−1(i)| ≤ u(i)

such that the total cost, f |S|+
∑
j∈X

d(j, σ(j)), is minimized.

1The results presented in this chapter appeared in Dabas et al. (2024)
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Levi et al. (2012) obtained a 5-approximation for CFL with uniform facility costs,

Aardal et al. (2015) improved this guarantee to (4.562+ ϵ) and this was further improved

to a 4-approximation by Kao (2023b) in parallel to our work. Our result is a very simple

2-operation local search algorithm that is a (3.733 + ϵ) approximation for CFL with

uniform facility costs (see Theorem 1.1). The analysis of our algorithm is quite simple,

and the technique can be adapted to handle outliers.

Theorem 1.1. There exists a polynomial time local search procedure with 2 operations

that yields a locally optimal solution which is a (3.733+ϵ)-approximation to the optimum

solution of the capacitated facility location problem with uniform facility opening costs.

We next study CFLO with uniform facility opening costs. The hard constraints of

capacities and number of outliers make the CFLO problem very challenging, and to the

best of our knowledge, no approximation is known for this problem. The problem is

formally defined as follows:

Definition 3.2 (Capacitated Facility Location with Outliers and Uniform Opening Costs).

In addition to the input for the capacitated facility location problem, we are given a

bound, L ≤ n, on the number of outliers permitted in a feasible solution. The objective

is to find,

• a set S ⊆ F of facilities,

• a set X ′ ⊆ X of outliers of size at most L,

• an assignment σ : (X \X ′)→ S respecting the capacities, i.e., for each facility

i ∈ S, |σ−1(i)| ≤ u(i)

such that the cost, f |S|+
∑

j∈X\X′

d(j, σ(j)), is minimized.

Our second and main result is the first constant factor approximation for CFLO

assuming uniform facility opening costs. We use local search and extend the ideas of

CFL problem to obtain a (6.373+ϵ) approximation for CFLO problem (see Theorem 1.2).
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Theorem 1.2. There exists a polynomial time local search procedure with 2 operations

that yields a locally optimal solution which is a (6.373+ϵ)-approximation to the optimum

solution of the capacitated facility location problem with outliers and uniform facility

opening costs.

Our local search algorithms for both CFL and CFLO require only 2 operations, one

of which is an add operation to add a facility not already part of the solution. For CFL,

our second operation open opens a facility, t, and closes a subset of facilities, S ′. The

best such set - under certain restrictions - can be found by solving a knapsack problem,

and this operation has also been key in prior work on capacitated facility location. For

the outlier version, we modify the open operation to open 2 facilities, t1, t2 and close a

subset S ′ of facilities. We impose novel restrictions - clients served by the facilities in S ′

are either served by t1 or made outliers, and t2 serves the right outliers from the current

solution - on the operation to allow us to find the best S ′ in polynomial time, and this

involves solving a 2-dimensional knapsack problem.

As with most local search algorithms, we need to put together a suitable set of

inequalities to bound the quality of the locally optimum solution. The outliers pose a

challenge here and our key contribution is to define a suitable bijection between the

outliers in the locally optimum and global optimum solutions. Unlike CFL where the

choice of inequalities is such that each facility of the optimum solution is opened only

a bounded number of times, the presence of outliers does not permit us this luxury. In

fact, the inequalities we use to bound the facility cost of the locally optimum solution

might require some facilities to be opened many times. However, since facility costs are

uniform, we can amortize this and argue that, on average, each facility of the optimum

solution is opened only a small number of times.

We conjecture that the locality gap for FLO with non-uniform facility opening costs

is unbounded, even in the uncapacitated case. The locality gap, of course, depends

on the specific set of local search operations allowed. Friggstad et al. (2019) gave an

example to show that any constant size multi-swap operation can not yield a local search

algorithm with a bounded locality gap when the facility opening costs are general. The

example provided in Friggstad et al. (2018) can be overcome by employing one of the
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non-constant swap operations introduced in our algorithm. However, in Section 3.7, we

present a challenging example that highlights an issue even with the non-constant size

swaps. In this case, escaping the unbounded locality gap requires an operation that, in

essence, involves solving an instance of the facility location with outliers itself. We also

modify our example to show that even after allowing constant factor violation in outliers,

escaping the locality gap involves solving an instance of facility location with outliers.

3.1.1 Organisation of the Chapter

The remainder of the chapter is organized as follows. We start by introducing some

notations in Section 3.2. In Section 3.3, we discuss some prior work by Pál et al. (2001)

on the CFL problem, which is used to obtain our result for CFL with uniform facility

costs in Section 3.4. This also serves as a starting point for our discussion on CFLO

in Section 3.5. In Section 3.6, we analyze the cost of our locally optimum solution

for CFLO. In Section 3.7, we present a challenging example for the problem when the

facility opening costs are non-uniform.

3.2 Notations

In this section, we introduce some notation that will be used throughout the chapter.

Given a set S of facilities, the assignment of clients to facilities can be determined by

solving a minimum cost flow problem (/with outliers for CFLO). Hence, the set of open

facilities completely determines the solution, and so we use S to denote both the solution

and the set of open facilities in the solution. For a solution S, let C(S) = Cf (S) +Cs(S)

denote the cost of solution S where Cs(S) and Cf (S) denote the service cost and facility

cost of solution S respectively. Let S be a locally optimum solution and S∗ be any

feasible solution for a given instance of the problem. Let X(s) be the set of clients

served by facility s in S and X(A) = ∪s∈AX(s) for A ⊆ S denote the set of all clients

served by facilities in A in solution S. Similarly, let X∗(t) be the set of clients served by

facility t in S∗ and X∗(A) = ∪t∈AX
∗(t) for A ⊆ S∗ denote the set of all clients served

by facilities in A in solution S∗. Further, let σ : X → S denote the assignment of clients
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in S and σ∗ : X → S∗ denote the assignment of clients in S∗.

In the case of CFLO, let O and O∗ represent the set of outliers in solutions S and S∗,

respectively. For brevity of notations, let σ : (X \O)→ S be the assignment of clients

in S and σ∗ : (X \O∗)→ S∗ be the assignment of clients in S∗.

3.3 Adaptions of Previous Work

In this section, we will reproduce the prior work of Pál et al. (2001) on the CFL problem,

with some minor modifications. The techniques discussed in this section will be used in

the analysis of the local search algorithm for CFL with uniform costs in Section 3.4. The

modifications help us extend the same ideas to CFLO with uniform costs in Section 3.6.

Pál et. al. (2001) construct a directed bipartite graph G = (F ∪X,E) with F,X as

the two sides of the vertex set. If j ∈ X(i), edge (i, j) is added to E and give it a length

d(i, j). Similarly, if j ∈ X∗(i), edge (j, i) is added to E and give it a length d(i, j).

Every vertex j ∈ X has one incoming and one outgoing edge. The edges of E are then

decomposed into cycles and maximal paths. Note that the number of maximal paths

starting from i ∈ S equals max{0, |X(i)| − |X∗(i)|} and the number of maximal paths

ending at i ∈ S∗ equals max{0, |X∗(i)| − |X(i)|}. By triangle inequality, a maximal

path from s ∈ S to t ∈ S∗ has a length of at least d(s, t). Further, the total length of all

maximal paths is, at most, the total length of all edges inE, which equals Cs(S)+Cs(S
∗).

Pál et al. (2001) next formulate a transhipment problem where a facility i ∈ S is a

supply node with supply |X(i)| and a facility i ∈ S∗ is a demand node with demand

|X∗(i)|. Note that a facility i ∈ S ∩ S∗ is both a supply and a demand node. The cost of

shipping 1 unit of flow from s ∈ S to t ∈ S∗ equals d(s, t). Total supply over all supply

nodes (
∑

i∈S |X(i)|) = total demand over all demand nodes (
∑

i∈S∗ |X∗(i)|) = n.

Let x be an optimum solution to the above problem, and let x(s, t) be the amount

of flow shipped from s ∈ S to t ∈ S∗. Pál et al. (2001) next construct an undirected

exchange graph, H = (V ′, E ′) where V ′ has a vertex for each facility in S and a vertex

for each facility in S∗; thus a facility in S ∩ S∗ corresponds to two vertices in V ′. Define

E ′ = {(s, t)|x(s, t) > 0}. The exchange graph H and the optimum solution x to the
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transhipment problem have important properties stated in Lemmas 3.1, 3.2 and 3.3.

Lemma 3.1. (i) H is acyclic.

(ii) If i ∈ S ∩ S∗ then H has an edge between the two vertices in V ′ corresponding to

i and one of these vertices is a leaf of H .

Proof. (i) Suppose if possible, there exists a cycle C. Partition the edges of C into

two sets (say, E1 and E2) consisting of alternate edges. Let S1 and S2 be the sum of

length of edges in E1 and E2 respectively. We will first prove S1 = S2. If S1 > S2,

we can obtain a flow of lower cost by decreasing one unit of flow from edges in

set E1 and increasing one unit of flow on edges in E2; this is a contradiction to the

fact that x is an optimal flow. Thus, S1 = S2. In this case, the graph can be made

acyclic by iteratively decreasing one unit of flow on edges in one of the sets E1 or

E2, while simultaneously increasing one unit of flow on edges in the other set.

(ii) Since d(i, i) = 0, for i ∈ S ∩ S∗ any optimal solution for the transhipment

problem would ship min{|X(i)|, |X∗(i)|} flow from the supply node i to the

demand node i. If min{|X(i)|, |X∗(i)|} = |X(i)|, then i ∈ S is a leaf whereas if

min{|X(i)|, |X∗(i)|} = |X∗(i)|, then i ∈ S∗ is the leaf.

Lemma 3.2. (i) ∀s ∈ S,
∑

t∈S∗ x(s, t) = |X(s)| ≤ u(s).

(ii) ∀t ∈ S∗,
∑

s∈S x(s, t) = |X∗(t)| ≤ u(t).

Proof. (i) Firstly note that, for any s ∈ S,
∑

t∈S∗ x(s, t) can not be greater than |X(s)|

because the maximum supply at node s is |X(s)|. Suppose if possible, for some

s ∈ S,
∑

t∈S∗ x(s, t) < |X(s)|. Then,
∑

s∈S
∑

t∈S∗ x(s, t) <
∑

s∈S |X(s)| = n.

This is a contradiction to the fact that x is a feasible solution because using less

than n units of supply is not sufficient to serve n units of demand. Therefore,∑
t∈S∗ x(s, t) = |X(s)|. The inequality, |X(s)| ≤ u(s), follows by capacity

constraints imposed on the solution S.
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(ii) Firstly note that, for any t ∈ S∗,
∑

s∈S x(s, t) can not be greater than |X∗(t)|

because the maximum demand at node t is |X∗(t)|. Suppose if possible, for some

t ∈ S∗,
∑

s∈S x(s, t) < |X∗(t)|. Then,
∑

t∈S∗
∑

s∈S x(s, t) <
∑

t∈S∗ |X(t)| = n

which is a contradiction to the fact that x is a feasible solution serving n units

of demand. Therefore,
∑

s∈S x(s, t) = |X∗(t)|. The inequality, |X∗(t)| ≤ u(t),

follows by capacity constraints imposed on the solution S∗.

Lemma 3.3.
∑

s∈S,t∈S∗ x(s, t)d(s, t) ≤ Cs(S) + Cs(S
∗).

Proof. To prove this, we construct a feasible solution, x′(s, t), for the transhipment

problem of cost no more than Cs(S) + Cs(S
∗). For s ∈ S ∩ S∗, we send x′(s, s) =

min{|X(s)|, |X∗(s)|} units of flow from the supply node s to the demand node s. since

d(s, s) = 0, this can be done at 0 cost. Note that, for s ∈ S \ S∗, the remaining supply

is same as the original supply whereas for nodes s ∈ S ∩ S∗, the remaining supply is

|X(s)| − min{|X(s)|, |X∗(s)|} = max{0, |X(s)| − |X∗(s)|}. Consider the maximal

paths in the decomposition of edges in E. Let w(s, t) be the number of paths starting

at s and ending at t. Send x′(s, t) = w(s, t) unit of flow from s to t. Note that the total

amount of flow from s is no more than the supply at s because the number of maximal

paths starting from s ∈ S ∩ S∗ equals max{0, |X(s)| − |X∗(s)|} whereas number of

paths starting from s ∈ S \ S∗ is |X(s)|. Similarly, on the demand side, the total flow

into t ∈ S∗ is exactly equal to demand at node t as number of maximal paths ending at

t ∈ S ∩ S∗ equals max{0, |X∗(t)| − |X(t)|} and the number of maximal paths ending

at t ∈ S∗ \ S equals |X∗(t)|}. Recall that the total length of all maximal paths is at most

Cs(S) + Cs(S
∗). Hence, we have defined a feasible solution x′(s, t) to the transhipment

problem of cost at most Cs(S) + Cs(S
∗) and the cost of the optimal solution x(s, t) can

only be lower.

We remark that the above description of Pál et. al. (2001) is not entirely accurate.

In particular, the exchange graph constructed by Pál et. al. (2001) has a vertex for each

facility in S \ S∗ and a vertex for each facility in S∗. Our more symmetric construction

of the exchange graph helps us extend it to handle outliers.
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3.4 Capacitated Facility Location with Uniform Facility

Costs

Our algorithm does local search: we start with an arbitrary feasible solution (set of open

facilities of total capacity at least n) and keep performing local search steps till they

improve the cost of the solution. Let S be the solution at any step in this algorithm.

3.4.1 Local Search Operations

add(t): For t /∈ S, if C(S ∪ {t}) < C(S) then S ← S ∪ {t}. A facility t which is not in

the current solution S is added to S if its addition improves the cost of the solution.

We define open(t, S ′) as an operation which opens a facility t ∈ F and closes S ′ ⊆ S.

If t ∈ S, then the operation is defined only if S ′ contains t; in this case, the operation

closes facilities in S ′\{t}. In determining the cost of this operation, we assume all clients

in X(S ′) are reassigned to t. Thus the reduction in C(S) if this operation is performed is∑
s∈S′

∑
j∈X(s)(d(j, s)− d(j, t)) + f(|S ′| − 1).

open(t): This is the same as the operation open(t, S ′) for a subset S ′ ⊆ S for which

the cost of the operation is minimum. Given t, the problem of finding the optimal such

S ′ can be formulated as a knapsack problem and solved in polynomial time (Lemma 3.4).

