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Abstract

With the advances in DNA microarray technology, expression levels of a large number

of genes can be measured in parallel. This leads to generation of huge amount of gene

expression data. Analysis of the microarray data to extract biologically significant in-

formation from it is a challenging task. Many people have used biclustering for this

analysis. Most of these biclustering algorithms are based either on the Euclidean distance

or correlation coefficient as the similarity measure. These measures capture only linear

relationships between the genes but non linear dependencies may exist amongst them.

Different measures are required to capture complete dependence (i.e. both linear and

nonlinear). Mutual information provides a more general measure to investigate relation-

ships (positive, negative correlation and non linear relationships as well). As it depends

upon the distribution and not the actual values, no normalization of the data is required.

It works well for both scaled and shifted data. The measure is also robust towards noise

and outliers. In our work we propose a set of algorithms based on an approach using

mutual information for extracting biclusters from gene expression data. To the best of

our knowledge, none of the existing algorithms for biclustering have used mutual in-

formation as a similarity measure between two genes or conditions. Experiments were

conducted on synthetic data and expression data ofArabidopsis thaliana, Saccharomyces

cerevisiae, Human breast cancerdata andDiffuse large B cell lymphomadata. We were

able to extract the implanted biclusters from the synthetic datasets. On real datasets our

experiments show the effectiveness of our algorithms in extracting biclusters from gene



expression datasets. We used DAVID, an online biological tool for the validation of our

biclusters. It was found that the obtained biclusters were biologically more significant as

compared to the biclusters obtained by the other existing algorithms. We also studied the

promoter regions of the genes belonging to a bicluster for common patterns / Transcrip-

tion Factor Binding Sites (TFBS) or motifs using another online biological tool named

RSA Toolbox. Promoter regions of the genes of most of the biclusters were found to have

common motif patterns. We believe our work delivers relevant information and provides

a useful tool for the analysis of gene expression datasets.
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Chapter 1

Introduction

Last two decades have seen lot of advances in the area of genomic research. Technological

developments likemicroarray chiphave made it possible to study the behaviour of all the

genes in an organism in a single experiment in contrast to the previous methods of study-

ing one gene in one experiment. Eric Lander [Lan05] and others [ZWD+04, AMK00,

Kau93] have also suggested that the simultaneous study of all the genes of an organism

is important to decipher the logic of gene regulation in the organism. With the help of

microarray experiments, expression level of thousands of genes can be monitored simul-

taneously [BDSY99, Dom03, DIB97, Slo02a]. The expression data has been collected for

different organisms (healthy and diseased) during different developmental stages, chang-

ing environmental/chemical/clinical conditions or at different time points. This has led

to generation of vast amount of data. Development of efficient computational tools for

the analysis of this huge amount of data, to be able to extract biologically relevant in-

formation from it, is the need of the hour. Extracting meaningful information from this

humongous data poses a great challenge to biologists as well as to the community of re-

searchers in the field of computation. Biologists are often interested in identifying the set

of genes responsible for a particular biological activity, for example the genes controlling

the formation of a protein. They may also like to know the genes causing stress, high
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blood pressure, diabetes, heart ailment, tumor or AIDS. In plants, these activities include

reproduction, growth of a particular part of a plant, photosynthesis and absorption of nu-

trients from soil. The genes responsible for a particular biological activity get triggered

under certain conditions. For example absorption of nutrients from the soil is more in the

presence of sunlight and appropriate amount of moisture in the soil. Clearly, the genes

responsible for the activity get triggered under these conditions. Therefore, the expres-

sion pattern of these genes must have some sort of association amongst themselves. Vilo

et al. [VBJ+00] and Dhaeseleer et al. [DWFS98, DLS99] hypothesize that genes with

similar expression profile may share something common in their regulatory mechanism.

Once the genes responsible for a disease are known, the conditions that affect the expres-

sion of these genes and other genes affected by the same conditions can be discovered.

Scientists have used the microarray technology to develop new methods of diagnosis and

treatment for a number of diseases and response to drug treatments. The recognition of

coordinated expression between the genes helps to draw inferences about functions of

unknown genes, to form hypothesis regarding potential pathways of information flow or

to infer a model of a gene network. As all the organisms are related through similarities

in their DNA sequences, information from the analysis of data of one genome may also

help in understanding the concepts about other organisms.

The task of a biologist is greatly simplified if one can extract a couple of hun-

dreds or fewer genes showing a pattern or association in their expression values from

a data consisting of tens of thousands of genes. Clustering has been found to be a use-

ful tool in the field of analysis of gene expression data. The traditional clustering algo-

rithms [BDSY99, ESBB98, THC+99, Cla99] cluster the genes based on their expression

under all the conditions as shown in Figure 1.1(a). The resultant gene clusters consists of

genes with similar expression, whereas genes with dissimilar expression fall in different

clusters. This helps in finding meaningful associations in microarray data and the un-

derlying biological processes. Clustering of related genes helps to understand regulatory

2



inputs and functional pathways. Genes belonging to a cluster are expected to perform

similar biological tasks and enriched with functional categories. Thus clues to unknown

gene functions may be inferred from the function of known genes in the same cluster.

Genes belonging to the same cluster not only perform similar functions but they are also

controlled by similar control factors. Thus, they may have common regulatory elements

(motifs) in their promoter regions. Once these regulatory elements are identified, the

entire transcriptional regulatory network may be understood [ZTOT04]. Similarly, clus-

tering conditions over the expression levels of all genes as shown in Figure 1.1(b) helps in

defining new disease subclasses. Grouping of patients samples based on disease subtype

or response to treatment may lead to distinguishing similar looking diseases.

As the problem of clustering is NP hard most of the algorithms for clustering are

heuristic in nature. Tavazoie et al. [THC+99] used clustering to form gene clusters in the

data set of Saccharomyces Cerevisiae. Further they searched for upstream DNA sequence

patterns specific to each cluster. They identified 18 biologically significant DNA motifs

in the promoter region of gene clusters. Eisen et al. [ESBB98] used correlation based

hierarchical algorithm to analyse a 12 point time course of the serum response of 8600

human genes and a 75 condition expression study of the yeast genome. They concluded

that clustering of gene expression data results in groups of genes with similar functions.

Califano et al. [CST00] analyzed the human cancer cell data to identify patterns of gene

expression that can be used to predict cell phenotype. They related the gene expression

data with different cancer cell morphologies.

These traditional clustering algorithms work well for small data sets but fair poorly

when the number of experimental conditions is large. All genes appear to be equidistant

from each other for a large number of conditions. These algorithms give equal weights to

all the conditions while computing the similarity amongst the genes. However, the cellular

processes are generally affected only by a small subset of conditions [IFB+02, BIB03].

Most of the other conditions which do not contribute to the cellular process add to the

3



(a) Gene clusters (b) Condition clusters

Figure 1.1: Traditional Clustering

background noise. Consider an expression data consisting of expression of genes present

in tissues of different parts of the plant like flower, root, leaf and stem. Certain genes

may exhibit good associations under tissues of one particular part say flower whereas

the same set of genes may have poor associations when considered over the entire set

of tissues drawn from different parts of plant. Thus, some relationships and associations

may be overlooked while clustering over all the conditions. Moreover, these traditional

clustering algorithms compute non-overlapping clusters i.e. a gene belongs to at most one

cluster whereas in fact a gene may be responsible for several cellular activities and hence

may belong to more than one cluster [CC00, IFB+02, BIB03, GLD00, KTW05, LW07,

KBCG03, JTZ04].

Cheng and Church in [CC00] introduced the notion ofbiclustering for gene ex-

pression data.Biclustering refers to simultaneous clustering of genes and experimental

conditions in the gene expression matrix. It allows biclusters to overlap both on genes

as well as on conditions as shown in Figure 1.2. Relationships amongst genes which are

active over some but not all the conditions can be uncovered with the help of biclustering.
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Figure 1.2: Overlapping Biclusters

It aims to identify groups of genes that showsimilar expression pattern under a sub-

set of experimental conditionsthat cannot be found by classical clustering approaches

( [PBZ+06, MO04, HBH+10]). Infact, biclustering is emerging as a standard tool for

extracting knowledge from gene expression data as it fits better to biological behavior.

Biclustering provides a better visualization of the gene expression data. All the

information inferred from traditional gene clusters can also be inferred from the biclusters.

However, biclusters provide us more information as they also give the samples under

which the genes of the biclusters behave similarly. For eg. in drug design, researchers

want to study the effect of various compounds on gene expression. The effects may be

similar only in a small subset of genes and may be dissimilar for others. As biclustering

provides two way clustering it can be used to identify compounds having similar effect

on a small group of genes.
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Biclustering has its applications in areas other than computational biology like ma-

chine learning, pattern recognition, text mining and market data analysis. In the market

data, the products bought by the customers are stored in a customer product table. There

would rarely be customers who would have similar preferences over all the products.

However, there would certainly be groups of customers who are more fond of skimmed

milk products, sprouts, vegetables and fruits. These people may however differ drasti-

cally in their choice over other products like clothes. Traditional clustering may put these

people in different clusters as they differ in lot of other choices. However, biclustering on

this data will identify a group of customers with similar choices for a subset of products

rather than all the products. Having identified a group of products and a group of people

interested in these products, promotional schemes and advertising may be targeted for

them to increase sales.

Various similarity measures have been used in literature to quantify the similarity in

the expression level of two genes. Different similarity measures extract different patterns

in the expression data. In other words, result of any clustering/biclustering algorithm de-

pends on the choice of the similarity measure. According to many researchers [DWFS98,

DLS99, DPFS00, VBJ+00], the choice of similarity measure is as important as the choice

of the algorithm itself. As different elements are influenced by different aspects of reg-

ulatory mechanism, there is no single choice of similarity measure that provides all the

relevant biclusters in the data. Each measure produces a unique clustering of the expres-

sion patterns and one must be selected according to the type of interactions user would

like to capture from the expression data [Cla99]. The interaction may vary from a simple

linear association to more complex like quadratic, sinusoidal or exponential etc. Simi-

larity measures can be classified into three classes each indicating different regularities

in the data: (a) similarity according to positive correlations which identifies similar or

upregulated set of genes (b) similarity according to negative correlations which identi-

fies downregulated set of genes (c) similarity based on mutual information which detects
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more complex relationships. Though (a) and (b) have been successfully and satisfactorily

used for several years they extract only linear relationships. Though, some work on tradi-

tional clustering [DWFS98, DLS99, BK00, PMBG07, MCA+98] have suggested the use

of mutual information for clustering, none of the existing biclustering algorithms have

used mutual information as a measure of similarity for biclustering.

In this work we propose the use of mutual information as a measure of similarity

amongst the genes for biclustering gene expression data. In [DMM03] Dhillon et al. and

others [ST00, BDG+07] have used mutual information for co-clustering word document

data. Their approach is entirely different from our approach. They do not use mutual

information as a similarity measure between two pair of genes. They partition the input

matrix into non overlapping partitions of both rows and columns such that the loss of

information between the original and the partitioned matrix is the least. They produce

coclusters which are strictly non overlapping. Also, their paper has its limitations espe-

cially with reference to gene expression data. Firstly the entries in the gene expression

data cannot be treated as a measure of co-occurrence. Secondly, to treat the input matrix

as a joint probability distribution the entries must be all positive which may not be the

case in gene expression data as down-regulation may be represented by negative values.

Banerjee et al. in [BDG+07] propose a generalized co-clustering algorithm which works

for negative entries in the input matrix as well. They assume that the probability distribu-

tion of the input data is either predefined or follows uniform distribution. Both Banerjee

and Dhillon identify non-overlapping biclusters whereas a gene may be responsible for

more than one cellular function and thus may belong to more than one bicluster. Similarly

biclusters may overlap on conditions as well.

We present a set of algorithms which use mutual information to extract biclusters

from the expression data. We conduct experiments on both synthetic and real datasets.

Through extensive experimentation on four datasets ofArabidopsis thaliana, Saccha-

romyces cerevisiae, Human breast cancer (HBC)andDiffuse large B cell lymphoma (DL-
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BCL), we show that biclusters extracted using mutual information are biologically more

significant than those extracted by other existing biclustering algorithms which use linear

similarity measures.

1.1 Motivation to use Mutual Information as a similarity

measure

With advances in experimental technology, increasing methodologies are available for

unveiling more complex relationships in gene expression data [KBG+07]. Biologists are

interested in studying how change (an increase or decrease) in the expression of a gene

affects the expression pattern of other genes. If the increase or decrease in the expres-

sion value of a gene viz a viz the increase or decrease in the expression value of another

gene is linear then similarity measures like Euclidean distance or correlation coefficient

will be able to recognize it. However, if the changes in the expression data are related

non-linearly say by a quadratic, exponential or a sinusoidal function as shown in Fig-

ure 1.3, then these measures would fail. For example, consider a case of two genesx

andy whose expression values are related asy = sin(x). Even thoughy is completely

determined byx yet the correlation coefficient between them turns out to be zero. Thus

one needs different measures to identify such complex associations. Mutual informa-

tion (MI) between two random variables is a measure of the amount of information one

random variable contains about the other. It is zero when the two variables are totally

independent [CT91, Bis06, ZWD+04]. Thus mutual information is a more general mea-

sure to capture linear as well as non linear associations or dependencies amongst genes.

Besides this, mutual information has several other advantages over linear similarity mea-

sures. Since mutual information uses the distribution in the expression level of the genes

rather than their actual values, data need not be normalized. It works well for both scaled

and shifted data. Also, measures like correlation coefficient are biased towards outliers
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Figure 1.3: Nonlinear relationship between expression of two genes.

whereas mutual information is not. Mutual information is also robust towards noise. We

discuss these points in more detail in Chapter 4.

Many researchers [SKD+02, BK00, MCA+98, ZWD+04, SATB05, PMBG07] have

used mutual information for one way clustering (clustering of genes on the entire set of

conditions). They have shown that the information theoretic measure is responsive to any

type of dependencies including strongly non linear structures as compared to traditional

measures like Euclidean distance and correlation coefficient which search only for linear

relations.

Kraskov et al. [KSAG05] found that even though correlation coefficient between

some gene pairs was zero, the mutual information between them was non zero thus

indicating that non linear dependencies may exist between the genes. Butte and Ko-

hane [BK00] constructed networks of various genes having high mutual information be-

tween them. They found that each network corresponded to some biological activity.

According to Michaels et al. [MCA+98] some genes may share some common control

inputs (and hence are related to each other) but respond differently to these inputs and

only mutual information is able to identify their coordinated behavior.
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1.2 Our Contribution

In this work we propose a set of biclustering algorithms using mutual information as a

measure of similarity. To the best of our knowledge, none of the existing algorithms for

biclustering have used mutual information as a measure of association between two genes

or conditions.

In the first algorithm [GA09], to see the impact of using mutual information (MI),

we simply plugged MI as a similarity measure in Maximum Similarity Biclustering al-

gorithm (MSB) by Liu et al. [LW07] to obtain what we call as Maximum Related Bi-

clustering algorithm namedMRB . In this work the problem of biclustering is presented

as an optimization problem and a polynomial time solution is provided for it. Score of a

bicluster is defined to be the minimum of the gene scores and the condition scores where

the gene score is the average mutual information of a gene with the seed gene and the con-

dition score is the average contribution of a condition to the similarity of a set of genes in

the bicluster. The aim is to minimize the bicluster score.

The algorithm was tested both on synthetic data and real data sets. The main idea

behind construction of the synthetic data was to model nonlinear relationships between

the genes of the bicluster over a subset of conditions. We were able to extract the im-

planted biclusters in the synthetic data. The algorithm was also studied on expression

data sets ofSaccharomyces cerevisiae, Arabidopsis thaliana, Human breast cancerand

Diffuse large B cell lymphomadatasets. The biclusters were validated using external bi-

ological information by determining the functionality of the genes of the biclusters from

Gene Ontology databases usingDatabase for Annotation, Visualization and Integrated

Discovery (DAVID)[DWHL08], an online bioinformatics tool. These databases store

gene annotations i.e. biological knowledge related to genes from its sequence to function.

The biclusters obtained from the expression data sets were found to be biologically signif-

icant. We also extracted common patterns (motifs) from the promoter regions of the genes

belonging to the same bicluster using another online bioinformatics tool namedRetrieve
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Sequence Analysis[RSA] and they were also found to be biologically significant.

Our second approach [GA10] is based on the hypothesis that if a set of genes are

related to each other then the conditions under which the genes are associated would also

be related to each other. The conditions involving response to stimuli to similar phar-

maceutical agents, nutritional source will be related to each other. Expression of genes

of normal tissues will be related in contrast to expression of genes of diseased tissues.

Also study of genes under similar environmental condtions like varying temperatures, at

different time points or replicates of same experiment will all be related to each other.

In the third algorithm [GA08] we drop the assumption that the conditions belonging

to a bicluster are related. In this approach we extract general biclusters where the con-

ditions may or may not be interdependent. Instead, here we find the conditions which

contribute most to the pairwise mutual information of the genes in the reduced set.

These algorithms were tested both on synthetic data and real data sets. Experimen-

tal results were compared with other algorithms namely Iterative Signature Algorithm

(ISA) by Ihmels et al. [IFB+02] , Binary Inclusion MAXimal (BIMAX) biclustering al-

gorithm by Prelic et al. [PBZ+06], biclustering algorithm by Cheng and Church [CC00],

Order Preserving Submatrix algorithm (OPSM) by Ben Dor et al. [BDCKY02] and Maxi-

mum Similarity Biclustering algorithm (MSB) by Liu et al. [LW07]. All these algorithms

extract biclusters with linear relationships. Biclusters obtained by our algorithm were

biologically more relevant than those obtained by others.

In most of the clustering or biclustering algorithms requiring a gene seed or a set

of genes, the gene seeds are either chosen randomly or are taken as input from the user.

We have incorporated an intelligent method in our algorithms for generating the seeds

from the data itself. The number of biclusters to be extracted is also determined by the

algorithm itself.

