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Abstract

Data placement problems deal with cost effective placement of data on servers in

order to serve a given set of clients requiring access to the data. Each client is

assigned to some server on which data is placed for getting its request served. The

cost function may include different parameters, such as the cost of placing data on

different servers or the total sum of “distances” between the clients and the servers

they are assigned to. In this work we address two types of data placement problems

under capacity constraints - the Replica Placement problem and the typed Data

Placement problem. The two problems differ in the notion of capacity. Whereas

in the Replica Placement problem capacity defines the number of clients that can

be served by one server, in the typed Data Placement problem capacity indicates

the maximum number of services that any server may offer. We study variants of

these problems that are NP hard and present LP rounding based constant factor

approximation algorithms for them.

We study the following variants of the replica placement problem:

• Replica Placement on tree graphs with unit-length edges; we present a poly-

nomial time O(1) approximation algorithm for this variant. We extend our

techniques for graphs having bounded tree-width and present an O(t) ap-

proximation algorithm where t is the tree-width of the graph.

• Replica Placement on graphs with arbitrary edge lengths, having bounded

degree and bounded tree-width (called BDBT graphs); we present polyno-

mial time O(d + t) approximation algorithm for this variant where d and t

respectively denote the degree and tree-width of the graph.



• Replica Placement on a generalization of BDBT graphs wherein BDBT

graphs are connected in a tree-like manner; we call such graphs Trees of

Bounded Degree Bounded Tree-width graphs (TBDBT graphs). We present

O(d+ t) approximation algorithm for this variant where d and t respectively

denote the degree and tree-width of any component BDBT graph.

For the typed Data Placement problem (which closely resembles the Facility

Location problem), we study the variant having two different service types and no

facility opening costs; we present a polynomial time 4-approximation algorithm for

this variant.
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Chapter 1

Introduction

Data placement problems are concerned with the placement of data on servers in a

cost effective manner so as to serve a set of clients that require access to the data.

Different measures for determining the cost include cost of placing data at different

locations and the total sum of “distances” between the clients and the data they

access. We study two types of data placement problems under capacity constraints

that differ in the notion of capacity. The first is the Replica Placement problem

in which the capacity refers to the number of clients that can be served by one

server. The second problem is called the typed Data Placement problem wherein

there are different types of data (or services) and the capacity refers to the number

of services that can be offered by one server. We describe the replica placement

problem in Section 1.1 and the typed data placement problem in Section 1.2.

1.1 Replica Placement problem

In the replica placement problem, we have a network of nodes represented as a

(connected) graph and a set of clients. Each client is connected (via an edge) to

a specific node of the network and requires access to a shared database. In order

to serve the clients, we wish to place a minimum number of servers (or replicas)

of the database at selected network nodes and assign each client to a server. In

the absence of any additional constraints, a simple solution would be to place
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one replica at any node. Since the underlying network graph is connected, this

replica would clearly be accessible to every client. However, the problem becomes

interesting and useful if every server has an upper limit on the number of client

requests it can serve. With this constraint the problem is NP-hard. This can be

shown by a simple reduction from the bin packing problem. The problem also

becomes more involved and meaningful if every client has a limit on the distance

it can travel to get its request served. It can be shown that this constraint makes

the problem lg n-hard to approximate by a simple reduction from the set cover

problem. In our setup we have both the above constraints. However, the upper

limit on the number of requests that can be accommodated is assumed to be same

for all the servers. In a nutshell, our setup is described as below. Every client

has a quality of service (QoS) requirement that stipulates the maximum distance

between the client and the server it is assigned to. The clients require periodic

access to a shared database. The rate at which a client requests access is termed

as its demand. Each server has limited capacity that stipulates the total demand

it can accommodate. A server can also be placed directly at a client itself, but in

this case it is not allowed to serve any other client and therefore we refer to it as

a dedicated replica.

The replica placement problem finds applications in settings such as data distribu-

tion by Internet Service Providers (ISPs) and Video-on-Demand service delivery

(see [CKS02, KDW01, LLW06, TX05]). We next define the problem formally and

discuss its variants.

1.1.1 Problem Definition

The input consists of a graph G = (V,E) and a set of clients A. Each edge e ∈ E

is associated with a length w(e). Each client a ∈ A is attached to a node in V ,

denoted by att(a). For each client a ∈ A, the input specifies a request (or demand)

r(a) and an integer dmax(a), representing the maximum distance the request can

travel. For a client a ∈ A and a node u ∈ V , let d(a, u) denote the length of the

shortest path between u and att(a). The length of a path, p, is the sum of lengths
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of the edges on that path, i.e., len(p) =
∑

e∈pw(e), and we take d(a, u) = 0, if

u = att(a). We say that a client a ∈ A can access a node u ∈ V , if d(a, u)

is at most dmax(a) (we call this the distance constraint). We shall say that u is

accessible to a, or alternatively, a is attachable to u. The input also includes a

capacity parameter W . A feasible solution consists of two parts: (i) a subset of

nodes S ⊆ V where servers are opened; (ii) for each client a ∈ A, it either opens

a dedicated server at a itself or assigns the request to the server opened at some

node u ∈ S accessible to a. The solution must satisfy the constraint that for each

node u ∈ S, the sum of requests assigned to the server at u does not exceed W

(we call this the capacity constraint). The cost of the solution is the number of

servers opened, i.e., cardinality of S plus the number of dedicated servers opened

at the clients. The goal is to compute a solution of minimum cost.

We assume that the capacity W and the requests r(·) are integral and that

W is polynomially bounded in the number of nodes. In order to ensure feasibility,

without loss of generality, we assume that r(a) ≤ W , for all clients a.

In case the input graph is directed, d(a, u) denotes the length of the shortest

directed path from att(a) to u.

If the length of every edge is taken to be unity, i.e., w(e) = 1 ∀e ∈ E, the

length of a path is measured by the number of edges on the path. We refer to this

variant of the problem as Replica Placement with hop counts.

In another variant of the problem, there is no upper limit on the distance a

client can travel to have its request served. This variant is referred to as Replica

Placement without distance constraints.

We shall study the Replica Placement problem and its variants on different

graphs.

1.1.2 Integer Program Formulation

For each u ∈ V , a variable y(u) is introduced to represent whether or not a replica

is placed at u, for each client a ∈ A, a variable y(a) is added to represent whether

a dedicated replica is opened at a itself. A variable x(a, u) is used to represent

3



whether or not client a is assigned to u, where u is a node accessible to a. For a

client a ∈ A and a node u ∈ V , we use the shorthand “a ∼ u” to mean that a can

access u.

Minimize
∑
a∈A

y(a) +
∑
u∈V

y(u)

s.t. y(a) +
∑

u∈V : a∼u

x(a, u) ≥ 1 ∀ a ∈ A (1.1)∑
a∈A : a∼u

x(a, u) · r(a) ≤ y(u) ·W ∀ u ∈ V (1.2)

x(a, u) ≤ y(u) ∀ a ∈ A, u ∈ V : a ∼ u (1.3)

y(u), y(a) ∈ {0, 1} (1.4)

x(a, u) ∈ {0, 1} (1.5)

Constraint (1.1) ensures that every client is served. Constraint (1.2) (called the

capacity constraint) enforces that at any node the total demand assigned does not

exceed the available capacity W . Constraint (1.3) stipulates that a client a cannot

be serviced at a node u which is not open. The integrality constraints (1.4) and

(1.5) can be relaxed as follows to yield the corresponding linear program:

0 ≤ y(u), y(a) ≤ 1

0 ≤ x(a, u) ≤ 1

1.1.3 Hardness

The hardness of the replica placement problem is dependent on the underlying

graph. We show that for arbitrary graphs, the replica placement problem is lg n

hard to approximate and for the case when the graph is a path, it is strongly

NP-hard.

The following theorem captures the hardness result for arbitrary graphs.

Theorem 1.1. For arbitrary graphs, the replica placement problem is lg n hard to

approximate, even when the requests are all unit (r(a) = 1 ∀a ∈ A) and there is

no capacity constraint.
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Proof. We consider the following reduction from the set cover problem. Consider

an arbitrary instance of set cover, where we are given a set U of elements, U =

{e1, e2, ....., en} and a set of subsets S = {S1, S2, ...., Sr} such that Sj ⊆ U ∀j. From

the given instance of set cover we construct an instance of the replica placement

problem on a bipartite graph G = (X ∪ Y,E) as follows. For every set Si ∈ S,

introduce a node ui in Y . Corresponding to an element ej ∈ U , introduce a node

aj in X. For every set Si and every element ej in Si, introduce an edge of length

1 between ui and aj. This completes the construction of the underlying network

graph for the replica placement instance. Finally, for each element ej ∈ U , we

introduce a client âj and attach it to node aj. Set dmax(â)=1 for every client â. It

is easy to see that a solution O to the set cover instance can be transformed into

a solution O∗ (of the same cost) to the replica placement instance in polynomial

time. For every set Si ∈ O, add ui to O∗; assign every client âj to some ui ∈ O∗

such that aj is adjacent to ui. Similarly, a solution O∗ to the replica placement

instance can be transformed into a solution O (of cost no more than the cost of

O∗) to the set cover instance. For every node ui ∈ O∗, add Si to O; for every node

aj ∈ O∗ or client âj ∈ O∗, identify any node uk adjacent to aj and add Sk to O (if

no such node is already in O).

The following theorem captures the hardness result for the case when the

graph is a path.

Theorem 1.2. The replica placement problem is strongly NP-hard for the case

where the graph is a path even when there are no distance constraints.

Proof. This can be shown by the following reduction from the bin-packing problem.

Given a bin-packing instance over m bins and n items, we construct a path having

m nodes corresponding to the bins and for each item, we create a client having

demand same as the size of the item. We attach all the clients to one end of the

path. The distance limit of every client is set to ∞ and the capacity W for each

node u is taken to be the bin capacity.
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Note that the above reduction rules out the possibility of designing exact

algorithm running in time nO(t) (say via dynamic programming) or parametrized

algorithms with t as the parameter for graphs having bounded tree-width t.

1.1.4 Related Work

The replica placement problem and its variants have been well-studied for tree net-

works in the existing literature [CKS02], [WLL08], [BRSR08], [KL09], [BLRG12],

from both practical and algorithmic perspectives. Benoit et al. [BLRG12] pre-

sented a 2-approximation algorithm for the replica placement problem without

distance constraints. For the case with distances, they designed a greedy algo-

rithm with an approximation ratio of (1 + ∆), where ∆ is the maximum number

of children of any node.

The replica placement problem falls under the framework of the capacitated

set cover problem, the generalization of the classical set cover problem wherein

each set is associated with a capacity specifying the number of elements it can

cover. Two versions of capacitated set cover problem and its special cases have

been considered: soft capacity and hard capacity settings. In the former case, a

solution can pick the same set an unbounded number of times, whereas in the

latter case, a set can be picked at most a bounded number of times. Our work

falls under the more challenging hard capacity setting where a set can be picked

at most once.

For the capacitated set cover problem under hard capacities, the work of

Wolsey [Wol82] yields an O(log ∆)-approximation algorithm, where ∆ is the max-

imum set cardinality. Chuzhoy and Naor [CN06] presented a simpler proof of the

above result. These algorithms apply to the replica placement problem and provide

O(log n)-approximations.

The capacitated version of the vertex cover problem has been addressed

in prior work. For the soft-capacity setting, Guha et al.[GHKO03] designed a

3-approximation algorithm, and the approximation ratio was subsequently im-

proved to 2 by Gandhi et al. [GHK+06]. The case of hard-capacities was handled
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by Chuzhoy and Naor [CN06], who devised a 3-approximation algorithm. They

also showed that the weighted version of the problem (wherein the vertices have

costs/weights) is as hard as the set cover problem. Saha and Khuller [SK12] con-

sidered the more difficult case of multi-graphs and presented a constant factor

approximation. Their result applies to capacitated set cover problem as well and

yields an O(f)-approximation algorithm, where f is the maximum number of sets

in which an element appears. Recently, Cheung et al. [CGW14] improved these

approximation factors to (1 + 2
√

3) and 2f , respectively.

The replica placement problem is also related to the capacitated facility loca-

tion framework (e.g., [LSS12]) However, a crucial difference is that replica place-

ment problem restricts the access of a facility to some clients whereas in facility

location problem every facility is accessible to all the clients; also, the cost model

of replica placement does not include the distance between clients and facilities.

1.1.5 Our Results

As the problem is lgn hard on general graphs, we study it on specific underlying

graphs and present LP rounding based approximation algorithms for each of them.

We begin by studying the problem with hop counts on tree graphs. From

Theorem 1.2 it follows that the problem is strongly NP-hard. Our main result for

this problem is to show that it admits a constant factor approximation algorithm.

This is captured by the following theorem.

Theorem 1.3. The replica placement problem with hop counts on tree graphs

admits a polynomial time O(1) approximation algorithm.

The proof for this theorem is presented in Chapter 2; this also serves as an

exposition of some of the basic ideas used in algorithms presented in subsequent

chapters. We shall also show that the transformation involved in this theorem

takes time polynomial in the input size.

We next consider generalizations of this variant along two dimensions; con-

sidering more general graphs and allowing for arbitrary lengths on the edges. We
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first consider a variant allowing for more general graphs. We show that the replica

placement problem with hop counts on bounded tree-width graphs admits a con-

stant factor approximation algorithm. Tree-width is a measure of how tree-like

the graph is; the smaller the tree-width, the closer the graph is to being a tree.

A formal definition of tree-width is given in Chapter 3. Intuitively, a graph with

bounded tree-width can be decomposed into disconnected components by removing

a small number of nodes. This enables the graph to inherit many decomposition

properties of trees thereby giving way to simpler algorithms for many important

problems. Our result for the above variant of the problem is captured by the fol-

lowing theorem; the proof is presented in Chapter 3. We shall also show that the

transformation involved in this theorem takes time polynomial in the input size

and parameter t.

Theorem 1.4. The replica placement problem with hop counts on bounded tree-

width graphs admits a polynomial time O(t) approximation algorithm, where t is

the tree-width of the underlying network graph.

We next consider variants of the problem allowing for arbitrary edge lengths.

We start with a simple network graph, the bounded degree bounded tree-width

(BDBT) graph and show that the problem admits a constant factor approximation

algorithm for this network graph. A formal definition of BDBT graphs follows.

Definition 1. Bounded Degree Bounded Tree-width graph (BDBT graph). We say

that a graph G is a bounded degree bounded tree-width graph if it has bounded

degree and bounded tree-width. Moreover, it has a designated node that we call

the root of the graph (denoted by Rt(G)).

Our main result for the problem on BDBT graphs is captured by the follow-

ing theorem; the proof is presented in Chapter 4. We shall also show that the

transformation involved in this theorem takes time polynomial in the input size,

and parameters t and d.
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root 

pivot 

Figure 1.1: Example of TBDBT graph. The figure also shows the root of one of
the component BDBT graphs and the pivot that it connects to in another BDBT
graph.

Theorem 1.5. The replica placement problem on BDBT graphs admits a poly-

nomial time O(d + t) approximation algorithm, where d and t are the degree and

tree-width of the graph respectively.

Note that the BDBT graphs do not include trees as trees do not have bounded

degree. In order to generalize the above result to include tree graphs, we consider

a more general class of graphs that we call TBDBT graphs. Intuitively, a TBDBT

graph is composed of BDBT graphs connected in a tree-like manner. A TBDBT

graph is constructed by starting with a skeletal rooted tree T , whose vertices are

referred to as proxies. Then, each proxy is substituted with a BDBT graph. For

each proxy q in T , the root vertex of the associated BDBT graph is connected to

some vertex (called pivot) in the BDBT graph associated with the parent proxy of

q (see Figure 1.1). The overall graph has bounded tree-width, but may not have

bounded degree. A formal definition of TBDBT graphs follows.

Definition 2. Tree of BDBT graphs (TBDBT graph). A TBDBT graph G is a

pair 〈{Gj|j ∈ J}, T 〉 where Gj(V (Gj), E(Gj)) is a BDBT graph, J = [1, h] and T

is a (skeletal) tree with the elements of J as nodes and labeled edges. We consider

an arbitrary element of J to be the root of T . This imposes ancestor-descendant

relationships between the elements of J . A TBDBT graph satisfies the following
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properties:

• The vertices of the BDBT graphs are disjoint, i.e., V (Gi) ∩ V (Gj) = φ ∀

i, j ∈ J , i 6= j.

• The vertex set of G is the union of the vertices of BDBT graphs, i.e., V (G) =

∪j∈JV (Gj).

• The edges of all the BDBT graphs are contained in G, i.e., E(Gj) ⊆ E(G)

for all j ∈ J .

• For every edge e = (i, j) in T where j is ancestor of i, the label `(e) on e

represents a vertex in V (Gj) and is said to be a pivot node.

• For every edge e = (i, j) in T where j is ancestor of i, there is an edge

(Rt(Gi), `(e)) in G. We refer to `(e) as the pivot of Rt(Gi) and denote it as

pivot(Rt(Gi)).

Roots(G) denotes the roots of all BDBT graphs of G, i.e., Roots(G) = {Rt(Gj) :

j ∈ J}.

The class of TBDBT graphs clearly generalizes trees (wherein each component

BDBT graph consists of a single vertex). Our main result for the replica placement

problem on TBDBT graphs is captured by the following theorem; the proof is

presented in Chapter 5. We shall also show that the transformation involved in

this theorem takes time polynomial in the input size and parameter t and d.

Theorem 1.6. The replica placement problem on TBDBT graphs admits a poly-

nomial time O(d + t) approximation algorithm, where d and t are respectively the

degree and tree-width of any component BDBT graph.