Note that if t ∈ S then open(t) does not result in multiple copies of t in S. Instead, we

include t in S ′ and open(t) then leads to closing of facilities in S ′ \ t and their clients

getting assigned to t. The operation S ← S \ S ′ ∪ {t} , S ′ ⊆ S, is performed only if it

improves the cost of the solution S.

Lemma 3.4 (Pal et al. (2001)). Given t, one can, in polynomial time, find a set S ′ that

minimizes the cost of open(t, S ′) among all subsets S ′ ⊆ S.

Proof. For a fixed s ∈ S, let v(s) represent the cost saved by closing s ∈ S. If t /∈ S,

then v(s) =
∑

j∈X(s) d(j, s) + f −
∑

j∈X(s) d(j, t) otherwise v(s) =
∑

j∈X(s) d(j, s)−∑
j∈X(s) d(j, t). The value of a set S ′ ⊆ S is

∑
s∈S′ v(s). We find the set S ′ of the

maximum value in polynomial time by solving the following knapsack problem: we have

an object corresponding to each s ∈ S. The weight and value of the object corresponding

36



to s are |X(s)| and v(s), respectively. We wish to pick a set of objects of total weight at

most u(t)− |X(t)| and have maximum total profit.

The algorithm stops if neither of the two operations improves the cost of the solution.

Note that if a facility in S does not serve any client, we close that facility. The solution S

at the end of the algorithm is a locally optimum solution. The number of improvement

steps of this local search algorithm can be made polynomial in the input size and 1/ϵ by

requiring that a local improvement be made only if it improves the cost of the solution by

a (1 + ϵ)-factor. Refer Korupolu et al. (2000) for details.

3.4.2 Analysis

The service cost of the solution S can be bounded by the add operation.

Lemma 3.5 (Arya et al. (2004), Lemma 4.1). Cs(S) ≤ Cs(S
∗) + Cf (S

∗) = C(S∗).

We need a suitable set of inequalities to bound the facility opening cost of the locally

optimum solution S. We construct a bipartite graph G and formulate a transhipment

problem similar to Pál et al. (2001) as described in Section 3.3. Let x be the optimum

solution of the transhipment problem and H be the exchange graph defined in Section 3.3.

Every connected component of H is a tree and contains an edge of E ′ and hence a

vertex in S∗. We root each tree in H at an arbitrary vertex in S∗. Let L be the set of

facilities in S that are leaves in H . For t ∈ S∗, let C(t) be the set of children of t and

let CL(t) be the set C(t) ∩ L. Further, let F ∗ = {t ∈ S∗ : |CL(t)| ≥ 1}. Thus, for

t ∈ F ∗, CL(t) ̸= ϕ.

Since our solution is locally optimal, if we open t ∈ F ∗ and close facilities in

CL(t), we do not improve the cost of the solution. We capture this fact by writing an

inequality that says that the cost of open(t, CL(t)) is non-negative for every t ∈ F ∗.

(Refer Figure 3.1). Note that if t ∈ S then by Lemma 3.1, t ∈ CL(t) and hence the

operation open(t, CL(t)) is well-defined.

(i) Since s ∈ CL(t) is a leaf of H , x(s, t) = |X(s)|. In operation open(t, CL(t)), t ∈

F ∗, the number of clients assigned to t is
∑

s∈CL (t) |X(s)| =
∑

s∈CL (t) x(s, t) ≤
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Figure 3.1: Illustration of a tree in G rooted at t1 ∈ S∗. The dashed circles represent facilities in L,

(facilities labelled s1-s12), and the solid grey circles represent facilities in F ∗ (facilities labelled t1-t5).

The operations, open(t1, {s1, s2, s3, s4}), open(t2, {s5, s6}), open(t3, {s7, s8, s9}), open(t4, s10) and,

open(t5, {s11, s12}) help us write the required inequalities.

∑
s∈S x(s, t) ≤ u(t) due to Lemma 3.2 (ii) and hence the capacity of t is not

violated.

(ii) The increase in service cost over all operations open(t, CL(t)), t ∈ F ∗, is bounded

by
∑

t∈F ∗
∑

s∈CL (t) x(s, t)d(s, t) ≤
∑

t∈S∗
∑

s∈S x(s, t)d(s, t) = Cs(S)+Cs(S
∗)

due to Lemma 3.3.

(iii) The decrease in facility opening costs over all operations open(t, CL(t)), t ∈ F ∗,

is f · (|L| − |F ∗|).

Since S is a locally optimum solution, using points (ii), and (iii) above, we get

f · |L| ≤ Cs(S) + Cs(S
∗) + f · |F ∗|. (3.1)

Lemma 3.6. The number of facilities in S \ L is bounded by |S∗|.

Proof. Let T be a tree in H rooted at an arbitrary vertex in S∗. With every facility in S

which is not a leaf of T, we associate a child in S∗. A facility in S∗ can be associated

with, at most, one facility of S in this manner. Summing over all trees in H then proves

the lemma.
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Combining Equation 3.1 with Lemma 3.6 and then applying Lemma 3.5 yields,

Cf (S) ≤ 2Cf (S
∗) + Cs(S) + Cs(S

∗) ≤ 2Cs(S
∗) + 3Cf (S

∗). (3.2)

Having bounded both the facility cost and the services cost of our solution, we now

employ a scaling technique introduced by Charikar et al. (2005). This involves scaling

the facility costs by a factor γ and then running the local search algorithm. The service

cost of the optimum solution is unchanged but the facility cost scales by γ. Lemma 3.5

can now be written as

Cs(S) ≤ Cs(S
∗) + γCf (S

∗) (3.3)

and inequality 3.2 corresponds to

γCf (S) ≤ 2Cs(S
∗) + 3γCf (S

∗). (3.4)

Thus,

C(S) = Cs(S) + Cf (S) ≤ (1 +
2

γ
)Cs(S

∗) + (γ + 3)Cf (S
∗).

For γ =
√
3− 1, we get,

C(S) ≤ (
√
3 + 2)(Cs(S

∗) + Cf (S
∗)) = (

√
3 + 2)C(S∗),

which implies a (3.733 + ϵ) approximation when S∗ is an optimum solution for the given

instance of CFL.

3.5 The Algorithm for CFLO with Uniform Facility Costs

We start with a feasible solution S and perform the following operations whenever they

improve the cost of the solution.

add(t): The operation is the same as defined in Section 3.4.1.

We define multiSwap(t1, t2, S ′) as an operation which opens facilities t1, t2 ∈ F

(t1, t2 may be identical) and closes S ′ ⊆ S. As in the open operation in Section 3.4.2

if t1 ∈ S then multiSwap(t1, t2, S ′) is defined only if S ′ contains t1; in this case, the

operation closes facilities in S ′ \ {t1}. In determining the cost of this operation we

assume that
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(i) clients in X(S \ S ′) continue to be served by the facility that served them in S,

(ii) clients in X(S ′) are either served by t1 or are made outliers, and

(iii) clients in O are either served by t2 or remain outliers.

Thus the reduction in Cs(S) if multiSwap(t1, t2, S ′) is performed equals the service cost

of clients in X(S ′) minus the cost of servicing clients in X(S ′) by t1 if they are not made

outliers minus the cost of servicing clients in O by t2 if they are no longer outliers.

multiSwap(t1, t2): This is the same as the operation multiSwap(t1, t2, S ′) for a set

S ′ ⊆ S which minimizes the cost of the operation. Given t1, t2 determining the optimal

S ′ can be formulated as a 2-dimensional knapsack problem and solved in polynomial

time (Lemma 3.7). The operation S ← S \S ′∪{t1, t2} , t1, t2 ∈ F, S ′ ⊆ S, is performed

only if it improves the cost of the solution S.

Lemma 3.7. Given t1, t2, a set S ′ that minimizes the cost for multiSwap(t1, t2, S ′) among

all subsets S ′ ⊆ S can be found in polynomial time.

Proof. Given t1 and t2, we first guess the number of outliers in O which will be served by

t2; let this number be k. Note that k is at most u(t2)− |X(t2)|. k is also upper bounded

by |O|. The clients in O which will be served by t2 are the clients that are closest to t2;

let the cost of serving these clients by t2 be Y .

Let r be a guess on the maximum service cost of any client served by t1. We now

formulate the problem of determining the best set S ′ ⊆ S \ {t1} as a knapsack problem.

(i) For every s ∈ S, let X(s, r) ⊆ X(s) be the set of clients served by s which are at

a distance at most r from t1.

(ii) The cost of serving clients in X(s, r) by t1 is
∑

j∈X(s,r) d(j, t1). Let v(s, r)

represent the cost saved by closing s. Thus, v(s, r) =
∑

j∈X(s) d(j, s) + f −∑
j∈X(s,r) d(j, t1).

(iii) If a set S ′ ⊂ S \ {t1} of facilities is closed then the number of clients served by t1

is |X(t1, r)|+
∑

s∈S′ |X(s, r)| and the requirement that this is at most the capacity
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of t1 gives the first knapsack constraint, i.e.,
∑

s∈S′ |X(s, r)| ≤ u(t1)− |X(t1, r)|.

Recall that |X(t1, r)| = 0 if t1 /∈ S.

(iv) The number of outliers generated by closing facilities in S ′ is (|X(t1)|−|X(t1, r)|)+∑
s∈S′(|X(s)| − |X(s, r)|) and the requirement that this quantity is at most our

guess k gives the second knapsack constraint, i.e.,
∑

s∈S′(|X(s)| − |X(s, r)|) ≤

k − |X(t1)|+ |X(t1, r)|.

(v) If t1 = t2 = t (say) then once we have guessed k we can view u(t1) as equal to

u(t)− k. Note that this will only affect the right-hand side of the constraint in (iii).

The value of a set S ′ ⊆ S \ {t1} is
∑

s∈S′ v(s, r). We find the set S ′ of maximum

value, which satisfies the constraints in (iii) and (iv) using a knapsack procedure, detailed

below. This value is the cost saved by closing facilities in S ′. If it exceeds Y plus the

facility cost of t1 and t2, then doing the operation improves the cost of our solution.

In the knapsack problem we formulate, we have an object corresponding to each

s ∈ S\{t1}. The weight, volume and profit of the object corresponding to s are |X(s, r)|,

(|X(s)| − |X(s, r)|) and v(s, r) respectively. We wish to pick a set of objects of total

weight at most u(t1) − |X(t1, r)|, total volume at most k − |X(t1)| + |X(t1, r)| and

having maximum total profit. Note that this can be done in time O(|S| ·u(t1) ·k) which is

O(n2L). Since there are at most L choices for k and at most n choices for r, the running

time of this procedure is O(n3L2).

The algorithm stops when neither of the two operations improves the cost of the

solution. Note that if a facility in S does not serve any client we close that facility. The

solution S at the end of the algorithm is a locally optimum solution. The number of steps

of the algorithm can be made polynomial by making a small sacrifice on the quality of

the approximation as in Section 3.4.1.

3.6 Bounding the Cost of the Locally Optimum Solution

Recall that S ⊆ F denotes the locally optimal solution, and S∗ ⊆ F denotes any

feasible solution for a given instance of CFLO. O and O∗ represents the set of outliers
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in the solutions S and S∗, respectively. Note that, it is no loss of generality to assume

|O| = |O∗| = L. We will assume O ∩O∗ = ϕ. This is without loss of generality as S is

also a locally optimum solution for an instance with clients X \ (O ∩O∗) and number of

outliers L− |O∗ ∩O|.

For a facility s ∈ S, X(s) represents the set of clients served by s in the locally

optimum solution and for a facility, t ∈ S∗, X∗(t) represents the set of clients served by

t in the feasible solution S∗. Additionally, σ : (X \O)→ S is the assignment of clients

in S and σ∗ : (X \O∗)→ S∗ is the assignment of clients in S∗.

3.6.1 Bounding the Service Cost

The add operation can be used to bound the service cost of the solution as stated in

Lemma 3.8.

Lemma 3.8. Cs(S) ≤ Cs(S
∗) + Cf (S

∗) = C(S∗).

Proof. For every facility t ∈ S∗, we add t to S if it is not in S and if it reduces the cost

of the solution. Let κ be an arbitrary one-one and onto mapping from O to O∗; κ exists

since |O| = |O∗|.

Consider an add(t) operation. For every client j served by t in S∗, assign j to t if

j was served in S. The change in cost is d(j, t) − d(j, σ(j)). If j ∈ O, make κ(j) an

outlier and assign j to t. The change in cost is d(j, t)−d(κ(j), σ(κ(j)). Note that, all the

capacities are respected because we assign only those clients to t which are assigned to it

in the feasible solution. Since adding t ∈ S∗ does not improve the cost of the solution,

we obtain,

f +
∑

j∈X∗(t)

d(j, t)−
∑

j∈X∗(t)\O

d(j, σ(j))−
∑

j∈X∗(t)∩O

d(κ(j), σ(κ(j))) ≥ 0.

Summing over all facilities t in S∗ we obtain,

∑
t∈S∗

f+
∑
t∈S∗

∑
j∈X∗(t)

d(j, t)−
∑
t∈S∗

∑
j∈X∗(t)\O

d(j, σ(j))−
∑
t∈S∗

∑
j∈X∗(t)∩O

d(κ(j), σ(κ(j))) ≥ 0.
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∑
t∈S∗

f +
∑

j∈X\O∗

d(j, σ∗(j))−
∑

j∈X\(O∪O∗)

d(j, σ(j))−
∑
j∈O

d(κ(j), σ(κ(j))) ≥ 0.

Since κ : O → O∗ is a bijection
∑

j∈O d(κ(j), σ(κ(j))) =
∑

j∈O∗ d(j, σ(j)) and hence

∑
t∈S∗

f +
∑

j∈X\O∗

d(j, σ∗(j))−
∑

j∈X\(O∪O∗)

d(j, σ(j))−
∑
j∈O∗

d(j, σ(j)) ≥ 0.

∑
t∈S∗

f +
∑

j∈X\O∗

d(j, σ∗(j))−
∑

j∈X\O

d(j, σ(j)) ≥ 0.

or

∑
j∈X\O

d(j, σ(j)) ≤
∑
t∈S∗

f +
∑

j∈X\O∗

d(j, σ∗(j)).

3.6.2 Bounding the Facility Opening Cost

We can use the same approach for bounding the number of facilities in S as we followed

in the case of capacitated facility location. However, when we close a subset S ′ ⊆ S

of facilities, some clients in X(S ′) might be outliers in S∗ (i.e., they belong to O∗), and

we will not be able to assign these clients to the facility we open. We get around this by

letting these clients be outliers in the new solution. Since the number of outliers needs to

remain bounded by L, we serve some clients in O by opening another facility from S∗.