Rest of the thesis is organized as follows: In Chapter 2 an overview of the essential

concepts in biology are provided for better understanding of our work. Biclustering and
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related work are described in Chapter 3. Concepts of mutual information are explained in

Chapter 4. Our algorithms along with the experimental results are presented in Chapters

5, 6 and 7. Finally, Chapter 8 concludes our work and discusses the future work.
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Chapter 2

Biological Background

This chapter briefly discusses some basic and relevant biological concepts and terms re-

quired for proper understanding of our work [APS06, MDPM08, RJLS10, GSS91].

2.1 Basic concepts of a cell

Cell is the basic structural and functional unit of all living organisms. It may be regarded

as a basic unit of biological activity. Each cell consists of jelly like material called pro-

toplasm surrounded by a cell membrane. The protoplasm further has two components:

the nucleus that contains the genetic material and the cytoplasm containing various other

cell organelles like mitochondria, ribosomes etc. Cells of primitive organisms (such as

bacteria) which do not have a nucleus are called prokaryotic cells and those of higher

organisms which have a well defined nucleus are called eukaryotic cells.

There are four types of basic molecules present in a cell: sugars, lipids, amino acids

and nucleotides. Sugar molecules besides being a source of energy for the cell, also play

a structural role by forming the cell wall of the plant cell. Lipids are important constituent

of the membrane of the cell and other cell organelles. Aminoacids are the structural units

of proteins which are responsible for most of the biological processes in a cell. There
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are twenty naturally occurring amino acids from which all proteins are composed. The

linkage of one aminoacid with another is through a peptide bond. Proteins, ‘also called

polypeptide chains’ are long chains of aminoacids. Each protein has a unique sequence

of aminoacids which determines its functionality. Proteins perform a variety of structural

and dynamic functions in a cell.

2.2 DNA and RNA

The genetic information in a cell is stored in a long sequence of nucleotides1 called

theDeoxy-ribose Nucleic Acid (DNA). DNA plays a key role in the transfer of genetic

information from parent to its offspring.

Figure 2.1: Deoxyribose Nucleic Acid

It is made up of two strands wound together in a double helical structure. Each

strand consists of sequences of nucleotides with bases adenine (A), thymine (T), cytosine

(C) and guanine (G). These bases are repeated throughout the DNA strand millions of

times. The bases present in one DNA strand forms hydrogen bonds with the bases in the

other strand in a specific manner as shown in the Figure 2.1. ‘A’ pairs with ‘T’ only and

‘G’ pairs with ‘C’ only. Once the sequence of bases in one DNA strand is known, the

sequence of the other strand can be constructed because of the specific base pairing. The

two strands of DNA are thus said to be complementary and this property of DNA enables

it to transmit genetic information. Further, each strand has a polarity, from head called

1Nucleotides are molecules consisting of a nitrogenous base, a sugar group and a phosphate ion and are

responsible for storage of information about an organism’s inherited characterstics
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the 5’ end and a tail called the 3’ end. The two strands are anti parallel (i.e. one strand

runs from the 5’ to 3’ direction and the other from 3’ to 5’ direction). DNA of eukaryotes

contain noncoding sequences calledintrons (or interveaning sequences)that separate

coding sequences calledexons. Combinations of exons and introns form agenewhich

determine the sequence of aminoacids on a protein as shown in Figure 2.2. The part of

DNA that codes for the formation of proteins is called anopen reading frame (ORF).

When read from the head region (5’ end) to the tail region (3’ end) the portion of DNA

before the ORF is called theupstream regionand the portion of DNA that comes after

the ORF is called thedownstream regionof the DNA.

RNA or ribose nucleic acid is a molecule which is chemically similar to DNA. It

plays a key role in the synthesis of various proteins in a cell. In some lower organisms

it also acts as the carrier of genetic material. Unlike DNA, RNA is a single strand struc-

ture, constructed from a DNA strand having base Uracil (U) instead of the base Thymine.

There are several types of RNA molecules. The RNA that codes for proteins is called mes-

senger RNA (mRNA). Transfer RNA (tRNA) helps in aligning the amino acids according

to the sequence present in the mRNA for the formation of the protein. Ribosomal RNA

(rRNA) on the other hand is a major structural component of the protein synthesizing cell

organelle called ribosome.

2.3 Gene and Gene expression

Generefers to a functional unit of DNA. It is a sequence of bases that encodes a protein

or an RNA molecule. Protein coding genes carry information for making proteins which

determine various characterstics like colour of eye, hair etc. of an organism. The non

protein coding genes code for RNA molecules. The physical characterstics of an organism

i.e. what that organism looks like is called itsphenotypeand the genetic encoding of its

phenotype is called itsgenotype. Set of all the genes in an individual is known as its
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genome. The size of a genome may vary from 6000 genes in yeast to about 40,000

genes in human beings.Gene Expressionis the process by which information from a

gene (its sequence) is manifested into structure and functions of a cell. We say that a

gene is expressed when the protein it codes for, is synthesized. Gene expression may

also be referred to as the step in which the genotype of an organism is manifested into

its phenotype i.e. the genetic information stored in the gene is expressed in the form of

proteins that are responsible for the phenotype of the organism. Different subset of genes

may be responsible for different phenotype of an individual. For example, a subset of

genes responsible for the color of the eye may be different from the genes responsible for

the height of an individual. Similarly in an apple tree, genes responsible for the shape

of the fruit may be different from the ones that control its taste. Consider a gene that

controls the height of an individual. The extent of expression of this gene determines the

height. If the expression is within a normal range, the individual has a normal acceptable

height. An over expressed gene might lead to agiantand an under expressed one leads to

adwarf.

The genotype of an organism interacts with the environment which thus influences

the phenotype. In other words, the characteristics of an organism may be the result of the

coordinated expression of one or several genes and their interactions with the environ-

ment. A gene may be highly expressed under certain conditions and may be suppressed

under some other set of conditions. For example, an apple plant with the genotype of red

juicy apple may give good quality apples in favorable conditions like significant amount

of sunlight, air and water whereas the same plant under unfavorable conditions will yield

bad quality apples.

Each cell of an organism contains the same set of genes. However different sets of

genes are expressed in different cells. Also, within the same cell gene expression may

vary with time and may also be affected by the internal and external state of the cell

at that time. For instance, it is due to the coordinated action of several genes that the
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Figure 2.2: Gene Expression

development of the fertilized ovum and sperm grows into a normal adult.

The process ofgene expressionis a two step process that consists of transcription

followed by translation. See Figure 2.3.Transcription is the process of transfer of ge-

netic information from a portion of DNA into an mRNA molecule.Translation is the

process of transfer of information from RNA to protein.Transcription is the first step in

the formation of proteins from genes. It is carried out by an enzyme called RNA Poly-

merase. The process is initiated when one (or more) special proteins calledTranscription

Factor (TF) bind to one (or more) specific sequence(s) of nucleotides called theTran-

scription Factor Binding Site(s) (TFBS)on the promoter region of a gene. The enzyme

RNA Polymerase moves along the strand of the DNA. As it encounters each DNA nu-

cleotide, it adds the corresponding complementary RNA nucleotide to a growing mRNA

strand. Once the stop signal is reached the newly constructed mRNA strand is released.

Finally, it leaves the nucleus and serves as a template for the synthesis of protein in the

cytoplasm at the ribosome.

Translation is the second step in the expression of genes. It involves reading the

mRNA, conversion of the message carried in mRNA into amino acids and the synthesis

of the corresponding proteins at the ribosomes. The genetic information based on the

language of four bases (A, U, C, G) of mRNA is translated to a language of proteins

consisting of amino acids. In other words, the sequence of nucleotides in the mRNA

determine the sequence of amino acids in the synthesized protein. Each amino acid cor-
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Figure 2.3: Two phases of Gene Expression

responds to a triplet of three nucleotide bases called acodon. 4 nucleotides can form 64

(43) possible codons out of which three (TAA, TAG and TGA) indicate the end of a pro-

tein sequence and are called the stop codons. All others code for a particular aminoacid.

Most of the aminoacids are encoded by more than one codon. The codon AUG represents

methionine and is also the translationalstart signal.

Translation begins when a tRNA (transfer RNA) molecule encounters the start codon

on the mRNA. The tRNA moves up the sequence of the mRNA reading three nucleotides

(codon) at a time. Each codon specifies the amino acid to be added to the protein se-

quence. The translation continues until a stop codon is encountered. The amino acid
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chain is then released. This amino acid chain is nothing but the protein the gene codes

for.

Figure 2.4: Effect of Conditions on Gene Expression

Since the expression of a gene is controlled and regulated by one or more TFs and

their binding to the TFBS in the promoter regions of the gene, it is expected that the

genes that are coexpressed are regulated by the same set of TFs and hence have common

TFBSs. In other words genes having similar expression profiles, thus belonging to the

same bicluster, are considered to have acommon regulatory mechanism or signature

or motif in their promoter region [HZGD05].

Binding of Transcription factors with the TFBS may be regulated by many condi-

tions as shown in Figure 2.4. Infact expression of one gene may be governed by the

expression of another gene. Some genes may code for a protein which in turn may act as

a transcription factor and regulate the expression of some other genes. The entire network

is quite complex. Also, the gene to protein correspondence is not one to one. There are

genes that may code for more than one protein. Ideally measurement of gene expression

should be done by measuring the amount of protein produced. However, it is often eas-

ier to measure one of the intermediate product like mRNA to infer the gene’s expression

level.

19



Figure 2.5: Microarray Experiments: each experiment corresponds to a condition

2.4 Microarray experiments and Expression matrix

A microarray experiment allows us to determine the expression levels of thousands of

genes by measuring the amount of mRNA bound to each site of the microarray. Data

resulting from a microarray experiment is represented as agene expression matrix. Mi-

croarray experiments are based on the principle of hybridization. Linking of a DNA strand

with an mRNA strand by hydrogen bonds is calledhybridization . More the number of

complementary bases present between the DNA and the mRNA strand, stronger is the

hybridization. A microarray chip is a glass or a silicon slide [CQB04] which consists

of an array of spots, where each spot contains multiple copies of a gene sequence known

as probe. Thus in one experiment with a microarray chip withn spots, we can study the

expression levels ofn genes (probes) simultaneously. There may be thousands of such

spots on a slide each containing millions of identical DNA molecules. From a sample of

interest, e.g. a tumor biopsy, mRNA molecules (known as target) extracted and labeled

with fluroscent dye are washed over the entire slide and is allowed to hybridize to the

complementary gene sequences on the array. The sample contains more concentration of
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the mRNA molecules corresponding to the genes highly expressed under the tumorous

condition as compared to other genes. Thus the degree of hybridization will be more for

such genes. By measuring the intensities of the fluroscent light emitted from each spot of

hybridization, one can measure the amount of mRNA present in the sample. The images

of the array are taken and analysed using image analysis software resulting in an intensity

matrix.

Each intensity matrix is converted into a vector which corresponds to a column

of the gene expression matrix withn rows or genes. Repeating the experiment form

conditions results in an×m gene expression matrix as shown in Figure 2.5. Each row in

the matrix corresponds to the expression profile of a gene and each column corresponds

to a sample or a condition [CST00]. The(ij)th entry of the expression matrix represents

the expression ofith gene underjth sample.
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Chapter 3

Biclustering

Clustering algorithms have often been used to reduce the complexity of humongous ex-

pression data made available with the help of microarray technology. The traditional

clustering algorithms are not suitable for all applications especially gene expression data

analysis. These traditional clustering algorithms group the genes over all the conditions

whereas cellular processes are affected only under a small subset of conditions. Most

of the conditions which do not contribute to the cellular process add to the background

noise. In gene expression data, it is desired to search for groups of genes which show

some compatibility under a small group of conditions. Also, a single gene may belong to

more than one group as a gene may be involved in more than one biological process.

Figure 3.1: Principal Component Analysis

Various dimensionality reduction techniques likeprincipal component analysis
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(PCA), singular value decompositionand feature selectionhave been used to filter

out the irrelevant conditions. However, these techniques compute clusters on the same set

of few relevant conditions (as shown in Figure 3.1) whereas different sets of conditions

trigger different biological processes. Biologists are not only interested in identifying sets

of coexpressed genes but also the group of conditions responsible for the co-expression of

a group of genes. For example, when cancer patients are treated with different drugs, one

is interested in determining the genes causing cancer and also the set of drugs to which a

patient responds positively.

Cheng and Church [CC00] introduced the notion of biclustering for gene expres-

sion data.Biclustering refers to simultaneous clustering of both genes and experimental

conditions of the expression data. A bicluster can be viewed as a submatrix of the gene

expression matrix such that the rows of the bicluster show a similar behavior under the

columns of the bicluster [MO04].

Unlike traditional clustering algorithms where clustering is carried out over all the

conditions to produce nonoverlapping clusters, PCA/feature selection algorithms where

clustering is performed over thesameset of reduced samples or coclustering algorithms

which again extract nonoverlapping clusters,biclusteringis a more general framework as

the biclusters may overlap both on genes as well as on conditions. That is, they allow

genes and conditions to belong to more than one bicluster and be responsible for more

than one biological activity. Thus biclustering algorithms fit better to biological behavior

in contrast to traditional clustering/feature selection/coclustering.

3.1 Problem Definition

Let G be a set ofNg genes andC be a set ofNc samples/conditions. LetE be anNg × Nc

expression matrix where each row represents the expression of a gene underNc samples.

E is subjected to a biclustering algorithm which delivers a biclustering schemeπi con-
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sisting ofki biclusters.πi = (BC1, BC2, ..., BCki
), BCj is a tuple(Gj, Cj), Gj being

a subset of genes andCj a subset of conditions such thatGj show similar behaviour un-

derCj. Different biclustering schemes may contain different number of biclusters. Let

λ : (G× C) → 2{0...k} be a function that yields a set of labels for each gene condition

pair (gl, cr). Note that since the biclusters may overlap both on genes and conditions, a

(gene, condition) pair may be assigned more than one label. Also, there may be a (gene,

condition) pair which does not belong to any bicluster, such a pair is assigned a special

label0.

Many biclustering algorithms also define a score for a bicluster and aim to discover

biclusters that optimize the score. Biclustering algorithms are interested in identifying

Bopt = argmax{f(B)}/argmin{(f(B)} wheref(B) denotes the score of a bicluster

B,. Bicluster scores have been defined in various ways in literature. Cheng and Church

used average Mean Square Residure (MSR) as a bicluster score and aimed to minimize

the score. Theresidue of an elementaij in the bicluster denoted byA(I, J) is defined

as rij = (aij − aIj − aiJ − aIJ) whereaIj, aiJ andaIJ are the row, column

and bicluster mean respectively. The mean square residueH(I, J) of a biclusterA(I, J)

is then given by 1
|I||J |

∑
i∈I,j∈J r2

ij. In [LW07] authors define a bicluster scores(I, J)

as the minimum similarity score of any gene with the seed gene (mini∈I s(i, J)) or the

minimum similarity score of any condition (minj∈J s(I, j)) whichever is minimum i.e.

s(I, J) = min{mini∈I {s(i, J)}, minj∈J {s(I, j)}} where the similarity is based on

Euclidean distance. Liu et al. aimed to maximize the bicluster score. In one of our

approaches we use the same definition of the bicluster score but our similarity of a row

with the seed row is based onmutual information rather thanEuclidean distance.
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3.2 Types of Biclusters

Genes in a bicluster have expression values varying in a similar manner or having some

relationship under the conditions of the bicluster. Different biclustering algorithms define

this similarity/ relationship differently. We classify biclusters into two broad categories

based on the type of relationship that exists between the genes as follows:

(a) Additive relation-

ships

(b) Multiplicative re-

lationships

(c) Additive and

multiplicative

relationships

Figure 3.2: Linear relationships between expression of two genes

1. Biclusters with linear relationships: These biclusters consist of genes having lin-

ear relationship between their expression values i.e. the expression levels of genes

show linear coherence. Most general form of linear relationship may be described

asy = mx + c. Different types of biclusters resulting from different relationships

like additive, multiplicative or a combination of both additive and multiplcative as

shown in Figure 3.2 respectively fall under this category as shown in Tables ( 3.1,

3.2 and 3.3). Most of the biclustering algorithms extract such biclusters having

linear relationships that may overlap both on genes and conditions.

2. Biclusters having nonlinear relationships: Whenever the expression of a gene

is a nonlinear function of the expression of another gene we say that there exists a
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c1 c2 c3 c4 c5 c6

g1 1 2 3 4 5 6

g2 2 3 4 5 6 7

g3 1.5 2.5 3.5 4.5 5.5 6.5

g4 2.5 3.5 4.5 5.5 6.5 7.5

Table 3.1: Bicluster with additive relation-
ships

c1 c2 c3 c4 c5 c6

g1 1 2 3 4 5 6

g2 2 4 6 8 10 12

g3 .5 1 1.5 2 2.5 3

g4 3 6 9 12 15 18

Table 3.2: Bicluster with multiplicative rela-
tionships

c1 c2 c3 c4 c5 c6

g1 1 2 3 4 5 6

g2 3 5 7 9 11 13

g3 4 7 10 13 16 19

g4 5 9 13 17 21 25

Table 3.3: Bicluster with general linear rela-
tionships

c1 c2 c3 c4 c5 c6

g1 -3 -2 -1 1 2 3

g2 9 4 1 1 4 9

g3 27 8 1 1 8 27

g4 4.5 2 .5 .5 2 4.5

Table 3.4: Bicluster with nonlinear relation-
ships

nonlinear relationship between the two genes as shown in Table 3.4. The expression

level of geneg2 is obtained as square of the expression level of geneg1 and that of

geneg3 is obtained as absolute of cube of the expression level of geneg1 and that of

g4 is obtained as half of square of the expression level of geneg1. Algorithms using

similarity measures like distance or correlation coefficient are unable to extract such

biclusters.

3.3 Organization of Biclusters in the expression data

Different biclustering algorithms extract different number of biclusters of varying sizes.