1.2 Typed Data Placement problem

In the typed data placement problem, we are concerned with the placement of

different types of data on servers in order to serve a set of clients, wherein the cost
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depends on the distance between the clients and the servers serving them. It is

thus more closely related to the facility location problem.

Facility location is a widely studied problem in operations research concerned

with the optimal placement of facilities providing certain services or commodities

to clients. In the Uncapacitated Facility Location (UFL) version of the problem,

we are given as input a set F of facilities and a set D of clients in a metric space.

The goal is to open facilities S (⊆ F) and assign every client to an open facility so

as to minimize the cost
∑

i∈S fi +
∑

j∈D dj · cσ(j)j where fi is the cost of opening

facility i, dj is the demand associated with client j, cij is the distance between i

and j, and σ(j) denotes the facility that client j is assigned to.

Consider a business offering two types of services (commodities) to the clients

that wants to open outlets in every town; it wants to determine which business

to setup at each outlet given that a limited number of sites are available in each

town. For example:

• a financial institution providing Banking and Non-Banking services. It wants

to setup a branch for at least one of its services in every town of a given region

of interest.

• a car manufacturer wants to setup a showroom and/or a service station in

every town of a given region of interest.

Motivated by these scenarios, we study the typed data placement problem defined

next. We study the problem with two types of services.

1.2.1 Problem Definition

We are given as input, facilities F , and clients D, as before. We assume that clients

are a subset of the facilities, i.e., D ⊆ F . We also assume that there are no facility

opening costs, i.e., fi = 0 ∀i ∈ F . There are two types of objects, o1 and o2; let

O denote the set {o1, o2}. For every client j, its demand for o1 (o2 respectively)

is specified by do1j (do2j respectively); a demand of 0 indicates absence of demand
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for the corresponding object-type. Moreover, each facility has a storage capacity

specifying the number of objects (1 or 2) that can be placed on it. A facility that

has a storage capacity of 2 can be treated as two co-located facilities each with

storage capacity 1. Therefore, we can assume that each facility can accommodate

only a single object-type. A feasible solution comprises of (i) a subset S ⊆ F that

can be partitioned into sets So1 and So2 corresponding to facilities to be opened

for o1 and o2 object-types respectively, and (ii) an assignment of demands to the

set of open facilities, σ : D × O → S, wherein an o1 (o2 respectively) demand is

assigned to a facility in So1 (So2 respectively).

1.2.2 Integer Program Formulation

The IP for the typed data placement problem is as follows:

Minimize
∑
j∈D

∑
o∈O

∑
i∈F

doj · cij · xoij

s.t.
∑
i∈F

xoij ≥ 1 ∀ j ∈ D, o ∈ O (1.6)

xoij ≤ yoi ∀ i ∈ F , j ∈ D, o ∈ O (1.7)∑
o∈O

yoi ≤ 1 ∀ i ∈ F (1.8)

xoij ∈ {0, 1} ∀ i ∈ F , j ∈ D, o ∈ O (1.9)

yoi ∈ {0, 1} ∀ i ∈ F , j ∈ D, o ∈ O (1.10)

where xoij = 1 iff client j is assigned to facility i for object o and yoi = 1 iff facility i

stores object o. Constraint (1.6) ensures that the demand of every client for both

the object types is served. Constraint (1.7) stipulates that the demand of a client j

for an object type o cannot be served at a facility i which is not open for the same

object type. Constraint (1.8) is the storage capacity constraint on the facilities

which enforces that at most one object type can be placed on any facility. The

relaxed LP is obtained by modifying the integrality constraints (1.9) and (1.10) to:

xoij, y
o
i ≥ 0 ∀ i ∈ F , j ∈ D, o ∈ O
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Figure 1.2: NP-Hardness Construction

1.2.3 NP Hardness

The following theorem establishes the NP hardness of the typed data placement

problem. The proof of the theorem goes via a simple reduction from the set cover

problem.

Theorem 1.7. The typed data placement problem is NP hard.

Proof. Consider an arbitrary instance of set cover, where we are given a set U of

elements, U = {e1, e2, ....., en} and a set of subsets S = {S1, S2, ...., Sr} such that

Sj ⊆ U ∀j. We construct an instance of the typed data placement problem from

the above instance as follows. We define two sets of clients P and Q such that

each client in P has demand for both o1 and o2, and each client in Q has demand

for o2 only (see Figure 1.2).

The set of clients will be defined by D = P ∪Q. For each ei ∈ U , we introduce

a client pi in P and for each Sj ∈ S, we introduce a client qj in Q. We associate

demands do1i = 1 and do2i = M with each pi ∈ P , where M > n + r. We also

associate demands do1j = 0 and do2j = 1 with each qj ∈ Q. For each Sj ∈ S and

ei ∈ Sj, we set the distance cpiqj = 1. For all the remaining pairs of demands, we

set the distance to be the length of the shortest path between them (observe that

this cost would be at least 3). The set of facilities F is taken to be the same as D.
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We next show that given a feasible solution to the set cover instance of cost

C, there exists a feasible solution to the typed data placement problem instance

having cost C + n. Let SCopt be a solution to the set cover instance having cost C.

We construct a solution to the instance of our problem as follows.

• ∀qj ∈ Q do the following - If Sj ∈ SCopt, place o1 on qj, else place o2 on it.

• Place o2 on pi∀i.

The feasibility of the above solution can be shown as follows. Assign each

client pi ∈ P to itself for its o2 demand, and to some qj ∈ Q for its o1 demand such

that ei ∈ Sj and Sj ∈ SCopt (so that qj has been opened for o1). Note that such

an Sj must exist since SCopt is a set cover. Also, for each qj such that Sj /∈ SCopt,

assign qj to itself for its o2 demand, and for each qj′ such that Sj′ ∈ SCopt, assign qj′

to some pi′ such that ei′ ∈ Sj′ . The cost of this solution can be easily determined

as follows:

1. Each pi traverses a unit cost edge for its o1 demand thereby contributing an

amount n to the total cost.

2. Each qj for which Sj ∈ SCopt traverses a unit cost edge for its o2 demand

thereby contributing an amount of |SCopt| to the cost.

Therefore total cost of the solution = |SCopt|+ n = C + n.

Also, given a feasible solution to the typed data placement problem instance

of cost C, there exists a feasible solution to the set cover problem instance having

cost at most C−n. This can be shown as follows. Suppose that we have a solution

Ŝ of cost C to the reduced instance. Let Ŝ1 ⊆ Ŝ be the facilities that host o1.

We first make the following claim: The solution Ŝ can be moulded into another

solution Ŝ ′ of cost lesser than C, such that all facilities which host o1 belong to Q.

Let j ∈ Ŝ1 be a facility in P . Clearly, C ≥ M . We modify this solution to obtain

the new solution Ŝ ′ by doing the following: Place o2 on all facilities in P and o1 on

all facilities in Q. The o1 demands of all such facilities as j can now be satisfied
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by facilities in Q since each client in P is connected to at least one facility in Q

by a unit-cost edge. The o2 demands in Q can similarly be satisfied by facilities in

P since each client in Q is connected to at least one facility in P through a unit

edge (This is true under the assumption that there are no empty subsets in S. In

fact, any empty subset can safely be removed without affecting the solution). It is

easy to see that cost(Ŝ ′) = n+ r < M ≤ C. We now begin with solution Ŝ of cost

C to our problem and construct a solution of size at most C − n to the Set Cover

Problem. On the basis of above claim, it can be assumed that all facilities in Ŝ

which host o1 belong to Q.

• Let Ŝ1 ⊆ Q be the clients in Q that have been allocated o1.

• Let Ŝ2 ⊆ Q be the clients in Q that have been allocated o2.

• Let C ⊆ P be the clients which are connected to some facility in Ŝ1 by an

edge.

• Let NC ⊆ P be the clients which are not connected to any facility in Ŝ1 by

an edge.

Clearly, the components of C would be:

• |Ŝ1| contributed by clients of Ŝ1 for their o2 demand.

• |C| contributed by clients of C for their o1 demand.

• at least 3|NC| contributed by the clients of NC for their o1 demand. (This

is because each element of set |NC| traverses at least 3 edges to satisfy its

o1 demand)

Thus,

C ≥ |Ŝ1|+ |C|+ 3|NC|

= |Ŝ1|+ 2|NC|+ (|NC|+ |C|)

= |Ŝ1|+ 2|NC|+ n (because |C|+ |NC| = n)

The solution for Set Cover instance can be constructed as follows:
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1. Include all sets corresponding to elements in Ŝ1 in the set cover. These sets

cover the elements in C.

2. For each element in NC, pick an element from Ŝ2 that covers it.

Clearly, cost of the above solution is at most (|Ŝ1| + |NC|). Also it is easy to see

that

|Ŝ1|+ |NC| < |Ŝ1|+ 2|NC|

< C − n

1.2.4 Related Work

The Uncapacitated Facility Location (UFL) problem has been widely studied. The

first constant factor approximation algorithm for this problem was given by Shmoys

et al.[STA97]. Since then many approximation algorithms have been proposed for

this problem. Mahdian et al.[MYZ06] gave a 1.52 approximation algorithm that

combines the greedy algorithm of Jain et al.[JMS02, JMM+03] with the idea of

cost scaling, and is analyzed using a factor-revealing LP. Subsequently, Byrka and

Aardal[BA10] gave a 1.5-approximation algorithm and recently Li[Li11] gave a

1.488-approximation algorithm for this problem. The best LP rounding based

algorithm with an approximation guarantee of 1.58 is due to Sviridenko[Svi02].

Guha and Khuller[GK99] proved that it is impossible to get an approximation

guarantee of 1.463 for the UFL problem, unless NP ⊆ DTIME[nO(loglogn)].

A closely related problem to the UFL problem is the k-median problem;

in this problem there are no facility opening costs, but there is a limit, k, on

the number of facilities that can be opened. Prior work ([HKK10, RKN+11])

has studied a variant of the k-median problem that has types associated with

the facilities. For the case of two types of facilities, Hajiaghayi et al.[HKK10]

proposed a constant factor approximation algorithm using local search techniques.
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Krishnaswamy et al.[RKN+11] used LP rounding techniques to provide a constant

factor approximation algorithm for this problem for arbitrary number of types. We

note that the notion of types in their problem is different from our problem. In

their problem, facilities are partitioned based on types, while the clients have no

types associated with them and hence can be served by any open facility. On the

contrary, in our problem, the notion of types is associated only with clients, while

the facilities can be opened for any object-type; however, a demand can only be

served by a facility open for the same type. This fundamental difference rules out

the possibility of solving our problem by reducing it to their problem.

Another closely related line of work is that of data placement that has ap-

plications in the context of multimedia systems ([AAG+10]). This is a general-

ization of our problem, where there is an arbitrary number of object-types and

there is a facility cost associated with each <facility, object-type> pair. Baev and

Rajaraman[BR01] gave a 20.5-approximation algorithm for this problem. This was

later improved to a 10-approximation algorithm by Baev et al.[BRS08]. Both these

algorithms are based on LP-rounding.

1.2.5 Our Result

Several new algorithmic ideas have bridged the gap between upper and lower

bounds on approximation ratio for a single object type (i.e., the UFL problem).

However, there is no improved lower bound for multiple object types. The 20.5

approximation factor of Baev and Rajaraman[BR01] was reduced to 10 by Baev et

al[BRS08] using several new and elegant ideas borrowed from the K-median work

[CGTS99]. However, a fundamental question remains – why do we lose so much

when we go to multiple object types?

In an attempt to understand the cause of huge loss incurred while attacking

the problem with multiple object types, we consider a simple scenario involving

two object types with no facility opening cost, and show that we can get a sig-

nificant reduction in the approximation guarantee and obtain a bound of 4 for

this interesting special case. It is worth noting that the algorithm due to Baev
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et al[BRS08] does not lead to any improvements in the approximation bounds for

these special cases. This is a first step towards closing the gap between the existing

lower bounds and approximation guarantees.

Our algorithm for this problem is based on LP-rounding and the result is

formally captured by the following theorem; the proof is presented in Chapter 6.

We shall also show that the transformation involved in this theorem takes time

polynomial in the input size.

Theorem 1.8. There exists a polynomial time O(1)-approximation algorithm for

the typed data placement problem.

This result improves upon [BRS08] when applied to our problem.
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Chapter 2

Replica Placement on Tree graphs

2.1 Introduction

In this chapter we study the replica placement problem with hop counts on tree

graphs. This also serves as an exposition of some of the basic ideas used in sub-

sequent algorithms. Some procedures introduced here shall also be used in subse-

quent algorithms.

As an illustration of this problem, consider the instance in Figure 2.1. In this

example, the tree graph is defined by the set of vertices V = {v1, v2, v3, v4, v5}.

The set of clients is A = {a1, a2, a3, a4, a5, a6}. For each client, the request, r(.),

and the maximum distance it can travel, dmax(.), are mentioned next to it in the

figure. Based on the LP formulation for the replica placement problem described

in Section 1.1.2, an LP solution is also shown in the figure; the y(.) values are

mentioned against the corresponding nodes and the non-zero x(., .) assignments of

the clients to the replicas are indicated against the associated edges (shown with

dotted lines).

Our Result.We present a constant-factor approximation algorithm for the

replica placement problem with hop counts on tree graphs so as to establish The-

orem 1.3. This result is captured by the following theorem and the rest of the

chapter is dedicated to proving the theorem.
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Figure 2.1: An instance on tree graph with unit edge length: W=20

Theorem 2.1. The replica placement problem with hop counts on tree graphs

admits a polynomial time approximation algorithm having cost 320·OPT+28, where

OPT is the cost of the optimal solution.

2.2 Overview of the Algorithm

In this section, we present an outline of our constant-factor approximation algo-

rithm highlighting its main features, deferring a detailed description to subsequent

sections. The algorithm is based on rounding solutions to the natural LP formu-

lation presented in Section 1.1.2. The following simple notations will be useful in

our discussion. With respect to an LP solution σ = 〈x, y〉, we classify the nodes

into three categories based on the extent to which they are open. A node u is said

to be fully-open, if y(u) = 1; partially-open, if 0 < y(u) < 1; and fully-closed, if

y(u) = 0. A client a is said to be assigned to a node u, if x(a, u) > 0 (note that a

client may be assigned to multiple nodes). For a set of nodes U , let y(U) denote

the extent to which the vertices in U are open, i.e., y(U) =
∑

u∈U y(u).

Outline. The major part of the rounding procedure involves transforming

a given LP solution σin = 〈xin, yin〉 into an integrally open solution: a solution in

which each node u ∈ V is either fully open or closed. Such a solution differs from an
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integral solution in two minor aspects. Firstly, a client a ∈ A may be partly served

by a dedicated replica (0 < y(a) < 1) and partly by the network nodes (1− y(a)).

Secondly, a client a ∈ A may be assigned to multiple network nodes. Once an

integrally open solution is obtained, we derive an integral solution by applying a

simple post-processing step based on a cycle cancellation strategy. While the first

step (of obtaining an integrally open solution) exploits the structural properties of

tree graphs, the second step (of obtaining an integral solution) is generic and can

be applied to other capacitated set cover settings, which could be of independent

interest.

The procedure for obtaining an integrally open solution works in two stages.

First it transforms the input solution into a clustered solution, which is then trans-

formed into an integrally open solution. The notion of clustered solution lies at

the heart of the rounding algorithm. Intuitively, in a clustered solution, the set of

partially open nodes are partitioned into a collection of clusters C and the clients

can be partitioned into a set of corresponding groups satisfying three useful prop-

erties. Firstly, the assignments from clients to the partially-open nodes is localized:

any group of clients is assigned only to the partially-open nodes from the corre-

sponding cluster. Secondly, the assignments from the clients to fully-open nodes

are restricted: any group of clients (put together) is assigned to a bounded number

of fully-open nodes. Thirdly, the clusters are tiny: for any cluster C, the extent to

which it is open, y(C), is bounded by a small constant. The concept is formally

defined next.

Let σ = 〈x, y〉 be an LP solution. It will be convenient to express the three

properties using the notion of linkage: we say that a node u is linked to a node

v, if there exists a client a assigned to both u and v. For constants α and `, the

solution σ is said to be (α, `)-clustered, if the set of partially-open nodes can be

partitioned into a collection of clusters, C = {C1, C2, . . . , Ck} (for some k), such

that the following properties are true:

• Localization: Two partially-open nodes are linked only if they belong to the

same cluster.
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Figure 2.2: (a) Illustration of a problem instance showing the underlying tree
graph and set of clients A = {a1, a2, a3, a4, a5, a6, a7, a8}. The nodes filled solidly
({u1} and {u2}) represent fully-open nodes. The solution contains three clusters
C1 = {v1, v2, v3}, C2 = {v4, v5}, C3 = {v6, v7, v8} shown by checkered, vertical and
horizontal patterns respectively. (b) Solution corresponding to these three clusters
C1, C2 and C3, open to an extent of 0.4, 0.4 and 0.5 respectively; no two nodes
in different clusters are linked; the nodes in clusters C1 and C2 are linked to the
fully-open node u1 and nodes in C3 are linked to u2. The solution is 0.5 clustered.

• Distributivity: For any Cj, there are at most ` fully-open nodes associated

with Cj, to which the nodes in Cj may be linked. We refer to ` as the

distributivity parameter.

• Bounded opening: The total extent to which any cluster is open is less than

α, i.e., y(Cj) < α.

For a tree graph, we aim for distributivity parameter 1, i.e., we attain an (α, 1)-

clustered solution. For simplicity, we shall refer to such a solution as α-clustered.