To ensure facilities are not opened too often, we will carefully choose a mapping from

clients in O∗ to O.

3.6.2.1 Modifying H to Handle Outliers

We modify the graph G constructed in Section 3.4.2 by introducing two vertices o, o∗,

which correspond to outliers in O and O∗, respectively. If client j is in O then we add

edge (o, j) to G and the edge (j, o∗) if j is in O∗; these edges are not assigned any cost.
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Once again, we decompose edges of G into cycles and maximal paths and ignore all

cycles from further consideration.

For a facility, s ∈ S, consider the maximal paths from s to o∗ in this decomposition

and let O∗(s) ⊆ O∗ be the set of clients preceding o∗ on these paths. Similarly, let

O(t) ⊆ O be the set of clients following o on the maximal paths from o to t ∈ S∗. Refer

Figure 3.2.

The decomposition of edges ofG into maximal paths gives us paths from a facility s ∈

S to a facility t ∈ S∗. The number of such paths starting from s ∈ S is max{0, |X(s)| −

|X∗(s)| − |O∗(s)|}. Exactly max{0, |X∗(t)| − |X(t)| − |O(t)| } of such paths end at

t ∈ S∗. Motivated by this observation we formulate a transhipment problem which has a

supply of max{0, |X(s)| − |O∗(s)| } at node s ∈ S and a demand of max{0, |X∗(t)| −

|O(t)|} at node t ∈ S∗. Note that nodes in S may have zero supply, and nodes in S∗ zero

demand. The cost of shipping one unit of flow from s ∈ S to t ∈ S∗ is d(s, t). As before,

it is no loss of generality to assume that in any solution to the transhipment problem

for s ∈ S ∩ S∗, min(|X(s)| − |O∗(s)|, |X∗(s)| − |O(s)|) flow will be shipped from the

supply node s to the demand node s at zero cost. Let x be an optimum solution to the

transhipment problem.

Figure 3.2: An illustration of o, o∗, O(t) and O∗(s) in graph G. Circles and squares represent the facilities

and the clients, respectively. For illustration, two vertices are included for each facility in S ∩ S∗ with a

dashed edge between them. Edges of a colour trace a maximal path in the decomposition that either ends

at o∗ or begins at o.
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Lemma 3.9.

∑
s∈S,t∈S∗

x(s, t)d(s, t) +
∑
t∈S∗

∑
j∈O(t)

d(j, t) +
∑
s∈S

∑
j∈O∗(s)

d(s, j) ≤ Cs(S) + Cs(S
∗).

Proof. The decomposition of edges of G into maximal paths gives us 4 kinds of paths:

(i) paths from a facility s ∈ S to a facility t ∈ S∗. The cost of sending one unit of

flow along such a path is d(s, t), which is, at most, the sum of the costs of edges

on the path.

(ii) paths from o to a facility t ∈ S∗. Let j ∈ O(t) be the client following o on this

path. Then the total cost of edges on this path - excluding edge (o, j) - is at least

d(j, t) and hence the total cost of edges on all such paths - excluding edges incident

from o - is at least
∑

t∈S∗
∑

j∈O(t) d(j, t).

(iii) paths from a facility s ∈ S to o∗. Let j ∈ O∗(s) be the client preceding o∗ on

this path. Then the total cost of edges on this path - excluding edge (j, o∗) - is at

least d(s, j) and hence the total cost of edges on all such paths - excluding edges

incident to o∗ - is at least
∑

s∈S
∑

j∈O∗(s) d(s, j).

(iv) paths from o to o∗ which we ignore.

Since the total cost of edges on all paths is at mostCs(S)+Cs(S
∗) the lemma follows.

We use the optimum solution x of the transhipment problem to construct an undirected

exchange graph H = (V ′, E ′) as in Section 3.4.2. x,H have the following properties.

1. H is acyclic.

2. If s ∈ S ∩ S∗, then H has an edge between the two vertices in V ′ corresponding to

s, and at least one of these vertices is a leaf of H .

3. ∀s ∈ S,
∑

t∈S∗ x(s, t) = |X(s)| − |O∗(s)|.

4. ∀t ∈ S∗,
∑

s∈S x(s, t) = |X∗(t)| − |O(t)|.
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As in Section 3.4.2, we root each component of H at a facility in S∗ if one exists.

Unlike Section 3.4.2, we might have some isolated facilities in S in the forest H; these

are the facilities with zero supply. Let s be an isolated facility in S and t ∈ S∗ be the

root of some tree in H . We add edge (s, t) to H and assign x(s, t) = 0.

3.6.2.2 Constructing κ : O∗ → O

Let L be the facilities in S that are leaves in H . Let F ∗ ⊆ S∗ be the facilities that are the

parent of some facility in L. For t ∈ S∗, let CL(t) be the children of t in L.

As in Section 3.4, to bound the number of facilities in L we can write inequalities for

operations which open a facility t ∈ F ∗ and close facilities in CL(t). However, note that

t may not have sufficient capacity to serve all clients served by facilities in CL(t) since

some of these clients could correspond to outliers in S∗. To overcome this difficulty, we

define a bijection, κ, from O∗ to O, which helps us identify a facility in S∗ to open to

serve some outliers in S to account for outliers in S∗ served by CL(t).

Let S∗ =
{
t1, t2, . . . , t|S∗|

}
. We construct the mapping in 2 steps using Algorithm 3.1

(Refer Figure 3.3).

Step 1 : We consider facilities of S∗ in increasing order of the indices and let ti be the

facility under consideration. If ti ∈ F ∗ then consider the facilities in CL(ti). For a

facility s ∈ CL(ti) we map clients inO∗(s) to clients inO(ti). If this is not possible

since no unmapped clients are remaining in O(ti), we save the remaining clients in

O∗(s) in an array A; such clients shall be mapped in Step 2. It is important that we

consider all clients in O∗(s) before moving on to the next facility in CL(ti). After

this step, for all ti ∈ F ∗, either all clients in O(ti) or all clients in
⋃

s∈CL (ti)
O∗(s)

are assigned under the mapping κ.

Step 2: We consider facilities in S∗ in the same order as in Step 1. If ti is the facility

under consideration and a client in O(ti) is unmapped, we map a client saved in

the array A to such a client in O(ti).

The mapping constructed at the end of the above steps is extended to a bijection from O∗

to O by assigning the unmapped clients arbitrarily.
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(a)

(b)

Figure 3.3: (a) An illustration of Step 1 of mapping κ. Circles and squares represent the facilities and

the clients, respectively. Sets F ∗ and L correspond to the tree in Figure 3.1. (b) An illustration of Step

2 of mapping κ. Circles and squares represent the facilities and the clients, respectively. Sets F ∗ and L

correspond to the tree in Figure 3.1.
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Algorithm 3.1: Mapping κ
Output :κ : O∗ → O

1 for j = 1 to |O∗| do

2 κ(j) = Null

3 end

// Step 1

4 count = 0

5 for i = 1 to |S∗| do

6 for s ∈ CL(ti) do

7 for j ∈ O∗(s) do

8 if ∃ j′ ∈ O(ti) and κ−1(j′) == Null then

9 κ(j) = j′

10 else

11 A[count++] = j // A[] stores clients not

mapped in Step 1

12 end

13 end

14 end

15 end

// Step 2

16 count = 0

17 for i = 1 to |S∗| do

18 if ∃ j′ ∈ O(ti) and κ−1(j′) == Null then

19 κ(A[count++]) = j

20 end

21 end

22 return κ
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3.6.2.3 Constructing the Bipartite Graph, Q

We construct a bipartite graph Q, with vertex sets U = {ui, 1 ≤ i ≤ |S∗|} and W =

{wi, 1 ≤ i ≤ |S∗|}; vertices ui, wi correspond to facility ti ∈ S∗ (see Figure 3.4). For a

facility s ∈ L, we add an edge (ui, wj) to Q if ti is the parent of s in H and some client

in O∗(s) is mapped to a client in O(tj) ( Figure 3.3 and Figure 3.4). The edge is given a

label s, i.e., L(ui, wj) = {s}. All edges with the same endpoints are combined into one

edge and assigned a label which is the union of labels on these edges.

Figure 3.4: The graph Q corresponding to the mapping in Figure 3.3. L0 = {s2, s6, s10}, L1 =

{s1, s4, s5, s7, s9, s12}, L>1 = {s3, s8, s11}. Dashed lines represent Type 1 edges, and solid lines repre-

sent Type 2 edges. The following multiSwap operations are performed: multiSwap(t1, t1, {s1, s2}),

multiSwap(t1, t2, {s4}), multiSwap(t2, t2, {s5, s6}), multiSwap(t3, t3, {s7}), multiSwap(t3, t4, {s9}),

multiSwap(t4, t4, {s10}) and, multiSwap(t5, t5, {s11}).

Edges of Q that arose due to the mapping in Step 1 are called type 1 edges, and those

that arose due to the mapping in Step 2 are called type 2 edges. Note that,

P1: The edge (ui, wj), 1 ≤ i, j ≤ |S∗| is type 1 if i = j and type 2 if i ̸= j.

P2: For 1 ≤ i ≤ S∗, at least one of ui, wi has no type 2 edge incident on it.

P3: At most one type 1 edge is incident to any vertex in Q.

Lemma 3.10. Q is a forest.

Proof. Two edges (ui, wj) and (uk, wl) are crossing if i < k and l < j. We begin with a

couple of claims.
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Claim 3.11. No pair of type 2 edges are crossing.

Proof. For contradiction assume that Q has edges (ui, wj) and (uk, wl) where i < k and

l < j. The existence of type 2 edges incident at ui, uk implies that after step 1 not all

clients in ∪s∈CL (ti)O
∗(s),∪s∈CL (tk)O

∗(s) are mapped by κ. Since i < k, ti is considered

before tk in step 1 and unmapped clients in ∪s∈CL (ti)O
∗(s) appear before unmapped

clients in ∪s∈CL (tk)O
∗(s) in array A.

In step 2, since l < j, tl is considered before tj . In Lines 18-19 of Algorithm 3.1,

unmapped clients in ∪s∈CL (ti)O
∗(s) are mapped to unmapped clients in O(tl) until either

all clients in ∪s∈CL (ti)O
∗(s) or all clients in O(tl) are mapped. In the former case, Q

cannot contain (ui, wj), while in the latter case, it cannot contain edge (uk, wl).

Claim 3.12. Type 2 edges form a forest in Q.

Proof. For contradiction assume thatC is a cycle formed by type 2 edges and let (ui1 , wj1)

and (wj1 , ui2) be adjacent edges on C. It is no loss of generality to assume i1 < i2. Let

(ui2 , wj2) be the next edge on C. Since it does not cross edge (ui1 , wj1), it follows that

j2 > j1. Continuing this argument, we observe that the vertices of U and W on the cycle

are monotonically increasing sequences. This yields a contradiction.

To argue that Q is a forest, we start with the forest of type 2 edges in Q and add type

1 edges one by one, maintaining the invariant that the graph is a forest. Let Qi be the

subgraph at Step i, and suppose we add the type 1 edge (uj, wj). If this creates a cycle,

then there must exist a path in Qi between uj and wj . This implies both these vertices

have type 2 edges incident at them, which contradicts property P2.

3.6.2.4 Bounding the Number of Facilities

Let L0 be the facilities in L that do not label any edge, L1 the facilities that label exactly

one edge, and L>1 the facilities that label more than one edge in Q. We first bound the

number of facilities in the set L>1.
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Lemma 3.13. |L>1| ≤ |S∗|.

Proof. Let s ∈ L>1 be a facility that labels multiple edges in Q. If s ∈ CL(ti), then

these edges have ui as a common endpoint.

Suppose s labels the type 1 edge (ui, wi). The other edges incident to ui are type 2,

and by property P2, wi does not have any type 2 edge incident to it. We associate s with

wi ∈ W .

Now assume s does not label any type 1 edge. Let (ui, wj), (ui, wj+1), . . . , (ui, wk)

be edges incident at ui which are labeled s. We associate s with wj . If wj is associated

with another s′ ∈ L>1, then there exists l such that edge (ul, wj) has a label s′. By our

argument above l ̸= j and hence (ul, wj) is type 2. By interchanging roles of l, i, we can

assume l > i. The edge (ui, wj+1) which is type 2 crosses another type 2 edge (ul, wj)

yielding a contradiction.

We conclude that a node in W is associated with at most one facility in L>1. Since

|W | = |S∗| the lemma follows.

We now bound |L \ L>1|. Note that for s ∈ L0, O∗(s) = ϕ. Consider a facility

s ∈ L0 and let ti ∈ S∗ be its parent in H . We add the label s to edge (ui, wi) and thus a

facility which was earlier in L0 is now included in L1 (see Figure 3.4).

To bound the number of facilities in L1 we perform a multiSwap operation for

some edges in Q. In particular, for an edge (ui, wj) in Q, if L(ui, wj) ∩ L1 ̸= ϕ,

we write the inequality corresponding to multiSwap(ti, tj, S ′) (see Figure 3.4) where

S ′ = (L(ui, wj) ∩ L1). In writing this inequality we assume a certain reassignment of

the clients. Recall S ′ are the facilities we close and let s ∈ S ′.

T1 Clients in X(s) which are not on a maximal path from s to o∗ are assigned to ti while

the remaining clients in X(s) are made outliers.

T2 Clients in O which are mapped to clients in O∗(s) are served by tj .

We now argue that the reassignment of clients does not violate capacities. Note that,
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(i) In multiSwap(ti, tj, S ′), the total number of clients assigned to facility ti is∑
s∈S′(|X(s)|−|O∗(s)|) =

∑
s∈S′ x(s, ti) ≤

∑
s∈S x(s, ti) ≤ |X∗(ti)|−|O(ti)| ≤

u(ti) and these inequalities follow from the properties of x. If ti ∈ S then an addi-

tional |X(ti)| − |O∗(ti)| = x(ti, ti) clients are assigned to ti. The total number of

clients assigned to ti is still bounded by
∑

s∈S x(s, ti).

(ii) The total number of clients assigned to tj is
∑

s∈S′ |O∗(s)| which by our mapping

κ and choice of S ′ is at most |O(tj)|. This, in turn, is at most u(tj). If tj ∈ S then

the total number of clients assigned to tj is |X(tj)| + |O(tj)| and this is at most

u(tj). This follows from the fact that the number of maximal paths that end at tj in

the decomposition of graph G is at most u(tj)− |X(tj)| and this is only more than

the number of maximal paths from o to tj which is |O(tj)|.