A scheme of biclusters can be classified intoexhaustiveor nonexhaustivedepending on

whether all genes or conditions belong to some bicluster or not as shown in Figure 3.3. A
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scheme of biclusters can also be classified intooverlapping or nonoverlapping depend-

ing upon whether genes or conditions can be a part of one or more than one bicluster at

the same time as shown in Figure 3.4.

(a) Exhaustive on both genes

and conditions

(b) Exhaustive on genes only

(c) Exhaustive on conditions

only

(d) Nonexhaustive biclusters

Figure 3.3: Biclustering schemes with different coverage

1. Exhaustive on both genes and conditions:A biclustering scheme is said to be

exhaustive on both genes and conditionsif all the genes or conditions present in

the expression matrix belong to atleast one bicluster as shown in Figure 3.3(a).
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2. Exhaustive on genes only:A biclustering scheme is said to beexhaustive on

genesif all the genes present in the expression matrix belong to atleast one bi-

cluster but there may be certain conditions which are left unclustered as shown in

Figure 3.3(b).

3. Exhaustive on conditions only:A biclustering scheme is said to beexhaustive on

conditions if all the conditions present in the expression matrix belong to atleast

one bicluster but there may be certain genes which are left unclustered as shown in

Figure 3.3(c).

4. Non-Exhaustive:A biclustering scheme is said to benon-exhaustiveif few genes

or conditions present in the expression matrix are left unclustered as shown in Fig-

ure 3.3(d).

5. Non-overlapping: Two biclusters are said to be non-overlapping if they neither

share a gene nor a condition as shown in Figure 3.4(a).

6. Overlapping on conditions only: Two biclusters are said to beoverlapping on

conditions if they share a condition but do not share a gene as shown in Fig-

ure 3.4(b). Traditional clusters always overlap on conditions as clustering is per-

formed on the entire set of conditions.

7. Overlapping on genes only:When one or more genes may be shared between two

biclusters but there are no common conditions then the biclustering scheme is said

to beoverlapping on genesas shown in Figure 3.4(c).

8. Overlapping on both genes and conditions:Two biclusters are said to be over-

lapping on both genes and conditions if they share one or more genes as well as

conditions as shown in Figure 3.4(d). Checker board structure allows a gene and

condition to belong to more than one bicluster as shown in Figure 3.4(e). However,

a gene condition pair can together belong to atmost one bicluster.
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(a) Nonoverlapping biclus-

ters

(b) Overlapping on condi-

tions only

(c) Overlapping on genes

only

(d) Overlapping on both

genes and conditions

(e) Checker board organi-

zation

(f) Hierarchical organiza-

tion

Figure 3.4: Biclustering schemes with different overlap
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9. Overlapping with hierarchical organization: When two or more bicluster com-

bine to form another bicluster we get a hierarchical scheme of biclusters as shown

in Figure 3.4(f).

3.4 Related Work

Like traditional clustering, most of the algorithms for biclustering are also heuristic in

nature. Various approaches and similarity measures have been used in literature to extract

biclusters. Based on the approach, an algorithm may fall in one or more of the following

categories:

1. Iterative Algorithms

2. Enumerative Algorithms

3. Divide and Conquer Algorithms

4. Two way Clustering Algorithms

5. Probabilistic Algorithms

6. Graph based Algorithms

7. Other approaches

3.4.1 Iterative Algorithms

Starting from an initial solution, these algorithms iteratively improve the quality of the

biclusters.Cheng and Church [CC00] presented the first such algorithm for the biclus-

tering problem. Authors define theresidue (rij) of an elementaij in a bicluster denoted

by A(I, J) asrij = (aij − aIj − aiJ − aIJ) whereaIj, aiJ andaIJ are the row,

column and bicluster mean respectively. The mean square residueH(I, J) is given by
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1
|I||J |

∑
i∈I,j∈J r2

ij. They definedδ bicluster as the one whose mean square residue score

(MSR) is less than a thresholdδ. They proposed a node deletion algorithm to find large

sizedδ biclusters. Starting with the input matrix as a whole the algorithm selects a row or

a column with the highest score for deletion such that the MSR of the resultant submatrix

is lowered. This is repeated until the MSR is lowered belowδ. The bicluster obtained

after deletion of rows and columns may not be of maximum size. The algorithm then

adds the previously deleted row (column) with the lowest score such that the MSR of the

bicluster is increased but remains belowδ. This is repeated as long as MSR is less than

δ. Missing values in the data are replaced with random numbers. This is in the hope that

these random values would not form recognizable pattern and thus would get removed in

the node deletion phase.

In order to find more biclusters, the elements of the submatrix representing the dis-

covered bicluster are masked by random numbers. The masking of the discovered bi-

cluster eliminates the related behaviour in it so that other biclusters could be discovered.

However, such a masking could interfere with the identification of overlapping biclusters

[YWWY03]. The algorithm does not work well when a large amount of noise is present.

When the noise levels are high the MSR is also high and some important biclusters may

be missed.

FLexible Overlapped biClusters (FLOC) by Yang et al. [YWWY03] extended

Cheng and Church’s algorithm to findk biclusters simultaneously without random re-

placement. Starting from a random set of biclusters they iteratively try to move a gene

or a condition from one bicluster to another such that the average mean square residue of

the entire scheme of biclusters is reduced. FLOC allows biclusters with limited number

of missing values. The quality of FLOC’s biclusters depends on the initial seed clusters

which are generated randomly.

Zhang et al. [ZTOT04] in Deterministic Biclustering by Frequent pattern min-

ing (DBF) extended FLOC by generating the initial seed cluster in a deterministic manner
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rather than randomly. They generated a set of good quality (with low mean square residue)

biclusters using CHARM [ZH02], a frequent pattern mining algorithm.

Iterative Signature Algorithm (ISA) by Ihmels et al. [IFB +02, BIB03] is another

iterative algorithm that starts with a random set of genes and computes the set of condi-

tions under which the input genes are most tightly regulated. Using these conditions it

iteratively refines the set of genes and then the set of conditions until the set of genes and

samples converges i.e. they do not change anymore. ISA works on the hypothesis that

although the set of possible input seeds is huge, usually there is only a limited number of

fixed points for a given set of thresholds. They run the algorithm for a large number of

input seeds and reconstruct the modules from the recurring fixed points by fusing the so-

lutions that were distinct but very similar, using a procedure that resembles agglomerative

clustering.

ISA extracts biclusters consisting of genes, which exhibit similar expression pattern

with high expression values. The biclusters may be overlapping on both genes and con-

ditions. In presence of high values of expression, ISA misses out biclusters where genes

show similar expression pattern but have low values.Progressive Iterative Signature

Algorithm by Kloster et al. [KTW05] extended ISA to find orthogonal modules. These

modules are hard to interpret as they are in different condition space.

Ben Dor et al. [BDCKY02] defined a bicluster as anOrder Preserving Sub Matrix

(OPSM) in which the expression levels of the genes move up and down together on

the conditions of the bicluster. For a setT of s conditions, they define a linear order

(permutation)π. A gene belongs to a bicluster defined byT if the s corresponding entries

of the gene expression, ordered according to the permutationπ, are strictly increasing.

They proposed a heuristic algorithm in which they discoverl order preserving submatrix

for every possible value fors, and select the most significant of these solutions. For a

given value ofs the algorithm iteratively computes condition permutations starting with

a permutation of size2 (partial linear order), choosing the bestl permutations in each
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iteration and increasing the number of conditions by one until the permutations are of

lengths. Finally, one best of thel solutions with sample sizes are selected. The biclusters

retrieved by the algorithm have linear relationships and may overlap both on genes and

conditions.

Liu et al. [LW07] projected the biclustering problem as an optimization problem and

presented a polynomial time solution for it. With one gene selected as a reference gene,

they defined similarity score of a gene as the average Euclidean distance of the gene from

the reference gene over a set of conditions. The similarity score of a condition is defined

as the average contribution of the sample to the similarity of a set of genes with the

reference gene. Finally they defined the similarity score of a bicluster to be the minimum

similarity score of rows and columns of the bicluster. The aim is to extact a bicluster

with maximum score. Their algorithm is essentially a greedy algorithm which iteratively

removes a row or a column that contributes minimum to the score of the bicluster i.e a row

or a column whose similarity score is the smallest (worst) among all rows and columns

in the current bicluster. Several submatrices are generated in the process; they select the

one with the maximum similarity score. More biclusters are generated by changing the

reference genes selected randomly by the authors. Instead of generating the gene seeds

randomly, a method to select well separated reference genes from the expression data has

been used in this work (Chapter 5).

Bozdag et al. [BPC09] proposed an algorithm to extract biclusters named asCor-

related Pattern Biclusters (CPB). Pearson’s correlation coefficient (PCC) calculated

between any two genes of the CPB over its conditions is required to be greater than a

threshold. The algorithm starts by randomly selecting a set of genes and conditions to

form a bicluster. It iteratively improves the bicluster by moving genes and conditions in

and out of the bicluster. They compare the PCC between each gene and a reference gene

to decide which gene to move. To decide on the inclusion of a columnc into the bicluster

they compute the impact ofc on the PCC between the genes of the bicluster. A columnc
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is included only if it does not decrease correlation among the rows in the bicluster.

3.4.2 Enumerative Algorithms

Enumerative algorithms extract biclusters from the expression data by listing orenu-

merating all possible biclusters and then selecting the best amongst them. Wang et

al. [WWYY02] used prefix tree to enumerate all the biclusters. They extractδ pClus-

ters from the gene expression data (p stands for pattern). Aδ pCluster is defined as a

bicluster in which the change of values on every pair of conditions between every pair

of genes is less than a user defined thresholdδ. They try to capture those sets of genes

for which the change of expression values on conditions show similar patterns. The al-

gorithm in its first step examines the data to form a set of candidate maximum dimension

sets (MDS) for all pairs of genes and for all pairs of conditions. MDSs are pruned using

the relationship between the gene pair MDSs and the condition pair MDSs. A prefix tree

is then built using the remaining MDSs. Finally the postorder traversal of the tree gives

the output biclusters.

Ayadi et al. [AEH09] proposed another enumerative algorithm calledBiMine which

used aBinary Enumeration Tree (BET) to enumerate all biclusters and an evaluation

function to throw away the bad quality biclusters. The algorithm proceeds in three steps.

The first step involves preprocessing the data during which irrelevant expression values

of the data matrix that do not contribute in obtaining relevant results are removed. A gene

is considered insignificant if the difference of its expression under every condition and

its average under all the conditions is very small. In the next step a BET is constructed

from biclusters of single genes and few relevant conditions. The single gene biclusters are

then combined to form biclusters of two genes. Two gene biclusters are then combined

to construct biclusters of three genes. In this way larger biclusters are built from the

smaller ones. At each step the quality of the obtained biclusters is evaluated using an

evaluation function based on Spearman’s correlation coefficient. Low quality biclusters
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are discarded as there is no point in expanding a bad quality bicluster.

Ahn et al. [AYP11] proposed an algorithm to identify biclusters with functionally

highly correlated gene sets calledRobust to Noise cluster (RNC). A RNC does not

contain genes for which the expression values are constant over a sample pair. A p-RNC

is a bicluster where the number of samples arep. Initially, the algorithm obtains all the

initial 2-RNCs. For all the 2-RNCs, they make a 3-RNC by examining the current sample

si such thatlast < i whereslast is the last sample in the sample set of 2-RNC. They obtain

3-RNC from 2-RNCs, 4-RNC from 3-RNCs and so on. Those p-RNCs having a larger

number of genes and those which have a higher probability of growing to a bigger p-RNC

are selected with the help of priority queues. Finally duplicate RNCs are eliminated and

the remaining are selected for output.

3.4.3 Divide and Conquer Algorithms

These algorithms typically divide the data matrices into a number of submatrices, work

recursively on each of these submatrices using some heuristics and select the best biclus-

ters amongst them.

Prelic et al. proposed a fast divide and conquer approach, namely theBinary In-

clusion MAXimal biclustering (BIMAX) algorithm [PBZ +06] that finds all inclusion

maximal biclusters (that are not entirely contained in any other bicluster). They prepro-

cess the data matrix to convert it into a binary matrix by fixing a threshold. Expression

level of gene above the threshold are set to 1 and those below it are set to 0. A bi-

cluster is then defined as a submatrix in which all the elements equal 1. They partition

the expression matrix into three submatrices one of which contains only 0 cells and can

be neglected. The other two submatrices contain both 0 and 1 cells. The algorithm is

recursively applied to these two submatrices. The recursion ends when the reduced ma-

trix represents a bicluster (i.e. contains only 1s). A basic problem with the process of

discretization is when the noise levels in the data are high the difference between the bi-
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cluster and the background values becomes very small. As a result many small biclusters

may be extracted.

3.4.4 Two Way Clustering Algorithms

These algorithms view the data matrix in two different ways. The first view considers

genes as objects and the conditions as dimensions. The second view considers the con-

ditions as objects and the genes as dimensions. Traditional one way clustering is applied

to cluster the genes and conditions separately. The one dimensional clusters are then

combined and improved to obtain the final biclusters.

Coupled Two Way Clustering (CTWC) by Getz et al. [GLD00] used a one di-

mensional clustering algorithm called Super Para-magnetic Clustering (SPC) [GLDZ00],

to obtain stable (statistically significant) clustersGi of genes andCi of conditions. Sub-

matrices are formed by picking one gene cluster from the set{Gi} of gene clusters and

one condition cluster from the set{Cj} of condition clusters. It then recursively computes

new biclusters from these submatrices. The process terminates when no new stable bi-

clusters are formed. The type of biclusters obtained depends on the choice of the one way

clustering algorithm. SPC uses Euclidean distance as a similarity measure. The algorithm

falls in the category of divide and conquer algorithm also.

Iterative Two Way Clustering (ITWC) by Tang et al. [TZZR01] used correlation

coefficient to perform two way clustering. They identify a reduced set of genes which

distinguish the samples from one another. Though Madiera and Oliviera have referred

to it as a biclustering algorithm in their survey we feel that the work is closer to the

problem of feature selection. Like BiMine, the data is preprocessed to eliminate the genes

which do not contribute towards distinguishing the conditions i.e. the genes which do not

show much variation on the set of conditions are removed. After preprocessing, the gene

clusters are obtained using correlation coefficient. These gene clusters are further used to

obtain the condition clusters. The condition clusters are then combined pairwise to form
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heterogeneous groups. A reduced set of genes is obtained for each heterogeneous group.

Finally using cross validation techniques one reduced gene set is selected for the next

iteration. The entire process is repeated iteratively until the number of genes are reduced

to some threshold value or the condition clusters reach a certain level of similarity. Finally

a set of genes are selected which are used to cluster the conditions. The algorithm also

falls in the category of iterative algorithms.

Double Conjugate Clustering (DCC) by Busygin et al. [BJKA02]use self orga-

nizing maps (SOM) to perform clustering in both the gene space and the condition space.

It alternates between clustering genes and conditions. Every node in gene/condition space

is assigned a node called the conjugate node in the condition/gene space. In every itera-

tion the nodes of current clustering space are mapped to their conjugate nodes which are

moved accordingly. Following this, clustering is done in the other space using SOM. For

every gene cluster the corresponding sample cluster contains those samples which can be

used to distinguish the genes of the cluster from the rest of the genes. Similarly a gene

cluster corresponding to a sample cluster contains those genes which distinguish the sam-

ples of the cluster from the rest of the samples.The entire process is repeated iteratively

till the number of movements are reduced to a threshold. Finally, a set of gene clusters

and its conjugate set of conditions are selected as output. The algorithm also falls under

the category of iterative algorithm.

Chandra et al. [CSM06] proposed a two way clustering algorithm which use the

concept of entropy and correlation coefficient to cluster the genes and fuzzy C-means al-

gorithm to cluster the samples like BiMine and ITWC. Preprocessing of data is done to

eliminate the genes that do not contribute to the sample clustering i.e. the genes whose

values do not vary much across the samples are eliminated. Next the samples are clustered

using Fuzzy C-means algorithm. The number of clusters in the data set are determined

by the algorithm itself by measuring the amount of overlap between the clusters. Gene

clusters are formed using entropy and the remaining genes are selected for the next iter-
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ation resulting in mutually exclusive biclusters. This is repeated till the number of genes

are reduced to a minimum limit.

3.4.5 Probabilistic Algorithms

Murali and Kasif [MK03] defined a bicluster as a set of samples and a set of genes that

are conserved under the set of samples. A set of genes is said to be conserved under a

set of conditions if it is present in same abundance (state) in all the conditions. A gene

state is represented by a range of expression values. They use the termxMotif to refer to

a bicluster.

For each condition seedc, several sets of samples are selected at random. These sets

serve as candidates for the discriminating setDc. A discriminating setDc distinguishes

between the genes of the bicluster (those having the same state in all the conditions ofDc)

and the rest of the genes (those having different values on the conditions ofDc. Given a

condition seedc and a discriminating setDc, an xMotif contains exactly those genes that

have the same state onc and all the conditions inDc. These xMotifs are extracted for all

the condition seeds. Finally the one containing the largest number of genes is selected

as output. To obtain more biclusters the conditions belonging to the extracted xMotif

are removed and the entire process is repeated until all the samples are assigned to some

xMotif. It is clear that the biclusters are mutually exclusive and exhaustive on the set of

conditions whereas they may overlap and may be non-exhaustive on genes.

3.4.6 Graph based Algorithms

Statistical Algorithmic Method for Bicustering Analysis (SAMBA) by Tanay et al.

[TSS02] use graph based techniques along with probabilistic modeling of the data to

identify biclusters. They represent the expression data as a bipartite graph whose nodes

correspond to genes and conditions. An edge between a gene and a sample represents

39



significant change in the expression value (up and down regulation) of the gene under

that experimental condition with respect to its normal level. Edges and non-edges are

assigned weights according to a probabilistic model so that the problem of extracting

biclusters is reduced to finding the heavy subgraphs.