Figure 2.2 provides an illustration. In the first stage of the rounding algorithm, we

transform the input solution σin into an α-clustered solution with the additional

guarantee that the number of clusters is at most a constant factor of cost(σin),

where α ∈ [0, 1
2
] is a tunable parameter. The lemma below specifies the transfor-

mation performed by the first stage.

Lemma 2.2. Fix any constant α ≤ 1/2. Any LP solution σ can be transformed

into an α-clustered solution σ′ such that cost(σ′) is at most 2 + 6 · cost(σ)/α.

Furthermore, the number of clusters is at most 3 + 8 · cost(σ)/α.
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At a high level, the lemma is proved by performing a bottom-up traversal

of the tree graph and identifying a suitable set of nodes, that we call boundary

nodes. We use these boundary nodes to split the tree into a set of disjoint clusters.

We then fully open the boundary nodes and transfer some assignments from the

remaining partially open nodes to these fully-opened boundary nodes so as to form

clusters. Note that boundary nodes are themselves not part of the clusters. The

transfer of assignments is performed in such a manner that clusters get localized

and have distributivity of 1. By carefully selecting the boundary nodes, we shall

enforce that each cluster is open to an extent of at most α and that the number of

clusters is also bounded. We fix the parameter α = 1/4 and use the above lemma

to obtain a solution that is 1/4-clustered with C being the collection of clusters.

The proof is discussed in Section 2.3.

The goal of the second stage is to transform the clustered solution into an inte-

grally open solution. The following lemma captures the transformation performed

by this stage.

Lemma 2.3. Let σ = 〈x, y〉 be a 1/4-clustered solution with C being the collection

of clusters. The solution can be transformed into an integrally open solution σ′ =

〈x′, y′〉 such that cost(σ′) ≤ 2 · cost(σ) + |C|.

At a high level, the localization property allows us to independently process

each cluster C ∈ C and its corresponding group of clients Ac. The clients in Ac

are assigned to exactly one fully-open node, say u. We identify a suitable node

v ∈ C called the “consort” of u in C and fully open v. Then the idea is to transfer

assignments from the non-consort nodes in C to u and its consort in such a manner

that at the end, no client is assigned to the non-consort nodes. This allows us to

fully close the non-consort nodes. The localization and bounded opening properties

facilitate the above manoeuvre. On the other hand, the distributivity property

ensures that we fully open at most 1 consort per cluster. Thus, the overall increase

in cost is at most |C|. Since |C| is bounded, we get a constant approximation factor.

The proof is discussed in Section 2.4.
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Once we obtain an integrally open solution, it can easily be transformed into

an integral solution by applying a cycle cancellation strategy, as given by the

following lemma. It is proved in Section 2.5.

Lemma 2.4. Any integrally open solution σ = 〈x, y〉 can be transformed into an

integral solution σ′ = 〈x′, y′〉 such that cost(σ′) ≤ 4 · cost(σ).

We can transform any input LP solution σin into an integral solution σout by

applying the above three transformations. We fix α = 1/4 and apply Lemma 2.2

to obtain a solution σ1, which is 1/4-clustered via a collection of clusters C. It

is guaranteed that cost(σ1) ≤ 2 + 24 · cost(σin) and |C| ≤ 3 + 32 · cost(σin). We

next apply Lemma 2.3 on the solution σ1 and obtain an integrally open solution

σ2 such that cost(σ2) ≤ 2 · cost(σ1) + |C|. Finally, we transform σ2 into integral

solution σout using Lemma 2.4 such that cost(σout) ≤ 4 · cost(σ2). It follows that

cost(σout) is at most 28 + 320 · cost(σin). This proves Theorem 2.1. Thus, the

overall approximation ratio is constant and Theorem 1.3 is established. In Section

2.3 we show that the transformation involved in obtaining a clustered solution

(Lemma 2.2) takes time polynomial in the input size. In Section 2.4 we show that

the transformation involved in obtaining an integrally open solution (Lemma 2.3)

runs in polynomial time. In Section 2.5 we argue that the transformation involved

in obtaining an integral solution (Lemma 2.4) runs in polynomial time. Thus, the

overall transformation involved in Theorem 2.1 (and hence Theorem 1.3) takes

time polynomial in the input size. The rest of the chapter is devoted to proving

Lemmas 2.2, 2.3 and 2.4.

2.3 Clustered Solutions: Proof of Lemma 2.2

The goal is to transform a given solution into an α-clustered solution with the

properties claimed in the lemma. The idea is to select a set of partially-open or

closed nodes and open them fully, and then transfer assignments from the other

partially-open nodes to them in such a manner that the partially-open nodes get
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For each partially-open node v 6= u (considered in an arbitrary order)

For each client a that can access both u and v (considered in an arbitrary order)

Compute capacity available at u: cap(u) =W −
∑

b∈A : b∼u x(b, u) · r(b)

If cap(u) = 0 exit

δ = min
{
x(a, v), cap(u)r(a)

}
Increment x(a, u) by δ and decrement x(a, v) by δ.

Figure 2.3: Pulling procedure for a given partially-open or closed node u.

partitioned into clusters satisfying the three properties of clustered solutions. An

issue in executing the above plan is that the capacity at a newly opened node may

be exceeded during the transfer. We circumvent the issue by first performing a

pre-processing step called de-capacitation.

2.3.1 De-capacitation

Consider an LP solution σ = 〈x, y〉 and let u be a partially-open or closed node.

The clients that can access u might have been assigned to other partially-open

nodes in σ. We call the node u de-capacitated, if even when all the above assign-

ments are transferred to u, the capacity utilization at u is less than W ; meaning,∑
a∼u

∑
v: a∼v ∧ v∈PO

x(a, v) < W,

where PO is the set of partially-open nodes under σ (including u). The solution

σ is said to be de-capacitated, if all the partially-open and the closed nodes are

de-capacitated.

The preprocessing step transforms the input solution into a de-capacitated

solution by performing a pulling procedure (given in Figure 2.3) on the partially-

open and closed nodes. It is easy to see that the pulling procedure takes time

polynomial in the number of nodes of the input graph. The transformation into a

de-capacitated solution is captured by the following lemma.

Lemma 2.5. Any LP solution σ = 〈x, y〉 can be transformed into a de-capacitated

solution σ′ = 〈x′, y′〉 such that cost(σ′) ≤ 2 · cost(σ).
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Proof. We consider the partially-open and closed nodes, and process them in an

arbitrary order, as follows. Let u be a partially-open or closed node. Hypotheti-

cally, consider applying the pulling procedure on u. The procedure may terminate

in one of two ways: (i) it reaches its capacity limit of W : there may or may

not be more assignments that could have been pulled; (ii) all the assignments are

pulled and the total capacity utilization at u is still less than W . In the former

case, we fully open u and perform the pulling procedure on u. In the latter case,

the node u is de-capacitated and so, we leave it as partially-open or closed, with-

out performing the pulling procedure. Thus, every node is either fully-open or

de-capacitated. Hence, the above method produces a de-capacitated solution σ′.

We next analyze the cost of σ′. Let s be the number of partially-open or closed

nodes converted to be fully-open. Apart from these conversions, the method does

not alter the cost and so, cost(σ′) is at most s + cost(σ). Let the total amount

of requests be rtot =
∑

a∈A r(a). The extra cost s is at most brtot/W c, since any

newly opened node is filled to its capacity. Due to the capacity constraints, the

input solution σ must also incur a cost of at least brtot/W c. It follows that cost(σ′)

is at most 2 · cost(σ). Clearly, the time taken by the de-capacitation procedure is

polynomial in the number of nodes of the input graph as it involves applying the

pulling procedure to the partially open and closed nodes.

2.3.2 Clustering

Given Lemma 2.5, assume that we have a de-capacitated solution σ = 〈x, y〉. We

next discuss how to transform σ into an α-clustered solution. The transforma-

tion would perform a bottom-up traversal of the tree graph and identify a set of

partially-open or closed nodes. It would then fully open them and perform the

pulling procedure on these nodes. The advantage is that the above nodes are de-

capacitated and so, the pulling procedure would run to its entirety (without having

to exit mid-way because of reaching capacity limits). As a consequence, the linkage

between the nodes gets restricted, leading to a clustered solution. Below we first

describe the transformation and then present an analysis.
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p

root

Figure 2.4: Illustration of active(p). The solidly shaded nodes represent the iden-
tified boundary nodes; all the checkered nodes are active at p.

Transformation. Consider the given tree G. We select an arbitrary node of

G and make it the root. A node p is said to be an ancestor of a node q, if p lies

on the path connecting q and the root; in this case, q is called a descendant of p.

We consider p to be both an ancestor and descendant of itself.

In transforming σ into a clustered solution, we shall encounter three types of

nodes and it will be convenient to color them as red, blue and brown. To start

with, all the fully-open nodes are colored red and the remaining nodes (partially-

open nodes and closed nodes) are colored blue. The idea is to carefully select a set

of blue nodes, fully-open them and perform the pulling procedure on these nodes;

these nodes are then colored brown. Thus, while the blue nodes are partially-open

or closed, the red and the brown nodes are fully-open, with the brown and the

blue nodes being de-capacitated. A node u is said to be an anchor if either it is

itself red or it is the parent of a red node.

The transformation identifies two kinds of nodes to be colored brown, helpers

and boundary nodes. We say that a red node u ∈ V is proper, if it has at least

one neighbor v ∈ V which is a blue node. For each such proper red node u, we

arbitrarily select one such blue neighbor v and declare it to be the helper of u.

Once the helpers have been identified, we color them all brown. To identify the

set B of boundary nodes, we arrange the nodes in G in any bottom-up order (i.e.,

a node gets listed only after all its children are listed) and then iteratively process

each node p as per the above order.
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A blue node u is said to be active at p, if it is a descendant of p but not a

descendant of any other node already in B. See Figure 2.4 for an illustration. Let

active(p) denote the set of nodes active at p. We declare p to be a boundary node

and add it to B under three scenarios.

• The node p is the root node

• The node p is an anchor node (i.e., a red node or the parent of a red node)

• If the extent to which the nodes in active(p) are open is at least α, i.e.,∑
u∈active(p) y(u) ≥ α.

If p is identified as a boundary node and it is not red or brown, then we change its

color to brown. Note that a node may change its color from blue to brown in the

above process, and the new color is to be considered while determining the active

sets thereafter. Once the bottom-up traversal is completed, we have a set of brown

nodes (helpers and boundary nodes). We consider these nodes in any arbitrary

order, open them fully, and perform the pulling procedure on them. We take σ′ to

be the solution obtained by the above process. This completes the construction of

σ′. A pseudocode is presented in Figure 2.5.

Analysis. We now show that σ′ is an α-clustered solution. To start with,

we had a set of red nodes that were fully-open and a set of blue nodes that were

either partially-open or closed under σ. The red nodes do not change color during

the transformation. Also, the transformation partitions the set of blue nodes into

a set of brown nodes and a set of nodes that stay blue. In the following discussion,

we shall use the term ‘blue’ to refer to the nodes that stay blue. With respect to

the solution σ′, the red and brown nodes are fully-open, whereas the blue nodes

are partially-open or closed.

The transformation outputs a set of boundary nodes B; let B denote the

set of non-boundary nodes. If we treat the nodes in B as cut-vertices and delete

them from G, the tree splits into a collection R of disjoint regions. Alternatively,

these regions can be identified in the following manner. For each node p ∈ B
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Input: De-capacitated solution σ = 〈x, y〉

Output: α-clustered solution σ′ = 〈x′, y′〉

Red← {u : u is fully-open under σ}

Blue← {u : u is partially-open or closed under σ}

Brown← ∅

// Helpers

Set helpers H ← ∅

For each node u ∈ Red

if u has some neighbor v ∈ Blue, then H ← H ∪ {v}

Make helpers brown: Blue← Blue \H and Brown← Brown ∪H

// Boundaries: Bottom-up traversal

set B ← ∅

Arrange the nodes in a bottom-up order

For each node p in the above order

if p is the root, add p to B

if p is an anchor node, then add p to B

active(p)← {q ∈ Blue : q is a descendant of p, but not a descendant of any node in B }

if
(∑

u∈active(p) y(u) ≥ α
)
, add p to B

if p was added to B and p is not red or brown

Delete p from Blue and add to Brown

//Pulling

Arrange the nodes in Brown in an arbitrary order

For each node u in the above order

Fully open u and perform the pulling procedure on it.

Output σ′ as the solution obtained above.

Figure 2.5: Pseudocode for clustering
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and each of its non-boundary child q ∈ B, define the region headed by q, denoted

as Rq to be the set active(q). We call p to be the node defining the region

Rq. Note that p may define more than one regions. Let the collection derived be

R = {R1, R2, . . . , Rk}. It is easy to see that R partitions B and that the regions

in R are pairwise disconnected (not connected by edges of the tree).

We are now ready to show that σ′ is an α-clustered solution. Towards that

goal, let us suitably partition the partially open nodes into a collection of clusters

C. For each region Rj, let Cj be the set of partially open nodes that occur in Rj.

We take C to be the collection {C1, C2, . . . , Ck}. We prove some claims below that

will be useful in showing that σ′ is α-clustered.

Recall that two nodes u and v are linked, if there is a client a assigned to both

u and v. In order to prove the properties of α-clustering, we need to analyze the

linkage information for the blue nodes. We first show that the blue nodes cannot

be linked to brown nodes, by proving the following stronger observation.

Claim 2.6. If a client a ∈ A is assigned to a blue node u under σ′, then a cannot

access any brown node v.

Proof. As part of the transformation, we perform the pulling procedure on the

brown node v. Since σ is de-capacitated, the node v is de-capacitated under σ.

As a result, the pulling procedure on v would run to its entirety (without having

to exit mid-way because of reaching the capacity limit). This means that the

assignment x(a, u) would get transferred to v. Thus, under σ′, the client a cannot

remain assigned to u, contradicting the assumption in the lemma statement.

Next, in the following claim we show that clients cannot pass via red nodes

to be assigned to blue nodes.

Claim 2.7. Consider a client a that is assigned to a blue node v. Then, the path

from att(a) to v cannot contain a red node.

Proof. Suppose the path from att(a) to v contains a red node. Let u be the last

red node along this path (closest to v) and let w be the node succeeding u along
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this path (note that w may be v itself). By Claim 2.6, w cannot be brown and

hence it must be blue. This implies that u is a proper red node and hence it has

a helper z that is brown. Moreover, z is accessible to a (since v is also accessible

to a). This contradicts Claim 2.6.

The following claim uses Claims 2.6 and 2.7 to give a structure to the linkage

between blue nodes.

Claim 2.8. Consider a client a.

• If att(a) ∈ Ri, then the partially open nodes that a is assigned to must be in

Ci.

• If att(a) does not belong to any region, then a is not assigned to any partially

open node.

Proof. First consider the case where att(a) belongs to some Ri. Suppose a is

assigned to a partially open node u ∈ Cj such that Cj 6= Ci. Let p and p′ be the

nodes defining Ri and Rj respectively. Then clearly, the path from att(a) to u

must go through either p or p′ or both. Recall that p and p′ can be either red

or brown. By Claim 2.6 the path from a to u (and hence att(a) to u) cannot

contain a brown node and by Claim 2.7 the path from att(a) to u cannot contain

a red node. Thus, we arrive at a contradiction, and so a cannot be assigned to a

partially open node outside Ci.

Next consider the case where att(a) does not belong to any region. Then

either att(a) is brown or it is red. Suppose a is assigned to a partially open node

u. Since the path from a to u has to pass through att(a), att(a) cannot be brown

or red by Claim 2.6 and Claim 2.7 respectively. Thus, we arrive at a contradiction

to the assumption that a is assigned to u.

The following claim shows that the blue nodes can only be linked to a single

red node.

Claim 2.9. If a client a is assigned to one or more partially open nodes in Ci and

a red node p, then p must be the node defining Ri.
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Proof. Suppose that p is not the node defining Ri. Let the node defining Ri be q.

Then, either the path from att(a) to p contains q, or p is a descendant of q.

First consider the case where the path from att(a) to p contains q. Recall

that q being the node defining Ri can either be brown or red. Claim 2.6 rules out

the possibility of q being brown and hence it must be red. Let w be the first red

node along the path from att(a) to p (w may be q itself). Note that w cannot be

att(a): if att(a) is red, then it does not belong to any region and hence by Claim

2.8, a cannot be assigned to a partially open node. Hence it must be that att(a)

is not red. Let u be the node preceding w along this path (u may be att(a) itself).

Then, u must be blue and hence w is a proper red node. Thus, w has a helper z

that is brown. Moreover, z is accessible to a (since p is also accessible to a and w

cannot be p). This contradicts Claim 2.6.

Next, consider the case where p is a descendant of q. Note that p cannot lie

on the path from att(a) to q for otherwise p would have been the node defining

Ri. Now, consider the path from att(a) to p. Let w be the first red node along

this path (w can be p itself). Let u be the node preceding w on this path (u could

be att(a) itself); note that u must be the parent of w and hence an anchor node.

Thus, u must have been colored brown. This contradicts Claim 2.6.

We next argue that C satisfies the three properties of localization, distributiv-

ity and bounded opening. However, the number of clusters in the collection may

exceed the bound claimed in Lemma 2.2. Later, we show that the issue can be

easily rectified by suitably merging the clusters.

Lemma 2.10. The solution σ′ is α-clustered.