(iii) If ti = tj then from the above argument the total number of clients assigned to

ti is at most |X∗(ti)| − |O(ti)| which together with the observation that at most

|O(tj)| = |O(ti)| outliers are assigned to tj , implies that the capacity of ti is not

violated.

Lemma 3.14. The total increase in service cost due to the multiSwap operations per-

formed is at most Cs(S) + Cs(S
∗).

Proof. We perform a multiSwap operation for some edges of the forest Q. The total

increase in service cost due to assignments of type T1 for all these operations is bounded

by
∑

t∈F ∗
∑

s∈CL (t) x(s, t)d(s, t) ≤
∑

t∈S∗
∑

s∈S x(s, t)d(s, t). The total change in

service cost due to assignments of type T2 is bounded by
∑

t∈S∗
∑

j∈O(t) d(t, j). By

Lemma 3.9, it follows that the total increase in service costs due to T1, T2 is at most

Cs(S) + Cs(S
∗).

Note that every facility in L \ L>1 is closed in one of the multiSwap operations

defined above. Since none of these multiSwap operations leads to an improvement in the

total cost, f · |L \ L>1| is at most the total cost of facilities opened and the total increase

in service cost in these multiSwap operations.
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The forest Q has 2|S∗| vertices. However, ui has an edge incident to it only if ti ∈ F ∗

and hence the number of edges in Q is at most |F ∗|+ |S∗| edges. Of these edges exactly

|F ∗| edges are type 1 and hence at most |S∗| are type 2.

For a type 1 edge (ui, wi), we write an inequality for the operation multiSwap(ti, ti).

Hence the number of facilities opened due to multiSwap operations corresponding to

type 1 edges is at most |F ∗|. The number of facilities opened due to multiSwap operation

corresponding to type 2 edges is at most 2|S∗|. Therefore, the total number of facilities

opened over all mutliSwap operations is at most 3|S∗|.

This together with the Lemma 3.14 implies that,

f · |L \ L>1| ≤ 3f |S∗|+ Cs(S) + Cs(S
∗). (3.5)

By Lemma 3.13, f · |L>1| ≤ f · |S∗| and by Lemma 3.6, f · |S \ L| ≤ f · |S∗|.

Combining, with inequality (3.5), we get,

Cf (S) = f · |S| ≤ 5Cf (S
∗) + Cs(S) + Cs(S

∗). (3.6)

3.6.3 Putting Things Together

We are now ready to combine the bounds on the service and facility costs of the locally

optimum solution, S using the scaling idea from Section 3.4.

After scaling the facility costs by γ, Lemma 3.8 can be written as

Cs(S) ≤ Cs(S
∗) + γCf (S

∗) (3.7)

and inequality (3.6) corresponds to

γCf (S) ≤ 2Cs(S
∗) + 6γCf (S

∗). (3.8)

Thus,

C(S) = Cs(S) + Cf (S) ≤ (1 +
2

γ
)Cs(S

∗) + (γ + 6)Cf (S
∗).

For γ =
√
33−5
2

, we get,

C(S) ≤ (

√
33 + 7

2
)(Cs(S

∗) + Cf (S
∗)) = (

√
33 + 7

2
)C(S∗),
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which implies a (6.373 + ϵ) approximation when S∗ is an optimum solution for the given

instance of CFL.

3.7 A Bad Example for FLO with Non-Uniform Facility

Costs

In this section, we present a challenging example for the (uncapacitated) facility location

problem with outliers problem, where facility opening costs are non-uniform. This

example demonstrates that any local search algorithm with a bounded locality gap must

have an operation that requires solving an instance of FLO itself. We then modify the

example to show that even with a constant factor violation allowed for outliers, escaping

the unbounded locality gap requires the same operation.

Figure 3.5: A bad example for FLO with non-uniform opening costs. Dashed boundaries represent the

disjoint sets, circles represent facilities and squares represent clients.

Consider the following instance of facility location with outliers and non-uniform

facility opening costs (see Figure 3.5).

• The client set and the facility set are partitioned intoL+1 disjoint sets,X, Y1, Y2, . . . , YL,

and the distance between any two sets is very large.

• X has one facility s with opening cost γ and L clients at zero distance from s.

• Yℓ, 1 ≤ ℓ ≤ L has one facility tℓ with facility opening cost 1 and one client

co-located with tℓ.
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Figure 3.6: Dashed boundaries represent the disjoint sets, circles represent facilities and squares represent

clients. Let L = 6 and c = 2. (a) A bad example for FLO with non-uniform opening costs and violation

in outliers. (b) We need to open at least 3 facilities even with c = 2 factor violation in outliers to close s.

The solution S = {s} is locally optimum. The L clients co-located with s are served

by swhile the remainingL clients are outliers in S. The cost of this solution is γ. Consider

the solution S∗ = {t1, t2, . . . , tL} which serves the clients in Y1, Y2, . . . , YL and leaves

the clients inX unserved. The cost of solution S∗ is L. Hence, cost(S)/cost(S∗) = γ/L,

and this ratio can be made arbitrarily large.

The only way to improve the cost of S is to close s. If we close s we need to open

all facilities t1, t2, . . . , tL to maintain the number of outliers. This implies that any local

search algorithm would need an operation that closes a facility in the solution S and

opens a set of facilities S ′ ⊆ F \ S. However, an algorithm for finding the best such

operation is the same as solving the facility location problem with outliers.

Next, we will show that even if we allow constant factor violation in outliers, we need an

operation that requires solving a facility location with outliers instance (see Figure 3.5).

Suppose we are allowed to violate outliers by a constant factor c. Modify the instance
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such that Yℓ, 1 ≤ ℓ ≤ L has c clients co-located with tℓ instead of 1. The solution

S = {s} is locally optimum. The L clients co-located with s are served by s while the

remaining cL clients are outliers in S. The cost of this solution is γ. Consider the solution

S∗ = {t1, t2, . . . , tL} which serves the clients in Y1, Y2, . . . , YL and leaves the clients in

X unserved, that is, at most L outliers. The cost of solution S∗ is L. Hence cost(S)
cost(S∗)

= γ
L

which can be made arbitrarily large. The only way to improve the cost of S is to close

s. If we close s we need to open at least L
c

facilities from t1, t2, . . . , tL to maintain the

number of outliers to be less than or equal to cL. This is the same as finding the best

operation that closes a facility in the solution S and opens a set of facilities S ′ ⊆ F \ S,

which requires solving the facility location problem with outliers.
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Chapter 4

Tri-Criteria for CFLO with Uniform

Capacities1

4.1 Introduction

In this chapter, we relax the assumption of uniform facility costs and study CFLO with

uniform capacities as defined in Definition 5.1. Recall that (P , d) denotes a metric space

where P is a finite sets of points and d : P × P → R+ is a distance function satisfying

triangle inequality and symmetry.

Definition 4.1 (Capacitated Facility Location with Outliers and Uniform Capacities). We

are given a set, X ⊆ P , of n clients and a set, F ⊆ P of m facility locations. A facility

i ∈ F has a facility opening cost fi and a capacity u ∈ N. We are also given a bound,

L ≤ n, on the number of outliers permitted in a feasible solution. The objective is to find,

• a set S ⊆ F of facilities,

• a set X ′ ⊆ X of outliers of size at most L,

• an assignment σ : (X \X ′)→ S respecting the capacities, i.e., for each facility

i ∈ S, |σ−1(i)| ≤ u

1The results presented in this chapter appeared in Dabas et al. (2022; 2025)
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such that the cost,
∑
i∈S

fi +
∑

j∈X\X′

d(j, σ(j)), is minimized.

In Chapter 3, we presented a challenging example to demonstrate that achieving a

constant-factor approximation for handling non-uniform opening costs can be difficult

using local search techniques, even when we allow constant factor violation in outliers

and capacities. On the other hand, both the CFL (even with uniform capacities) and

FLO problems are known to have unbounded integrality gaps with respect to standard

linear programming relaxations, as shown by Shmoys et al. (1997) and Charikar et

al. (2001), respectively. Thus obtaining even a bi-criteria solution seems difficult using

these techniques.

We make some progress on the problem by obtaining a tri-criteria solution that

violates both capacities and outliers a little. Our solution is obtained by rounding

a solution to the standard LP relaxation. In particular, we present a constant-factor

approximation that incurs only small violations—specifically, a factor of (1 + ϵ)—in

both capacities and outliers, as stated in Theorem 1.3. Thus, our result represents the best

achievable outcome using the employed technique. Furthermore, the tri-criteria approach

could be useful in the future for eliminating violations in capacities, outliers, or both.

Theorem 1.3. There is a polynomial time algorithm that approximates capacitated

facility location problem with outliers and uniform capacities within a constant factor

(O(1/ϵ2)) violating the capacities and outliers by a factor of at most (1 + ϵ), for a given

constant ϵ > 0.

High Level Idea: After solving the standard linear program for the problem, our rounding

algorithm proceeds in three steps. In Step 1, we identify a subset of clients that will serve

as outliers in our solution. We incur at most a (1 + ϵ) factor loss in both outliers and

capacities during this process. In Step 2, we modify the technique used by Grover et

al. (2022) for CFL (without outliers) to open the facilities integrally while preserving

the extent to which the remaining clients are serviced from step 1. In Step 3, we

solve minimum cost flow with outliers problem (see Lemma 1.7) to obtain the integral

assignments for the remaining clients (some more clients may become outliers in the

process). In the rest of the chapter, we focus only on the first two steps.
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4.1.1 Organisation of the Chapter

The remainder of the chapter is organized as follows. The result for CFLO with uniform

capacities is presented in Section 4.2, where we begin by describing the integer program-

ming formulation of the problem. Details of Steps 1 and 2 are provided in Sections 4.2.1

and 4.2.2, respectively. The running time of the algorithm is discussed in Section 4.2.3.

4.2 Capacitated Facility Location with Outliers and Uni-

form Capacities

To achieve our result, we will be rounding the solution to the standard LP. Before diving

into the details of the algorithm, we begin by first formulating the problem as an integer

program (IP) as follows:

Min CostCFLO(x, y, z) =
∑
j∈X

∑
i∈F

d(i, j)xij +
∑
i∈F

fiyi

subject to
∑
i∈F

xij + zj ≥ 1 ∀ j ∈ X (4.1)∑
j∈X

xij ≤ u yi ∀ i ∈ F (4.2)

xij ≤ yi ∀ i ∈ F, j ∈ X (4.3)∑
j∈X

zj ≤ L (4.4)

xij, yi, zj ∈ {0, 1} ∀ i ∈ F, j ∈ X (4.5)

In this formulation, yi indicates whether facility i is open, zj indicates whether client

j is an outlier, and xij denotes whether client j is served by facility i. Constraints 4.1

and 4.3 ensure that each client is either assigned to an open facility or designated as an

outlier. Constraints 4.2 and 4.4 impose bounds on facility capacities and the total number

of outliers, respectively.

Next, we relax the integer constraints, allowing xij , yi, and zj to take values in the

continuous range [0, 1]. This results in the LP relaxation. We solve the LP to obtain

an optimal solution ρ∗ = ⟨x∗, y∗, z∗⟩. For any solution ρ = ⟨x, y, z⟩ to LP, we define

cost(ρ) as the cost of the solution.
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4.2.1 Identifying a Subset of Outliers (Step 1)

In this subsection, we discuss Step 1 of our algorithm where we identify a set of clients

that will be treated as outliers in our solution. The idea is to make a client an outlier if it

is an outlier to a large extent in the LP optimal solution, ρ∗. For a given 0 < ϵ < 1/2, we

divide our client set X into two sets,

(i) Xo = {j : z∗j ≥ 1− ϵ;∀j ∈ X} and,

(ii) Xr ← X \Xo.

We next create a solution, ρ̂ = ⟨x̂, ŷ, ẑ⟩ in which all the clients in Xo are made outliers to

the full extent. The assignments of the remaining clients (Xr) and the facility openings

remain the same. Formally,

(i) for j ∈ Xo, set ẑj = 1 and x̂ij = 0 ∀i ∈ F ,

(ii) for j ∈ Xr, set ẑj = z∗j and x̂ij = x∗ij ∀i ∈ F and,

(iii) ∀i ∈ F , set ŷi = y∗i .

Note that,
∑

j∈X ẑj ≤ ( 1
1−ϵ

)
∑

j∈X z
∗
j ≤ (1 + 2ϵ)t for ϵ ≤ 1/2. Also, cost(ρ̂) is

bounded by cost(ρ∗).

4.2.2 Obtaining Integrally Open Solution (Step 2)

In this subsection, we focus on Step 2 of our algorithm, that is, obtaining an integrally

open solution. A solution ⟨x, y, z⟩ is said to be an integrally open solution if each facility

is either fully opened or fully closed, that is, ∀i ∈ F , yi is 0 or 1. We obtain an integrally

open solution for the problem instance with the reduced client setXr of clients preserving

the extent to which the clients in Xr are served in step 1. Recall that the clients in our

reduced client set (Xr) need not be fully served; however,
∑

i∈F x̂ij > ϵ,∀j ∈ Xr.

To obtain an integrally open solution, we first sparsify the problem instance using

clustering techniques discussed in Section 4.2.2.1. The sparsified clusters are then

categorized into two types, each of which is handled separately in Section 4.2.2.2 and

Section 4.2.2.3, respectively.
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(a) (b)

(c)

Figure 4.1: (a) Balls around the clients in Xr. (b) Reduced set of clients X ′ = {j1, j4}, clusters (F) :

Fj1 = {i1, i2, i5}, Fj4 = {i3, i4} and assignment by LP solution. (c) ∆j1 =
∑

j∈Xr

(x̂i1j + x̂i2j + x̂i5j),

∆j4 =
∑

j∈Xr

(x̂i3j + x̂i4j).
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4.2.2.1 Sparsification and Clustering

We sparsify the problem instance by removing some clients from the client set Xr such

that clients that are retained are far from each other and clients that are removed are close

to one of the retained clients. This is done using the standard filtering and clustering

technique of Lin and Vitter (1992) and used in several previous works (2011; 2012;

2015a; 2018a).

Algorithm 4.1: Algorithm for Sparsification and Clustering.
Input :A fractional solution ρ̂, a parameter 2 ≤ ℓ ≤ 1/ϵ.