Li et al. [LMT+09] proposed aQUalitative BIClustering algorithm (QUBIC)

which converts the expression matrix into a representing matrix in which the expres-

sion level of a gene under each condition is represented as an integer value. Two genes

are considered to be correlated under a subset of conditions if the corresponding inte-

gers along the two rows of the representing matrix are identical. They find all optimal

submatrices from the representing matrix. For the given matrix, a weighted graph with

genes represented as vertices, edges connecting every pair of genes, and the weight of

each edge being the similarity level between the two corresponding genes is constructed.

The algorithm identifies all biclusters in the matrix by starting with the unused edge as a

seed to build an initial bicluster and then iteratively adds more genes till a threshold level

is achieved.

3.4.7 Other Algorithms and approaches

Pattern Based Biclustering Algorithmssearch for specific patterns formed by genes of

the bicluster over its conditions. Kluger et al. in [KBCG03] assume that the expression

matrix has a checker board like structure. Their method is based on singular value de-

composition of the expression matrix. Ben Dor et al. [BDCKY02] also extract biclusters,

genes of which show patterns in their expression values.Factor Analysis for Biclus-

ter Acquisition (FABIA) by Hochreiter et al. [HBH +10] is based on a multiplicative

model. Two vectors are similar if one is a multiple of the other and the angle between them

is zero. The algorithm selects the model parameters using an expectation maximization

algorithm.

Gan et al. [GLY08] proposed a geometric interpretation of the biclustering prob-
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lem. They show that different types of biclusters are different spatial arrangements of

hyperplanes in a high dimensional data space. Thus the biclustering process is reduced

to detection of such hyperplanes or linear geometries. They used Hough transform based

hyperplane detection algorithm to discover all the hyperplanes that exist in the gene ex-

pression data. Each hyperplane is searched for a pattern in the genes lying in it. If a pat-

tern exists it will be selected for output. Tchagang and Tewfix [TT05] proposedRobust

Biclustering Algorithm (ROBA) which uses basic linear algebra and arithmetic tools to

extract the bicusters. Mitra et al. and others [DMBM07, MB06, MDBM09, NTAR11] use

evolutionary approaches to bicluster gene expression data. Conjugate Column Clustering

(CCC) by Madiera et al. [MO05] finds biclusters in continous columns from time series

gene expression data.

Other work closely related to biclustering pertains to coclustering [DMM03, ST00]

and projected clustering [APW+99, AY00, YCN04]. Though researchers sometimes

claim that coclustering, projective clustering and biclustering are all same. But the so-

lutions provided for coclustering and projective clustering do not allow a gene/condition

to appear more than once in the biclusters. In [DMM03] Dhillon et al. and in [ST00]

Slonim and Tishby have used mutual information for coclustering (simultaneous cluster-

ing of rows and columns) word document data. They present the coclustering problem

as an optimization problem in which they maximize the mutual information between the

clustered random variables subject to restrictions on the number of rows and column clus-

ters. An elementeij of the input matrix represents the frequency of occurrence ofith word

in the jth document. Dhillon et al. treat the word document matrix as a co-occurrence

matrix and use it to represent the joint probability distribution of the words (represented

by random variable X) and the documents (represented by random variable Y). They ap-

proximate the original matrix with a new matrix consisting of a reduced set of rowsX̂ and

a reduced set of columnŝY , so that the new matrix contains as much information about

the earlier one as possible. Thus their approach typically leads to dimensionality reduc-
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tion. However, it is different from traditional dimensionality reduction in the sense that

they do it simultaneously on rows as well as on columns. Though the paper beautifully

exploits the information contained in the columns viz a viz rows and the vice versa, it has

its limitations especially with reference to gene expression data. Firstly the entries in the

gene expression data cannot be treated as a measure of co-occurrence. Secondly, to treat

the input matrix as a joint probability distribution the entries must be all positive which

may not be the case in gene expression data as down-regulation may be represented by

negative values. Banerjee et al. in [BDG+07] propose a generalized coclustering algo-

rithm which works for negative entries in the input matrix as well. They assume that the

probability distribution of the input data is either predefined or follows uniform distribu-

tion. Both Banerjee and Dhillon identify non-overlapping biclusters whereas a gene may

be responsible for more than one cellular function and thus may belong to more than one

bicluster. Similarly biclusters may overlap on conditions as well.

3.5 Validation of a Bicluster

A wide variety of clustering and biclustering algorithms exists in literature, yet it is diffi-

cult to assess the quality of their solutions. Different algorithms give different solutions

on the same data. Most of the time the output depends upon the input parameters as

well. Different measures or validity indices are used to evaluate the quality and reli-

ability of the traditional clusters. These measures can be divided into three categories

namelyinternal, external and relative [TK99, HBV01]. Internal measures likeintra

cluster homogeneityor inter cluster separation rely only on the input data to evaluate

the quality of the clusters. External measures useadditional information to validate the

output. Each cluster can be scored based on prior biological knowledge. For example

functional enrichment of the genes in a bicluster can be used to validate the biclusters.

Also, quality of a bicluster can be measured by searching for common motifs in the pro-
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moter region [THC+99] of genes belonging to a bicluster. Relative measures compare the

different clustering schemes produced by the same algorithm with different input param-

eter values. They measure the effect of varying the input parameters on the output of an

algorithm.

Different quality measures are applicable in different scenarios depending on the

data and on the availability of the ground truth. [GVSS03].Rand index and Jacard

index are two measures that are popularly used to assess a clustering solution against the

ground truth. Jacard index is defined as the ratio of the correctly identified objects to the

sum of the correctly identified and incorrectly identified objects. Clearly if all the objects

are correctly identified the Jacard index will have the highest value1 and the least value

could be0. The rand index on the other hand is the ratio of the number of agreements

to the number of disagreements. Unlike clusters, different biclusters have different sets

of conditions and they may overlap not only on genes but also on conditions. Thus, it

is not clear how to extend these measures to biclustering. Also, these measures do not

give any indication about the reliability of the biclusters. To the best of our knowledge no

general internal index like rand index or jacard index has been developed for biclustering

solutions. Many biclustering algorithms [CC00, YWWY03] have usedmean square

residue (explained earlier) as a measure of quality of biclusters. MSR may be a good

measure for distance based approaches and would require normalization of data for it to

be meaningful.

3.5.1 Biological Validation of Biclusters

Most of the biclustering algorithms use external validation methods like GO annotation

term [LW07], metabolic pathways [BIB03], protein protein interaction network [PBZ+06]

and patterns in promoter regions [THC+99] to assess the quality of biclusters. These

methods are based on the hypothesis that a group of related genes are responsible for

some biological activity in a cell. We validated our biclusters using functional annota-
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tion (GO terms) and common patterns (motifs) in the promoter regions of the genes of a

bicluster with the help of biological tools like DAVID and RSAT as explained ahead.

3.5.2 Functional Annotation using DAVID Toolbox

DAVID (Database for Annotation, Visualization and Integrated Discovery), a free

online bioinformatics resource, consisting of knowledge database and analytical tools,

that help in extracting biological relevance of a set of genes [DWHL08]. The knowl-

edge database integrates major public bioinformatics resources. DAVID’s knowledge

base collects and integrates diverse gene annotation categories, assigns a centralized in-

ternal DAVID identifier to each of them in a nonredundant manner. The wide range of

biological annotation coverage in the DAVID knowledge base enables a user’s gene ID to

be mapped across the entire database thus providing a broad coverage of gene associated

annotation. Also, if a significant portion (> 20%) of input gene IDs fail to be mapped to

an internal DAVID ID, another DAVID tool, the Gene ID conversion tool starts up to help

in the mapping of such IDs.

The Functional Annotation tool of DAVID is used for the enrichment analysis of the

gene terms annotated for the input gene set. The basic principle behind the enrichment

analysis is that if a biological process is active/abnormal then the co-functioning genes

have a higher chance of being selected as a relevant group. To decide about the degree

of enrichment, a certain background has to be setup for comparison. As per Huang et

al. [DWHL08] larger backgrounds e.g. the total genes in the genome as a background

tends to give more significantp values as compared to narrowed down set of genes as

background. DAVID has an automatic procedure to determine the background as the

global set of genes in the genome on the basis of the user’s uploaded gene list. Thus

normally a user does not have to setup a population background by itself. Uploading the

gene lists of the bicluster is the first step of analysis. DAVID maps a number of genes in

the uploaded list to the associated biological annotation i.e.gene ontology termsusing
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Figure 3.5: Snapshot of Functional Annotation tool of DAVID

its functional annotation tool as shown in Figure 3.5. It then statistically examines the

enrichment of gene members for each of the annotation terms by comparing the outcome

to the reference background. This is done by calculating thep values(defined later) also

called asEASE score. Lower is thep value, more statistically significant is the bicluster.

Annotation terms below a certain threshold are reported as shown in Figure 3.6.

Gene Ontology terms

There are three Gene Ontologies (GO) that form a common language for annotation of

genes of different organisms from yeast to human. They relate genes with different bi-

ological processes across different species. The three GO ontologies are (i)Biological

processwhich include biological functions to which a gene or a gene’s products con-

tribute; (ii) Cellular component which includes complex sub-cellular structures, loca-

tions and macro-molecular complexes like RNA polymerases where the gene products

are active; (iii)Molecular function which defines the biochemical activities like carbo-
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Figure 3.6: Snapshot of Functional Annotation chart

hydrates binding, ATPase activity etc. of the gene products at the molecular level. AGO

term is annotated to a group of genes responsible for a particular biological activity.

p values

The significance of a bicluster i.e. the likelihood that a bicluster is not found by chance

can be measured by statistical measures likep value. p values are calculated to measure

the statistical significance of functional category enrichment. The GO terms shared by

the genes in the user’s list are compared to the background distribution of the annotation.

It is the probability of seeingx or more genes from the input list ofn genes annotated to a

particular GO term, given the proportion of genes in the whole genome annotated to that

GO Term isF out of G. Specifically, hyper geometric distribution is used to calculate

the probability of observing at leastx or more genes from a functional category from an

input gene list of sizen given the background database consists ofG genes out of which

F belong to the functional category.
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p value =
n∑

j=x

(
F
j

) (
G−F
n−j

)
(G
n )

(3.1)

This is same as calculating the chance of getting atleastx successes and can also be

represented as

p value = 1−
x−1∑
j=0

(
F
j

) (
G−F
n−j

)
(G
n )

(3.2)

It is clear that smaller thep value, more significant is the association of the particular

GO term with the group of genes (i.e. it is less likely that the observed annotation of the

particular GO term to a group of genes occurs by chance). There may be several GO terms

with differentp values associated with an input set of genes belonging to a bicluster. The

bestp value for each category may be used to compare the biclusters.

3.5.3 Motif analysis using RSA Toolbox

A set of genes showing similar behavior indicates that they are active or expressed to-

gether. As explained in Chapter 2, a gene becomes active when atranscription factor

(protein responsible for gene regulation) binds to aTranscription Factor Binding Site

(TFBS) or motif in the promoter region of the gene. Thus the genes responsible for

one biological activity and hence belonging to a bicluster are expected to have shared ele-

ments/patterns/motifs. In order to further validate our biclusters we performed motif anal-

ysis of the genes of the biclusters usingRequence Sequence Analysis Toolbox (RSAT).

RSAT consists of many modular tools for sequence retrieval and motif discovery. These

tools can either be accessed separately or be connected in a pipeline. Two of these tools

areRetrieve Sequence Tool (RST)andMotif Discovery Tool (MDT) .Figure 3.7 sum-

marizes the working of RSAT. A set of genes along with the name of the organism is

provided as an input to RST as shown in Figure 3.8. RST provides the sequences of the

input genes as output which is then fed to MDT to extract the motifs. The ouput of MDT

includes the motifs and their correspondingE valuesas shown in Figure 3.9. TheE
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value gives the statistical significance of the motif detected. It is the expected number of

times a similarity would be observed by chance in a target database of random motifs. It

is obtained by multiplying the probability of atleastn occurrences when expectingx by

the number of distinct patterns. Smaller the E value more significant is the motif detected.

Figure 3.7: Motif analysis using RSAT

Figure 3.8: Snapshot of Retrieve Sequence Analysis Tool
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Figure 3.9: Snapshot of motif discovery tool of RSAT

3.6 Datasets

We considered the real datasets used by Prelic et al. [PBZ+06] and by Hochreiter et

al. [HBH+10]. Saccharomyces cerevisiaealso known as brewer’s yeast is a safe, easy

to grow, short generation time organism. [Hun93]. As yeasts are eukaryotes and are bio-

chemically similar to humans, they are quite popular with biologists for study purposes.

Yeast datasets examines gene expression behaviour during various stress conditions. Ex-

pression profiles were normalized (subtracting the mean of each profile and dividing it

by the standard deviation across the time points). Another popularly studied organism

is Arabidopsis thaliana. It is a common weed which undergoes the same processes of

growth, development, flowering etc. as most of the higher plants yet has a small genome.

It produces a large number of seeds and grows to a mature plant in only about six weeks.

We studied the expression dataset ofSaccharomyces cerevisiae, Arabidopsis thalianaand

two datasets of homosapiens. TheHuman breast cancerdataset [VDV+02] aimed at pre-
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dictive gene signature for the outcome of a breast cancer therapy. TheDiffuse large B-cell

lymphomadataset [RWC+02] contained the gene expression profiles of the lymphomas

of patients after chemotherapy. Table 3.5 gives the details about the datasets used.

Dataset Genes Samples source

Arabidopsis thaliana 619 72 www.tik.ee.ethz.ch/sop/bicat

Saccharomyces cerevisiae 2993 173 www.tik.ee.ethz.ch/sop/bicat

Diffuse large-B-cell lymphoma 661 180 www.bioinf.jku.at/software/fabia

Human breast cancer 1213 97 www.bioinf.jku.at/software/fabia

Table 3.5: Gene Expression Datasets
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Chapter 4

Mutual Information

Result of any biclustering algorithm depends on the choice of similarity measure. Dif-

ferent similarity measures on the same expression data produce different results. Most of

the existing algorithms [CC00, IFB+02, WWYY02, GLD00, KBCG03, KTW05, LW07,

BIB03] for biclustering use Euclidean distance, Manhattan distance, correlation coeffi-

cient or variance as a measure of similarity(/dissimilarity). Though these measures have

been successfully and satisfactorily used for several years they capture only the linear re-

lationships between the objects. In particular, a vanishing correlation coefficient implies

absence of only linear dependencies [HG95, PMBG07, KBG+07, SKD+02, SDSK03].

However, nonlinear relationships like quadratic or sinusoidal etc may exist between the

genes. In such a situation, traditional measure of similarity like correlation coefficient

and other distance measures would fail. We thus need similarity measures that exploit

non linear dependencies to find such complex relationships between the expression val-

ues of the genes. In this chapter we present mutual information as a similarity measure to

discover non linear relationships between two genes.
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4.1 Mutual Information: A general measure of similarity

Many researchers [SKD+02, BK00, MCA+98, ZWD+04, SATB05, PMBG07] have used

mutual information for one way clustering of genes. They have shown that the infor-

mation theoretic measure is responsive to any type of dependencies, including strongly

non linear structures. Kraskov et al. [KSG04], Steur et al. [SKD+02], Butte and Ko-

hane [BK00] and Michaels et al. [MCA+98] have shown through their work that mu-

tual information is a better and general criterion for extracting complex relationships.

Kraskov et al. worked with yeast data and found that even though correlation coeffi-

cient between few gene pairs was zero, the mutual information between them was non

zero thus indicating that other non linear dependencies exist between the genes. Steur

et al. showed that higher correlation coefficient implies higher mutual information but

two variables having very low values of correlation coefficient may still be related to

each other. Butte and Kohane also worked with yeast data set. They hypothesized that

gene pairs with high mutual information between them are also related biologically. They

constructed networks of various genes having high mutual information between them

and found that each network corresponded to some biological activity. They also found

mutual information to be a better similarity measure as compared to linear correlation

coefficient. Michaels et al. used both Euclidean distance and mutual information as

a measure of similarity for finding association between genes belonging to mammalian

central nervous system. They conjectured that genes, which share common control in-

puts or operate together i.e. are a part of some biological network like signaling pathway

or metabolic network, are members of same gene sequence family and are regulated in

a similar manner. According to them some genes may share inputs but respond differ-

ently to those inputs and only mutual information is able to identify their coordinated

changes. In [PMBG07] Priness et al. also showed that the mutual information is a more

generalized measure of statistical dependence and is resistant to outliers and missing data

and give better quality clusters. With some procedural modifications they incorporated
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mutual information measure in some clustering algorithms likek-means, self organized

maps, click and sIB [Koh97, SS02, Slo02b]. They found that the clusters obtained from

these algorithms using mutual information were similar to each other but different from

the clusters obtained when using different distance measures with these algorithms, once

again endorsing the need of a different similarity measure.

To summarize, mutual information is a more general measure of association between

two random variables. When the underlying relationship is nonlinear [CT91, ZAA08,

PMBG07], it outperforms the conventional measures of similarity. Zero mutual informa-

tion indicates that the genes do not have any kind of dependence. This inference cannot

be made using any other distance measure or correlation coefficient.

(a) Expression values of two genes

Gene Y vs Gene X, when one gene

Gene Y is expressed at midrange val-

ues of Gene X

(b) Expression values of two

genes Gene Y vs gene X,

when one gene Gene Y is a

nonlinear function of the ex-

pression of Gene X

Figure 4.1: Nonlinear relationships between expression of two genes

Consider a scenario where a gene is expressed only at some midrange values of

another gene. In such a case the curve between the two genes as shown in Figure 4.1(a)

resembles a normal distribution curve and the correlation between the two genes is very
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low. However mutual information is able to capture this relationship.