Proof. We prove that the collection C satisfies the three properties. Localization

and Distributivity trivially follow from Claims 2.8 and 2.9 respectively. We

next show that the Bounded opening property holds. First of all observe that

y(Cj) ≤ y(Rj) since Cj ⊆ Rj and the nodes in Rj \ Cj are fully closed. We claim

that each cluster Cj is open to an extent of less than α, i.e., y(Cj) < α. If possible,

let y(Cj) ≥ α, which implies y(Rj) ≥ α. Consider the blue node q heading region
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Rj. Notice that if y(Rj) ≥ α, the transformation would have made q itself a

boundary node, but any region in the collection R contains only non-boundary

nodes. Thus, y(Cj) ≤ y(Rj) < α

We next analyze the cost of the solution σ′ = 〈x′, y′〉. Let Red, Blue and Brown

denote the sets of red, blue and brown nodes respectively. Then, cost(σ′) is given

by |Red|+ |Brown|+ y′(Blue) + y′(A), where y′(A) represents the extent to which

dedicated replicas are opened, i.e., y′(A) =
∑

a∈A y
′(a). The red nodes do not

change their color, the extent to which any blue node is open also does not change

and similarly, for any client a, y(a) does not change. Thus, |Red| + y′(Blue) +

y′(A) ≤ cost(σ) and hence, cost(σ′) ≤ cost(σ)+ |Brown|. We create a brown helper

node for each proper red node. Furthermore, we convert each boundary node p ∈ B

to be brown if it is not red. Thus, |Brown| ≤ |Red| + |B(blue)|, where B(blue) is

the set of boundary nodes that were blue at the beginning. A node p is made

boundary node under one of the three scenarios. (i) p is the root node; (ii) p is an

anchor node; (iii) the total extent to which the nodes in active(p) are open is at

least α. The number of boundary nodes that were blue at the beginning, and are

of the first two types, are 1 + |Red|. Regarding the third scenario, the total extent

to which the originally blue nodes are open is at most cost(σ). Thus, the number

of boundary nodes of the third type is at most dcost(σ)/αe. Therefore,

|B(blue)| ≤ 1 + |Red|+ dcost(σ)/αe ≤ 2 + |Red|+ cost(σ)/α.

It follows that cost(σ′) is at most cost(σ) + |Red| + (2 + |Red| + cost(σ)/α), i.e.,

cost(σ′) ≤ 2 + 3 · cost(σ) + cost(σ)/α (since |Red| ≤ cost(σ)). A simple arith-

metic shows that cost(σ′) is at most 2 + 3cost(σ)/α (since α is at most 1/2). By

Lemma 2.5, the preprocessing step of de-capacitation incurs a 2-factor increase in

cost. Taking this into account, we get the cost bound claimed in the statement

of Lemma 2.2. The clustering step involves identification of helpers and boundary

nodes, and applying the pulling procedure on them. Clearly, identifying helpers

takes polynomial time as it requires examining the neighbors of some of the nodes

of the graph. Identifying boundary nodes takes polynomial time as it requires
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performing a simple bottom up traversal of the input graph. Also, the pulling

procedure runs in polynomial time, as argued earlier. Thus, the clustering step

takes time polynomial in the number of nodes of the input graph.

As mentioned earlier, an issue with the collection C is that it may have more

clusters than the bound claimed in Lemma 2.2. We reduce the number of clusters

by suitably merging the clusters. Consider each boundary node p. All the non-

boundary children of p have a corresponding cluster in C and let Cp denote the

collection of these clusters. We start with the collection Cp and repeatedly perform

the following merging operation. Select any two clusters C and C ′ from Cp such

that y(C) < α/2 and y(C ′) < α/2 and merge the two into a single cluster. The

process is stopped when we cannot find two such clusters. This way we get a set

of new clusters all (except one) of which are open to an extent of at least α/2; we

refer to these as normal clusters and the exceptional one as abnormal. We perform

this processing for all the boundary nodes and obtain a new collection C ′. Note

that the solution obtained after merging is also an α-clustered solution with C ′

being the set of clusters. The localization property trivially follows; distributivity

follows since for any two merged clusters, the only fully open node, to which the

partially-open nodes in the clusters can be linked, is the parent boundary node - p

in this case (as shown in Claim 2.9); and bounded opening holds since any cluster

in C ′ is open to an extent of less than α. The number of abnormal clusters is at

most |B| = |Red| + |B(blue)|. The collection C ′ is a partitioning of Blue and each

normal cluster is open to an extent of at least α/2. Thus, the number of normal

clusters can be at most ⌈
y′(Blue)

α/2

⌉
≤
⌈

2cost(σ)

α

⌉
.

Hence, the total number of clusters in C ′ is at most 3 + 5cost(σ)/α. The pre-

processing step of de-capacitation incurs a 2-factor increase in cost. Taking this

into account, we get the bound on number of clusters claimed in the statement of

Lemma 2.2. The number of merging operations performed for each boundary node

p is bounded by the number of clusters defined by p, and the number of boundary
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nodes is bounded by the number of nodes in the graph. Hence, the merging of

clusters takes time polynomial in the number of nodes of the input graph.

2.4 Integrally Open Solution: Proof of Lemma

2.3

Our goal is to transform a given 1/4-clustered solution σ = 〈x, y〉 into an integrally

open solution σ′. We classify each client as small or large based on the extent to

which it is served by itself (i.e., the dedicated replica opened at it): a client a ∈ A

is said to be small, if y(a) < 1/2, and it is said to be large otherwise. Let As and

Al denote the set of small and large clients, respectively.

We pre-process the solution σ by opening a dedicated replica at each large

client a and removing its assignments to the nodes (set y(a) = 1 and for all nodes

u accessible to a, set x(a, u) = 0). The transformation at most doubles the cost.

We assume that the solution σ is pre-processed. The solution remains 1/4-

clustered via a collection of disjoint clusters C that partitions the set of partially-

open nodes. We shall operate on each cluster independently. For each cluster

C ∈ C, we shall fully open a selected node and fully close the rest of the nodes in

the cluster. We now describe the processing for a cluster C ∈ C. Set Ac = Ac \Al.

By the localization property, the clients in Ac cannot be assigned to nodes in any

other cluster and by the distributivity property, they are assigned to at most 1

fully-open node, say u.

For a node v and a client a, let load(a, v) denote the amount of load imposed

by a on v towards the capacity: load(a, v) = x(a, v)r(a). It will be convenient to

define the notion over sets of clients and nodes. For a set of clients B and a set of

nodes U , let load(B,U) denote the load imposed by the clients in B on the nodes

U : load(B,U) =
∑

a∈B,v∈U :a∼v x(a, v)r(a); when the sets are singletons, we shall

omit the curly braces.

The intuition behind the remaining transformation is as follows. We would
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have liked to identify a suitable node v in C, fully open it and transfer the assign-

ments of other partially open nodes to it. This would have enabled us to close

all the other partially open nodes in C. However, the following issue prevents us

from executing this - v may not be accessible to all the clients. Hence, we instead

transfer these assignments to u. (We can argue that u is accessible to all these

clients: the bounded opening property ensures that y(C) < 1/4; also, any client

in Ac being small is open at most to an extent of 1/2, therefore these clients are

assigned to u at least to an extent of 1/4). However doing so might result in vi-

olation of capacity at u. To address this issue we identify a suitable node v from

C, called the consort of u in C, fully open it and transfer some assignments from

u to v. Consider the non-consort nodes C ′ = C − {v} and the load load(Ac, C
′)

of Ac on C ′. The amount of load that we need to assign to u is load(Ac, C
′)

and this is the load we may have to transfer from u to v. Note that y(C) < 1/4

implies y(C ′) < 1/4, which further implies load(Ac, C
′) < W/4. Also, note that

for every node v in C, we have y(v) < 1/4 and hence load(Ac, v) < W/4, which

in turn implies that if we fully open v, we get an additional space of at least

(3/4)W . Thus every node in C is a feasible candidate to become consort of u as

far as capacity is concerned. However, this capacity can be exploited only if the

clients that can access v impose a load of at least load(Ac, C
′) on u. Note that

this requirement may not be satisfied by all the nodes in C. We establish that a

node satisfying this requirement exists and identify the node too. Towards this

purpose, we define the notion of pushable load. For a node u and a node v ∈ C, let

pushable(u, v) =
∑

a∈Ac:a∼v x(a, u)r(a). We next show how to identify a suitable

consort such that the pushable load is more than the load that we wish to transfer.

Lemma 2.11. We can find a node v such that pushable(u, v) > load(Ac, C
′).

Proof. For a node v ∈ C, let acc(v) denote the total requests of the clients from

Ac that can access v: acc(v) =
∑

a∈Ac:a∼v r(a). Select v̂ = argmaxv∈Cacc(v); see

Figure 2.6.
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Figure 2.6: Illustration of notion of pushing.

Let C ′ = C − {v̂}. Now derive a bound on load(Ac, C
′):

load(Ac, C
′) =

∑
v∈C′

∑
a∈Ac:a∼v

x(a, v)r(a)

≤
∑
v∈C′

y(v)
∑

a∈Ac:a∼v

r(a)

≤
∑
v∈C′

y(v)acc(v)

≤ acc(v̂)
∑
v∈C′

y(v) < (1/4)acc(v̂)

The second statement follows from the LP constraint (1.3), whereas the third

statement is by the definition of acc(v). The fourth statement follows from the

construction and the last statement follows from the bounded opening property.

For any client a ∈ Ac, the solution has opened a dedicated replica to an

extent of y(a) and the remaining assignment of 1−y(a) is made to the nodes. Our

construction has ensured that a is a small client and so y(a) < 1/2. This means

that the client a is assigned to an extent of at least 1/2 to the nodes in the cluster.

Furthermore, the only nodes to which the client is assigned are u and the nodes in

the cluster C. Since y(C) < 1/4, the total extent to which the client a is assigned

to the nodes in C is less than 1/4. This implies that x(a, u) ≥ 1/4. Therefore,

pushable(u, v̂) =
∑

a∈Ac:a∼v̂

x(a, u)r(a) ≥ (1/4)
∑

a∈Ac:a∼v̂

r(a) = (1/4)acc(v̂).

We have proved the lemma.

We have shown that each node u has a load of more than load(Ac, C
′) which

can be pushed to its consort v̂. As observed earlier load(Ac, C
′) < W/4 and
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load(Ac, v̂) < W/4. Hence, when we fully open the consort, we get an additional

space of at least (3/4)W , which is sufficient to receive the load from u. The

pseudo-code for processing a cluster C is shown in Figure 2.7.

Let Ac be the set of clients assigned to nodes in C

Let u be the fully-open node linked to nodes in C

/* Selection of consort */

For each node v ∈ C: let acc(v) =
∑

a∈Ac:a∼v r(a).

Let v̂ ← argmaxv∈Cacc(v).

Let C ′ ← C − v̂

/* Push from u to v̂

Let load to push: pushable(u, v) =
∑

a∈Ac:a∼v x(a, u)r(a)

Let remaining load: rem← pushable(u, v̂)

For each a ∈ Ac such that a ∼ v̂ (considered in an arbitrary order)

Let amnt← min{rem, x(a, u)r(a)}

Let δ ← amnt/r(a)

x′(a, v̂)← x(a, v̂) + δ and x′(a, u)← x(a, u)− δ

rem← rem− amnt

If rem == 0 exit loop.

/* Transfer load from C ′ to u */

For each node v ∈ C ′

For each client a ∈ Ac and a ∼ v

x′(a, u)← x(a, u) + x(a, v) and x′(a, v)← 0

Figure 2.7: Processing for a Cluster C

Given the above discussion, we iteratively consider each cluster Cj ∈ C and

perform the above transformation. This results in one consort from Cj being fully-

opened and all the other nodes in Cj being fully closed. At the end of processing

all the clusters, we get a solution in which each node is either fully open or fully

closed. For each cluster Cj, we incur an extra cost of at most 1 for opening the
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consort. Thus, the cost increases by at most |C|. It is easy to see that identifying

the consorts and modifying the assignments takes time polynomial in the size of

the input. Hence, this procedure runs in polynomial time.

2.5 Integral Solutions: Proof of Lemma 2.4

An integrally open solution falls short from being an integral solution in two as-

pects: (i) a client may be assigned to more than one nodes; (ii) a client may be

served partly by a dedicated replica and partly by the network nodes. We address

the first issue by appealing to the following proposition.

Proposition 2.12. Given a solution σ = 〈x, y〉, a set of fully-open nodes F and a

set of clients A, we can obtain a solution σ′ = 〈x′, y′〉 such that each client a ∈ A

is assigned to at most one node from F . Furthermore, the transformation does

not alter the other assignments, i.e., for any node u ∈ V and any client a ∈ A, if

u 6∈ F or a 6∈ A, then x′(a, u) = x(a, u). The transformation incurs an additional

cost of at most F : cost(σ′) ≤ cost(σ) + |F |.

Proof. Construct an edge-weighted bipartite graph with nodes in F on one side

and the clients in A on the other side. For a pair of nodes u ∈ F and a ∈ A, add an

edge between the two, if a is assigned to u under σ. In this case, we imagine that

a imposes a load of x(a, u)r(a) on the node u and represent the above quantity

as the weight on the edge. The plan is to employ a standard cycle-cancellation

strategy and make the graph acyclic. Towards that goal, consider any cycle in the

graph. Since the graph is bipartite, the cycle must be of even length. Partition the

edges of the cycles into two groups, odd and even, by alternating on the cycle. Let

e = (a, u) be the edge having the least weight and let wmin = x(a, u)r(a). Assume

without loss of generality that e is an odd edge. The idea is to decrease the load

on all the odd edges by an amount wmin and increase the load on all the even edges

by the same amount. This can be accomplished by adjusting the assignments as

follows. For each edge e′ = (a′, u′), compute δ = wmin/r(a
′). If e′ is an odd edge,
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decrease x(a′, u′) by an amount δ, and otherwise, increase x(a′, u′) by an amount

δ. The edge weights are recomputed accordingly. The above process makes the

assignment x(a, u) to be zero and so, we can delete the edge, thereby breaking

the cycle. We repeat the process until the bipartite graph becomes acyclic, i.e., a

forest.

Consider the resultant LP solution. The forest provides us information on

the nodes that the clients are assigned to: a client a ∈ A is assigned to a node

u ∈ F , if u is a neighbor of a in the forest. Thus, any client a ∈ A appearing as a

leaf (vertex of degree one) is assigned to only a single node from F . These clients

satisfy the property claimed in the proposition. This leaves us with having to deal

with clients having multiple neighbors – let A′ denote the set of such clients. We

handle these clients simply by opening a dedicated replica at the client node itself.

The process produces a solution σ′ wherein each client a ∈ A is assigned to at

most one node u ∈ F .

The above process incurs an extra cost of one unit per dedicated replica and

so, the total increase in cost is |A′|. It is not difficult to argue that |A′| ≤ |F |.

To prove this, we shall produce a one-to-one mapping from A′ to F . Consider

each tree in the forest and root it at an arbitrary node from F . Since the graph

is bipartite, the nodes from F and the clients from A appear in alternate levels

of the tree. Thus, for any client a ∈ A′, all its children are from F . For each

client a ∈ A′, pick one of its children u ∈ F and map a to u. This is a one-to-one

mapping and so, |A′| ≤ |F |. We have shown that cost(σ′) ≤ cost(σ)+ |F |. Clearly,

identification and handling of a cycle take time polynomial in the input size. After

every cycle cancellation, at least one of the variables becomes integral. So the

procedure terminates in polynomial number of steps. Hence, this procedure runs

in polynomial time.

We take F to be the set of all fully open nodes and A to be the problematic

clients and invoke the above lemma. In the resultant solution each client is assigned

to at most one fully open node and the cost can increase by a factor of at most

two. The second issue is addressed by the following proposition.
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Proposition 2.13. Let σ = 〈x, y〉 be an integrally open solution in which each

client is assigned to at most one node. It can be transformed into an integral

solution σ′ such that cost(σ′) ≤ 2 · cost(σ).

Proof. We iteratively consider each fully open node u. Let Au ⊆ A denote the

clients assigned to u. Each client a ∈ A is served partly by its own dedicated

replica to an extent of y(a), while the remaining assignment of 1 − y(a) is going

to u. We wish to obtain a solution wherein at most one client a with y(a) > 0

is assigned to u. Suppose multiple such clients are assigned to u. Choose any

two such clients a and b. Without loss of generality, assume that r(a) ≥ r(b).

Let δ = min{x(a, u), y(b)}. Decrease x(a, u) and y(b) by δ, and increase y(a) and

x(b, u) by δ. The assumption that r(a) ≥ r(b) ensures that the above transfers do

not violate the capacity constraint at the node u. The transfer results in a getting

fully served by a dedicated replica and no longer being assigned to u. By repeating

the process, we can derive a solution wherein at most one client assigned to u is also

served by its dedicated replica. We then open a dedicated replica at this client (say

a) and remove its assignment to u (set y(a) = 1 and x(a, u) = 0). The procedure

is repeated for all fully open nodes, leading to an integral solution σ′. The cost

increases by at most one unit for each full open node. Thus, cost(σ′) ≤ 2 · cost(σ).

It is easy to see that the processing time for any fully open node is polynomial in

the number of clients assigned to it. Hence, the total processing time is polynomial

in the size of the input.

We convert the input integrally open solution σ into an integral solution σ′

by applying the above two steps. Each step incurs a 2-factor increase in cost and

thus, cost(σ′) is at most 4 · cost(σ).
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Chapter 3

Replica Placement on Bounded

Tree-width Graphs

3.1 Introduction

In this chapter we study the replica placement problem with hop counts on graphs

having bounded tree-width. Recall that tree-width is a measure of how tree-like the

graph is; the smaller the tree-width, the closer the graph is to being a tree. Since

bounded tree-width graphs are tree-like, most of the ideas presented in Chapter 2

carry forward here.