Output :Set of cluster centers (X ′) and clusters (F).

1 ∀j ∈ Xr, set Ĉj =
∑

i∈F x̂ijd(i,j)∑
i∈F x̂ij

// Average connection cost

2 X ′ ← ∅, Xtemp ← X

3 while Xtemp is not empty do

4 Pick j ∈ Xtemp with minimum ℓĈj value

5 Add j to X ′ and set rep(j) = j

6 for k ∈ Xtemp do

7 if d(j, k) ≤ 2ℓmax{Ĉj, Ĉk} then

8 remove k from Xtemp

9 set rep(k) = j

10 end

11 end

12 end

13 for j′ ∈ X ′ do

14 set Fj′ = {i ∈ F : j′ is nearest to i amongst all j′ ∈ X ′}

15 end

For j ∈ Xr, let Ĉj denote the average connection cost of j in ρ̂, i.e., Ĉj =
∑

i∈F x̂ijd(i,j)∑
i∈F x̂ij

.

Clients in Xr are considered in the non-decreasing order of ℓĈj , breaking the ties arbi-

trarily, where ℓ ≥ 2 is a tunable parameter. For a client j at hand, remove any client

k : d(j, k) ≤ 2ℓmax{Ĉj, Ĉk}; j is then called as the representative of k (i.e., rep(k) = j).
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Repeat the process with the remaining clients. Let X ′ be the set of clients remaining after

all the clients in Xr have been considered.

Clusters, of facilities, are formed around the clients in X ′ by assigning a facility to the

cluster of the nearest client in X ′, i.e. if, for j′ ∈ X ′, Fj′ denotes the cluster centered at

j′, then a facility i belongs to Fj′ if and only if j′ is the closest client in X ′ to i (breaking

the ties arbitrarily). The clients in X ′ are called the cluster centers. Refer to Figure 4.1

and Algorithm 4.1.

Lemma 4.1. (i) Any two cluster centers j′, k′ inX ′ satisfy: d(j′, k′) > 2ℓ max{Ĉj′ , Ĉk′},

(ii) let Bj′ be the set of facilities within a distance ℓĈj′ of j′, i.e., Bj′ = {i ∈

F : d(i, j′) ≤ ℓĈj′} then Bj′ ⊆ Fj′ ,

(iii) total extent up to which facilities in Bj′ , for any j′ ∈ X ′, are opened under ρ̂ is at

least ϵ/2, and

(iv) total extent up to which facilities in Fj′ , for any j′ ∈ X ′, are opened under ρ̂ is at

least (1− 1
ℓ
)2.

Proof. (i) Follows from step 7 of Algorithm 4.1.

(ii) Let i be a facility that belongs to Bj′ but not Fj′ . Note that, d(i, j′) ≤ ℓĈj′ by

definition of Bj′ . Since i /∈ Fj′ , there exist a cluster center k′ which is nearer to i as

compared to j′, that is, d(i, k′) ≤ d(i, j′) ≤ ℓĈj′ . By triangle inequality, d(j′, k′) ≤

d(j′, i) + d(i, k′) ≤ 2ℓĈj′ which is contradiction because for any two cluster centers j′

and k′, d(j′, k′) > 2ℓmax{Ĉj′ , Ĉk′} (from (i)).

(iii) Note that, in the weighted average ℓĈj′ , less than 1/ℓ of the total weight can be

given to values more than ℓĈj′ . That is,

∑
i:d(i,j′)>ℓĈj′

x̂ij′ <
1

ℓ

∑
i∈F

x̂ij′ .

This also implies, ∑
i:d(i,j′)≤ℓĈj′

x̂ij′ ≥
(
1− 1

ℓ

)∑
i∈F

x̂ij′ .
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From Constraints 4.3 of LP and definition of Bj′ , we have,

∑
i∈Bj′

ŷ ≥
∑

i:d(i,j′)≤ℓĈj′

x̂ij′ ≥
(
1− 1

ℓ

)∑
i∈F

x̂ij′ ≥
ϵ

2
.

where the last inequality follows because 1− 1
ℓ
≥ 1

2
for ℓ ≥ 2 and

∑
i∈F x̂ij′ ≥ ϵ.

(iv) The claim follows from (ii) and (iii).

For j ∈ Xr, j′ ∈ X ′, let ϕ(j, j′) be the extent up to which j is served by the facilities

in Fj′ . Let ∆j′ =
∑

j∈Xr
ϕ(j, j′), ∀j′ ∈ X ′.

A cluster is said to be small if ∆j′ ≤ u; otherwise, it is called big. Let XS = {j′ ∈

X ′ : ∆j′ ≤ u} and XB = X ′ \ XS .

4.2.2.2 Handling Small Clusters

In this subsection, we obtain integrally open solution for small clusters. For j′ ∈ XS ,

we open the cheapest facility, say ij′ , in Bj′ and close all the remaining facilities in the

cluster. All the assignments coming into the cluster is transferred onto ij′ . Note that

∆j′ ≤ u for all j′ ∈ XS; therefore, there is no violation in the capacity. The following

lemma bounds the service and facility opening costs.

Lemma 4.2. The facilities in small clusters are opened integrally at 2
ϵ

factor loss in

facility cost and 4(ℓ+ 1) factor loss in service cost.

Proof. • Facility Cost: Since the total opening in each cluster is ≥ ϵ
2
, the cost of

opening the cheapest facility is bounded by (2
ϵ

∑
i∈Fj′

fiŷi).

• Service Cost: Let j ∈ Xr, if j lies in the ball of j′ then ℓĈj′ ≤ 2ℓĈj (suppose if

possible ℓĈj′ > 2ℓĈj , then there exists a k′ such that d(j, k′) ≤ 2ℓĈj and hence

d(j′, k′) ≤ d(j′, j) + d(j, k′) ≤ ℓĈj′ + 2ℓĈj < 2ℓĈj′ which is a contradiction). Let

i ∈ Fj′ be a facility in Fj′ such that x̂ij > 0. Refer Figure 4.2. We have,
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d(ij′ , j) ≤ d(j′, j) + d(ij′ , j
′)

(using triangle inequality)

≤ d(j′, j) + ℓĈj′

≤ max{2d(j′, j), d(j, j′) + 2ℓĈj}

(since ℓĈj′ ≤ 2ℓĈj if j lies in the ball of j′and ≤ d(j′, j) otherwise)

= max{2(d(j′, i) + d(i, j)), (d(j′, i) + d(i, j)) + 2ℓĈj}

(using triangle inequality)

≤ max{2(d(k′, i) + d(i, j)), (d(k′, i) + d(i, j)) + 2ℓĈj}

(since i is nearest to j′ in X ′)

≤ max{2(d(k′, j) + d(j, i) + d(i, j)), (d(k′, j) + d(j, i) + d(i, j)) + 2ℓĈj}

(using triangle inequality)

≤ 4(ℓĈj + d(i, j))

Figure 4.2: Bound of service cost for small clusters. 1: d(ij′ , j) ≤ d(j′, j) + d(ij′ , j
′), 2: d(j′, j) ≤

d(j′, i) + d(i, j) and, 3: d(k′, i) ≤ d(k′, j) + d(j, i).(a) When j lies in the ball of j′. (b) When j lies

outside the ball of j′.
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4.2.2.3 Handling Big Clusters

In this subsection, we obtain integrally open solution for big clusters. To handle big

clusters, we first move the demand ∆j′ to j′. The cost of moving ∆j′ to j′ can be bounded

similarly to Lemma 4.3.

Lemma 4.3 (Grover et al. (2022)). For j′ ∈ X ′, the cost of moving ∆j′ to j′ is bounded

by 2(ℓ+ 1)cost(ρ̂).

Let us fix a j′ ∈ XB. We next solve the following LP to handle the big cluster

centered at j′.

Minimize CostCI(w) =
∑

i∈Fj′

(fi + ud(i, j′))wi

subject to u
∑

i∈Fj′

wi ≥ ∆j′ (4.6)

wi ∈ [0, 1] (4.7)

Note that wi =
∑

j∈Xr
x̂ij/u is a feasible solution with cost at most

∑
i∈Fj′

(
fŷi +

∑
j∈Xr

x̂ij(d(i, j) + 2ℓĈj)
)
.

A solution to a cluster instance is called an almost integral if it has at most one

fractionally opened facility. An almost integral solution w′ is obtained by arranging the

fractionally opened facilities in w in non-decreasing order of f + d(i, j′)u and greedily

transferring the openings w without increasing the cost of the solution. We obtain an

integrally open solution ŵ from the almost integral solution as follows: if the opening of

the fractionally opened facility, if any, is ≤ ϵ, we close it else we open it at (1/ϵ)-factor

loss in (facility) cost. ∆j′ is distributed equally to the facilities opened in the cluster. Let

n′ be the number of facilities opened in the cluster centered at j′. Note that, by constraint

(4.6), n′ ≥
⌊
∆j′

u

⌋
≥ ∆j′

(1+ϵ)u
. Therefore, we incur a loss of at most (1 + ϵ)-factor in

capacities and service cost.

By choosing ℓ = 2 and summing over all small and big clusters, we obtain an

integrally open solution that violates the capacities by a factor of (1 + ϵ) and is of cost

bounded by O(1/ϵ).
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Algorithm 4.2: Algorithm for CFLO with uniform capacities.
Input :An instance I of CFLO with uniform capacities, 0 < ϵ < 1/2

1 Solve LP.

2 Identify a subset of outliers such that violation in outliers ≤ (1 + ϵ)L.

3 Make clusters on remaining clients.

4 Open facilities integrally in small clusters.

5 Open facilities integrally in big clusters such that violation in capacities

≤ (1 + ϵ)u.

6 Solve min-cost flow with outliers to obtain integral assignments and identify

remaining outliers.

4.2.3 Time Complexity of the Algorithm

Recall that |X| = n and |F | = m. The algorithm involves solving a linear programming

problem with O(mn) variables, which takes O((mn)2.16) time (Cohen et al. (2021)).

Step 1 involves checking the value of a variable for each client, which takes O(n)

time. In Step 2, sparsification and clustering are performed in Algorithm 4.1, requiring

O(n2 + nm) time. Handling sparse clusters takes O(m) time while processing dense

clusters requires O(m logm+ n) time. Step 3 can be completed in O(mn(m+ n)) time,

given O(m+ n) nodes and O(mn) edges in the min-cost flow instance. As a result, the

overall time complexity of the algorithm is O((mn)2.16).
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Chapter 5

(3+ϵ) - FPT Approximation for CkMO1

5.1 Introduction

In this chapter, we study Capacitated k-Median with Outliers (CkMO) problems. We

start with a formal definition of CkMO problem. Recall that (P , d) denotes a metric

space where P is a finite set of points and d : P × P → R+ is a distance function

satisfying triangle inequality and symmetry.

Definition 5.1 (Capacitated k-Median with Outliers (CkMO)). We are given a set,

X ⊆ P , of n clients and a set, F ⊆ P of m facility locations. A facility i ∈ F has a

capacity u(i) ∈ N. We are also given bounds, k ≤ m and L ≤ n, on the number of

facilities and outliers permitted in a feasible solution. The objective is to find,

• a set F ⊆ F of facilities of size at most k,

• a set X ′ ⊆ X of outliers of size at most L,

• an assignment σ : (X \X ′)→ F respecting the capacities, i.e., for each facility

i ∈ F , |σ−1(i)| ≤ u(i)

such that the cost,
∑

j∈X\X′

d(j, σ(j)), is minimized.

1The results presented in this chapter appeared in Dabas et al. (2025)
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Note that CkMO generalizes CkM, and the polynomial-time approximability of the

latter itself remains open. Another direction of work in the field is to explore approaches

beyond polynomial-time approximations, aiming for FPT approximations. Adamczyk

et al. (2019) broke the barrier of constant-factor approximability in general metrics, by

designing (7 + ϵ) factor approximation for CkM that runs in time FPT in k and ϵ. This

was later improved by Cohen-Addad and Li (2019) to a (3+ ϵ)-approximation, in time in

FPT in k and ϵ. Inspired by this success of FPT approximations in the context of CkM,

we study FPT approximation for CkMO and present Theorem 1.5.

Theorem 1.5. [Informal] There exists a randomized approximation-preserving reduction

from CkMO to CkM that runs in time FPT in k, the number of outliers and ϵ, where the

underlying metric space remains unchanged and ϵ > 0 is a small constant.

By plugging in the best-known approximations for the CkM, we obtain Corollary 1.6.

Corollary 1.6. There exists a randomized algorithm that runs in time FPT in k, the num-

ber of outliers and ϵ where ϵ > 0 is a small constant and returns a (3 + ϵ) approximation

with high probability.

Coresets. Creating compact data representations that approximately maintain the cost

of solutions—commonly referred to as coresets—has been a key area of research for

many years. In the context of clustering, an α-coreset is the weighted subset of points that

preserves the clustering cost within α-relative error w.r.t. all possible feasible solutions.

Coresets for vanilla k-Median clustering have been extensively studied. We do not cover

the detailed literature for k-Median here, but it can be found in Cohen-Addad et al.

(2021).

Coresets for constrained clustering, specifically CkM, is a relatively new research

direction. Cohen-Addad and Li (2019) designed an ϵ-coreset of size poly(kϵ−1 log n),

en route to their (3 + ϵ)-approximation for CkM in FPT time. Recently, there has

been some work on the fair version of k-Median, where we impose upper- and lower-

bounds on the number of points of each color in each cluster. This version is known

to capture CkM with uniform capacities, and (2019; 2021; 2019) designed coresets for
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fair k-Median. All of these coreset results were recently improved and unified in a

recent result by Braverman et al. (2022), who gave a general framework via uniform

sampling. In an orthogonal direction, coresets for kMO have also been studied in the

literature, with the most recent developments being the construction of ϵ-coreset of size

poly((k + L)ϵ−1 log n) by Agrawal et al. (2023).

At first glance, it may appear that the capacity constraints are already powerful

enough to model outliers, i.e., one can obtain coresets for CkMO via the aforementioned

results for CkM, by reducing the L outliers to L extra clusters of unit capacity. However,

it is not clear whether each solution to the resulting CkM instance can be mapped back to

a solution to the original CkMO instance of (approximately) equal cost. Thus, we need

to handle outliers more carefully in order to obtain coresets for CkMO.