Next, consider a gene X whose expression values are uniformly distributed ranging

from (-5,5 ). Let Y be another gene whose expression value is related to gene X asy = x2

as shown in Figure 4.1(b). The expression matrix of the two genes is shown in Table 4.1.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

g1 -5 -4 -3 -2 -1 1 2 3 4 5

g2 25 16 9 4 1 1 4 9 16 25

Table 4.1: Expression matrix of two genes with nonlinear relationship

The value of distance between X and Y turns out to be quite large and the value

of Pearsons correlation coefficient turns out to be very small (almost zero) showing no

relationship between X and Y. Even the Spearman’s correlation coefficient between X

and Y, which Ayadi et al. [AEH09] claim is a better similarity measure than the other

two, turns out to be zero. Thus a vanishing correlation coefficient implies absence of

linear dependencies but not complete independence. On the contrary the value of mutual

information between the two genes turns out be significant. Thus mutual information is a

more general criterion to investigate relationships (positive, negative correlation and non

linear dependencies) between variables.

4.2 Theoretical concepts

In this section we introduce the theoretical concepts behind Mutual Information. We first

introduce the concept of Entropy which is like the self information of a random variable

followed by the introduction of mutual information which is a special case of relative

entropy. We further explain the various advantages of mutual information followed by

methods to estimate mutual information [Hay07, Bis06, CT91].
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4.2.1 Entropy

Entropy is the measure of uncertainty associated with a random variable. It quantifies

the expected amount of information contained in a message, usually in units such as bits.

The concept was introduced by Claude E. Shannon in his paper ”A Mathematical Theory

of Communication” [Sha48] hence it is also calledShannon Entropy. Consider a series

of coin tosses with a fair coin. The probability of seeing a head and that of seeing a tail

are same both being equal to1/2. The system has maximum entropy, since it is most

difficult to predict the outcome of the next toss. The outcome of each toss gives1 bit

(− log 1
2
) of information. This is not the case when the coin is not fair. One of the sides

is more likely to come up as compared to the other in the next toss i.e. the element of

uncertainty is less in this case. A string of coin tosses with a two-headed coin has zero

entropy, since the coin will always come up heads. Mathematically,−
∑

pi log pi best

captures these facts. When the coin is fair, average amount of uncertainty (information)

contained in the system is maximum i.e.−
∑

1
2
log 1

2
= 1. When the two probabilities

are(p(H), p(T )) = (1
4
, 3

4
), the amount of information (surprise) obtained on seeing a less

probable event (heads, in this case) is more(− log 1
4
) than that(− log 3

4
) on seeing a more

probable event (tails). The average amount of uncertainty (information) contained in the

system is

1

4
log 4 +

3

4
log

4

3
=

1

4
log 4 +

3

4
log 4− 3

4
log 3 < 1

The inequality follows as3
4
log 3 > 1

Let X be a random vector having probability distributionpi = P (X = xi), i =

1 . . . N whereN is the number of possible valuesX can take. Let the information gained

by observingx be h(x). If x is a highly probable event then we do not gain much in-

formation on its occurrence. However ifx is a highly unlikely event then we gain a lot

of information on its occurrence. Also, for two unrelated eventsx andy the information

gained by their occurrence is the sum total of information from their individual occur-

55



rences i.e.

h(x, y) = h(x) + h(y)

Also if two eventsx and y are totally independent then their joint probability can be

written as the product of their marginal probability as follows

p(x, y) = p(x) ∗ p(y)

Motivated by this, Shannon derived the following formula for Entropy:

H(p(x)) = −
∑

i

pi log(pi)

4.2.2 Relative Entropy or The Kullback Leibler Divergence

Suppose an unknown distributionp(x) is modeled with an assumed distributionp0(x).

The difference in the amount of information given byp0(x) and that given byp(x) is

called the Kullback Leibler Divergence [KL51] or relative entropy and is given by

K(p/p0) = −
∫

p(x) log(p0(x))dx− (−
∫

p(x) log(p(x))dx) = −
∫

p(x) log
p0(x)

p(x)

Usinglog(x) as a convex function and applying Jensons inequality for convex functions1,

we have,

K(p/p0) = −
∫

p(x) log
p0(x)

p(x)
>= − log

∫
p0(x)dx = 0

i.e KL divergence is always non-negative. It equals zero if and only if{p0} and{p}

are same.

4.2.3 Mutual Information: Definition

The mutual information between two random variablesX andY is a measure of infor-

mation contained inX aboutY or the information contained inY aboutX. It is the
1a functionf is said to be convex iff(

∑N
i=1 λixi) <=

∑N
i=1 λif(xi) whereλi >= 0 and

∑
i λi = 1
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reduction in the uncertainty of one random variable due to the knowledge of the other. If

given a value ofX, it is easy to predict the value ofY thenX contains good amount of

information aboutY . Clearly with this definition, ifX andY are independent, the mutual

information between them is zero and it is high if they are highly dependent or closely

related to each other.

Kullback [Kul68] defined mutual information between two random variables as a

measure of divergence of the observed joint distribution of X and Y from the hypothesis

thatX andY are independent. If the joint probability distribution function of X and Y

is given bypXY (x, y) and the marginal distributions ofX andY by pX(x) andpY (y)

respectively then using Kullback Leibler Divergence, mutual information (MI) between

X and Y is given by

I(X, Y ) =

∫
x

∫
y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
dxdy (4.1)

The unit of mutual information is defined corresponding to the base of the logarithm

in the above equation i.e. nats forloge, bits for log2, and Hartleys forlog10. Mutual

information is non negative and symmetrical i.e.I(X, Y ) = I(Y,X). Also, mutual infor-

mation is zero if and only ifX andY are statistically independent i.e. vanishing mutual

information does imply that the two variables are independent. However, it is not a true

distance between distributions as it does not satisfy the triangle inequality.

4.3 Estimating Mutual Information

As discussed in the previous section mutual information is a function of probability densi-

ties. However, one generally does not have prior knowledge about the distributions. Thus,

estimating mutual information between two genes requires obtaining the estimatep̂(x, y)

of the joint probability distribution and̂p(x), p̂(y) of the marginal probability distribution

of their expression values. Then, on substituting the values in the expression for mutual
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information in Equation 4.1 we get the following estimates for mutual inofrmation

Î(X, Y ) =

∫
x

∫
y

p̂(x, y) log
p̂(x, y)

p̂(x)p̂(y)
dxdy

If the individual observations are independent realizations of the underlying distribution

then the expression for mutual information can be approximated as follows.

Î (X, Y ) =
1

n

n∑
j=1

log
p̂ (xj, yj)

p̂ (xj) p̂ (yj)
(4.2)

wherexj, yj aren independent realizations of the random variable X and Y respectively.

Two broad classes of approaches are used to estimate the probability distribution func-

tions namely parametric and nonparametric [Hay07, Bis06, CT91]. Parametric method

involves assuming a model for the probability density function and then determining the

various parameters from the data. However, if the assumption is poor the results are poor.

In contrast to the parametric approach no assumption about the underlying distribution

is made in the nonparametric approach. Histogram method [BK00] and Kernel density

estimation [MRL95] are two methods of estimating probability density function by the

nonparametric approach. We briefly explain the histogram method followed by the kernel

density estimation method.

4.3.1 Histogram method

Consider a series(xt, yt) of n observations of two random variablesX andY . Given an

origin o (which could be different for different variables resulting in different bins), define

binsai of width h for X, as the intervals[o + ih, o + (i + 1)h], i = 1 . . . Nx,Let fX(i)

denote the number of observations ofX falling in the binai. The probabilities{p(ai)}

are then given by

p(ai) =
fX(i)

n

Similarly define binsbj of the random variableY , j = 1 . . .Ny. Let fY (j) denote the

number of observations ofY falling in the binbj. The probabilities{p(bj)} are then given
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by

p(bj) =
fY (j)

n

Let fXY (i, j) denote the number of observations such thatX falls in bin ai andY

falls in bin bj. The joint probabilities{p(ai, bj)} are then given by

p(ai, bj) =
fXY (i, j)

n

Then the mutual information betweenX andY is estimated as

I(X, Y ) =
∑
ij

p(ai, bj) log
p(ai, bj)

p(ai)p(bj)

=
∑
ij

fXY (i, j)

n
log

fXY (i,j)
n

fX(i)
n

fY (j)
n

=
∑
ij

fXY (i, j)

n
log

n ∗ fXY (i, j)

fX(i) ∗ fY (j)

=
∑
ij

log(n) ∗ fXY (i, j)

n
+

∑
ij

fXY (i, j)

n
log

fXY (i, j)

fX(i)fY (j)

= log(n) +
1

n

∑
ij

fXY (i, j) log
fXY (i, j)

fX(i)fY (j)

4.3.2 Kernel Density Estimation method

According to Steur et al. [SKD+02], if the number of data points is sufficiently large, his-

togram method gives fairly accurate results but if the number of datapoints is small then

systematic errors may creep in because of finite size of data. The method is also sensitive

to the choice of bin width. If the bin width is very large then the actual distribution of

the data may be missed. On the other hand if the value of the bin width is chosen to be

very small then the resulting distribution may be very spiky. Thus the bin width should be

neither too large nor too small. In [Sil86] Silverman showed that the histogram method

was also sensitive to the choice of origin. If we attempt to construct the histogram such

that every point is the centre of the sampling interval, the histogram becomes independent
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from a particular choice of the bin position and origin. However, choice of rectangular

shaped bins impact the probability estimate because of their discrete nature and discon-

tinuties at the boundaries. Choosing shapes other than the rectangular bins reduces the

impact of discontinuity/dissimilarities at the boundaries and hence provides a better esti-

mate of the probability density function. Kernel density estimation (KDE) allows window

shapes other than the rectangular. In fact, Silverman showed that kernel density estimation

method is not only independent of the choice of origin but also has a better mean square

error rate of convergence. Moon et al. [MRL95] also showed that KDE is independent of

the choice of origin of the bins.

In this section, we will describe how to estimate probabilities using kernel density

estimator. Letp denote the probability density function of a random variableX then

p (x) = lim
h→0

1

2h
P (x− h < X < x + h)

whereP (x − h < X < x + h) is the probability that X lies in the intervalx − h to

x + h. For any givenh, we can estimateP (x − h < X < x + h) by the proportion of

observationsx′is falling in the interval(x−h, x+h). Thus a natural or a naive estimator

p̂ (x) of the density is given by choosing a small numberh and setting

p̂ (x) =
1

2nh
[ number of x1, x2, ......xn falling in (x− h, x + h)]

This is called the naive estimator. With the generalized weight functionw (x) given by

w (x) = {
1
2

if |x| < 1

0 otherwise

the naive estimator can be written as

p̂ (x) =
1

n

n∑
i=1

1

h
w (

x− xi

h
)

On replacing the weight function by a kernel density function which satisfies the condi-

tion, ∫ +∞

−∞
K (x) dx = 1
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the kernel density estimator with kernel functionK can be written as

p̂ (x) =
1

n

n∑
i=1

1

h
K (

x− xi

h
)

The naive estimator can be considered as a sum of boxes centered at the observations, and

the kernel estimator as the sum of bumps placed at the observations where the shape of

the bumps is determined by the kernel functionK and the window widthh also called the

smoothing parameter, determines the width of the bumps. The Gaussian kernel function

centered at the origin and unit variance is given by

K (x) =
1√
2π

∫
exp (

−x2

2
)

Thus using Gaussian kernel the density estimates are given as follows:

p̂ (x) =
1

nh
√

2π

n∑
i=1

exp (
−(x− xi)

2

2h2
)

Similarly, the Gaussian kernel may be used to estimate the joint probability density

function as

p̂ (x, y) =
1

2πnh2

n∑
i=1

exp (
−1

2h2
[ (x− xi)

2 + (y − yi)
2])

In [MRL95] Moon et al. defined an optimal value ofh as the one that minimizes

the mean integrated square error, assuming the underlying distribution is Gaussian. Fol-

lowing Silverman [Sil86] the optimal Gaussian bandwidthhopt for marginal probability

distribution is given by

h = (
4

3n
)

1
5 σ ≈ 1.06σn

−1
5

whereσ denotes the standard deviation of the data. And, the value ofhopt for joint prob-

ability distribution is given by

h = σn
−1
6

whereσ denotes the average marginal standard deviation.
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4.4 Advantages of Mutual Information

Besides the fact that mutual information captures non-linear relationship, it enjoys several

other benefits. As mutual information is based on the distribution of data rather than the

actual values, it does not require normalization and it is robust towards noise, outliers and

missing data. This is explained below:

1. Normalization of data: Mutual inoformation is not sensitive to shifting and scaling

unlike other similarity measures like Euclidean distance [JTZ04, DLS99].

(a) Expression values of two

genes before normalization

(b) Expression values of two genes

after normalization

Figure 4.2: Normalization of data

In a microarray experiment two genes may have similar expression pattern yet

their expression values may not be directly comparable [CQB04] as shown in Fig-

ure 4.2(a). There may be several reasons attributing to this gap in the expression

values for example the data may be collected from different labs or quantity of

starting mRNA may not be same for the samples. Differences may also occur while

labeling and detecting efficiencies for the fluoroscent labels. Additional systematic

errors can also alter the expression levels. Various distance measures like Euclidean
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distance will not find any relationship between the two genes and would put them

in different clusters despite the fact that they have similar pattern of expression. To

be able to use these measure to extract the common pattern, the expression levels

of the genes must be normalized. After normalization, the expression of the two

genes appears as shown in Figure 4.2(b) and they become comparable. As mutual

information exploits the distribution in the expression level of the genes rather than

their actual values, it turns out to be high both before and after normalization.

2. Robust to Outliers: Mutual information is not sensitive towards outliers whereas

measures like correlation coefficient and Euclidean distance are. Let us take the

scenario when two genes have a very high expression value under a condition as

compared to other conditions, then the correlation between them will be high ir-

respective of their expression under other conditions. Consider two gene with the

expression values as shown in Table 4.2.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

g1 -5 -4 -3 -2 -1 1 2 3 4 5 100

g2 25 16 9 4 1 1 4 9 16 25 100

Table 4.2: Expression matrix of two genes with an outlier

The correlation between the two genes turns out to be quite high(≈ 1). However,

if we remove conditionc11 then the correlation turns to be zero. On the other hand

mutual information between the two genes turns out to be1.5 and1.7 with and

without conditionc11 respectively.

3. Noise in gene expression data : A lot of noise is generally present in the gene

expression data due to experimental errors like differences and impurities in the

biological samples. The actual expression values change because of the presence

of noise. Mutual information is robust towards noise. In Figure 4.3 we show the
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Figure 4.3: Expression values of a gene perturbed by noise

expression of two genesX andY whereY is related toX asY = sin(X). Noise

was simulated by generating random numbers from normal distribution with mean

µ = 0.1 and standard deviationσ varying from.001 to .09. Expression values were

perturbed by adding the random numbers generated for different levels of noise.

The curve betweenX andY gets distorted due to noise as shown in Figure 4.3.

The mutual information calculated betweenX andY before and after perturbation

of Y is of the same order.

4. Missing values in data: Dust particles, scratches on the microarray plate, errors

in measuring the intensity often result in missing values in the gene expression

data. Measures like Euclidean distance are sensitive towards missing data whereas

mutual information is not.
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Chapter 5

MRB: Extracting Maximum Related

Biclusters

In this chapter we describe our study and results of the use of mutual information to ex-

tract biclusters from gene expression data. We simply plugged mutual information as

a similarity measure in the algorithm Maximum Similarity Biclustering (MSB) by Liu

et al. [LW07] to obtain what we call as Maximum Related Biclustering (MRB) algo-

rithm [GA09]. Liu et al. have posed biclustering as an optimization problem where in

they define a similarity score (based on Euclidean distance) for a bicluster and try to ob-

tain a bicluster that maximizes the score. Starting with the entire matrix as a bicluster, a

row or a column that contributes least to the score of the bicluster is removed iteratively.

Finally, the bicluster with maximum score out of all the biclusters obtained is selected as

output. We proposed a similarity score based on mutual information instead of Euclidean

distance.

The algorithm MRB was tested both on synthetic data as well as real datasets. The

main idea behind the construction of the synthetic data was to modelnonlinear relation-

ships between the genes of a biclusterover a subset of conditions. We were able to

extract the implanted biclusters in the synthetic data whereas the distance based MSB
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could not. We also obtained biclusters from different datasets namely the expression

datasets ofArabidopsis thaliana, Diffuse large B-cell lymphomadata set,Human breast

cancerdata, andSaccharomyces cerevisiae. Our biclusters were found to be significantly

enriched with GO categories with very smallp values, hence endorsing that mutual infor-

mation is an effective similarity measure. To further biologically validate our biclusters,

we searched for common patterns (motifs) from the promoter regions of the genes be-

longing to a bicluster. Promoter regions of the genes of most of the biclusters were found

to have statistically significant (smallerE value) common motif patterns.

5.1 The Bicluster Score

Let G be the set of genes andC be the set of conditions in the expression matrixE. The

number of genes inG is denoted byNg and the number of conditions inC by Nc. We

want to find biclusters which are tuples(G′, C ′), whereG′ is the subset of genes which

are most closely related to a gene seed (g∗) under the subsetC ′ of conditions andC ′ is

the subset of conditions under which the genes in the setG′ are most closely related to

the gene seed.

For a gene seedg∗, let mij denote the contribution of thejth condition towards the

mutual information of theith gene withg∗, then from Equation 4.2 in Chapter 4 we have

mij =
1

Nc

log
( p̂(g∗j, gij)

p̂(g∗j) · p̂(gij)

)
Let M denote the matrix with elementsmij andM̂ be the similarity matrix derived

from the matrixM by setting smaller values to zero. The(ij)th entry m̂ij of M̂ is then

given as:

m̂ij =
{0 if mij<α·miavg

mij
α.miavg

−1 otherwise

whereα is a control parameter and
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miavg =
1

NgNc

Ng∑
i=1

Nc∑
j=1

mij

Let B(I, J) denote a bicluster consisting of a setI of rows and setJ of columns.