Formally, tree decomposition of a graph G = (V,E) is a pair (X = {Xj : j ∈

J}, T = (J,K)), where T is a tree over the nodes J and each node j ∈ J is

associated with a subset of vertices (called a bag) Xj ⊆ V such that the following

three conditions are satisfied:

• each vertex belongs to at least one bag, i.e.,
⋃
j∈J Xj = V ;

• for every edge (u, v) ∈ E, there is a bag containing both u and v; and

• for all vertices v ∈ V , the set of nodes {j ∈ J : v ∈ Xj} induces a subtree of

T .

The width of a tree decomposition is defined to be maxj∈J (|Xj| − 1). The tree-
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width t of a graph G is the minimum width over all tree decompositions of G. It

is NP-hard to find the tree decomposition of minimum width, but fixed parameter

tractable algorithms are known. [DJGT99] provides an algorithm that finds a tree

decomposition whose width is at most 4 times the tree-width of the input graph

and runs in time O(f(t).mn), where t is the tree-width of the graph, m and n are

respectively the number of edges and nodes of the graph, and f(.) is a function

that depends only on t.

Our Result. We assume that the input includes a decomposition T of tree-

width t of the input network graph G = (V,E) and present an O(t) approximation

algorithm for the problem. This result is captured by the following theorem and

the rest of the chapter is dedicated to proving the theorem.

Theorem 3.1. The replica placement problem with hop counts on bounded tree-

width graphs admits a polynomial time 448(t+1)-approximation algorithm with an

additional additive factor of 16 + 24(t+ 1).

3.2 Overview of the Algorithm

In this section, we present an outline of the algorithm highlighting its main features,

deferring a detailed description to subsequent sections. The algorithm is based on

rounding solutions to the natural LP formulation presented in Section 1.1.2.

Outline. The rounding procedure is similar to that used for tree graphs.

The major part of the procedure involves transforming a given LP solution σin =

〈xin, yin〉 into an integrally open solution, which is then converted into an integral

solution by the same cycle cancellation strategy that was used for tree graphs.

As in case of tree graphs, the procedure for obtaining an integrally open

solution works in two stages - the input LP solution is first transformed into a

clustered solution, which is further transformed into an integrally open solution.

The notion of a clustered solution is as defined in Chapter 2. We recall it here for

completeness. A solution σ is said to be (α, `)-clustered, if the set of partially-open

nodes can be partitioned into a collection of clusters, C = {C1, C2, . . . , Ck} (for
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some k), such that the the following properties are true:

• Localization: Two partially-open nodes are linked only if they belong to the

same cluster.

• Distributivity: For any Cj, there are at most ` fully-open nodes associated

with Cj, to which the nodes in Cj may be linked. We refer to ` as the

distributivity parameter.

• Bounded opening: The total extent to which any cluster is open is less than

α, i.e., y(Cj) < α.

For bounded tree-width graphs, we cannot aim for distributivity of 1 (unlike tree

graphs), i.e., the clients assigned to nodes of a cluster may be assigned to more

than one fully open nodes. The distributivity parameter ` attains value t + 1,

where t is the tree-width of the graph; this is to say that the clients assigned to the

nodes of a cluster may be assigned to t+1 fully open nodes. Figure 3.1 provides an

illustration. In the first stage of the rounding algorithm, we transform the input

solution σin into an (α, t+ 1)-clustered solution with the additional guarantee that

the number of clusters is at most a constant factor of cost(σin), where α ∈ [0, 1
2
] is

a tunable parameter. The lemma below specifies the transformation performed by

the first stage.

Lemma 3.2. Fix any constant α ≤ 1/2. Any LP solution σ can be transformed

into an (α, t + 1)-clustered solution σ′ such that cost(σ′) is at most 2 + 6(t +

1)cost(σ)/α. Furthermore, the number of clusters is at most 3 + 8 · cost(σ)/α.

At a high level, the lemma is proved by considering the tree decomposition T

of the input graph G = (V,E) and performing a bottom-up traversal that identifies

a suitable set of boundary bags. We use these boundary bags to split the tree into

a set of disjoint regions and create one cluster per region. We then fully open

the nodes in the boundary bags and transfer some assignments from the nodes

that stay partially-open to these fully-open nodes. The transfer of assignments is

performed in such a manner that clusters get localized and have distributivity of

44



𝑢1 𝑢2 𝑢3 𝑢6 𝑢7 𝑢8𝑢4 𝑢5

Clients 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8
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Figure 3.1: Illustration of a clustered solution showing the fully open and partially
open network nodes and set of clients A = {a1, a2, a3, a4, a5, a6, a7, a8}. Three
clusters are shown C1, C2 and C3, open to an extent of 0.4, 0.4 and 0.5, respectively;
the clusters are linked to the sets of fully-open nodes {v1, v2, v4}, {v1, v2, v3, v4},
and {v2, v4, v5, v6}, respectively. The solution is (0.5, 4)-clustered.

(t+1). By carefully selecting the boundary bags, we shall enforce that each cluster

is open to an extent of less than α and that the number of clusters is also bounded.

We fix the parameter α = 1/4 and use the above lemma to obtain a solution that

is (1/4, t + 1)-clustered with C being the collection of clusters. The proof of the

lemma is discussed in Section 3.3.

The goal of the second stage is to transform the clustered solution into an

integrally open solution. As discussed in case of tree graphs, the localization prop-

erty allows us to independently process each cluster C ∈ C and its corresponding

group of clients Ac. The clients in Ac are assigned to a set of fully-open nodes, say

L. For each node u ∈ L, we identify a suitable node v ∈ C called the “consort” of

u and fully open v. Then the idea is to transfer assignments from the non-consort

nodes to the nodes in L and their consorts in such a manner that at the end,

no client is assigned to the non-consort nodes. This allows us to fully close the

non-consort nodes. The localization and bounded opening properties facilitate the

above maneuver. On the other hand, the distributivity property ensures that |L|

is at most (t + 1). This means that we fully open at most (t + 1) consorts per

cluster. Thus, overall increase in cost is at most (t+ 1)|C|. Since |C| is guaranteed

to be bounded, we get an O(t) approximation factor. The above transformation is
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captured by the following lemma. It is proved in Section 3.4.

Lemma 3.3. Let σ = 〈x, y〉 be a (1/4, t + 1)-clustered solution via a collection

of clusters C. The solution can be transformed into an integrally open solution

σ′ = 〈x′, y′〉 such that cost(σ′) ≤ 2 · cost(σ) + 2(t+ 1)|C|.

Once we obtain an integrally open solution, it can be transformed into an

integral solution by applying Lemma 2.4.

We can transform any input LP solution σin into an integral solution σout by

applying the above three transformations. We fix α = 1/4 and apply Lemma 3.2 to

obtain a solution σ1, which is (1/4, t+ 1)-clustered via a collection of clusters C. It

is guaranteed that cost(σ1) ≤ 2+24(t+1)cost(σin) and |C| ≤ 3+32 ·cost(σin). We

next apply Lemma 3.3 on the solution σ1 and obtain an integrally open solution σ2

such that cost(σ2) ≤ 2 ·cost(σ1)+2(t+1)|C|. Finally, we transform σ2 into integral

solution σout using Lemma 2.4 such that cost(σout) ≤ 4 · cost(σ2). It follows that

cost(σout) is at most 16 + 24(t+ 1) + 448(t+ 1)cost(σin). This proves Theorem 3.1.

Thus, the overall approximation ratio is O(t). Hence, Theorem 1.4 is established.

In Section 3.3 we show that the transformation involved in obtaining a clustered

solution (Lemma 3.2) takes time polynomial in the input size and parameter t. In

Section 3.4 we show that the transformation involved in obtaining an integrally

open solution (Lemma 3.3) takes time polynomial in the input size and parameter t.

Also, as argued in Section 2.5, the transformation involved in obtaining an integral

solution (Lemma 2.4) runs in polynomial time. Thus, the overall transformation

involved in Theorem Theorem 3.1 (and hence Theorem 1.4) takes time polynomial

in the input size and parameter t. The rest of the chapter is devoted to proving

Lemmas 3.2 and 3.3.

3.3 Clustered Solutions: Proof of Lemma 3.2

The goal is to transform a given solution into an (α, t+ 1)-clustered solution with

the properties claimed in the lemma. We begin by performing the de-capacitation
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step as done in case of tree graphs. By Lemma 2.5, a factor 2 increase in cost is

incurred in the process.

3.3.1 Clustering

Given Lemma 2.5, assume that we have a de-capacitated solution σ = 〈x, y〉. We

next discuss how to transform σ into an (α, t + 1)-clustered solution. The trans-

formation would perform a bottom-up traversal of the tree decomposition and

identify a set of partially-open or closed nodes. It would then fully open them and

perform the pulling procedure on these nodes. As before, de-capacitation ensures

that the pulling procedure runs to its entirety without exceeding capacity limits.

This restricts the linkage between the nodes, leading to a clustered solution. Below

we first describe the transformation and then present an analysis.

Transformation. Consider the given tree decomposition T . We select an

arbitrary bag of T and make it the root. A bag Xp is said to be an ancestor of

a bag Xq, if Xp lies on the path connecting Xq and the root; in this case, Xq is

called a descendant of Xp. We consider Xp to be both an ancestor and descendant

of itself. A node u may occur in multiple bags; its anchor denoted by anchor(u)

is the bag closest to the root among the bags containing it. A region in T refers

to any set of contiguous bags (i.e., the set of bags in a region induce a connected

sub-tree).

In transforming σ into a clustered solution, we shall encounter three types

of nodes and we color them as red, blue and brown. To start with, all the fully-

open nodes are colored red and the remaining nodes (partially-open nodes and

closed nodes) are colored blue. The transformation identifies two kinds of blue

nodes to be colored brown, helpers and boundary nodes. We say that a red node

u ∈ V is proper, if it has at least one neighbor v ∈ V which is a blue node.

Helpers are defined in the same way as done in case of tree graphs, i.e., for each

proper red node u, we arbitrarily select one of its blue neighbors v ∈ V and call

it the helper of u. Multiple red nodes are allowed to share the same helper. Once
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root

Xp

Figure 3.2: Illustration for regions. The figure shows an example tree decompo-
sition. The bags filled solidly represent already identified boundary bags. All the
checkered bags belong to the region headed by Xp.

identified, the helpers are colored brown. The boundary brown nodes are selected

via a more involved bottom-up traversal of T that works by identifying a set B

of bags, called the boundary bags. To start with, B is initialized to be the empty

set. We arrange the bags in T in any bottom-up order (i.e., a bag gets listed only

after all its children are listed) and then iteratively process each bag Xp as per

the above order. Consider a bag Xp. We define the region headed by Xp, denoted

Region(Xp), to be the set of bags Xq such that Xq is a descendant of Xp, but not

the descendant of any bag already in B.

See Figure 3.2 for an illustration. A blue node u is said to be active at Xp, if

it occurs in some bag included in Region(Xp). Let active(Xp) denote the set of

blue nodes active at Xp. We declare a bag Xp to be a boundary bag and add it to

B under three scenarios:

• Xp is the root bag.

• Xp is the anchor of some red node.

• the extent to which the nodes in active(Xp) are open is at least α, i.e.,∑
u∈active(Xp)

y(u) ≥ α.

If Xp is identified as a boundary bag, all the blue nodes appearing in Xp are selected

as boundary nodes and are colored brown. The new color is to be considered while
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determining the active sets thereafter. Once the bottom-up traversal is completed,

we have a set of brown nodes (helpers and boundary nodes). We consider these

nodes in any arbitrary order, open them fully, and perform the pulling procedure

on them. We take σ′ to be the solution obtained by the above process. This

completes the construction of σ′. A pseudocode is presented in Figure 3.3.

Analysis. We now show that σ′ is an (α, t + 1)-clustered solution. To start

with, we had a set of red nodes that were fully-open and a set of blue nodes that

were either partially-open or closed under σ. The red nodes do not change color

during the transformation. On the other hand, each blue node u becomes active

at some boundary bag Xp. If u occurs in the bag Xp, it changes its color to brown,

otherwise it stays blue. Thus, the transformation partitions the set of originally

blue nodes into a set of brown nodes and a set of nodes that stay blue. In the

following discussion, we shall use the term ‘blue’ to refer to the nodes that stay

blue. With respect to the solution σ′, the red and brown nodes are fully-open,

whereas the blue nodes are partially-open or closed.

Recall that two nodes u and v are linked if there is a client a assigned to

both u and v. In order to prove the properties of (α, t+ 1)-clustering, we need to

analyze the linkage information for the blue nodes. We first observe that a client a

assigned to a blue node u under σ′ cannot access any brown node v, as was proved

in Claim 2.6.

This observation rules out the possibility of a blue node u being linked to

any brown node. Thus, u may be linked to a red node or another blue node.

The following lemmas establish a crucial property on the connectivity in these two

settings.

Lemma 3.4. If two blue nodes u and v are linked under σ′, then there must exist

a path connecting u and v consisting of only blue nodes.

Proof. Let a be any client that is assigned to both u and v. Consider any shortest

path p1 between u and att(a) (the node to which the client a is attached in the

network). The path cannot contain any brown node w, because in this case, d(a, w)

49



Input: De-capacitated solution σ = 〈x, y〉

Output: (α, t+ 1)-clustered solution σ′ = 〈x′, y′〉

Red← {u : u is fully-open under σ}

Blue← {u : u is partially-open or closed under σ}

Brown← ∅

// Helpers

Set helpers H ← ∅

For each node u ∈ Red

if u has some neighbor belonging to Blue (i.e, a proper red node) then

Let v be any neighbor of u belonging to Blue.

Let H ← H ∪ {v}

Make helpers brown: Blue← Blue−H and Brown← Brown ∪H

// Boundaries: Bottom-up traversal

Set B ← ∅

Arrange the bags in a bottom-up order

For each bag Xp in the above order

if Xp is the root, add Xp to B

if Xp is the anchor of some node u ∈ Red, then add Xp to B

Region(Xp)← {Xq : Xq is a descendant of Xp, but not a descendant of any bag in B}

active(Xp)← {u ∈ Blue : u occurs in some bag Xq ∈ Region(Xp)}

if
(∑

u∈active(Xp)
y(u) ≥ α

)
, add Xp to B

if Xp were added to B

For each node u ∈ Blue occurring in Xp

Delete u from Blue and add to Brown

//Pulling

Arrange the nodes in Brown in an arbitrary order

For each node u in the above order

Fully open u and perform the pulling procedure on u.

Output σ′ as the solution obtained above.

Figure 3.3: Pseudocode for clustering
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would be smaller than d(a, u), making w accessible to a. This would contradict

Claim 2.6. In a similar vein, we claim that the path cannot contain any red node.

For otherwise, traverse the path from att(a) to u, and let w be the last red node

encountered on the path. Let z be the node succeeding w (it may be the case

that z = u). The node z is blue and is a neighbor of w in the graph. This means

that w is a proper red node and must have a brown helper h. We have that

d(a, w) ≤ d(a, u)− 1 and d(a, h) ≤ d(a, w) + 1, and hence d(a, h) ≤ dmax(a). This

means that a can access h, contradicting the above observation (Claim 2.6). We

have shown that the path p1 consists of only blue nodes.

The same argument also shows that any shortest path p2 connecting att(a)

and v must also consist of only blue nodes. The path p1 connects u and att(a),

and the path p2 connects att(a) and v. By combining the two, we can construct

a path p′ connecting u and v. The path p′ may not be simple, but we can trim

it to obtain a simple path p connecting u and v. The path p contains only blue

nodes.

The following lemma provides a similar result regarding linkage between blue

and red nodes.

Lemma 3.5. If a blue node u is linked to a red node v under σ′, then there must

exist a path p connecting u and v such that barring v, the path consists of only blue

nodes.

Proof. Let a be a client assigned to both u and v under σ′. Let p1 and p2 be

any shortest paths connecting att(a) with u and v, respectively. As argued in

Claim 2.6, the two paths cannot contain any brown nodes and furthermore, p1

must contain only blue nodes. This implies that the node to which a is attached,

att(a), must also be a blue node.

We claim that the path p2 cannot contain any red nodes, barring v. By

contradiction, suppose such a red node exists. Traverse the path from att(a) to

v. The first node on the path is att(a), a blue node, and continuing further, let

w be the first red node encountered (note that w is different from v). The node
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preceding w is a blue node (the preceding node may be att(a) itself). It follows

that w is a proper red node and so, it must have a brown helper h. Furthermore,

d(a, w) ≤ d(a, v) − 1 and d(a, h) ≤ d(a, w) + 1. Thus, d(a, h) ≤ dmax(a), which

implies that a can access the brown node h, contradicting Claim 2.6.

We have shown that barring v, the paths p1 and p2 consist of only blue nodes.

By combining the two paths, we can obtain the path p claimed in the lemma.

The transformation outputs a set of boundary bags B; let B denote the set

of non-boundary bags. If we treat the bags in B as cut-vertices and delete them

from T , the tree splits into a collection R of disjoint regions. Alternatively, these

regions can be identified in the following manner. For each bag Xp ∈ B and each

of its non-boundary child Xq ∈ B, add the region headed by Xq (Region(Xq)) to

the collection R. Let the collection derived be R = {R1, R2, . . . , Rk}. It is easy to

see that R partitions B and that the regions in R are pairwise disconnected (not

connected by edges of the tree decomposition). We next make two observations re-

garding connectivity among the regions, with the second one being a generalization

of the first.