Parallel Independent Work. In a recent independent work Jaisal and Kumar (2023),

obtain similar results for constrained versions of k-MEDIAN/MEANS WITH OUTLIERS

for various constraints, including capacities. However, their techniques appear quite

different from ours and do not seem to yield coresets. As mentioned in Backurs et al.

(2019), using coresets not only saves storage space but can also accelerate the computation

time for clustering problems like fair clustering. Another advantage of having coresets

is that once the coresets are formed, they can be repeatedly used as a proxy for the full

dataset to compare the clustering performance under different fairness constraints or with

different capacities.

5.1.1 Organisation of the Chapter

The rest of the chapter is organised as follows. In Section 5.2, we provide a high-level

idea of our algorithm and compare it with existing related work. Section 5.3 presents

a detailed discussion of the algorithm for CkMO and an overview of the analysis. The

complete analysis is covered in Sections 5.4 and 5.5. We discuss the modifications

required to account for the facility opening costs in Section 5.6.
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5.2 High Level Idea and Comparison to Related Work

A starting point of our algorithm—like many other FPT approximations for k-Median

and variants ((2019; 2019; 2023))—is the elegant “ring sampling” approach of Chen

(2009). We start with a brief overview of this construction and subsequently discuss how

this is used in our reduction framework to handle capacities and outliers.

In this construction, the idea is to do random sampling for “compressing” the given

set of n clients into a “small” number of weighted clients that is a good approximation of

the original set2. Let us consider the simplest setting of k-Median without capacities or

outliers as Chen (2009). We start from a crude (constant factor) approximation F ⊆ F

for k-Median, and use it to partition the clients into concentric rings around the centers in

F . Here a ring is a subset of clients that are within a distance r and 2r from some i ∈ F ,

where we consider geometrically increasing radii r. Next, we take a uniform sample

of clients from each ring of large enough size and assign appropriate weight to each

sampled client. The resulting weighted sample has size O(k log n/ϵ)2). It can be shown

that the weighted clients in the sample approximately preserves the cost of clustering

w.r.t. any solution with high probability. This is shown using a Chernoff-Hoeffding

type concentration bound, which uses the following: even though the distance of each

weighted client in the sample is a random variable, all random variables lie in a bounded

interval due to triangle inequality. Precisely, for any solution F ⊆ F , and for any ring

R ⊆ X with radius r, the distances {d(j,F)}j∈R lie within an interval of length 2r.

Since the size of the sample is relatively small, it is used in Cohen-Addad et al.

(2019) for partial enumeration of a subset of approximate solutions for k-Median, which

leads to the FPT running time. Agrawal et al. (2023) argue that in the context of kMO,

by taking an even larger sample size (that now also depends on L), the concentration

bound is robust enough to handle outliers. In particular, they show that for each ring, the

concentration bound continues to hold even after ignoring the contribution of at most L

points that are farthest from the solution.

Cohen-Addad and Li (2019) extend the ring sampling approach to CkM, but the

2This notion can be formalized to define coresets. We omit a formal definition here.
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analysis is more intricate due to the following reason. Consider a particular ring R with

center c, and a hypothetical solution F ⊆ F of size k. For each ci ∈ F , let Xci denote

the subset of clients from R that are assigned to ci. Since we take a uniform sample from

each ring, in expectation, we maintain the relative proportions of |Xci |’s in the sample.

Therefore, in expectation, the sample maintains the cost as well as capacity constraints.

However, it is quite likely that we over- or under-sample clients from different Xci’s,

and we need to bound the cost of a feasible assignment of the weighted sample. To

this end, the authors Cohen-Addad and Li (2019) use an instance of the minimum cost

flow problem. They use the ring-center c to reroute flows between different over- and

under-sampled Xci’s, and the cost of rerouting can be bounded using a generalization of

the above argument involving triangle inequality.

Our sampling and analysis. Since we need to handle both capacities and outliers, we

need to be even more careful in our analysis. In a solution for CkMO, unlike CkM, not all

clients in a ring R may be assigned to facilities – some can be outliers. In the presence of

capacities, this issue cannot be handled by simply ignoring the contribution of L farthest

clients from F , unlike in kMO. The optimal choice of weighted outliers from R, in fact,

depends on the outcome of sampling outside R. Though, in expectation, we maintain

relative proportions of |Xci |’s and of outliers in R, we may over- or under-sample clients

from different Xci’s and over- or under-sample clients from the set of outliers. However,

we are able to decouple the analysis of under/over-sampling in each Xci from the analysis

of under/over-sampling in the set of outliers in R. At this point, the error incurred by

sampling from the subset of assigned clients can be bounded by essentially following the

argument from Cohen-Addad and Li (2019). Next, we bound the error incurred while

sampling from the set of outliers. Since we treat each ring independently in the analysis,

the subset of outliers from R is essentially arbitrary. To this end, we generalize the

argument from Agrawal et al. (2023), and prove that rerouting cost in case of over/under

sampling from the set of outliers is negligible for any set of weighted clients of weight at

most L, not just for those that are farthest from F . To bound the costs of rerouting, we

use the minimum cost flow problem with outliers (see Lemma 1.7).

In conclusion, we show that the ring sampling approach can be used to construct a
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weighted sample W of size O
(

(kL logn)2

ϵ3

)
that approximately preserves the CkMO cost

w.r.t. any feasible solution F ⊆ F of size at most k, with high probability (Lemma 5.2).

Next, we discuss how to use W to reduce CkMO to CkM. We enumerate all possible

subsets of W ′ ⊆ W of total weight L that corresponds to the set of outliers corresponding

to an optimal solution (F ∗, σ∗) for the given instance. Using the bound on |W |, it can be

easily argued that the number of such guesses is bounded by f(k, L, ϵ) · |IL|O(1). For each

such guess W ′ ⊆ W for outliers, we obtain an instance of weighted CkM by deleting W ′,

and it can be easily converted to unweighted CkM by creating multiple co-located copies

of each weighted client. For each such instance of CkM, we use a γ-approximation,

and we return the minimum-cost solution found over all guesses. Using Lemma 5.2, we

argue in Lemma 5.4 that in the iteration corresponding to the “correct” guess of W ′, a

γ-approximate solution for the CkM instance is, in fact, a (γ + ϵ)-approximation for the

original instance of CkMO. See Figure 5.1 for an overview of the algorithm.
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• t ≤ f(k,m, ϵ) · nO(1)

• A: γ-approximation algorithm for CkM

Figure 5.1: Overview of the Algorithm for CkMO.

5.3 Algorithm and Overview of Analysis

5.3.1 Preliminaries

Given an instance IL of CkMO and a set of facilities F ⊆ F , we define costL(X,F)

as the cost of optimal assignment with L outliers. If the sum of the capacities of the

facilities in F is less than n− L, then we call such a set F to be infeasible and define
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costL(X,F) = ∞. Note that, for a given feasible F , the set X ′ of outliers and the

assignment of clients to facilities can easily be determined by solving a minimum cost

flow with outliers problem (see Lemma 1.7). Hence, costL(X,F) can be computed for a

given F ⊆ F .

In this chapter, we will often have non-negative integer weights on clients. Essentially,

the weight on a client can be thought of as multiple co-located copies of a client. A

formal definition follows.

Definition 5.2. (WCkMO). The input is IL = ((P, d),W, F, k, u, L) where W ⊆ X ×N

is the set of pairs {(j, w(j)) : j ∈ X} and w : X → N is a weight function. The objective

now is to find a subset F ⊆ F of size at most k and an assignment σ : X ×F → N such

that:

(i) For each j ∈ X ,
∑

i∈F σ(j, i) ≤ w(j),

(ii) Total unassigned weight is at most L, i.e.,
∑

j∈X w(j)−
∑

j∈X,i∈F σ(j, i) ≤ L,

(iii) Assignment must respect capacity constraints for each i ∈ F , i.e.,
∑
j∈X

σ(j, i) ≤ ui,

and

(iv)
∑

j∈X,i∈F σ(j, i)d(j, i) is minimized.

Similar to CkMO, given an instance of WCkMO and a set of facilities F ⊆ F , we

define wcostL(W,F) as the cost of optimal assignment where the total unassigned weight

is at most L. If the sum of the capacities of the facilities in F is less than
∑

j∈X w(j)−L,

then we call such a set F to be infeasible and define wcostL(X,F) = ∞. Just like

CkMO, for a given feasible F , the assignment of clients to facilities for WCkMO can

also be easily determined by solving minimum cost flow problem with outliers. Hence,

wcostL(W,F) can be obtained for a given F ⊆ F .

5.3.2 The Algorithm

Given an instance IL = ((P, d), X, F, k, u, L) of CkMO, we first create an instance

Iw0 = ((P, d), X, F ∪X, k + L) of (k + L)-Median (un-capacitated) where we have a

facility co-located with every client in addition to the original set of facilities.
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Claim 5.1. Value of an optimal solution to Iw0 is bounded by the value of an optimal

solution to IL, that is, OPT(Iw0 ) ≤ OPT(IL).

Proof. Let (F , X ′, σ) be the optimal solution for instance IL with value OPT(IL). A

solution for instance Iw0 can be created as follows: open a facility that is co-located with

each outlier point in X ′ along with set F . Assign the outliers to the co-located facilities.

Note that this can be done without incurring any additional cost. Remaining clients are

served from where they were getting served in the solution of instance IL at the same cost.

Hence, we have a feasible solution for the instance Iw0 of cost no larger than OPT(IL)

and OPT(Iw0 ) can only be lesser than this. Therefore the claim follows.

Now, the instance Iw0 is solved using any polynomial time algorithm (say Gowda et

al. (2023)) to obtain a constant (ζ) factor approximation. Let Fζ be the set of facilities

opened by the algorithm. Note that kζ = |Fζ | ≤ k + L and

cost0(X,Fζ) ≤ ζ · OPT(Iw0 ) ≤ ζ · OPT(IL) (5.1)

For every facility i ∈ Fζ , let Xi ⊆ X be the clients assigned to i by the algorithm. Note

that the sets Xi are disjoint. Let Ball(i,R) ⊆ Xi denote the ball of radiusR consisting

of clients, in Xi, within distanceR from i. Let R =
cost0(X,Fζ)

ζn
, and ψ = ⌈log(ζn)⌉.

Henceforth, we fix 0 < ϵ < 1 to be a small enough constant that determines the

quality of the approximation. For a facility i ∈ Fζ and set Xi, we further partition Xi

into smaller sets called as rings such that points in each ring have similar distances to i,

i.e.,

Xi,t =

Ball(i, R), if t = 0.

Ball(i, 2tR) \ Ball(i, 2t−1R), if 1 ≤ t ≤ ψ.

(5.2)

Let s = aζ2

ϵ3
(L + k lnn) where a is a large enough constant. We sample weighted

points W i from Xi as follows: for every set Xi,t ⊆ Xi, if |Xi,t| ≤ s then for every

client j ∈ Xi,t, add (j, 1) to W i. Else, sample s random clients in Si,t ⊆ Xi,t without

replacement. For every client j ∈ Si,t, add (j,
|Xi,t|

s
) to W i. See Figure 5.2.

Applying the above procedure on every cluster i ∈ Fζ , we get W = ∪i∈Fζ
W i as the

weighted set of points. As the number of rings is log n and the number of points in each
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Figure 5.2: An illustration of the formation of rings and sampling from each ring. Black squares represent

the cluster centers. Three rings of radius R, 2R, 4R are represented in green, pink and orange color

respectively. Dots/small circles represent the points in the ring. Small blue circles represent the non-outlier

sampled points, whereas red points (marked crossed) represent the guessed points that will become outliers.

We further guess the weight for each of these points that will be the outlier.

ring is at most aζ2

ϵ3
(L+k lnn), the total number of weighted points, |W | = O

(
(kL logn)2

ϵ3

)
as a and ζ are constants. Without loss of generality, we assume the weights are integral,

by a slight modification of the construction, which can increase the number of points in

W by at most a factor of 2. See, Chen (2009) or Agrawal et al. (2023) for details.

Our key technical contribution is to show the following lemma (Lemma 5.2), which

states that for all feasible sets F ⊆ F , the cost of assignment of the weighted sample to

F , after excluding outliers with total weight L, is close to the cost of assigning original

set of clients, after excluding L outliers from F . This is precisely the definition of ϵ-

coresets, which have been extensively studied, especially in the context of (uncapacitated)

k-Median (see Cohen-Addad et al. (2021) and references therein). Thus, Lemma 5.2

implies the existence of small-sized coreset that handles both capacities and outlier

constraints; however, unlike the coreset literature, in this work, our focus is not on

optimizing the size of the coreset. The proof of the lemma is deferred to Section 5.4 and
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Section 5.5 for ease of understanding.

Lemma 5.2. For all feasible sets F ⊆ F of size k, |wcostL(W,F) − costL(X,F)| ≤

ϵcostL(X,F) with probability at least 1− 1/n.

Assuming Lemma 5.2 holds, let us return to our algorithm to see how it can be

used to reduce CkMO to CkM. Recall that W is the set of weighted clients returned

by our sampling algorithm and let S be the set of clients (i.e., the set of first elements

from each pair (j, w(j)) ∈ W , denoting a weighted client). For any subset T ⊆ S,

let w(T ) =
∑

jx∈T w(jx). The algorithm then proceeds as follows: we iterate over

each guess T ⊆ S of size at most L. First, we check whether w(T ) ≥ L – if not,

we continue to the next guess. Now, suppose w(T ) ≥ L. Then, let us order the

points in T as j1, j2, . . . , jL′ , where L′ = |T |. For each jx ∈ T , we guess an integer

0 < v(jx) ≤ min {L,w(jx)}, such that
∑

jx∈T v(jx) = L. Note that the number of

guesses is at most LL. Now, fix one such guess v = (v(j1), v(j2), . . . , v(j
′
L)). Now, we

define a new weight function wT,v : S → N as follows.

wT,v(j) =

w(j) if j ̸∈ T

w(jx)− z(jx) if j = jx ∈ T

Let WT,v = {(j, wT,v(j)) : j ∈ S} denote the resulting set of weighted points, where

the set of points is the same as that in W , but the weight function is wT,v instead of

w. Now, the algorithm uses a γ-approximation algorithm for the WCkM3 instance

Iw0 = ((P, d),WT,v, F, k, L
′ := 0) to find an F ⊆ F of size at most k and an assignment

σ : X × F → N satisfying the first three properties in Definition 5.2. Then, we use

min cost flow with outliers to compute the optimal assignment cost from X to F with L

outliers, and the corresponding assignment σ. Finally, the algorithm returns a solution

(F∗, σ∗) of the minimum cost, over all guesses (i.e., guesses for T as well as v).