The scores(i, J) of row i is then defined as follows

s(i, J) =
∑
j∈J

m̂ij (5.1)

Similarly the scores(I, j) of columnj is defined as follows

s(I, j) =
∑
i∈I

m̂ij (5.2)

and the scores(I, J) of the bicluster is defined as

s(I, J) = min{mini∈I {s(i, J)}, minj∈J {s(I, j)}} (5.3)

The aim is to extract a bicluster with maximum score.

5.2 MRB: Biclustering for maximum related biclusters

In this section we describe our algorithm MRB. The broad overview of MRB is given in

Algorithm 1. The algorithm starts by selecting a gene seedg∗ randomly and taking the

whole expression matrix as a bicluster. It then iteratively eliminates a row or a column

(one with the least score) that contributes least to the similarity score of the bicluster till

a bicluster having one row and one column is left. At each stage the score of the bicluster

obtained is calculated. At the end, the bicluster with the maximum similarity score is

selected as output. More biclusters are obtained by running the algorithm with different

gene seeds.

Selecting the well separated gene seeds:We incorporate a method to intelligently

select well separated gene seeds from the expression data. The number of gene seeds
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need not be specified by the user as is generally required by many clustering algorithms.

It is determined by the algorithm from the data itself. Letgi
∗ denote the gene seed in the

ith iteration andGi denote the set of genes most related togi
∗. LetSi be the subset of gene

seeds at the beginning of the(i + 1)th iteration. InitiallySo = φ. The first gene seedg1
∗ is

chosen randomly for the first iteration and added toSo to formS1. The(i+1)th gene seed

gi+1
∗ is selected as the gene which is unclustered and is least related with the gene seeds

chosen so far (i.e. with the genes inSi). For this we determine the maximum relatedness

of all the unclustered genes with the genes inSi and then choose the one that is related

least to the gene seeds inSi, i.e.

gi+1
∗ = argmin{maxg∗∈Si

mi ( g, g∗)}

where minimum is taken overg ∈ G− ∪k≤iGk and mi(x, y) denotes the pairwise

mutual information between two genesx andy over all the conditions.

ProcedureMRB() in Algorithm 2 shows the detailed algorithm. The method of

selecting well separated gene seeds is summarized in Procedureget next gene seed().

Gene score of a geneg denoted bygscore(g) and the condition score of a conditionc

denoted bycscore(c) are computed according to Equations 5.1 and 5.2 respectively.

We prove that for a given gene seed, our algorithm MRB extracts the optimal biclus-

ter i.e. the biclusterB(I, J) for which s(I, J), as defined in Equation 5.3 is maximum.

For this we prove the following lemma first.

Lemma 5.1 LetB(I1, J1) andB(I2, J2) are two biclusters in the expression matrix such

that I1 ⊆ I2 ⊆ I andJ1 ⊆ J2 ⊆ J . Then, for each rowi and each columnj, we have

s(i, J1) ≤ s(i, J2) ands(I1, j) ≤ s(I2, j).

Proof As all the columns inJ1 are contained inJ2, for each rowi we have

s(i, J2)− s(i, J1) =
∑
j∈J2

m̂ij −
∑
j∈J1

m̂ij

=
∑

j∈J2\J1

m̂ij ≥ 0
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The last inequality follows aŝmij ≥ 0 ∀i and∀j. Therefores(i, J1) ≤ s(i, J2). Similarly,

s(I1, j) ≤ s(I2, j). �

Theorem 5.2 For a given gene seed, the MRB algorithm outputs an optimal bicluster.

Proof We prove the claim by contradiction. Suppose that our MRB algorithm outputs

the biclusterB(IS, JS) which is not optimal. Then there exists a biclusterB(I∗, J∗) such

thats(I∗, J∗) > s(IS, JS) andB(IS, JS) 6= B(I∗, J∗). Let the biclusters obtained by our

algorithm be denoted byB(Il, Jl), l = 1 . . . Ng +Nc− 1, in the order in which they were

obtained.

Sinces(I∗, J∗) > s(IS, JS) = max1≤l≤Ng+Nc−1s(Il, Jl), thereforeB(I∗, J∗) 6=

B(Il, Jl) ∀ l. In particular,B(I∗, J∗) 6= B(INg+Nc−1, JNg+Nc−1). Thus at least one row

i ∈ I∗ or one columnj ∈ J∗ is not inB(INg+Nc−1, JNg+Nc−1) i.e. the algorithm must

have removed it in some iteration.

Letk be the first iteration in which any row/column ofB(I∗, J∗) was removed by the

algorithm, i.e.B(I∗, J∗) is a sub-matrix ofB(Il, Jl), l = 1 . . . k and it is not a sub-matrix

of B(Ik+1, Jk+1). Without loss of generality, let us assume thati ∈ I∗ was removed from

Ik to getIk+1. The case when a column ofJ∗ is removed can be handled analogously. As

J∗ ⊆ Jk, by Lemma 5.1, we have

s(i, J∗) ≤ s(i, Jk).

Also, asi ∈ I∗, by definition ofs(I, J) we have

s(I∗, J∗) ≤ s(i, J∗)

Further, as rowi is selected to be removed fromB(Ik, Jk), it has the minimum

similarity score amongst all the rows and columns ofB(Ik, Jk). i.e.

s(Ik, Jk) = min{mini∈Ik
{s(i, Jk)}, minj∈Jk

{s(Ik, j)}} = s(i, Jk).

Therefore we gets(I∗, J∗) ≤ s(i, J∗) ≤ s(i, Jk) = s(Ik, Jk) ≤ s(IS, JS)

This is a contradiction to our assumption thats(I∗, J∗) > s(IS, JS). �
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Time Complexity: In the first step of the algorithm, anNg × Nc MI matrix is

computed. The time required to compute each element of the matrix isO(Nc). Thus total

time required to compute the entire matrix isO(Ng ·N2
c ). Computing the similarity matrix

takesO(Ng · Nc) time. Selecting a row or a column with minimum score for deletion

requiresO(Ng + Nc) time for each iteration. As the total number of iterations is(Ng +

Nc−1) for each gene seed, the total time for this step isO(k · (Ng +Nc)∗ (Ng +Nc−1))

for k gene seeds. Selecting a gene seed takesO(1) time for the first seed andO(Ng) time

for the subsequent seeds thereby incurring a total cost ofk · Ng to select all thek seeds.

Thus, the overall complexity of the algorithm isO(k · (N2
g +Ng ·N2

c )) = O(k · (Ng ·N2
c ))

wheneverNg ≤ N2
c . Table 5.1 gives the actual runtime taken by MRB on real datasets

for k set to10. The table shows that the algorithm scales well with the size of the data set.

5.3 Experimental Results

We implemented our algorithm MRB in C++. The performance was tested both on syn-

thetic data as well as real datasets. The main idea behind the construction of the synthetic

data was to model nonlinear relationships between genes of the bicluster over a subset of

conditions. The synthetic datasets were constructed for both non overlapping and over-

lapping biclusters as shown in Figure 5.1. The algorithm was run for different values ofα

and we were able to extract all the implanted biclusters forα = 0.1 whereas MSB could

not.

Synthetic data for non overlapping biclusters: We generated synthetic data (as

shown in Figure 5.1(a)) containing10 biclusters. This data was generated by implanting

biclusters or sub matrices into a larger background matrix. We first generated a larger

background matrix of size200 × 200 corresponding to200 genes and200 conditions

having values drawn from normal distribution (of meanµ = .01 and standard deviation

σ = .001). We then implanted10 non overlapping biclusters (each exhibiting nonlinear
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(a) Non overlapping biclusters (b) Overlapping biclusters

Figure 5.1: Synthetic datasets for MRB algorithm

relationships like(x2, x3, x4 etc.) of genes with some gene seed) of size20× 20 into the

background matrix. While implanting, we added the elements of our bicluster with the

elements of the background matrix.

Synthetic data for overlapping biclusters: We also created synthetic data with

two overlapping biclustersM1 andM2 having nonlinear relationships between the genes

(as shown in Figure 5.1(b)). We generated a larger background matrix of size110× 110

having values drawn from normal distribution (of meanµ = .01 and standard deviation

σ = .001). We then implanted two overlapping biclusters of size50 × 50 in it. The

first biclusterM1 consisted of genesg11 to g60 and conditionsc11 to c60. The second

biclusterM2 consisted of genesg51 to g100 and conditionsc51 to c100. The genes of both

the biclusters had nonlinear relationships over the conditions of the biclusters.

Effect of initial start gene: The algorithm chooses the first gene seed randomly

and the subsequent gene seeds are chosen far apart from the already selected gene seeds.

We studied the effect of random selection of the initial gene seed on the output biclusters.

We were able to extract all the implanted biclusters from both datasets irrespective of the

initial gene seed.
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Effect of varying control parameter α: To study the impact of control parameter

α on the output of MRB, it was varied from.01 to .4. We found that on varyingα, the

granularity of the extracted biclusters changes providing large bicluster containing almost

all genes forα as small as.01 to the implanted biclusters atα = .1 and their subsets for

largerα.

Effect of noise: By perturbing the synthetic data in Figure 5.1(a) by varying levels

of noise we studied how MRB behaves in presence of noise. Noise level was varied from

0.001 to 0.005. We were able to extract more than 90% of all the ten implanted biclusters

from the synthetic data.

Real Datasets: We tested our algorithm on our four datasets viz.Arabidopsis

thaliana, Saccharomyces cerevisiae, Diffuse large B cell lymphomaandHuman breast

cancerdataset. The biclusters obtained were tested for their biological significance. Ta-

ble 5.2 summarizes the bestp value of the obtained biclusters from various datasets. The

table clearly shows that thep values of the biclusters are quite low indicating biologically

significant biclusters. We also studied the promoter regions of the genes belonging to a

bicluster for finding common motifs. Table 5.3 summarizes the bestE value for the motif

extracted from the gene sequences of the genes belonging to biclusters extracted by MRB

on various datasets. Again theE values are quite low indicating biologically significant

biclusters.
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MRB: Maximum Related Biclustering

Input : Expression matrixE containing a set of genesG, a set of conditionsC and a

control parameterα.

Output : A set of biclustersBi = (Gi, Ci).

1 Mark all genes asunclustered; Seti to 1.

2 while there are genes to beclustered do

3 Setmax bcscore to 0, Gi to G , Ci to C.

4 Get next gene seedgi
∗.

5 Compute the matrixM of mutual information.

6 Compute the similarity matrix̂M .

7 Compute gene scores and condition scores.

8 for k = 1 to Ng + Nc − 1 do

9 Find the genegmin with minimum gscore()min gs.

10 Find the conditioncmin with minimum cscore()min cs.

11 Compute bicluster scorebcscore.

12 if bcscore > max bcscore then

13 Updatemax bcscore and save current bicluster.

14 end

15 if min cs < min gs then

16 Deletecmin and Update gene scores.

17 end

18 else

19 Deletegmin and Update condition scores.

20 end

21 end

22 Output bicluster with maximum score.

23 Mark the genes of the bicluster asclustered; incrementi.

24 end

Algorithm 1: Overview of MRB algorithm
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Procedure: MRB

Input : E, G, C, Ng, Nc, α.

Output : A set of biclusters Bi = (Gi, Ci).

1 Mark all genes asunclustered.

2 i = 1 ; gi
∗ = random (); S = φ.

3 while there are genes to be clustereddo

4 S = S ∪ gi
∗ ; Gi = G ; Ci = C; max bcscore = 0.

5 M = Compute mi matrix (gi
∗).

6 M̂ = Compute similarity matrix (M, α).

7 Compute gene scores and condition scores.

8 for k = 1 to Ng + Nc − 1 do

9 x̂ = argminx∈Gi
{gscore(x)}; ŷ = argminy∈Ci

{cscore(y)}.

10 bcscore = min{g score(x̂), c score(ŷ)}.

11 if (bcscore > max bcscore) then

12 Bi = (Gi, Ci) ; max bcscore = bcscore.

13 end

14 if (gscore(x̂) > cscore(ŷ)) then

15 update bicluster n score (Gi, Ci, ŷ, 0).

16 end

17 else

18 update bicluster n score (Gi, Ci, x̂, 1).

19 end

20 end

21 output (Gi, Ci); mark all genesg ∈ Gi asclustered.

22 gi+1
∗ = get next gene seed (i) ; i = i + 1.

23 end

Algorithm 2: Detailed MRB algorithm
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Procedure: Compute mi matrix

Input : g∗.

Output : M .

1 for i = 1 to Ng do

2 for j = 1 to Nc do

3 M [i][j] = 1
Nc

log
(

p̂(g∗j ,gij)

p̂(g∗j)·p̂(gij)

)
.

4 end

5 end

Algorithm 3: Compute mutual information matrix

Procedure: Compute similarity matrix

Input : M, α.

Output : M̂.

1 /* avg() denotes the average of the matrix elements over all rows and columns*/

2 for i = 1 to Ng do

3 for j = 1 to Nc do

4 if (M [i][j] < (α · avg(M)) then

5 M̂ [i][j] = 0.

6 end

7 else

8 M̂ [i][j] = M̂ [i][j]/(α · avg(M))− 1.

9 end

10 end

11 end

Algorithm 4: Compute similarity matrix
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Procedure: update bicluster n score

Input : G, C, x̂, f lag.

1 if (flag is 0) then

2 C = C \ x̂.

3 for eachg ∈ G do

4 score (g) = score(g)− M̂ [g][x̂].

5 end

6 end

7 else

8 G = G \ x̂.

9 for eachc ∈ C do

10 score (c) = score(c)− M̂ [x̂][c].

11 end

12 end

Algorithm 5: Update bicluster and its score

Procedure: get next gene seed

Input : i.

Output : next g∗.

1 next g∗ = argming∈G−∪k≤iGk
{maxg∗∈Smi(g, g∗)}.

2 returnnext g∗.

Algorithm 6: Return the next gene seed
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Dataset Size Time (s)

A. thaliana 619× 72 (44,568) 70

HBC 1213× 97 (1,17,661) 228

DLBCL 661× 180 (1,18,980) 427

S. cerevisiae 2993× 173 (5,17,789) 1620

Table 5.1: Runtime of MRB on real Datasets.

Dataset Biological Process Cellular Component Molecular Function

A. thaliana 1.9 e−23 2.4 e−12 9.7 e−14

S. cerevisiae 4.4 e−31 1.70 e−43 8.4 e−26

HBC 7.2 e−20 3.3 e−15 1.7 e−7

DLBCL 1.3 e−9 2.5 e−11 2.8 e−09

Table 5.2: Bestp values of MRB Biclusters.

Dataset E value

A. thaliana 3.7 e−2

S. cerevisiae 1.3 e−17

HBC 7.1 e−18

DLBCL 3.4 e−16

Table 5.3: Best E values of the motifs from MRB Biclusters
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Chapter 6

BRC: Extracting Biclusters with

Related Conditions

In the previous chapter, we described a method based on gene scores, condition scores and

bicluster scores that are defined using a precomputed similarity matrix. The drawback of

the approach is that the values in the similarity matrix are precomputed based on the

entire set of conditions. Though the scores of the genes (/conditions) are updated as a

condition (/gene) is deleted, the values in the similarity matrix are not recomputed. Thus

the scores computed do not completely capture the impact of a small subset of conditions.

Recomputing the entire matrix after every deletion would be computationally expensive.

Thus, in this chapter we present a heuristic approach to obtain biclusters where the mutual

information is computed using only the local subset of conditions. Here, we assume that

if there is a group of genes which exhibit some relationship in their expression values

under a subset of conditions, then these conditions are also related to each other in some

sense. This assumption is not unrealistic as expression of genes in the cells of same organ,

say brain, are expected to be more related to each other than those in the cells of different

organs. Also the conditions to which the genes in the cells of the brain tissue respond are

expected to be more related to each other than the conditions to which they don’t respond.

79



Like MRB, the gene seeds and the number of biclusters to be extracted are deter-

mined by the algorithm from the data itself. We tested the algorithm on both synthetic

and real datasets. The main idea behind the construction of the synthetic data was to

model relationships between genes of the bicluster over a subset of conditions in such a

way that thesubset of conditions of the bicluster are also related over the subset of re-

lated genes. Synthetic data was also constructed to study the algorithm’s ability to extract

biclusters in presence of noise. The synthetic datasets were constructed for both nonover-

lapping and overlapping biclusters to model complex biological processes. We were able

to extract all the implanted biclusters whereas the existing biclustering algorithms were

unable to identify them completely.

We also tested our algorithm on our four datasets viz.Arabidopsis thaliana, Diffuse

large B-cell lymphoma, Human breast cancer, andSaccharomyces cerevisiae. We were

able to extract biologically significant biclusters from all the datasets. We compared the

performance of our algorithm with other biclustering algorithms namely ISA [BIB03],

CC [CC00], OPSM [BDCKY02] and BIMAX [PBZ+06]. Thep values of the GO an-

notations associated with the genes of our biclusters were found to be smaller than thep

values of the GO anotations associated with the biclusters of others. In other words, our

biclusters were found to be biologically more significant than those of other biclustering

solutions. The motifs extracted from the promoter regions of the genes of our biclusters

were statistically more significant (smallerE value) as compared to the motifs extracted

from the biclusters of other algorithms.

6.1 The Bicluster Score

Let G be the set of genes andC be the set of conditions in the expression matrixE. The

number of genes inG is denoted byNg and the number of conditions inC by Nc. We

want to find biclusters which are tuples denoted as(G′, C ′), whereG′ is the subset of
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genes which are most closely related to a gene seed (g∗) under the subsetC ′ of conditions

andC ′ is the subset of conditions under which subsetG′ of genes are most closely related

to the gene seed.

For a gene seedg∗ we define the mutual information score of a bicluster (G′, C ′) as

the average mutual information of all the genes inG′ with g∗ under the conditionsC ′ i.e.