Proposition 3.6. Consider any region Rj ∈ R. Let u and v be two nodes such

that u occurs only in the bags of Rj, whereas v does not occur in any bag of Rj.

Then, any path p in G connecting u and v must pass through some boundary bag

Xb, i.e., one of the nodes of p must occur in Xb.

Proposition 3.7. Consider any region Rj ∈ R. Let Xq be the bag heading Rj and

let Xp ∈ B be its parent bag. Let u and v be two nodes such that u occurs only in

the bags of Rj, v does not occur in Xp and anchor(v) does not belong to Rj. Then,

any path p connecting u and v must include a node w 6= v such that w occurs in

Xp or anchor(v).

The two propositions can be proved by appealing to the properties of tree

decompositions. The first follows as a direct consequence of these properties. We

can prove the second by arguing two cases: (i) if anchor(v) is a descendant of Xp,
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then the path pmust include a node w 6= v occurring in anchor(v); (ii) if anchor(v)

is not a descendant of Xp, the path must include a node w 6= v occurring in Xp.

We are now ready to show that σ′ is an (α, t+ 1)-clustered solution. Towards

that goal, let us suitably partition the set of partially open nodes into a collection

of clusters C. For each region Rj, let Cj be the set of partially open nodes that

occur in some bag of Rj. We take C to be the collection {C1, C2, . . . , Ck}.

Let us verify that the collection C constructed above is indeed a partitioning

of the set of partially open nodes. Firstly, we can see that any partially open

node u must belong to some cluster Cj: the node u cannot occur in any boundary

bag (for otherwise, u would have turned brown) and so, it must occur in a non-

boundary bag found in some region Rj and being partially-open would get included

in Cj. Secondly, any blue node u cannot belong to two clusters Ci and Cj. For

otherwise, u must occur in some bags Xq1 ∈ Ri and Xq2 ∈ Rj. Since Ri and

Rj are disconnected, the (unique) path connecting Xq1 and Xq2 in T must pass

through some boundary bag Xp. By the properties of tree decomposition, the node

u must also occur in Xp. In this case, u would have turned brown, contradicting

the assumption that u is a blue node.

We next argue that C satisfies the three properties of localization, distributiv-

ity and bounded opening. However, the number of clusters in the collection may

exceed the bound claimed in Lemma 3.2. Later, we show that the issue can be

easily rectified by suitably merging the clusters.

Lemma 3.8. The solution σ′ is (α, t+ 1)-clustered.

Proof. We prove the collection C satisfies the three properties.

Localization. We need to show that any two linked blue nodes u and v

belong to the same cluster. By contradiction, suppose that there exist two blue

nodes u and v belonging to two different clusters Ci and Cj such that a common

client a is assigned to both of them under σ′. Lemma 3.4 shows that u and v are

connected by a path p consisting only of blue nodes. Clearly, u and v occur only

in the bags of the regions Ri and Rj, respectively. Thus, by Proposition 3.6, some

53



node w lying on the path p must occur in some boundary bag Xp. However, in this

case, the transformation would have turned the blue node w into a brown node,

contradicting the fact that w stayed blue.

Distributivity. Consider a cluster Cj and any blue node u ∈ Cj. Let

Xq be the bag heading the corresponding region Rj and let Xp be the parent

bag of Xq. We claim that any red node v linked to u must occur in Xp. By

contradiction suppose v does not occur in Xp. By Lemma 3.5, there must exist a

path p connecting u and v, which is made of all blue nodes, barring v. The bag

Xp̂ = anchor(v) cannot belong to the region Rj as it is a boundary bag and the

region Rj consists of only non-boundary bags. Thus, Proposition 3.7 implies that

the path p must include a node w 6= v such that w occurs in Xp or anchor(v). This

is a contradiction since both Xp and anchor(v) are boundary bags and w is a blue

node. The claim implies that all the red nodes that are linked to the blue nodes

in Cj occur in the bag Xp. Since T is a decomposition of width t, Xp can contain

at most t+ 1 elements. Thus, the blue nodes in Cj can be linked to at most t+ 1

red nodes. By Claim 2.6, the brown nodes cannot be linked to blue nodes. Thus

the blue nodes in Cj can only be linked to the fully open nodes that are red. We

have thus proved that the clustering has distributivity parameter t+ 1.

Bounded opening. We claim that each cluster Cj is open to an extent

of less than α, i.e., y(Cj) < α. For otherwise, consider the corresponding region

Rj and the bag Xq heading Rj. Notice that if y(Cj) ≥ α, the transformation

would have made Xq itself into a boundary bag, but any region in the collection

R contains only non-boundary nodes.

We next analyze the cost of the solution σ′ = 〈x′, y′〉 and prove the cost bound

claimed in Lemma 3.2. Let Red, Blue and Brown denote the sets of red, blue and

brown nodes respectively. Then, cost(σ′) is given by |Red|+ |Brown|+ y′(Blue) +

y′(A). The red nodes do not change their color, the extent to which any blue node

is open also does not change and similarly, for any client a, y(a) does not change.

Thus, |Red|+ y′(Blue) + y′(A) ≤ cost(σ) and hence, cost(σ′) ≤ cost(σ) + |Brown|.

We create a brown helper node for each proper red node. Furthermore, for each
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boundary bag Xp ∈ B, we convert all the blue nodes in Xp to be brown, and the

number of such brown nodes is at most (t+ 1). Thus, |Brown| ≤ |Red|+ (t+ 1)|B|.

A bag Xp is made a boundary bag under one of the three scenarios. (i) Xp is the

root bag; (ii) Xp is the anchor of some red node; (iii) the total extent to which

the nodes in active(Xp) are open is at least α. The number of boundary bags

of the first two types are 1 + |Red|. Regarding the third scenario, we show that

each originally blue node u becomes active at exactly one boundary bag. Clearly,

u becomes active at at-least one boundary bag; let Xp be the first such boundary

bag processed. Then, either u ∈ Xp or u /∈ Xp. In the first case, u turns brown

and therefore cannot become active at any boundary bag processed later. In the

latter case, by the properties of tree decomposition u cannot occur in the region

of any other boundary bag. Also, the total extent to which these originally blue

nodes are open is at most cost(σ). Thus, the number of boundary bags of the third

type is at most dcost(σ)/αe. Therefore,

|B| ≤ 1 + |Red|+ dcost(σ)/αe ≤ 2 + |Red|+ cost(σ)/α.

It follows that cost(σ′) is at most cost(σ)+ |Red|+(t+1)(2+ |Red|+cost(σ)/α). A

simple arithmetic shows that cost(σ′) is at most 2 + 3(t+ 1)cost(σ)/α (we use the

fact that |Red| ≤ cost(σ) and our assumption that the parameter α is at most 1/2).

By Lemma 2.5, the preprocessing step of de-capacitation incurs a 2-factor increase

in cost. Taking this into account, we get the cost bound claimed in the statement

of Lemma 3.2. As argued in Section 2.3.1, the time taken by the de-capacitation

step is polynomial in the number of nodes of the input graph. The clustering

step involves identification of helpers and boundary bags, and applying the pulling

procedure on the helpers and boundary nodes. Clearly, identifying helpers takes

polynomial time as it requires examining the neighbors of some of the nodes of the

graph. Identifying the boundary bags requires examining the nodes in each bag,

and the number of bags is bounded by the number of nodes in the graph. Therefore

the identification of boundary bags takes time polynomial in the input size and t.

Also, the pulling procedure runs in polynomial time, as argued earlier. Thus, the
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clustering step takes time polynomial in the size of the input and parameter t.

As mentioned earlier, an issue with the collection C is that it may have more

clusters than the bound claimed in Lemma 3.2. We reduce the number of clusters

by suitably merging the clusters. Consider each boundary bag Xp. All the non-

boundary children of Xp have a corresponding cluster in C and let Cp denote the

collection of these clusters. We start with the collection Cp and repeatedly perform

the following merging operation. Select any two clusters C and C ′ from Cp such

that y(C) < α/2 and y(C ′) < α/2 and merge the two into a single cluster. The

process is stopped when we cannot find two such clusters. This way we get a set of

new clusters all of which are open to an extent of at most α. Furthermore, except

for perhaps a single cluster, all the others are open to an extent of at least α/2; we

refer to these as normal clusters and the exceptional one as abnormal. We perform

this processing for all the boundary bags and obtain a new collection C ′.

Note that the solution obtained after merging is also an (α, t + 1)-clustered

solution with C ′ being the set of clusters. The localization property trivially follows.

The distributivity is not affected by the process of merging: as shown in the proof

of Lemma 3.8, for any two merged clusters, the partially-open nodes in the clusters

can only be linked to the fully-open nodes found in the parent boundary bag and

the count of such fully-open nodes can be at most (t+ 1). Bounded opening holds

since any cluster in C ′ is open to an extent of at most α. The number of abnormal

clusters is at most |B|. The collection C ′ is a partitioning of Blue and each normal

cluster is open to an extent of at least α/2. Thus, the number of normal clusters

can be at most dy′(Blue)/(α/2)e, which is at most d2cost(σ)/αe. Hence, the total

number of clusters in C ′ is at most 3 + 4cost(σ)/α. The preprocessing step of

de-capacitation incurs a 2-factor increase in cost. Taking this into account, we get

the bound on number of clusters claimed in the statement of Lemma 3.2. The

number of merging operations performed for each boundary bag Xp is bounded by

the number of clusters defined by Xp, and the number of boundary bags is bounded

by the number of nodes in the graph. Hence, the merging of clusters takes time

polynomial in the number of nodes of the input graph.
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3.4 Integrally Open Solution: Proof of Lemma

3.3

Our goal is to transform a given (1/4, t + 1)-clustered solution σ = 〈x, y〉 into an

integrally open solution σ′. As done for tree graphs, we classify the clients into two

groups, small and large, based on the extent to which they are served by dedicated

servers: a client a ∈ A said to be small, if y(a) < 1/2, and it is said to be large

otherwise. Let As and Al denote the sets of small and large clients respectively.

We pre-process the solution σ by opening a dedicated server at each large

client a and removing its assignments to the nodes (set y(a) = 1 and set x(a, u) = 0

for all nodes u accessible to a). We see that the transformation at most doubles

the cost and the solution remains (1/4, t+ 1)-clustered.

Consider the pre-processed solution σ. Let C denote the set of clusters (of

the partially-open nodes) under σ. For each cluster C ∈ C, we shall fully open a

selected set of at most 2(t + 1) nodes and fully close the rest of the nodes in the

cluster.

We now describe the processing for a cluster C ∈ C. Set Ac = Ac \Al. By the

localization property, the clients in Ac cannot be assigned to nodes in any other

cluster and by the distributivity property, they are assigned to at most (t + 1)

fully-open nodes, denoted L = {u1, u2, . . . , ut+1}. A client a ∈ Ac may be assigned

to multiple nodes from L. In our procedure, it would be convenient if each client is

assigned to at most one node from L and we obtain such a structure by appealing

to Proposition 2.12 with F = L and A = Ac.

The proposition does not alter the other assignments and so, its output solu-

tion is also (1/4, t + 1)-clustered. Given Proposition 2.12 and the pre-processing,

we can assume that σ = 〈x, y〉 is (1/4, t+1)-clustered wherein each client a ∈ Ac is

assigned to at most one node from L and that y(a) < 1/2. For each node ui ∈ L,

let Ai ⊆ Ac denote the set of clients assigned to the node ui. Proposition 2.12

guarantees that these sets are disjoint and hence form a partition of Ac; see Figure

3.4 for an illustration.
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A1 A2

𝑢1 𝑢2

𝑣1 𝑣2 𝑣3 𝑣5𝑣4

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

Figure 3.4: An example cluster of five nodes and two fully-open nodes. The clients
are partitioned into two groups A1 and A2, one per fully-open node.

We next recall some notations used in Chapter 2. For a client a and node v,

load(a, v) = x(a, v)r(a); for a set of clients B and a set of nodes U , load(B,U) =∑
a∈B,v∈U :a∼v x(a, v)r(a); for a subset C ′ ⊆ C, load(C ′) =

∑
v∈C′ load(v).

The intuition behind the remaining transformation is similar to that for tree

graphs (see Section 2.4). The difference lies in the fact that for a bounded tree-

width graph there are t + 1 fully open nodes L = {u1, u2, . . . , ut+1}, associated to

every cluster (instead of 1) and we identify t+1 consorts - one corresponding to each

fully open node. We shall thus identify a suitable set of nodes L′ = {v1, v2, . . . , vt+1}

from C, with vi being called the consort of ui, and fully open all these nodes. Then,

we consider the non-consort nodes C ′ = C −L′ and for each i ≤ t+ 1, we transfer

the load load(Ai, C
′) to the node ui. Clearly, no clients are assigned to the non-

consort nodes any more and so, they can be fully closed. As done for tree graphs,

to facilitate the transfer, for each i ≤ t + 1, we create space in ui by pushing a

load equivalent to load(Ai, C
′) from ui to its (fully-opened) consort vi. By the

bounded opening property, y(C) < 1/4; clearly, y(C ′) < y(C) < 1/4 and thus,

load(Ai, C
′) < W/4. Also, since y(vi) < 1/4, therefore load(A, vi) < W/4, which

means that if we fully open the consort, we get an additional space of at least

(3/4)W . Thus, vi has enough space to receive the load. We next show how to

identify a suitable set of consorts using the notion of pushable load. For a node

ui ∈ L and a node v ∈ C, pushable(ui, v) =
∑

a∈Ai:a∼v x(a, ui)r(a).

Lemma 3.9. We can find a set of nodes L′ = {v1, v2, . . . , vt+1} such that for all
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i ≤ t+ 1, pushable(ui, v) > load(Ai, C
′).

Proof. For a set of clients B, let r(B) denote the sum of requests of the clients in

B. For a node v, let r(B, v) denote the sum of requests of the clients in B that

can access v, i.e., r(B, v) =
∑

a∈B:a∼v r(a).

We identify the required set via a greedy procedure. Initialize L′ = ∅ and iter-

ate over the nodes u1, u2, . . . , ut+1. For each node ui, select vi = argmaxv∈C−L′r(Ai, v)

and add vi to L′.

Let L′ be the set identified by the above procedure and let C ′ = C − L′. Fix

any i ≤ t+ 1. We derive a bound on load(Ai, C
′):

load(Ai, C
′) =

∑
v∈C′

∑
a∈Ai:a∼v

x(a, v)r(a) ≤
∑
v∈C′

y(v)
∑

a∈Ai:a∼v

r(a)

≤
∑
v∈C′

y(v)r(Ai, v) ≤ r(Ai, vi)
∑
v∈C′

y(v) < (1/4)r(Ai, vi)

The second statement follows from the LP constraint (1.3), whereas the third

statement is by the definition of r(Ai, v). The fourth statement follows from the

construction and the last statement follows from the bounded opening property.

For any client a ∈ Ai, the solution has opened a dedicated server to an

extent of y(a) and the remaining assignment 1 − y(a) is made to the nodes. Our

construction has ensured that a is a small client and so y(a) < 1/2. This means

that the client a is assigned to an extent of at least 1/2 to the nodes in the cluster.

Furthermore, the only nodes to which the client is assigned are ui and the nodes in

the cluster C. Since y(C) < 1/4, the total extent to which the client a is assigned

to the nodes in C is less than 1/4. This implies that x(a, ui) ≥ 1/4. Therefore,

pushable(ui, vi) =
∑

a∈Ai:a∼vi

x(a, ui)r(a) ≥ (1/4)
∑

a∈Ai:a∼vi

r(a)

= (1/4)r(Ai, vi).

We have proved the lemma.

We have shown that each node ui has a load of more than load(Ai, C
′) which

can be pushed to its consort vi. The pseudo-code for processing a cluster C is

shown in Figure 3.5.
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Let Ac be the set of clients assigned to nodes in C

Let L = {u1, u2, . . . , ut+1} be the set of fully-open nodes linked to nodes in C

Apply Proposition 2.12 to get a solution σ′ = 〈x′, y′〉

For i ≤ t+ 1, let Ai ⊂ Ac be the set of clients assigned to ui.

/* Selection of consorts */

Let L′ ← ∅

For i to 1 to t+ 1

For each node v ∈ C: let r(Ai, v) =
∑

a∈Ai:a∼v r(a).

Let vi ← argmaxv∈C−L′r(Ai, v) and add vi to L
′.

Let C ′ ← C − L′

/* Push from nodes in L to L′

For i from 1 to t+ 1

Let load to push: pushable(ui, vi) =
∑

a∈Ai:a∼vi x(a, ui)r(a)

Let remaining load: rem← pushable(ui, vi)

For each a ∈ Ai such that a ∼ vi (considered in an arbitrary order)

Let amnt← min{rem, x(a, ui)r(a)}

Let δ ← amnt/r(a)

x′(a, vi)← x′(a, vi) + δ and x′(a, ui)← x′(a, ui)− δ

rem← rem− amnt

If rem == 0 exit loop and go to next i.