3Existing γ-approximation algorithms for unweighted CkM can be used to solve weighted instances by

creating multiple co-located copies of each weighted client.
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5.3.3 Analysis Overview

First, in Lemma 5.3, we analyze the running time of the algorithm, and then in Lemma 5.4,

we analyze the approximation guarantee.

Lemma 5.3. Let T (|I ′|, k′) denote the running time of the γ-approximation used to solve

an instance I ′ of CAPACITATED k′-MEDIAN. Then, the running time of our algorithm is

upper bounded by f(k, L, ϵ) · T (|IL|, k) · |IL|O(1).

Proof. Note that construction of the set W takes polynomial time since we use ζ-

approximation for k + L-MEDIAN as a starting point. Next, we bound the total number

of guesses tried by the algorithm. First, we guess a subset T ⊆ W of size at most L,

which takes time
(|W |

L

)
≤

(
kL logn

ϵ

)O(L)
, which can be upper bounded by

(
kL
ϵ

)O(L) · nO(1)

via a standard case analysis on whether L ≤ logn
log logn

. Next, for each such guess T , the

algorithm guesses the vector v = (v(p1), v(p2), . . . , v(pL′)). As remarked earlier, the

number of such guesses is upper bounded by LL. Finally, for each such guess, we use

a γ-approximation for CkM, which takes time T (|IL|, k), and for the solution F ⊆ F

returned by the algorithm, we use min cost flow with outliers to compute the cost w.r.t.

the original set X which runs in polynomial time due to Lemma 1.7. Thus, the claimed

bound on the running time follows.

Lemma 5.4. Let F∗ ⊆ F be the set of at most k facilities returned by the algorithm.

Then, with probability at least 1− 1/n, it holds that for any feasible set F ⊆ F of size at

most k,

costL(X,F∗) ≤ γ · 1 + ϵ

1− ϵ
· costL(X,F).

Proof. The statement in Lemma 5.2 holds with probability at least 1−1/n. We condition

on this good event and show that the current lemma holds (with probability 1). Fix

a feasible set F ⊆ F of size at most k, as in the statement of the lemma. Then, by

Lemma 5.2, we have the following inequality:

(1− ϵ) · costL(X,F) ≤ wcostL(W,F) ≤ (1 + ϵ) · costL(X,F). (5.3)

Now, consider the assignment σ realizing wcostL(W,F), and let T ⊆ S be the set of

clients j, such that
∑

i∈F σ(j, i) < w(j). Note that v(j) := w(j) −
∑

i∈F σ(j, i) is an
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integer for every j ∈ S. Let v = (v(j1), v(j2), . . . , v(j
′
L)), where T = {j1, j2, . . . , jL′}

is indexed arbitrarily.

It is easy to verify that (T,v) as defined here, satisfy the conditions of a “guess” as in

the algorithm. Thus, consider the iteration of the algorithm corresponding to T and v.

It follows that wcostL(W,F) = wcost0(WT,v,F). Let F ′ ⊆ F be the γ-approximation

found for the WCkM instance Iw0 = ((P, d),WT,v, F, k, 0) in this iteration. It follows

that,

wcostL(W,F ′) = wcost0(WT,v,F ′) ≤ γ · OPT(IL) ≤ γ · wcost0(WT,v,F) (5.4)

Here, OPT(IL) denotes the cost of an optimal solution for the CkMO instance IL, and

sinceF is a feasible set of at most k facilities, the inequality OPT(IL) ≤ wcost0(WT,v,F)

follows.

Now, again from Lemma 5.2, we have the following inequality

(1− ϵ) · costL(X,F ′) ≤ wcostL(W,F ′) ≤ (1 + ϵ) · costL(X,F ′) (5.5)

Finally, F∗ ⊆ F is the best solution found over all iterations, it follows that

costL(X,F∗) ≤ costL(X,F ′) ≤ 1

1− ϵ
· γ · wcost0(WT,v,F) (From (5.4) and (5.5)

=
1

1− ϵ
· γ · wcostL(W,F) (By definition of T,v)

≤ γ · 1 + ϵ

1− ϵ
· costL(X,F). (From (5.3))

Lemma 5.3 and Lemma 5.4 together yield a proof of the following theorem, which is

the formal version of Theorem 1.5.

Theorem 5.5. Given a γ-approximation for CAPACITATED k′-MEDIAN that runs in

time T (|I ′|, k′) on an input instance I ′, we give a randomized algorithm that runs in

time f(k, L, ϵ) · T (|IL|, k) · |IL|O(1) for an instance IL of CkMO and achieves (γ + ϵ)-

approximation with high probability.

To complete the proof of Theorem 5.5, it remains to prove Lemma 5.2. First, in

Section 5.4, we prove Lemma 5.2 in a special case. Then, in Section 5.5, we show how

this analysis can be extended to the more general case.
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5.4 Single Ring Case

In this section, we will prove a version of Lemma 5.2 in the following special case that

already illustrates most of the technical details, which will be later used to prove the

more general case.

Lemma 4

Lemma 5 Lemma 6

part (i) part (ii)

Claim 3 Lemma 7

|g(X)− E[g(X)]| ≤ ϵNRj/2

g(E[X]) ≤ E[g(X)]

|wcostm(W,F )− costm(C,F )| ≤ ϵλ2NRj

|E[g(X)]− g(E[X])| ≤ ϵNRj

E[g(X)] ≤ g(E[X]) + ϵλ2NRj

g(X) ≤ g(E[X]) + nNRj g(X) ≤ g(E[X]) + ϵλ2NRj

Figure 5.3: Relationship among different lemmas and claims that culminate in the proof of Lemma 5.6.

The green-colored rectangles contain the parts of the proof that are significantly different from similar

previous work in the literature.

Consider an arbitrary ring Xi,t, in a cluster Xi centered at a facility i ∈ Fζ , that will

remain fixed throughout this section. We assume that the algorithm performs sampling

only inside Xi,j; whereas all the clients in rings different from Xi,t are all included into

W with weight 1. Note that this case can occur in the actual algorithm if all rings other

than Xi,t contain fewer than s points. For simplicity of notation, let Rt = 2tR be the

radius of this ring and let Xt = Xi,t be the set of clients in the ring. Let N = |Xt| be the

number of clients in the ring. Let W = ∪iW i be the weighted clients returned by our

algorithm. In the remaining section, we will prove the Lemma 5.6. We refer the reader to

Figure 5.3 for an overview of how different lemmas are related to each other to yield the

proof of Lemma 5.6.

Lemma 5.6. For any feasible F ⊆ F of size k, |wcostL(W,F) − costL(X,F)| ≤

ϵλ2NRt with probability 1− n−(k+λ1) where λ1 and λ2 are constants.

As stated in the lemma, we fix a feasible set F ⊆ F . For the rest of the section,

we will assume N > s = O
(
kL logn

ϵ3

)
, because otherwise the sampling does not change
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anything (recall that all clients outside Xi,t already belong to W with weight 1). For

our analysis, we will define a random vector X and a function g such that g(X) and

wcostL(W,F) are identically distributed.

Defining X: a random vector X ∈ RN
+ is defined as follows: for each coordinate

pick value N/s with probability s/N and 0 otherwise such that E[X] = 1. One can show

that with sufficient probability, this sampling scheme selects exactly s points using the

Claim 5.7.

Claim 5.7 (Cohen-Addad and Li (2019)). Let b be a positive integer, and let p ∈ (0, 1)

such that pb is an integer. The probability that Binomial(b, p)= pb is Ω(1/
√
b).

Setting b = N and p = s/N in Claim 5.7, it follows that X has exactlyN ·(s/N) = s

non-zero entries with probability Ω(1/
√
N). Conditioned on this event, then, X and W

are identically distributed, i.e., the X represents the outcome of our sampling algorithm.

In the rest of the section, we analyze the unconditioned behavior of X, and show that the

desired concentration (as in Lemma 5.6) holds with high probability. Then, a standard

argument shows that Lemma 5.6 also holds with high probability, even when we condition

on the event that X has exactly s non-zero entries.

Defining Function g: to define g, we first create an instance of min cost flow with

outliers. Given a vector v of size N where each entry in v corresponds to a client in Xt,

a flow instance FI(v) is created as follows: every client j ∈ Xt has vj units of demand,

every client in X \Xt has 1 unit of demand, cluster center i has N −
∑

j∈Xt
vj (possibly

negative4) demand. Every facility i′ ∈ F has ui′ units of supply. The number of outliers

is L. For v ∈ RN
+ , let g(v) denote the cost of optimal flow of FI(v). The flow instance

we defined is feasible because the sum of demands is |X| = n and the number of outliers

is L, making the demand to be served to be n− L which is feasible by assumption on F .

Note that, g(E[X]) = g(1) is exactly costL(X,F). Also, g(X) and wcostL(W,F) are

identically distributed. Now, we will prove Lemma 5.6 in two steps: (i) g(X) ≈ E(g(X))

with high probability (proven in Lemma 5.8) and (ii) E(g(X)) ≈ g(E[X]) (proven in

Lemma 5.10).
4Negative demand d at a vertex v requires that d units of flow must enter v, whereas a positive demand

requires that the specified units of demand must exit the vertex.
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Lemma 5.8. |g(X)− E[g(X)]| ≤ ϵNRt/2 with probability ≥ 1− n−(k+c).

Proof. We will first show that g(X) is Rt-Lipschitz with respect to the ℓ1 distance in

RN
+ and then apply standard martingles tools to prove that g(X) is concentrated around

its mean. To prove g(X) is Rt-Lipschitz, fix a client j ∈ Xt, and consider two vectors

v, v′ ∈ RN
+ with v′ = v + δ · 1j . Note that the flow instance v is the same as the flow

instance of v′ except the latter has δ more demand at client j and δ less demand at cluster

center i.

We will first construct a feasible flow for FI(v′) from optimal flow ϕ of FI(v) as

follows: create a dummy facility df with L units of supply and connect it to all the

demand points by introducing edges with cost 0. For every demand point, the amount

of demand that was outlier in ϕ of FI(v) is sent to df at 0 cost. To construct a feasible

flow for v′, add δ units of flow from j to i. Make all the demand coming on to df facility

outlier. It is easy to see that the resulting flow is a feasible flow for v′, and the cost of

solution increases by at most δRt. Therefore, g(v′) ≤ g(v) + δRt.

We next construct a feasible flow for FI(v) from optimal flow ϕ of FI(v′) in a

similar way: create a dummy facility df with L units of supply and connect it to all the

demand points by introducing edges with cost 0. For every demand point, the amount

of demand that was outlier in ϕ of FI(v′) is sent to df at 0 cost. To construct feasible

flow for v, add δ units of flow from i to j. Make all the demand coming on to df facility

outlier. Again it is easy to see that this is a feasible flow for v and the cost of solution

increases by at most δRt. Therefore, g(v) ≤ g(v′) + δRt.

The proof now follows in a similar way as done in Cohen-Addad and Li (2019), that

is, the desired bound is obtained by applying the Chernoff bound for Lipschitz functions

(stated in the following Proposition 5.9).

Proposition 5.9 (Cohen-Addad and Li (2019)). Let x1, . . . , xn be independent random

variables taking value b with probability p and value 0 with probability 1 − p, and let

g : [0, 1]n → R be a L-Lipschitz function in ℓ1 norm. Define X := (x1, . . . , xn) and

µ := E[g(X)]. Then, for 0 ≤ ϵ ≤ 1, Pr[|g(X)− E[g(X)|] ≥ ϵpnbL] ≤ 2e−ϵ2pn/3.

We apply Proposition 5.9 on function g with X := X, p := s/N , n := N , b := 1/p,
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and L := Rt to obtain the following:

Pr[|g(X)− E[g(X)]| ≥ (ϵ/2)NRt] = Pr[|g(X)− E[g(X)|] ≥ (ϵ/2)pnbL]

≤ 2 · exp
(
−(ϵ/2)2pn

3

)
= 2 · exp

(
−(ϵ/2)2(s/N)N

3

)
= exp

(
−Θ

(
ϵ2s

))
= exp

(
−Θ

(
ϵ2 · L+ k log n

ϵ2

))
≤ n−(k+λ1)

(5.6)

where the last equality follows by definition of s and λ1 is a constant in last inequality.

This concludes the proof of Lemma 5.8.

Lemma 5.10. |E[g(X)]− g(E[X])| ≤ ϵλ2NRt where λ2 is a constant.

Proof. We prove this in two parts (i) g(E[X]) ≤ E[g(X)] (proven in Section 5.4.1), and

(ii) E[g(X)] ≤ g(E[X]) + ϵλ2NRt (proven in Section 5.4.2).

Lemma 5.6 follows by adding Lemma 5.8 and Lemma 5.10 and modifying λ2 ←

λ2 + 1/2.

5.4.1 Proof of Lemma 5.10, part (i) g(E[X]) ≤ E[g(X)]

To prove, g(E[X]) ≤ E[g(X)], we construct a feasible solution for FI(E[X]) of cost no

more than E[g(X)]. Since the min-cost flow can only be lower, we get the desired result.

Let the outcomes of vector X be v(1),v(2), . . ., with probability p(1), p(2), . . . respec-

tively. We have, E[g(X)] =
∑

x p
(x)g(vx). Let ϕi be the flow obtained for FI(v(x)). Now,

consider the flow ϕ obtained by summing up over x, ϕ(x) scaled by p(x). Observe that the

cost of ϕ is at most
∑

x p
(x)g(v(x)), which is = E[g(X)].

Next, we will show that ϕ is a feasible flow for FI(
∑

x p
(x)v(x)) = FI(E(X)). For a

client j, let y(j,x) be the demand in FI(v(x)) and let oj,x be the demand that is left as outlier,

i.e., (y(j,x) − o(j,x)) demand is satisfied in ϕ(x). Therefore, in ϕ, total
∑

j∈X
∑

x p
(x) ·
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(y(j,x) − o(j,x)) demand is satisfied. And,
∑

j∈X
∑

x p
(x) · (y(j,x) − o(j,x)) =

∑
x p

(x) ·∑
j∈X(y

(j,x) − o(j,x)) =
∑

x p
(x)(|X| − L) = |X| − L. The second last equality follows

as ϕ(x) is a feasible flow of FI(v(x)) and the last equality follows because the sum of

probabilities is 1.