MIscore(G′, C ′) =
∑

i∈G′ miC′ (gi,g∗)

|G′||C′|

where|G′| and|C ′| denote the number of genes inG′ and conditions inC ′ respectively;

miC′(g, g∗) denotes the mutual information betweeng andg∗ over the condition setC ′

according to Equation 4.2 in Chapter 4 and is given as follows:

miC′(gi, g∗) =
1

NC′

∑
j∈C′

log
p̂ (gij, g∗j)

p̂ (gij) p̂ (g∗j)
(6.1)

We extract biclusters with highMIscores.

6.2 BRC: Biclustering with related conditions

In this section we present a heuristic algorithm (BRC) to extractbiclusters with related

conditions. The broad overview of the algorithm is given in Algorithm 7.

For a given gene seed BRC proceeds in three steps. In the first step it finds the set of

genes which are most related to the seed gene. For this it computes the pairwise mutual

information of the gene seed with all other genes over all the conditions. Genes having

mutual information greater than the gene thresholdtg are selected.

As mentioned earlier, we assume that if a group of genes exhibit some relationships

in their expressions under a subset of conditions, then these conditions are also related to

each other. One way then to discover relevant conditions is to find pairwise mutual infor-

mation amongst all pairs of conditions and select those pairs whose mutual information

is above some threshold. The problem in this approach is that if two pairs of conditions
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c1, c2 andc3, c4 have high mutual information then all four will be selected whereas there

may not be any relation betweenc1 andc3. Thus in the second step of our algorithm, we

use a reference condition sayc∗ and select conditions which have high degree of relation

with c∗. For this the algorithm computes the pairwise mutual information ofc∗ with all

other conditions over the reduced set of genes. Again only those conditions are selected

whose pairwise mutual information is greater than the condition thresholdtc.

In the third and the final step, the algorithm selects, from the whole expression data,

those genes which are most dependent on each other under the reduced set of conditions

identified in step two. For this we recompute mutual information of genes with the gene

seed over the reduced set of conditions. Genes not related to the gene seed under all the

conditions but related under a subset of conditions are identified in this step.

Running the algorithm for more iterations did not improve the result. Since, which

reference condition is best for our gene set is not known, the above process is repeated

for a well separated set of reference conditions. Finally we choose the bicluster with the

maximumMIscore. Thus we get one bicluster for a fixed gene seed. More biclusters are

obtained by running the algorithm for more gene seeds. The gene seeds are chosen to be

well separated as explained in the previous chapter. Biclusters which contain less than a

fixed number of genes (five in our case) are discarded.

If a set of related genes is known earlier we can skip the first step of finding the gene

subset and can go to step 2 directly. If no set of related genes is known, we enter into a

chicken-egg problem wherein the question arises as to whether one should start grouping

the genes first or the conditions first. Feature selection algorithms start with grouping the

conditions first whereas most of the clustering solutions start grouping the genes first as

that is the most intuitive thing to do. The two approaches have different objectives and

each involves its own tradeoff.

ProcedureBRC() in Algorithm 8 shows the detailed algorithm. In [GA10], we

had used the bin method to estimate the probability densities. However, in this chapter
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we present our results with kernel density estimator. Procedureget next gene seed() is

same as that of MRB.

BRC: Biclustering with related conditions

Input : E, G, C, Ng, NC , tg, tc

Output : A set of biclustersBi = (Gi, Ci)

1 Mark all genes asunclustered

2 Seti to 1

3 while there are genes to be clustereddo

4 get next gene seedgi
∗

5 Gtmp← genes that have high MI withgi
∗ overC

6 Mark all conditions asunclustered

7 Setj to 1

8 while there are conditions to be clustereddo

9 get next condition seedcj
∗

10 Cj ← conditions having high MI withcj
∗ over genesg ∈ Gtmp

11 Mark conditionsc ∈ Cj asclustered

12 /* ComputeGj based onCj */

13 Gj ← genes having high MI withgi
∗ overCj

14 incrementj

15 end

16 /*select bicluster with maximum score */

17 î = argmaxj{MIscore(Gj, Cj)}

18 Gi = Gî; Ci = Cî

19 Mark genesg ∈ Gi asclustered

20 incrementi

21 end

Algorithm 7: Overview of BRC algorithm
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Time Complexity: The time required to compute the mutual information for all the

genes isO(Ng ·N2
c ). Selecting genes with high mutual information requiresO(Ng) time

for each gene seed. Analogously, computing columnwise mutual information requires

O(Nc · N2
g ) time and selecting conditions with high mutual information requiresO(Nc)

time for each condition seed. Recomputing the mutual information for all the genes under

the reduced set of conditions takes no more thanO(Ng ·N2
c ) time. Selecting the final set of

genes of the bicluster requireO(Ng) time. Thus, computing a bicluster for each condition

seed takesO(Ng ·N2
c +Nc ·N2

g ) time. Computing the MIscore of a bicluster takesO(Ng)

time. Hence computing the MIscore ofk′ biclusters (one corresponding to each condition

seed) takesO(k′ ·Ng) time. Selecting the best bicluster from amongst thesek′ biclusters

for a given gene seed takes additionalO(k′) time. Thus, the time required for a given

gene seed, isO(Ng ·N2
c + k′ · (Nc ·N2

g ))) = O(N2
g ·N2

c ). Thus, the overall complexity

of BRC for k biclusters isO(k · N2
g · N2

c ). Time required to selectk gene seeds is same

as that in MRB i.e.O(k · Ng). Similarly, the time taken to selectk′ condition seeds is

O(k′ · Nc) = O(N2
c ). Table 6.1 gives the actual runtime taken by BRC on real datasets

for k andk′ both set to10. The table shows that the algorithm scales well with the size of

the data set.

6.3 Experimental Results

We implemented our algorithm in C++. The performance was tested both on synthetic

data as well as real datasets. The synthetic datasets were constructed for both nonover-

lapping and overlapping biclusters as shown in Figure 6.1. Though the synthetic data for

BRC was constructed in a similar way as that in MRB, the main difference lies in model-

ing the biclusters themselves. Here the biclusters were constructed to capture relationship

between the genes over a set of related conditions.
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(a) Non overlapping biclusters (b) Overlapping biclusters

Figure 6.1: Synthetic datasets for BRC algorithm

Synthetic data for nonoverlapping biclusters:Data was generated by implanting

10 biclusters into a larger background matrix(as shown in Figure 6.1(a)). We first gen-

erated a larger background matrix of size200 × 200 having values drawn from normal

distribution (of meanµ = .01 and standard deviationσ = .001). We then implanted10

nonoverlapping biclusters of size20× 20 into the background matrix. While implanting,

we added the elements of our bicluster with the elements of the background matrix.

Synthetic data for overlapping biclusters: We also created synthetic data with

two overlapping biclustersM1 andM2 (as shown in Figure 6.1(b)). We again generated a

larger background matrix of size120×120 having values drawn from normal distribution

(of meanµ = .01 and standard deviationσ = .001). We then implanted two overlapping

biclusters of size50× 50 into the background matrix. The first biclusterM1 consisted of

genesg11 to g60 and the conditionsc11 to c60. The second biclusterM2 consisted of genes

g51 to g100 and conditionsc51 to c100.

We were able to extract all the implanted biclusters from both the datasets.

Effect of varying gene thresholdtg: We varied the gene thresholds to study their

effect on the output biclusters. We found that only the granularity of the output biclusters
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changes as we increase or decrease the gene thresholdtg. Figure 6.2 shows the output bi-

Figure 6.2: Effect of varying gene thresholdtg on output Biclusters of BRC

clusters for varyingtg for the overlapping biclusters shown in Figure 6.1(b). For the value

of the condition thresholdtc set to−0.5, at a very low gene thresholdtg, the biclusters

reported had almost all the genes. As we increasetg to −0.1 we were able to find both

M1 andM2 separately. As we increasetg further to1.5 we were able to find the genes

in M1

⋂
M2. Finally for a very high gene threshold the output sets were empty. Thus

on varying the gene threshold, only the granularity of the resulting biclusters changes

providing large biclusters for small value of the threshold and their subsets as the value

increases. Similar results were observed on varying the condition threshold and keeping

the gene threshold fixed. Attg set to−.1 andtc set to−0.5 the algorithm was able to
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extract exactlyM1 andM2. Thus, with different values of the gene threshold and the

condition threshold BRC can extract the modular and overlapping structures hidden in

the expression data, starting from the entire set ofM1 ∪M2 followed by the components

M1 andM2 followed by the submoduleM1

⋂
M2. Similar results were obtained for the

data with non-overlapping biclusters of Figure 6.1(a).

Effect of initial start gene: To study the impact of initial gene seed, the experi-

ments were carried out on different gene seeds. We were able to extract all the implanted

biclusters from both the synthetic datasets irrespective of the initial gene seed.

Effect of noise:To study the impact of noise on the performance of BRC, synthetic

data in Figure 6.1(a) was perturbed by adding noise varying from.001 to .005. We were

able to extract all the ten implanted biclusters from the synthetic data.

Real datasets:We tested our algorithm on our four datasets ofArabidopsis thaliana,

Saccharomyces cerevisiae, Diffuse large B cell lymphomaand theHuman Breast Cancer

dataset. The biclusters ofA. thalianaand S. cerevisiaedataset for various algorithms

were available on the BICAT toolbox [BBP+06] whereas those ofDLBCLandHBCwere

obtained by running the algorithms using BICAT toolbox. BIMAX could not be run on

DLBCLandHBCas it depends heavily on the discretization of the data and the discretized

data was not available. The value of the input parameters for these algorithms and BRC

were chosen such that the output biclusters were of comparable sizes.

Tables 6.2, 6.3, 6.4 and 6.5 summarize the bestp values of the GO terms of the

biclusters obtained by different algorithms for theA. thaliana, S. cerevisiae, DLBCL and

HBC dataset respectively. The histograms in Figures 6.3, 6.4, 6.5 and 6.6 show− log(p)

values. It can be seen that the− log(p) values of the GO terms associated with the biclus-

ters of BRC are higher in comparison to that of the biclusters of other algorithms on all

organisms except Cheng and Church oncerevisiaedataset i.e. our algorithm outperforms

all other algorithms on all the organisms except for theS. cerevisiaedataset where Cheng

and Church performs better than ours. The results clearly provide evidence that our bi-
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clusters are biologically more significant than most of the biclusters by other algorithms.

As the genes showing dependencies in expression data are expected to have common

patterns in their promoter regions as explained in Chapter 3, we studied the promoter re-

gions of the genes belonging to a bicluster for such common patterns. Tables 6.6, 6.7, 6.8

and 6.9 summarize the bestE values for the motifs extracted from the gene sequences of

the genes belonging to biclusters extracted by BRC and other algorithms. The histograms

in Figures 6.7, 6.8, 6.9 and 6.10 show− log(E) values for all the algorithms. Again we

find that the− log(E) values corresponding to BRC are much higher than those of other

algorithms on all organisms except forS. Cerevisiae, further endorsing that our biclusters

are more biologically significant than most of the biclusters extracted by other algorithms.

ForA. thaliana, we also checked the existence of the extracted motifs in the existing

motif database of the organism using PLACE [HUIK99]. PLACE is a database of motifs

found in plant cis-acting regulatory DNA elements. The PLACE database also contains a

brief description of each motif. At least one of the motifs from every bicluster (except for

one) belonged to the known motif database ofArabidopsis thalianathereby endorsing the

good quality of the biclusters. Some of the other motifs were found in other organisms

but not inArabidopsis thaliana. Patterns likeCGGCGACGAG that did not match in the

Arabidopsis thalianamotif database but was found in other organisms like rice (Oryza

sativa) and Chlamydomonas reinhardtii, cauliflower, maize, soyabean etc. can be targets

for further research by biologists.

Effect of noise in real scenario: We extracted a bicluster of size138 × 4 found

by BRC from the expression data ofA. thalianaand implanted it in a matrix of size

150 × 150 containing random numbers generated from normal distribution with mean

µ = .01 and varianceσ = .001 as shown in Figure 6.11. To add noise, it was perturbed

by adding random numbers generated from normal distribution. BRC was able to extract

the bicluster from the noisy data.
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Procedure: BRC

Input : E, G, C, Ng, Nc, tg, tc

Output : A set of BiclustersBi = (Gi, Ci)

1 i = 1 ; Sg = φ /* Sg is the set of gene seeds */

2 gi
∗ = random ()

3 Mark all genesg ∈ G asunclustered

4 while there are genes to be clustereddo

5 Sg = Sg ∪ gi
∗

6 Gtmp = Compute genes (gi
∗, G, C, tg, Ng, Nc)

7 Sc = φ /* Sc is the set of condition seeds */

8 j = 1 ; cj
∗ = random ()

9 Mark all conditionsc ∈ C asunclustered

10 while there are conditions to be clustereddo

11 Sc = Sc ∪ cj
∗

12 Cj = Compute conditions (cj
∗, Gtmp, C, tc, Ngtmp, Nc)

13 /* Ngtmp denotes the number of genes inGtmp */

14 Gj = Compute genes (gi
∗, G, Cj, tg, Ng, Ncj)

15 /* Ncj denotes the number of conditions inCj */

16 Mark all the conditionsc ∈ Cj asclustered

17 cj+1
∗ = get next cond seed (j) ; j = j + 1

18 end

19 î= argmaxj{MIscore (Gj, Cj)}

20 Gi = Gî; Ci = Cî; Bi = (Gi, Ci)

21 mark all the genesg ∈ Gi asclustered

22 gi+1
∗ = get next gene seed (i); i = i + 1

23 end

Algorithm 8: Detailed BRC algorithm
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Procedure: Compute genes

Input : g∗, G, C, tg, Ng, Nc

Output : G′

1 for i = 1 to Ng do

2 mig [i] = 1
NC′

∑
j∈C′ log

p̂ (gij , g∗j)

p̂ (gij) p̂ (g∗j)

3 end

4 µ = Σi mig[i]/Ng

5 for i = 1 to Ng do

6 σ2 = Σi (mig[i]− µ)2/Ng

7 end

8 G′ = {gi ∈ G : (mig[i]−µ)
σ

> tg}

9 returnG′

Algorithm 9: Compute the relevant gene set

Procedure: Compute conditions

Input : c∗, G0, C, tc, Ng0, Nc

Output : C ′

1 for j = 1 to Nc do

2 mic[j]= Compute mi (cj, c∗, Ng0)

3 end

4 µ = Σj mic[j]/Nc

5 for j = 1 to Nc do

6 σ2 = Σj(mic[j]− µ)2/Nc

7 end

8 C ′ = {cj∈C : (mic[j]−µ)
σ

> tc}

9 returnC ′

Algorithm 10: Compute the relevant condition set
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Procedure: get next cond seed

Input : j

Output : next c∗

1 next c∗ = argminc∈C−∪k≤jCk
{maxc∗∈Scmi(c, c∗)}

2 returnnext c∗

Algorithm 11: Return the next condition seed

Dataset Size Time (s)

A. thaliana 619× 72 (44,568) 480

HBC 1213× 97 (1,17,661) 1200

DLBCL 661× 180 (1,18,980) 643

S. cerevisiae 2993× 173 (5,17,789) 9900

Table 6.1: Runtime of BRC on real Datasets.

p values

Method Biological process Cellular Component Molecular Function

BRC 5.7 e−37 3.2 e−14 2.0 e−18

BIMAX 5.1 e−10 2.8 e−8 9.1 e−6

CC 1.3 e−25 1.2 e−11 7.1 e−11

ISA 3.7 e−29 6.0 e−14 4.2 e−14

OPSM 9.6 e−31 7.7 e−12 5.2 e−14

Table 6.2: Bestp values of Biclusters of BRC and other algorithms onA.thalianadataset
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Figure 6.3: Best− log(p) values of Biclusters of BRC and other algorithms onA. thaliana
dataset

p values

Method Biological process Cellular Component Molecular Function

BRC 3.1 e−30 1.9 e−35 4.9 e−13

BIMAX 3.5 e−4 9.9 e−4 7.6 e−3

CC 2.8 e−26 1.5 e−50 3.2 e−36

ISA 2.3 e−4 2.9 e−3 4.0 e−3

OPSM 1.3 e−3 1.4 e−7 8.3 e−6

Table 6.3: Bestp values of Biclusters of BRC and other algorithms onS. cerevisiaedataset
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Figure 6.4: Best− log(p) values of Biclusters of BRC and other algorithms onS. cere-
visiaedataset

p values

Method Biological process Cellular Component Molecular Function

BRC 1.1 e−24 8.5 e−18 2.8 e−13

CC 3.9 e−6 9.0 e−5 1.5 e−3

ISA 1.3 e−11 7.0 e−6 3.1 e−5

OPSM 5.7 e−7 5.3 e−6 2.3 e−3

Table 6.4: Bestp values of Biclusters of BRC and other algorithms onDLBCLdataset

p values

Method Biological process Cellular Component Molecular Function

BRC 9.2 e−28 8.00 e−20 2.5 e−9

ISA 5.9 e−11 7.0 e−17 1.1 e−10

OPSM 5.2 e−22 5.0 e−8 1.5 e−4

CC 1.0 e−6 1.6 e−6 6.9 e−5

Table 6.5: Bestp values of Biclusters of BRC and other algorithms onHBCdataset
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Figure 6.5: Best− log(p) values of Biclusters of BRC and other algorithms onDLBCL
dataset

Figure 6.6: Best− log(p) values of Biclusters of BRC and other algorithms onHBC
dataset
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BRC BIMAX CC ISA OPSM

5.9 e−10 6.1 e−3 3.8 e−3 1.8 e−1 3.1 e−1

Table 6.6: BestE values of motifs from Biclusters of BRC and other algorithms onA.
thalianadataset

Figure 6.7: Best− log(E) values of Biclusters of BRC and other algorithms onA.thaliana
dataset

BRC BIMAX CC ISA OPSM

6.1 e−9 1.8 e−3 4.4 e−12 4.1 e−2 9.9 e−2

Table 6.7: BestE values of motifs from Biclusters of BRC and other algorithms onS.
cerevisiaedataset

BRC CC ISA OPSM

1.0 e−111 2.6 e−10 6.7 e−57 9.7 e−12

Table 6.8: BestE values of motifs from Biclusters of BRC and other algorithms on
DLBCLdataset

95



Figure 6.8: Best− log(E) values of Biclusters of BRC and other algorithms onS. cere-
visiaedataset

Figure 6.9: Best− log(E) values of Biclusters of BRC and other algorithms onDLBCL
dataset
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BRC ISA OPSM CC

5.0 e−43 2.8 e−11 1.2 e−4 2.0 e−29

Table 6.9: BestE values of motifs from Biclusters of BRC and other algorithms onHBC
dataset

Figure 6.10: Best− log(E) values of Biclusters of BRC and other algorithms onHBC
dataset
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Figure 6.11: Bicluster extracted fromA.thalianadataset, perturbed with noise, by BRC
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Chapter 7

GenBiClus: Extracting General

Biclusters

Our algorithm BRC is based on the assumption that when a group of genes are related

to each other under a subset of conditions, there exists some sort of relationship amongst

the conditions as well. We now drop this assumption. In this chapter we describe a

method [GA08] to extract biclusters from gene expression data where the conditions may

or may not be interdependent. Thus the extracted biclusters are more general than the

ones extracted by BRC. Instead of computing the mutual information between the condi-

tions, we compute the contribution of each condition to the mutual information between

the genes and the gene seed. This is similar to MRB. However, here we present a heuristic

approach wherein we compute the mutual information between the genes over a reduced

set of conditions instead of the entire set. Those conditions whose contribution is more

than that of other conditions are selected. Since we no longer compute the mutual in-

formation between the conditions, the algorithm provides an improvement over BRC in

terms of computation time as well. As in MRB and BRC, the gene seeds and the number

of biclusters to be extracted are determined by the algorithm from the data itself. We

tested the algorithm on both synthetic and real datasets. In MRB, the main idea behind
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the construction of the synthetic data was to model nonlinear relationships between the

genes of a bicluster over its conditions. However, in BRC the conditions of the biclus-

ters of the synthetic data were also related to each other. We tested GenBiClus on both

these datasets. We were able to extract all the implanted biclusters from all the synthetic

datasets of both MRB and BRC. In other words, GenBiClus is able to extract more general

biclusters.