/* Transfer load from C ′ to L */

For each node v ∈ C ′ and each node ui ∈ L

For each client a ∈ Ai and a ∼ v

x′(a, ui)← x′(a, ui) + x′(a, v) and x′(a, v)← 0

Figure 3.5: Processing for a Cluster C
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Given the above discussion, we iteratively consider each cluster Cj ∈ C and

perform the above transformation. This results in (t + 1) consorts from Cj being

fully-opened and all the other nodes in Cj being fully closed. At the end of pro-

cessing all the clusters, we get a solution in which each node is either fully open

or fully closed. For each cluster Cj, we incur an extra cost of at most (t+ 1) while

applying Proposition 2.12 since the number of fully open nodes with which the

proposition is invoked is (t+ 1). Also, an additional cost of (t+ 1) for opening the

consorts. Thus, the cost increases by at most 2(t + 1)|C|. As argued in Section

2.5, the transformation in Proposition 2.12 takes polynomial time. Identification of

consorts for the red nodes associated with a cluster and modifying the assignments

takes time polynomial in the input size and t. Further, the number of clusters is

polynomial in the number of nodes. Thus, the overall time taken by this procedure

is polynomial in the input size and parameter t.
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Chapter 4

Replica Placement on Bounded

Degree Bounded Tree-width

Graphs

4.1 Introduction

In this chapter we study the replica placement problem on BDBT graphs. We first

study the problem on the directed version of BDBT graphs defined as follows.

Definition 3. Directed Bounded Degree Bounded Tree-width graph (directed BDBT

graph). We say that a directed graph is a directed bounded degree bounded tree-

width graph if the undirected graph obtained by ignoring directions on the edges

has bounded degree and bounded tree-width. Moreover, it has a designated node

that we call the root of the graph (denoted by Rt(G)).

We present a constant factor approximation algorithm for the replica place-

ment problem on directed BDBT graphs. This result appeared in [ACG+14] and

is captured by the following theorem. The proof of the theorem is presented in

Section 4.2.

Theorem 4.1. The replica placement problem on directed BDBT graphs admits a

polynomial time 2 · (d + t + 2) factor approximation algorithm, where d and t are
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the degree and tree-width of the graph respectively.

We then show that a constant factor approximation algorithm can be obtained

for the case of (undirected) BDBT graphs by replacing each edge of the graph with

a pair of edges, one in each direction and then invoking Theorem 4.1. We loose an

additional factor 2 in the approximation ratio. This yields Theorem 1.5 and the

proof is presented in Section 4.3.

4.2 Algorithm for directed BDBT graphs

In this section, we shall work with an alternate definition of the problem that is

equivalent to the definition of replica placement problem for directed graphs. In

this new definition clients are a part of the input graph and therefore participate

in all the procedures in the same way as the nodes of the graph do. We call this

alternate version Replica Placement problem with client-nodes. A formal definition

of this alternate version is given below.

Problem Definition: The input consists of a directed graph G = (V,E).

Each edge e ∈ E is associated with a length w(e). Graph G may have nodes with

in-degree 0. However, we assume that the out-degree of such nodes is exactly 1.

Each leaf node (having no in-edges and one out-edge) represents a client. Let A be

the set of all the clients and let |A| = m. For each client a ∈ A, the input specifies

a request (or demand) r(a) and an integer dmax(a), representing the maximum

distance it can travel. The distance constraint and capacity constraint are defined

in the same manner as for directed graphs. A feasible solution consists of two

parts: (i) a subset of nodes S ⊆ V where servers are opened; (ii) for each client

a ∈ A, it assigns the request to a server opened at some node u ∈ S accessible to

a.

The cost of the solution is the number of servers opened, i.e., cardinality of

S. The goal is to compute a solution of minimum cost.

We next show that the two problem definitions, viz., replica placement for
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directed graphs and replica placement with client-nodes, are equivalent. First,

consider an instance, I, of the replica placement problem on a directed graph

G = (V,E). This can be transformed to an instance I ′ of the replica placement

problem with client-nodes as follows. The underlying graph G′ = (V ′, E ′) for I ′ is

constructed by modifying the graph G for I. We start with V ′ = V and E ′ = E.

For every client, a in I attached to att(a) ∈ V , introduce a node va in V ′ and a

directed edge (va, att(a)) having 0 length in G′ - we call these nodes client-nodes.

Note that the directed edges ensure inaccessibility of client-nodes from each other.

A problem solution S ′ of I ′ can be converted to a solution S of I as follows.

For each node u of G open in S ′, add u to S as an open replica. Additionally, open

dedicated replicas at clients for which the corresponding client-nodes are open in

S ′. It is easy to see that both these solutions have the same cost.

Next, consider an instance, I ′, of the replica placement problem with client-

nodes on graph G′ = (V ′, E ′). This can be transformed into an instance I of the

replica placement problem; the underlying graph G = (V,E) for I is constructed

by modifying the graph G′ for I ′. We start with V = V ′ and E = E ′. For every

client-node a ∈ V ′ having an edge, say (a, u), to node u ∈ V ′, set V = V ′ \ {a},

add a to the client set A for I and set att(a) = u. A problem solution S of I can

be converted to a solution S ′ of I ′ as follows. For each node u of G′ open in S,

add u to S ′ as an open replica. Additionally, open client-nodes corresponding to

dedicated replicas open in S. It is easy to see that both these solutions have the

same cost.

IP formulation: The following IP formulation is obtained by modifying

the IP formulation of the Replica Placement problem given in Section 1.1.2 to

capture the Replica Placement problem with client-nodes wherein the clients are

an integral part of the graph.
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min
∑
u∈V

y(u)∑
a∈A : a∼u

x(a, u) · r(a) ≤ y(u) ·W (∀u ∈ V ) (4.1)

x(a, u) ≤ y(u) (∀a ∈ A, u ∈ V : a ∼ u) (4.2)∑
u∈V : a∼u

x(a, u) = 1 (∀a ∈ A) (4.3)

y(u) ∈ {0, 1} (∀u ∈ V ) (4.4)

x(a, u) ∈ {0, 1} (4.5)

The integrality constraints (4.4) and (4.5) can be relaxed as follows to yield the

corresponding linear program:

0 ≤ y(u) ≤ 1

0 ≤ x(a, u) ≤ 1

4.2.1 Outline of the algorithm

In this section we present an overview of the LP rounding based algorithm for

directed BDBT graphs. Consider an optimal solution σ = 〈xσ, yσ〉 to the LP for-

mulation given above. The algorithm works by applying a sequence of transforma-

tions until an integral solution is obtained, wherein each transformation increases

the cost by at most a constant factor. The notion of stable solutions plays a key

role in the above process.

Definition 4. Stable solution. A solution σ is said to be stable if the nodes can

be partitioned into two sets R and P called rich and poor nodes respectively such

that the following properties are satisfied:

1. The rich nodes, R, are fully open.

2. The poor nodes, P , are de-capacitated (recall that a node u is said to be

de-capacitated if even on transferring to u the assignments of all clients that
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can access u, from other partially open nodes, the capacity utilization at u

is less than W ).

3. Every client is either served by only nodes in R or only nodes in P but not

both.

Intuitively, a stable solution segregates the input instance into two parts, the

first part comprising of the rich nodes and the clients served by them, and the

second part comprising of the poor nodes and the clients served by them. It is

easy to handle the first part, since all the nodes in the instance are fully open. The

second part has the useful feature that it is uncapacitated in essence; meaning, no

matter how we assign the clients, the capacity W at a node can never be exceeded

and hence, the capacity constraints can safely be ignored.

The algorithm works in three stages. We start with the LP solution. The

first stage transforms the LP solution into a stable solution, the second stage

transforms the stable solution into an integrally-open solution and finally the

third stage transforms the integrally-open solution into an integral solution. We

next provide an outline of these three stages.

Stage 1: Constructing Stable Solutions for Bounded Degree graphs. In

the first stage, we transform any feasible solution σin = 〈xσin , yσin〉 for a bounded

degree graph into a stable solution σs = 〈xσs , yσs〉 as stated in Lemma 4.2 (note

that this lemma applies to any bounded degree graph, not just BDBT graphs).

We use the notation cost(., .) to denote the cost of a subset of nodes specified by

the second parameter in the solution specified by the first parameter. The proof

of the lemma is given in Section 4.2.2.

Lemma 4.2. Any LP solution σin for a bounded degree graph can be converted into

a stable solution σs such that cost(σs, R) ≤ (d + 1) · cost(σin) and cost(σs, P ) ≤

cost(σin) where R and P are respectively the rich and poor nodes of the stable

solution σs.
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Stage 2: Converting a Stable Solution to Integrally Open solution for

Bounded Tree-width graphs. In the second stage, we show how to transform

any stable solution σs for a bounded tree-width graph into an integrally open

solution σio as captured in Lemma 4.3 (note that this lemma applies to any bounded

tree-width graph, not just BDBT graphs). The proof of the lemma is given in

Section 4.2.3.

Lemma 4.3. Let R and P respectively be the rich and poor nodes of a stable

solution σs of a graph, G, of constant tree-width t. Then σs can be converted to

an integrally open solution σio such that the nodes of R remain untouched, i.e.,

yσio(u) = yσs(u) for all u ∈ R and xσio(a, u) = xσs(a, u) for all clients a ∈ A

and nodes u ∈ R. Thus, cost(σio, R) = cost(σs, R). Moreover, if Z1 is the set

of nodes of P fully-opened in σio, then cost(σio, Z1) ≤ (t + 1) · cost(σs, P ). The

remaining nodes of P are fully closed.

Stage 3: Obtaining an Integral Solution for BDBT graphs. Since a

BDBT graph has bounded degree, Lemma 4.2 can be used to transform the input

solution σin into a stable solution σs, and since a BDBT graph has bounded tree-

width, Lemma 4.3 can be used to transform σs into an integrally open solution

σio. The only issue with σio is that the request r(a) of a client a may be split and

assigned to multiple nodes. Our problem definition requires that the request must

be wholly assigned to a single node. We address this issue by invoking Proposition

2.12 with F as the set of fully-open nodes in σio and A as the set of all the clients

(i.e., A = A). In the resultant solution σout each client is assigned to at most one

fully open node and the cost can increase by a factor of at most two. This leads

to the following lemma.

Lemma 4.4. Any integrally open solution σio can be converted into an integral

solution σout such that cost(σout) ≤ 2 · cost(σio).

Using the cost analyses stated in Lemmas 4.2, 4.3 and 4.4, we see that
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cost(σout) ≤ 2 · cost(σio) ≤ 2 · (cost(σs, R) + (t + 1) · cost(σs, P )) ≤ 2 · ((d +

1) · cost(σin) + (t+ 1) · cost(σin)) = 2 · (d+ t+ 2) · cost(σin).

This establishes Theorem 4.1.

In Section 4.2.2 we show that the transformation involved in obtaining a

stable solution (Lemma 4.2) takes time polynomial in the number of nodes and

parameter d. In Section 4.2.3 we show that the transformation involved in obtain-

ing an integrally open solution (Lemma 4.3) takes time polynomial in the input

size and parameter t. Also, as argued in Section 2.5, the transformation involved

in obtaining an integral solution (Proposition 2.12) runs in polynomial time. Thus,

the overall transformation involved in Theorem 4.1 takes time polynomial in the

input size, and parameters t and d.

4.2.2 Proof of Lemma 4.2

Let σin be the input LP Solution. The transformation is performed in two phases

called the de-capacitation phase and the stabilization phase. The former phase is

similar to the de-capacitation phase described for the case of tree and bounded

tree-width graphs (with the exception that clients are also part of the processing

in the current scenario).

4.2.2.1 De-capacitation

Consider an LP solution σin = 〈xin, yin〉 and let u be a partially-open or closed

node. The clients that can access u might have been assigned to other partially-

open nodes (including client-nodes) in σin. We call the node u de-capacitated, if

even when all the above assignments are transferred to u, the capacity utilization

at u is less than W ; meaning,

∑
a∼u

∑
v: a∼v ∧ v∈PO

x(a, v) < W,

where PO is the set of partially-open nodes under σin (including u). The solution

σin is said to be de-capacitated, if all the partially-open and the closed nodes are
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de-capacitated.

This phase transforms the input solution into a de-capacitated solution by perform-

ing the pulling procedure (given in Figure 2.3) on the partially-open and closed

nodes. Given a partially-open or closed node u, the procedure transfers assign-

ments from other partially-open nodes to u, as long as the capacity at u is not

violated. Note that if u is a client-node, then u is the only client that can access

the node u. Therefore, since r(a) ≤ W ∀a ∈ A (i.e., the total request of any client-

node is no more than W ), the procedure must be able to transfer to client-node

u, the assignments of client u from all other partially open nodes. The following

lemma captures the transformation involved in de-capacitation.

Lemma 4.5. Any LP solution σin = 〈xin, yin〉 can be transformed into a de-

capacitated solution σ′ = 〈x′, y′〉 such that cost(σ′) ≤ 2 · cost(σin). Moreover,

if FO′ and PO′ denote the fully and partially open nodes in σ′ respectively, then

cost(σ′, FO′) ≤ cost(σin) and cost(σ′, PO′) ≤ cost(σin).

Proof. We process the partially-open and closed nodes in an arbitrary order, as

follows. Let u be a partially-open or closed node. Hypothetically, consider applying

the pulling procedure on u. The procedure may terminate in one of two ways: (i)

it reaches its capacity limit of W : there may or may not be more assignments

that could have been pulled; (ii) all the assignments are pulled and the total

capacity utilization at u is still less than W . In the former case, we fully open

u and perform the pulling procedure on u. In the latter case, the node u is de-

capacitated and so, we leave it as partially-open, without performing the pulling

procedure. It is clear that the above method produces a de-capacitated solution

σ′. We next analyze the cost of σ′. Let FO and PO denote the fully and partially

open nodes in σin respectively. Let rPO denote the total requests assigned to

nodes in PO, i.e., rPO =
∑

u∈PO
∑

a∈A r(a) · x(a, u). Let s be the number of

partially-open or closed nodes converted to be fully-open; note that apart from

these conversions, the method does not alter the cost. Note that the request

assigned to nodes in s (in σ′) were assigned to nodes in PO (in σin). Therefore,
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the extra cost s is at most brPO/W c, since any newly opened node is filled to its

capacity. Also, due to the capacity constraints, the partially open nodes in input

solution σin must also incur a cost of at least brPO/W c. The fully open nodes of

σin remain untouched. It follows that cost(σ′, FO′) ≤ cost(σin, FO) + cost(s) =

cost(σin, FO) + cost(σin, PO) = cost(σin). As no new nodes become partially

open, it is easy to see that cost(σ′, PO′) ≤ cost(σin).

4.2.2.2 Stabilization

Given Lemma 4.5, assume that we have a de-capacitated solution σ′ = 〈x′, y′〉.

We next discuss how to transform σ′ into a stable solution. While performing

this transformation, we shall encounter three types of nodes - fully open, partially

open and fully closed. The idea is to carefully select a subset of partially open and

closed nodes, fully-open them and perform the pulling procedure on these nodes.

Lemma 4.6. Any de-capacitated solution σ′ = 〈x′, y′〉 for a BDBT graph can be

transformed into a stable solution σs = 〈xs, ys〉 such that cost(σs, R) ≤ (d + 1) ·

cost(σ′, FO′) and cost(σs, P ) ≤ cost(σ′, PO′) where FO′ and PO′ are respec-

tively the fully-open and partially-open nodes in σ′ and R and P are the rich and

poor nodes of the stable solution σs.

Proof. To begin with, we color the nodes red, blue and brown as described below.

All the fully-open nodes are colored red and the remaining nodes (partially-open

nodes and fully-closed nodes) are colored blue. For each red node u, we select

all its neighbors that are not already red and declare them to be the helpers of

u. Multiple red nodes are allowed to share the same helper. Once the helpers

have been identified, we color them all brown. We consider these brown nodes in

an arbitrary order, open them fully and perform the pulling procedure on them.

Thus, while the blue nodes are partially-open, the red and the brown nodes are

fully-open, with the brown and the blue nodes being de-capacitated. We take σs

to be the solution produced by the above process. We take R to be the set of

fully-open (red and brown) nodes and P to be the set of partially open (blue)
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nodes in the solution σs. This completes the description of the procedure. We now

show that σs is a stable solution with R and P defining the rich and poor nodes

respectively.

Claim 4.7. The solution σs is stable.

Proof. The first two conditions are trivially satisfied as the input solution σ′ is

de-capacitated. To check the third condition, we prove a stronger claim – we show

that any client to which a node in R is accessible, is not assigned to a node in

P . Let a be any client to which a node, u ∈ R is accessible. Observe that either

yin(a) < 1 or xin(a, a) = 1 (i.e., it cannot be that yin(a) = 1 and xin(a, a) < 1).

This is because node a is accessible only to client a, and therefore we can set

yin(a) = xin(a, a) (thereby improving the cost of the LP solution in the case when

yin(a) = 1 and xin(a, a) < 1). Thus, if a is itself red, it must be that a is not

assigned to any other node as r(a) ≤ W - either in the LP solution itself, or the

pulling process would have ensured this. If a is not red, then there must be a

brown node w on the path from a to u, such that a ∼ w since non-red neighbours

of red nodes are colored brown. In this case, the pulling process on w would have

ensured that a is not assigned to any node in P . This completes the proof of the

claim.

We now analyze the cost. Note that there are at most d neighbours of a red

node; thus the total number of brown nodes is at most d · cost(σ′, FO′). This

implies that cost(σs, R) ≤ (d+1) ·cost(σ′, FO′). As the extent of openness of the

remaining nodes is untouched, it follows that cost(σs, P ) ≤ cost(σ′, PO′).

Lemma 4.2 follows by combining Lemmas 4.5 and 4.6. Combining the cost

analyses of Lemmas 4.5 and 4.6, together with the fact that the newly opened

nodes in the de-capacitation phase become rich, we have:

cost(σs, R) ≤ (d + 1) · cost(σ′, FO′) ≤ (d + 1) · cost(σin) and cost(σs, P ) ≤

cost(σ′, PO′) ≤ cost(σin).