Next, we show that the capacities are respected on every facility in flow ϕ. For any

facility i ∈ F , let i(x) be the total flow coming onto i in ϕ(x). Therefore, total flow

coming into i in ϕ is
∑

x j
(x)p(x) ≤ (

∑
x p

(x)) ·maxx i
(x) = maxx i

(x), which is at most

the capacity of i as ϕ∗ is a feasible flow of FI(v(x)).

5.4.2 Proof of Lemma 5.10, part (ii) E[g(X)] ≤ g(E[X]) + ϵλ2NRt

To prove this we first prove Claim 5.11 followed by Lemma 5.12.

Claim 5.11. With probability 1, g(X) ≤ g(E[X]) + nNRt.

Proof. The value of g(X) lies in an interval of length N/s · N · Rt ≤ N2Rt because

X ∈ [0, N/s]N and function g is Rt-Lipschitz. g(E[X]) also lies in the same interval

because E[X] = 1 ∈ [0, N/s]N . Therefore, the claim follows.

Lemma 5.12. With probability 1 − n−10, g(X) ≤ g(E[X]) + ϵλ2NRt where λ2 is a

constant.

Proof. To prove this, we construct a feasible flow ϕ for FI(X) from the min cost flow

with outliers of FI(1) such that cost of flow ϕ is bounded by g(E[X]) + ϵλ2NRt (see

Figure 5.4) for an illustration.

Consider the optimal min-cost flow with outliers ϕ′ of FI(1). Let o be the set of

clients that are made outliers in this flow. Note that, |o| ≤ L. Create a dummy facility df

and connect it to all the clients in o at 0 cost. For every client j ∈ o, add 1 unit of flow

from j to df in ϕ′. Also, set the cost from ring center i′, to df as 0.

For all the clients that are not in Xt, we route their 1 unit of demand in the same way

as in ϕ′. We are left with demands in Xt and the extra N −
∑

j∈Xt
vj demand at the ring

center i′.

85



f1 df

f2

f3

CoC
f1
j

C
f2
j

C
f3
j

f ′

Figure 5.4: Illustration of flow rerouting to create a feasible flow ϕ for FI(X) from the optimal flow ϕ′ of

FI(1). f ′ is the cluster center, f1, f2, f3 are three other facilities. df is the dummy facility to which outlier

flow is directed at 0 cost. Dashed lines represent the 0 cost edges added for rerouting. Blue and red circles

represent the sampled points from non-outlier and outlier flow in ϕ′, respectively. Let N/s be 4. Sf1 and

Sf3 are under-sampled whereas Sf2 and Sdf are over-sampled. Green circles represent the sub-sample

picked from the over-sampled points.

For every facility i ∈ F ∪ df , let X i
t ⊆ Xt be the set of clients served by i in ϕ′ and

let Si ⊆ X i
t be the sampled clients in X i

t . If Si is under-sampled, i.e., |Si| · N
s
≤ |X i

t |,

then in ϕ we route :

(i) N
s

units of flow from every j ∈ Si to facility i and,

(ii) send |X i
t | − |Si| · N

s
units of flow from ring center i′ to facility i.

Whereas if Si is over-sampled, i.e., |Si| · N
s
> |X i

t |, then we first pick a sub sample

randomly from Si, say Si
s of size ⌊|X i

t | · s
N
⌋. Now in ϕ we route:

(i) N
s

units of flow from every j ∈ Si
s to facility i,

(ii) send |X i
t | − |Si

s| · Ns units of flow from ring center i′ to facility i and,
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(iii) N
s

units of flow from every j ∈ Si \ Si
s to ring center i′.

Observe that the total amount of incoming flow on df is |o| ≤ L. Make all the

demand coming on to df outlier in ϕ. It can be easily verified that the resulting flow ϕ is

a feasible flow, for instance FI(X).

The cost of flow of the clients in Xt \ o is same as in Cohen-Addad and Li (2019) as

stated in following lemma:

Lemma 5.13 (Cohen-Addad and Li (2019)). With probability at least 1− n−10, the cost

of clients in Xt \ o in flow ϕ is bounded by
∑

i∈F\df

∑
j∈Xi

t\o

d(j, i) + 0.48ϵNRt.

Now, for clients in o, the cost paid from client to df or from ring center to df is 0.

Therefore, the only additional cost we paid is from a client j ∈ o to the ring center i′

which is at most Rt. Since |o| ≤ L, the total additional cost is at most L ·Rt ≤ ϵ
λ2
N ·Rt,

where λ2 is a constant. Adding this to Lemma 5.13, we obtain a total cost of, at most,

∑
i∈F

∑
j∈Xt

d(j, i) + 0.48ϵNRt + ϵλ2NRt. (5.7)

Modifying constant λ2 := 0.48 + λ2 gives us Lemma 5.12.

From Claim 5.11 and Lemma 5.12, we have

E[g(X)] ≤ n−10 · (g(E[X]) + nNRt) + (1− n−10)(g(E[X]) + λ2ϵNRt)

= g(E[X]) + (n−10 · n+ (1− n−10) · ϵλ2)NRt

≤ g(E[X]) + (n−9 + ϵλ2)NRt,

≤ g(E[X]) + 2ϵλ2NRt,

(5.8)

where we use the assumption that ϵ > 0 is a constant, and hence ϵλ2 ≥ n−9. By

redefining λ2 := 2λ2, this finishes the proof that E[g(X)] ≤ g(E[X]) + ϵλ2NRt.

5.5 Analysis of Multiple Rings Case

The argument from Section 5.4 can be generalized to handle the more general situation,

where we perform sampling in multiple rings. At a high level, the strategy is similar to
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(2019), in that we process the rings in an arbitrary order, and while analyzing the error

incurred by sampling in a particular ring, we condition on a fixed outcome of sampling

in the rings that occur prior to the current ring; and this situation is, in spirit, similar to

the single ring case as in Section 5.4. We show that this error is small when conditioned

on the prior outcomes, with high probability. Finally, by taking a union bound over all

rings, the overall error is shown to be small with high probability. We next formalize this

notion of conditional expectations which completes a formal proof of Lemma 5.2.

Consider the rings in any arbitrary order σ. For any two rings Xi,t and Xi′,t′ , we say

(i, t) < (i′, t′) if Xi′,t′ comes after Xi,t in σ. Fix a ring Xi,t. Now we define a function gi,t

for each ring similar to the function g defined in Section 5.4. As done in Section 5.4, to

define gi,t, we first create an instance FI(Y) of min cost flow with outliers corresponding

to a vector Y of size n. To create this instance, we define a random vector X ∈ R|Xi,t|
+

where each coordinate pick value |Xi,t|
s

with probability s
|Xi,t| and 0 otherwise. In FI(Y),

every client j ∈ Xi,t has Xj demand and the cluster center i has |Xi,t| −
∑

j∈Xi,t
Xj

demand. But, as we consider the sample from the other rings too, gi,t will also depend

on these samples. Suppose we fix samples Si′,t′ for every ring Xi′,t′ , (i′, t′) ̸= (i, t). In

FI(Y), set demand |Xi′,t′ |
s

at each client j ∈ Si′,t′ . gi,t(Y) is the optimal cost of FI(Y).

Let ESi′,t′ :(i
′,t′)>(i,t)[gi,t(Y)|Si′,t′ : (i

′, t′) < (i, t)] or in short E>(i,t)[gi,t(Y)] be the

expectation of gi,t over all samples Si′,t′ for (i′, t′) > (i, t) given fixed samples Si′,t′ for

all (i′, t′) < (i, t). Similarly, define ESi′,t′ :(i
′,t′)≥(i,t)[gi,t(Y)|Si′,t′ : (i

′, t′) < (i, t)] or in

short E≥(i,t)[gi,t(Y)] be the expectation of gi,t over all samples Si′,t′ for (i′, t′) ≥ (i, t)

given fixed samples Si′,t′ for all (i′, t′) < (i, t).

Let (i1, t1) and (il, tl) be the indexes of the first and last rings in this order, respectively.

Then, E≥(i1,i1)[gi,t(Y)] = costL(X,F), and E>(il,tl)[gi,t(Y)] = wcostL(W,F).

With these definitions, we get the following lemma analogous to Lemma 5.8 and

Lemma 5.10 (combined) in the single ring case.

Lemma 5.14. With probability at least 1− n−(k+λ1), for any ring Xi,t, |E>(i,t)[gi,t(Y)]−

E≥(i,t)[gi,t(Y)]| ≤ ϵλ2|Xi,t|Rt whereRt is the radius of ringXi,t and λ1, λ2 are constants.

Combining over all rings and using respective definitions of E>(f,j)[wcostL(W,F )]
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and E≥(f,j)[wcostL(W,F )], we get the following lemma:

Lemma 5.15. For any feasibleF ⊆ F , |E>(i,t)[wcostL(W,F)]−E≥(i,t)[wcostL(W,F)]| ≤

ϵλ2|Xi,t|Rt with probability 1− n−(k+λ1).

We take union bound over all possible sets of feasible solutions, which gives that

inequality in Lemma 5.15 fails with probability ≤ n−c and hence the lemma holds with

high probability. Now consider the process of going through all the rings Xi,t according

to σ. Applying Lemma 5.15 on all O((k + L) log n) ≤ n2 rings conditioned on the

choices of Si′,t′ for (i′, t′) < (i, t). We get the following with high probability,

|wcostL(W,F)− E[wcostL(W,F)]| ≤
∑
(i,t)

ϵλ2|Xi,t|Rt

= 2ϵλ2 ·
∑
(i,t)

|Xi,j| ·Rt/2

≤ 2ϵλ2 · cost0(X,Fζ)

≤ 2ϵλ2 · ζ · OPT(I)

≤ O(ϵ)costm(C,F),

(5.9)

where the second last inequality follows from Equation (5.1). Note that, E[wcostL(W,F)] =

costL(X,F). Therefore, scaling down ϵ by a constant factor to get ϵ · costL(X,F) from

O(ϵ)costL(X,F) gives us Lemma 5.2.

5.6 Proof of Theorem 1.4

In this section, we explore the possibility of obtaining FPT approximation solution for

CFLO. While a natural candidate for the FPT parameter is the number of outliers, it is

not immediately clear whether an FPT approximation can be achieved based solely on

this parameter. However, if the number of facilities in the optimal solution is known,

it becomes possible to design an FPT algorithm that is parameterized by the number

of outliers and the solution size. Since the optimal number of facilities is generally

unknown, we adopt the standard approach of including a bound, k, on the solution size
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as part of the input. This transforms the problem into a generalization, called CkFLO,

which combines aspects of both CFLO and CkMO. In particular, we prove Theorem 1.4.

Theorem 1.4. There exists a (3 + ϵ) approximation for CkFLO that runs in time FPT in

k, the number of outliers and ϵ where ϵ > 0 is a small constant.

Our reduction from CkMO to CkM also works in the presence of opening costs –

indeed, the weighted sample W approximately preserves distances w.r.t. all sets F ⊆ F

w.h.p., and the opening costs of the facilities are unaffected by the sampling process.

Thus, Theorem 1.5, which gives a reduction from CkMO to CkM, in fact, generalizes

to give an FPT reduction from CkFLO to CkFL. We also observe that the (3 + ϵ) FPT

approximation for CkM from Cohen et al. (2019) can be easily adapted for CkFL – in

the enumeration part, one also has to guess the opening cost of the closest facility to

each “leader” up to a factor of (1 + ϵ). Therefore, we obtain (3 + ϵ)-approximation for

CkFLO.
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Chapter 6

Conclusion

This thesis presented several approximation algorithms for facility location problems,

with a particular focus on generalizations of the capacitated facility location and facility

location with outliers problems. These problems combine the challenges of handling

capacity constraints and the flexibility to exclude certain clients.

We first studied the capacitated facility location with outliers (CFLO) problem. In the

case of uniform facility costs, a novel (6.373 + ϵ)-factor approximation algorithm was

developed using a two-operation local search approach. To the best of our knowledge,

this is the first approximation algorithm for the problem. Additionally, we presented a

(3.733 + ϵ)-factor approximation for the non-outlier variant of the problem which is also

the current best approximation for the capacitated facility location with uniform facility

costs.

For non-uniform facility costs, we conjectured that the locality gap for (uncapacitated)

facility location with outliers is unbounded, even with constant factor violation in outliers.

To support this conjecture, we provided an example where escaping the unbounded

locality gap involves solving another instance of facility location with outliers problem.

The locality gap example illustrates that obtaining a constant-factor approximation

is challenging for CFLO even for uniform capacities despite allowing violations in

capacities and outliers using the local search technique. We, therefore, used LP-based

algorithms for CFLO with uniform capacities. We made some progress by presenting a

tri-criteria approximation based on rounding the solution to the standard LP relaxation.
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Specifically, we provide an O(1/ϵ2)-factor approximation, with (1 + ϵ)-factor violations

in both capacity and outlier constraints. These violations are inevitable because both CFL

and FLO have unbounded integrality gaps for standard LP formulations. Furthermore, the

tri-criteria approach could be useful in the future for eliminating violations in capacities,

outliers, or both.

Note that, when the facility opening costs are uniform, the algorithm in Chapter 4 can

be modified to get rid of violations in capacities. Although the overall result is weaker

compared to the result in Chapter 3, it remains noteworthy because it is derived using a

straightforward LP-rounding approach and hence may be useful in integration with other

LP-based algorithms.

Building on recent progress in fixed-parameter tractability (FPT), we also gave a

(3 + ϵ) FPT approximation for CFLO (with general opening cost and general capacities),

FPT in k, L and ϵ where k is the bound on the solution size given as an additional input

parameter.

Furthermore, the thesis explored the Capacitated k-Median with Outliers problem.

We introduced an approximation-preserving reduction from this problem to the standard

capacitated k-Median problem. This reduction runs in time FPT in the number of facili-

ties, the number of outliers, and a small constant, yielding a (3 + ϵ)-factor approximation

for the problem.

Open problems and future direction: Obtaining a true constant-factor approxima-

tion for the capacitated facility location with outliers and general opening costs (even

when capacities are uniform) remains unsolved. We believe that ideas based on the

rounding of strengthened LPs for the capacitated facility location problem may hold

the potential to give us some success for the outlier variant. Additionally, the hardness

lower bound for the problem remains at 1.463, the same lower bound as for the classical

facility location problem. Improving this bound is another interesting question. For the

capacitated k-Median with outliers problem, an interesting open problem is to develop a

polynomial-time constant-factor approximation, even when violations in capacities or

outliers is allowed.
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