We also tested our algorithm on our four real datasets viz.Arabidopsis thaliana,

Diffuse large B-cell lymphomadataset,Human Breast CancerandSaccharomyces cere-

visiae. We were able to extract biologically significant biclusters from all the datasets. As

before, we compared the performance of our algorithm with other biclustering algorithms.

Thep values of the GO annotations associated with the genes of our biclusters were found

to be smaller than thep values of the GO anotations associated with the biclusters of oth-

ers. In other words, our biclusters were found to be biologically more significant than

those of other biclustering algorithms. Promoter regions of the genes of most of GenBi-

Clus biclusters were found to have statistically more significant common motif patterns

as compared to the motifs extracted from the biclusters of other algorithms.

7.1 GenBiClus: Biclustering with general conditions

In this section we describe our algorithmGenBiClus. The broad oveview of the algo-

rithm is given in Algorithm 12. Like BRC, GenBiclus proceeds in three steps for a given

gene seed. The first step of the two algorithms is same i.e. in the first step we find the

set of genes which are most related to the gene seed. It computes the pairwise mutual

information of the gene seed with all other genes over all the conditions. Genes having

mutual information greater than the gene thresholdtg are selected.

In the second step, the algorithm identifies the experimental conditions under which

the set of genes found in the first step show maximum relatedness. This is done by
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computing the contribution of each condition to the sum of pair wise mutual information

between the genes in the reduced set and the gene seed. Again only those conditions

whose contribution is greater than the condition thresholdtc are selected. This is the main

step where GenBiClus differs from BRC. The third and the final step which is same as

that in BRC is a bicluster refinement step where the algorithm selects from the entire

expression data those genes which are most related to the gene seed under the subset of

conditions identified in step two. For this we recompute mutual information of genes

with the gene seed over the reduced set of conditions. Genes not related to the gene

seed under all the conditions but related under a subset of conditions will be identified

in this step. Contrast this with MRB; in MRB also we subtract the contribution of the

jth condition when we delete it from the bicluster but them̂ij entry itself contains the

impact of presence of all the conditions in the data set. Recall them̂ij entry is computed

by using kernel density estimation method for estimatingp̂ which contains the impact

of other conditions as well. In GenBiClus, by recomputing the mutual information, we

delete the impact of other conditions onp̂ itself.

We tried to refine the biclusters by running the algorithm for few more iterations.

However, no improvement was observed. More biclusters are obtained by taking more

gene seeds. The gene seeds are chosen to be well separated as explained in the previous

chapters. Biclusters which contain less than a fixed number of genes (five in our case) are

discarded.

ProcedureGenBiclus() in Algorithm 13 shows the the detailed algorithm. Proce-

dure compute genes(), compute conditions() and get next gene seed() are same as

that in BRC. However, column wise mutual information is computed using the contribu-

tion of each condition to the mutual information between the gene seed and the reduced

set of genes.

Time Complexity: The time required to compute the mutual information for all the

genes is same as that in MRB i.e.O(Ng · N2
c ) time. Selecting, genes with high mutual
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GenBiClus: Extracting General Biclusters

Input : E, G, C, Ng, NC , tg, tc

Output : A set of biclustersBi = (Gi, Ci)

1 Mark all genes asclustered

2 Seti to 1

3 while there are genes to beclustered do

4 get next gene seedgi
∗

5 Gtmp← genes having high MI withgi
∗

6 Ci← conditions that contribute most to the MI between the genesg ∈ Gtmp

andgi
∗

7 Gi← genes that have high MI withg∗ overCi

8 Mark genesg ∈ Gi asclustered

9 output (Gi,Ci)

10 end

Algorithm 12: Overview of GenBiClus algorithm

information requiresO(Ng) time. Analogously, selecting conditions with high mutual

information requiresO(Nc) time. Recomputing the mutual information and selecting

the genes with high mutual information over the reduced set of conditions again, takes

O(Ng · N2
c ) time. This is done for each gene seed. Thus, the overall time required by

GenBiClus fork gene seeds isO(k · (Ng · N2
c )). Time required to selectk gene seeds is

same as that in MRB i.e.O(k·Ng). Table 7.1 gives the actual runtime taken by GenBiClus

on real datasets fork set to10. The table shows that the algorithm scales well with the

size of the data set.
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Procedure: GenBiClus

Input : E, G, C, Ng, Nc, tg, tc

Output : A set of BiclustersBi = (Gi, Ci)

1 i = 1; S = φ

2 gi
∗ = random ()

3 Mark all genesg ∈ G asclustered

4 while there are genes to be clustereddo

5 Gtmp = Compute genes (gi
∗, G, C, tg, Ng, Nc)

6 Ci = Compute conditions (Gtmp, C, tc, Ngtmp , Nc)

7 /* Ngtmp is the number of genes inGtmp*/

8 Gi = Compute genes (gi
∗, G, Ci, tg, Ng, Nci

)

9 /* Nci
is the number of conditions inCi*/

10 Output (Gi, Ci)

11 mark all the genesg ∈ Gi asclustered

12 gi+1
∗ = get next gene seed(i)

13 i = i + 1

14 end

Algorithm 13: Detailed GenBiClus algorithm

Dataset Size Time (s)

A. thaliana 619× 72 (44,568) 61

HBC 1213× 97 (1,17,661) 198

DLBCL 661× 180 (1,18,980) 362

S. cerevisiae 2993× 173 (5,17,789) 1440

Table 7.1: Runtime of GenBiClus on real Datasets.

7.2 Experimental Results

We implemented our algorithm in C++. The performance was tested on both synthetic

data as well as real datasets. The synthetic data sets generated for both MRB and BRC
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were used. We were able to extract all the implanted biclusters from all the datasets thus

endorsing our claim that GenBiClus extracts more general biclusters.

Effect of thresholds: The dataset for the overlapping biclusters shown in Fig-

ure 5.1(b) was used to study the effect of threshold on the output biclusters. As in case of

BRC, we found that only the granularity of the output biclusters changes as we increase

or decrease the gene thresholdtg for a fixed condition threshold as shown in Figure 7.1.

For condition thresholdtc set to−0.5, at a very low gene thresholdtg = 0.1, the biclusters

reported had almost all the genes i.e.M1∪M2 (genesg11 to g100). On increasingtg to 0.3

we obtained genes belonging to both the biclusters separately i.e. we obtainedM1 and

M2. At a still higher gene threshold,tg = 1, we were able to find the genes inM1

⋂
M2.

Finally for a very high gene threshold the output sets were empty.

Thus on varying the gene threshold, only the granularity of the resulting biclusters

changes providing large biclusters for small value of the threshold and their subsets as

the value increases. Similar results were observed on varying the condition threshold and

keeping the gene threshold fixed.

Effect of initial start gene: The effect of random selection of the initial gene seed

on the output biclusters was studied by running the algorithm for different gene seeds.

We were able to extract all the implanted biclusters from both the synthetic datasets irre-

spective of the initial gene seed.

Effect of noise: The behaviour of GenBiClus in presence of noise was studied by

perturbing the synthetic data for the overlapping biclusters shown in Figure 5.1(a) by

adding noise from0.001 to 0.009. We were able to extract all the ten implanted biclusters.

Real datasets:We tested our algorithm on the four datasets ofArabidopsis thaliana,

Saccharomyces cerevisiae, Diffuse large B cell lymphomaand theHuman breast cancer.

Again, we used the biclusters available for theArabidopsis thalianaandSaccharomyces

cerevisiaefor various algorithms from the BICAT toolbox. For the other two datasets viz.

DLBCL and HBC, biclusters were obtained by running the algorithms available in the
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Figure 7.1: Effect of varying gene thresholdtg on output Biclusters of GenBiClus

BICAT tool box. BIMAX could not be run on DLBCL and HBC as it depends heavily on

the discretization of the data and the discretized data was not available. The value of the

input parameters for the algorithms were chosen such that the output biclusters were of

comparable sizes.

Tables 7.2, 7.3, 7.4 and 7.5 summarize the bestp values of the GO terms of the bi-

clusters obtained by various algorithms onA. thaliana, S. cerevisiae, DLBCL andHBC

respectively. The histograms in Figures 7.2, 7.3, 7.4 and 7.5 show− log(p) values. It

can be seen that the− log(p) values of the GO terms associated with the biclusters of

GenBiClus are higher in comparison to that of the biclusters of other algorithms on all

organisms except Cheng and Church onS. Cerevisiaedataset i.e. our algorithm outper-
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forms all other algorithms on all the organisms except for theS. Cerevisiaedataset where

Cheng and Church performs better than ours. The results clearly provide evidence that

our biclusters are biologically more significant than most of the biclusters by other algo-

rithms.

As the genes showing dependencies in expression data are expected to have common

patterns in their promoter regions as explained in Chapter 3, we studied the promoter re-

gions of the genes belonging to a bicluster for such common patterns. Tables 7.2, 7.3, 7.4

and 7.5 also summarize the best (least)E values for the motifs extracted from the gene

sequences of the genes belonging to biclusters extracted by GenBiClus and other algo-

rithms. The histograms in Figures 7.6, 7.7, 7.8 and 7.9 show− log(E) values for all the

algorithms. Again we find that the− log(E) values corresponding to the biclusters ex-

tracted by GenBiClus are much higher than most of the biclusters by other algorithms,

further endorsing that our biclusters are biologically more significant than most of the

biclusters by other algorithms.

Effect of noise in real scenario:We extracted a bicluster of size197 × 13 found

by GenBiClus from the expression data ofA. thalianaand implanted it in a matrix of

size250× 50 containing random numbers generated from normal distribution with mean

µ = .01 and varianceσ = .001 as shown in Figure 7.10. To add noise, it was perturbed

by adding random numbers generated from normal distribution. GenBiClus was able to

extract the bicluster from the noisy data. GenBiClus was also able to extract the bicluster

from the synthetic data created for BRC to study the effect of noise.
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p values

Method Biological process Cellular Component Molecular Function

GenBiClus 2.0 e−40 6.1 e−18 9.8 e−15

BIMAX 5.1 e−10 2.8 e−8 9.1 e−6

CC 1.3 e−25 1.2 e−11 7.1 e−11

ISA 3.7 e−29 6.0 e−14 4.2 e−14

OPSM 9.6 e−31 7.7 e−12 5.2 e−14

Table 7.2: Bestp values of Biclusters of GenBiClus and other algorithms onA. thaliana
dataset

Figure 7.2: Best− log(p) values of Biclusters of GenBiClus and other algorithms onA.
thalianadataset
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p values

Method Biological process Cellular Component Molecular Function

GenBiClus 1.0 e−32 4.3e−39 3.4e−21

BIMAX 3.5 e−4 9.9 e−4 7.6 e−3

CC 2.8 e−26 1.5 e−50 3.2 e−36

ISA 2.3 e−4 2.9 e−3 4.0 e−3

OPSM 1.3 e−3 1.4 e−7 8.3 e−6

Table 7.3: Bestp values of Biclusters of GenBiClus and other algorithms onS. cerevisiae
dataset

Figure 7.3: Best− log(p) values of Biclusters of GenBiClus and other algorithms onS.
cerevisiaedataset
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p values

Method Biological process Cellular Component Molecular Function

GenBiClus 2.3e−23 3.1e−17 3.2e−12

CC 3.9e−6 9.0e−5 1.5e−3

ISA 1.3e−11 7.0e−6 3.1e−5

OPSM 5.7e−7 5.3e−6 2.3e−3

Table 7.4: Bestp values of Biclusters of GenBiClus and other algorithms onDLBCL
dataset

Figure 7.4: Best− log(p) values of Biclusters of GenBiClus and other algorithms on
DLBCLdataset

p values

Method Biological process Cellular Component Molecular Function

GenBiClus 3.8e−21 5.7e−16 3.2e−12

ISA 5.9e−11 7.0e−17 1.1e−10

OPSM 5.2e−22 5.0e−8 1.5e−4

CC 1.0e−6 1.6e−6 6.9e−5

Table 7.5: Bestp values of Biclusters of GenBiClus and other algorithms onHBCdataset
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Figure 7.5: Best− log(p) values of Biclusters of GenBiClus and other algorithms onHBC
dataset

GenBiClus BIMAX CC ISA OPSM

7.8 e−4 6.1 e−3 3.8 e−3 1.8 e−1 3.1 e−1

Table 7.6: BestE values of motifs from Biclusters of GenBiClus and other algorithms on
A. thalianadataset

Figure 7.6: Best− log(E) values of Biclusters of GenBiClus and other algorithms onA.
thalianadataset
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GenBiClus BIMAX CC ISA OPSM

7.9e−8 1.8 e−3 4.4 e−12 4.1 e−2 9.9 e−2

Table 7.7: BestE values of motifs from Biclusters of GenBiClus and other algorithms on
S. cerevisiaedataset

Figure 7.7: Best− log(E) values of Biclusters of GenBiClus and other algorithms onS.
cerevisiaedataset

GenBiClus CC ISA OPSM

1.6e−96 2.6e−10 6.7e−57 9.7e−12

Table 7.8: BestE values of motifs from Biclusters of GenBiClus and other algorithms on
DLBCLdataset

GenBiClus ISA OPSM CC

4.7e−45 2.8e−11 1.2e−4 2.0e−29

Table 7.9: BestE values of motifs from Biclusters of GenBiClus onHBCdataset
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Figure 7.8: Best− log(E) values of Biclusters of GenBiClus and other algorithms on
DLBCLdataset

Figure 7.9: Best− log(E) values of Biclusters of GenBiClus and other algorithms on
HBCdataset
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Figure 7.10: Bicluster extracted fromA. thalianadataset by GenBiClus perturbed with
noise
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Chapter 8

Concluding Remarks

Advancements in microarray technology have facilitated the generation of huge amount of

gene expression data. Solutions to thebiclusteringproblem is best suited for the analysis

of this biological data for the following reasons: 1) genes are responsive to a small subset

of conditions, 2) a gene may be responsible for more than one biological activity and 3)

a condition or a group of conditions may trigger the expression of genes responsible for

more than one activity.

The main contribution of this thesis is to develop a novel approach to bicluster-

ing gene expression data usingmutual information . Unlike other similarity measures

like distance measures and correlation coefficient, mutual information is a more general

measure as it is able to extract both linear and nonlinear relationships. Though mutual

information has been used earlier as a measure of similarity by traditional clustering al-

gorithms, none of the biclustering algorithms have used it.

In our work we have proposed a set of biclustering algorithms which use mutual

information as a measure of similarity. Through extensive experimentation on synthetic

datasets and available real datasets we have demonstrated the utility of our work. The

biclusters extracted by our algorithms are statistically more significant than the biclusters

extracted by other algorithms. Algorithms are simple yet very effective (as exhibited by
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the experimental results) thereby demonstrating the strength of mutual information as a

similarity measure. Time analysis of our algorithms and Tables 5.1, 6.1 and 7.1 show

that the proposed algorithms scale well with the size of the data.

In MRB and GenBiClus, we have used kernel density estimator to estimate mutual

information as the bin method cannot be used to compute the contribution of each con-

dition to the mutual information. In BRC, both the bin method and the kernel density

estimator can be used to estimate the mutual information. However, we have presented

the results with kernel density estimator as it provides better estimates as discussed in

Chapter 4.

Future Work: It will be interesting to see if machine learning tools like Discrim-

inant Analysis, Mixture Models and Expectation Maximization which have been used

successfully for the classification problem can provide better solutions to the problem.

The major challenge in doing so would be to handle different sets of conditions for differ-

ent biclusters and the overlapping nature of biclusters. Another direction of work would

be to improve the results by generating ensembles for biclusters. The only work closely

related to this is ensembles by Gullo et al. [F. 09] and Wang et al. [WLDJ11]. However,

they create ensemble of biclusters which do not overlap either on genes or on conditions.
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