This completes the proof of Lemma 4.2.
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The time taken by the de-capacitation procedure is clearly polynomial in the

size of the input. The stabilization step involves identifying the helpers of some of

the nodes and performing the pulling procedure on them. Clearly, identification

of helpers takes polynomial time as it involves examining the neighbors of some

nodes. Also, there are at most d helpers for any node and the pulling procedure

runs in polynomial time. Thus, the overall time taken in obtaining a stable solution

is polynomial in the number of nodes and parameter d.

4.2.3 Proof of Lemma 4.3

Let σs be the input stable solution on a bounded tree-width graph; let R and P

be the rich and poor nodes of σs respectively. Our procedure to convert σs into

an integrally open solution σio shall color poor nodes yellow and white during its

course of execution; the yellow nodes will be opened and the white nodes will be

closed. At the end of the procedure all the poor nodes will be colored yellow or

white thereby obtaining an integrally open solution. We shall call a node resolved

if it is either rich or colored (yellow or white) and unresolved otherwise. Recall

that rich nodes are already open. Essentially, resolved nodes are those that the

algorithm has decided to open or close. We shall maintain two sets, Res and

Unres of the resolved and unresolved nodes respectively. Every node of the graph

will either be in Res or in Unres. Initially we set Res = R and Unres = P . These

sets will be modified as we color the nodes and resolve them. We shall also say

that a client is resolved if it is only assigned to resolved nodes; we shall call it

unresolved otherwise.

Consider a tree decomposition, (X = {Xj : j ∈ J}, T = (J,K)), of the graph

G having tree-width t. Fix an arbitrary bag Xr, such that Rt(G) ∈ Xr, to be the

root of the tree decomposition. We shall treat the edges of the tree decomposition

as directed towards Xr. We say that a client a is critical at bag Xq ∈ X if Xq is

the highest bag along the path to Xr such that a can be assigned to some node in

Xq. We call a bag critical if it is critical for some client.

We will process the bags iteratively in any topological order of T (bottom-
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up). Our procedure will maintain the following invariants at the start/end of every

iteration:

1. Any client is either assigned to resolved nodes only or unresolved nodes only,

not both.

2. On completion of processing of a bag Xq, all clients critical at Xq are resolved.

These invariants are satisfied at the start of the procedure as the initial solu-

tion is stable.

Let Xq be the bag being processed in the current iteration. Let πold be the

solution at the start of the current iteration; we form a new solution πnew in the

current iteration. We check if there is any unresolved client, a, that is critical at

Xq. If not, we do nothing in this iteration; we simply take πnew = πold. Otherwise,

consider the partitioning of the set Unres based on whether a node appears in

Xq or not; let Y = Unres ∩ Xq and Y = Unres \ Xq. Further, let Z be the

nodes of Y that appear in some bag Xq′ below Xq in the tree decomposition, i.e.,

Z = {u ∈ Y : u ∈ Xq′ and ∃ a path from Xq′ to Xq in the tree decomposition}.

We claim that the extent to which the nodes in Z and Y are open collectively is

at least 1.

Claim 4.8.
∑

u∈Z∪Y yπold(u) ≥ 1.

Proof. Recall that the client a critical at Xq is unresolved. Thus a can only be

assigned to nodes in Z ∪ Y (invariant 1). Moreover
∑

v∈V xπold(a, v) = 1 and

xπold(a, v) ≤ yπold(v) on any node v. This implies the claim.

Given Claim 4.8, we would like to fully open the nodes in Y and close the

nodes in Z. This can be done if the clients assigned to nodes in Z can be assigned

to the nodes in Y . Towards this, we claim that every client assigned to a node in

Z has some node of Y accessible to it.

Claim 4.9. Let b be any client served by some u ∈ Z. Then some node v ∈ Y is

accessible to b.
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Proof. As b is assigned to an unresolved node, clearly b is also unresolved. But b

could not have become critical at any bag belowXq because if it had become critical

at some bag, say Xq′ , then after the processing of Xq′ was completed, it would

have been resolved (by invariant 2). Thus b must have accessible to it some node

appearing in Xq in the tree decomposition. This implies that some node v ∈ Xq

must be accessible to b (by the separation property of tree decompositions).

Let π1 = πold. Consider nodes of Y in an arbitrary order. Let u ∈ Y ; we

perform the pulling procedure on u from Y with π1 as input; let π2 be the solution

after the pulling procedure. Note that on applying the pulling procedure u cannot

exit mid-way because of reaching the capacity limit as u ∈ P , i.e., u is a poor node

in the stable solution σin and is therefore de-capacitated. We take π2 as π1 for

performing the pulling procedure on the next node of Y . The solution π2 obtained

on performing the pulling procedure on the last node u of Y is taken to be πnew.

We also open the nodes of Y by setting yπnew(u) = 1 for all u ∈ Y and color them

yellow. All other values of xπnew(., .) and yπnew(.) are retained as in πold. It is easy

to see that the solution πnew is feasible as the only nodes on which the assignments

increase are the nodes of Y and we have fully-opened these nodes. By Claim 4.9,

no clients remain assigned to nodes of Z after the pulling. We close all the nodes

of Z by setting yπnew(v) = 0 for all v ∈ Z and color them white. Finally we update

the sets Res and Unres by removing the nodes of Z and Y from Unres and adding

them to Res as they are now resolved. We next claim that the invariants continue

to hold after these modifications to the solution.

Claim 4.10. The stated invariants continue to be maintained in πnew.

Proof. In order to ensure that the first invariant is satisfied, as we have resolved

the nodes of Y , we must ensure that all clients assigned to them in πold are resolved

as well. The pulling procedure on the nodes of Y ensures that these clients are no

longer served by any node in Unres in πnew.

For invariant 2, consider any client, b, critical at Xq. Similar to the argument

for the first invariant, the pulling procedure on the nodes of Y would have ensured
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that b is no longer assigned to any node in Unres and therefore resolved.

Thus all the invariants continue to be satisfied at the end of the iteration.

This completes the processing of the current iteration. We take the solution

πnew as the input πold for the next iteration.

Let σ be the solution πnew formed in the last iteration. Note that as every

client is critical on some bag and we have processed all the critical bags, all clients

are resolved by invariant 2. Thus, by invariant 1, no clients are assigned to any

remaining nodes in Unres. We close all these nodes by setting yσ(u) = 0 for all

u ∈ Unres and colour them white. Thus we obtain an integrally open solution.

This is taken as the final solution σio and output by the procedure.

We now analyse the cost. We need to bound the cost of the yellow nodes.

Consider an iteration where a bag Xq is critical and we open the nodes of Y . Note

that there are at most t + 1 nodes in Y . The nodes of Z ∪ Y are unresolved

at the beginning of the iteration. Also, by Claim 4.8, the
∑

u∈Z∪Y yπold(u) ≥ 1.

Thus we charge the opened yellow nodes (of Xq) to the set Z ∪ Y . Also note

that no node is charged multiple times as the nodes of Z ∪ Y are resolved at the

end of the iteration. Thus cost(σio, P ) ≤ (t + 1) · cost(σs, P ). The nodes of R

are resolved to begin with and are left untouched. Thus we have that cost(σio) ≤

cost(σs, R) + (t+ 1) · cost(σs, P ).

This completes the proof of Lemma 4.3

The above procedure involves examining the nodes in each bag and performing

the pulling procedure on the nodes in some bags. Examining the (t+ 1) nodes in a

bag requires time polynomial in the input size and t. Also, the pulling procedure

runs in polynomial time. Thus, since the number of bags is bounded by the

number of nodes in the graph, the overall time taken in obtaining an integrally

open solution is polynomial in the input size and parameter t.
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4.3 Algorithm for (undirected) BDBT graphs

In this section, we present an approximation algorithm for the replica placement

problem on (undirected) BDBT graphs that uses the algorithm for directed BDBT

graphs (recall that in both these variants, clients are not part of the network nodes).

Let I be an instance of the replica placement problem on an (undirected) BDBT

graph G = (V,E). We create an instance I ′ of the replica placement problem

on a directed BDBT graph as follows. The graph G′ = (V,E ′) is obtained from

G by adding two directed edges e1 = (u, v) and e2 = (v, u) to E ′ for every edge

e = (u, v) ∈ E and taking w(e1)=w(e2)=w(e). The capacity W for the nodes of

the graph, r(.) and dmax(.) for every client remain the same in the new instance.

Moreover, for any client a, att(a) remains the same. Note that the instances I

and I ′ are equivalent in the sense that every solution of one is also a solution of

the other.

Let d′ and t′ denote the degree and tree-width of G′ respectively. Observe

that d′ = 2d and tree-width t′ = t. We use Theorem 4.1 to find a 2(d′ + t′ + 2)

approximate solution for I ′. As I and I ′ are equivalent, this is also a 2(d′+ t′+ 2)-

approximate solution to I. Since d′ = 2d and t′ = t, this yields a 2(2d + t + 2)-

approximate solution to I. This establishes Theorem 1.5. Since the transformation

involved in Theorem 4.1 takes time polynomial in the input size and parameters d

and t, the time taken by the transformation in Theorem 1.5 is also polynomial in

the size of the input, and parameters t and d.
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Chapter 5

Replica Placement on Trees of

Bounded Degree Bounded

Tree-width Graphs

5.1 Introduction

In this chapter we study the replica placement problem on TBDBT graphs. We

first study the problem on the directed version of TBDBT graphs defined as follows.

Definition 5. Directed Tree of BDBT graphs (directed TBDBT graph). A directed

TBDBT graph G is a pair 〈{Gj|j ∈ J}, T 〉 where G1, G2, . . . , Gh are directed BDBT

graphs, J = [1, h] and T is a (skeletal) tree with the elements of J as nodes and

labeled edges. We consider an arbitrary element of J to be the root of T . This

imposes ancestor-descendant relationships between the elements of J . A directed

TBDBT graph satisfies the following properties:

• The vertices of the directed BDBT graphs are disjoint, i.e., V (Gi)∩V (Gj) =

φ ∀ i, j ∈ J , i 6= j.

• The vertex set of G is the union of the vertices of directed BDBT graphs,

i.e., V (G) = ∪j∈JV (Gj).
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root 

pivot 

Figure 5.1: Example of directed TBDBT graph. The figure also shows the root of
one of the component directed BDBT graphs and the pivot that it connects to in
another directed BDBT graph.

• The edges of all the directed BDBT graphs are contained in G, i.e., E(Gj) ⊆

E(G) for all j ∈ J .

• For every edge e = (i, j) in T where j is ancestor of i, the label `(e) on e

represents a vertex in V (Gj) and is said to be a pivot node.

• For every edge e = (i, j) in T where j is ancestor of i, there are one or two

directed edges between Rt(Gi) and `(e)) in G. The edge(s) may be directed

from Rt(Gi) to `(e) or from `(e) to Rt(Gi) or both. We refer to `(e) as the

pivot of Rt(Gi) and denote it as pivot(Rt(Gi)).

Let Roots(G) denote the roots of all directed BDBT graphs of G, i.e., Roots(G) =

{Rt(Gj) : j ∈ J}.

The class of directed TBDBT graphs clearly generalizes directed trees (wherein

each component directed BDBT graph consists of a single vertex) (see Figure 5.1).

The overall graph has bounded tree-width, but may not have bounded degree. We

make the following observation regarding the tree-width of TBDBT graphs.

Claim 5.1. If the maximum tree-width of any component BDBT graph is t, then

the TBDBT graph has tree-width max{t, 1}.

78



Proof. This follows from the fact that if e = (f, g) is an edge of T between two

BDBT graphs with label `(e) ∈ V (Gg), then we can combine their tree decomposi-

tions (X1 = {Xj : j ∈ Jf}, Tf = (Jf , Kf )) and (X2 = {Xj : j ∈ Jg}, Tg = (Jg, Kg))

by introducing a new bag, Xz, between the root bag of Tf (say Xq), and any bag

of Tg containing `(e) (say Xq′). Xz contains the nodes Rt(Gf) and `(e). Add the

edges (Xq, Xz) and (Xz, Xq′). Repeat this for every edge e ∈ T . Since every

newly added bag has 2 nodes, the tree-width of the TBDBT graph is no more

than max{t, 1}; max is attained at 1 when the BDBT graphs have tree-width 0

(isolated vertices).

We present a constant factor approximation algorithm for the problem on

directed TBDBT graphs. This result appeared in [ACG+14] building upon the

work in [ACG+13]. The result is captured by the following theorem and its proof

is presented in Section 5.2.

Theorem 5.2. The replica placement problem on directed TBDBT graphs admits

a polynomial time 136 · (d+ max{t, 1}+ 4) factor approximation algorithm, where

d and t are respectively the maximum degree bound and the maximum tree-width

bound of any component directed BDBT graph of the directed TBDBT graph.

We then show that a constant factor approximation algorithm can be obtained

for the case of (undirected) TBDBT graphs by replacing each edge of the graph

with a pair of edges, one in each direction and then invoking Theorem 5.2. We

lose an additional factor 2 in the approximation ratio. This yields Theorem 1.6

and the proof is given in Section 5.3.

5.2 Algorithm for directed TBDBT graphs.

In this section we present an approximation algorithm for the problem on directed

TBDBT graphs. This algorithm handles clients in the same way as nodes (sim-

ilar to the algorithm for directed BDBT graphs). Hence we shall work with the

definition for the problem with client-nodes, given in Section 4.2.
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5.2.1 Outline of the algorithm

In this section we present an overview of the algorithm. The algorithm builds on

the procedure for handling directed BDBT graphs presented in Section 4.2. Recall

that the procedure for directed BDBT graphs works in three stages, wherein the

first stage transforms an LP solution σin into a stable solution σs and the second

stage transforms σs into an integrally open solution σio. Finally, in the third stage,

the solution σio is converted into an integral solution using a cycle cancellation

procedure. In the current context of directed TBDBT graphs, it is difficult to

obtain a stable solution, because these graphs do not have bounded degree (the

pivots may have arbitrary degree). Instead, our algorithm goes via a similar,

but a weaker notion of what we call as pseudo-stable solutions. The process of

converting pseudo-stable solutions to integrally open solutions is also more involved

and utilizes the concept of hierarchical solutions, which generalize integrally open

solutions. It suffices to get hierarchical solutions, since such solutions can be

transformed into integral solutions. Before defining pseudo-stable and hierarchical

solutions and, outlining our two transformations, we recall the following terms-

(i) recall that a node u is said to be de-capacitated if even on transferring to u

the assignments of all clients that can access u, from other partially open nodes,

the capacity utilization at u is less than W (ii) recall that a client a is said to be

attachable to a node u if it can access u.

Definition 6. Pseudo-stable solution. An LP solution σ is said to be pseudo-

stable, if the nodes can be partitioned into two sets R and P called rich and poor

nodes respectively satisfying the following properties:

1. The rich nodes, R, are fully open.

2. The poor nodes, P , are de-capacitated.

3. Every client is either serviced by

(a) only nodes in R.

(b) only nodes in P .
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Poor root 
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Figure 5.2: The figure shows a root in S and a root in P but not in S.

(c) nodes in both R and P . Any client a in this category should be attachable

to exactly one node in S, where S ⊆ Roots(G) is the set of all poor roots

having a rich pivot, i.e., S = {u ∈ Roots(G) ∩ P : pivot(u) ∈ R}. The

lone node in S to which a is attachable is called the special root of a.

The clients in the first two categories are said to be settled, whereas those in

the third category are said to be unsettled.

We transform any given LP solution to a pseudo-stable solution using a pro-

cedure similar to the one used for obtaining stable solutions in the context of

bounded degree graphs. The next (and more sophisticated) stage of the algorithm

converts a pseudo-stable solution into a hierarchical solution, defined below.

Definition 7. Hierarchical solutions. An LP solution σ is said to be hierarchical

if every client is assigned to at most one partially-open node.

Hierarchical solutions generalize the notion of integrally open solutions. Given

a pseudo-stable solution σps, our procedure works by segregating σps into two parts

σ1 and σ2 with the following properties:

• σ1 is a stable solution for a subset of clients. We can transform this partial so-

lution into an integrally open solution σ′1 using the procedure in Lemma 4.3,

since TBDBT graphs have bounded tree-width (recall that Lemma 4.3 only
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requires the input graph to have bounded tree-width and not bounded de-

gree).

• σ2 is a feasible solution for the remaining set of clients and has certain nice

properties that allow us to transform it into a hierarchical solution σ′2. This

transformation is based on the intuition that a TBDBT graph consists of a

skeletal tree T , where each node is in turn a BDBT graph. The skeletal tree

structure allows us to obtain the hierarchical solution σ′2.

We finally merge σ′1 and σ′2 into a single hierarchical solution σh serving all the

clients.

We next present the two procedures used for transforming an arbitrary LP

solution into a pseudo-stable solution and transforming a pseudo-stable solution

into a hierarchical solution.

5.2.1.1 Stage 1: Converting an LP solution to a Pseudo-stable Solution

In the first stage, we transform any feasible solution σin = 〈xin, yin〉 for a TBDBT

graph into a pseudo-stable solution σps = 〈xps, yps〉 as stated in the following

lemma.

Lemma 5.3. Any LP solution σin can be converted into a pseudo-stable solution

σps such that cost(σps, R) ≤ (d+ 3) · cost(σin) and cost(σps, P ) ≤ cost(σin) where

R and P are respectively the rich and poor nodes of the pseudo-stable solution σps.

Proof Sketch. This transformation is a minor modification of that used in obtaining

stable solutions for BDBT graphs. We give a detailed sketch of the proof deferring

the formal details to Section 5.2.2. The transformation is divided into the de-

capacitation phase and pseudo-stabilization phase.

The de-capacitation phase is same as in case of BDBT graphs. We process the

partially-open and closed nodes iteratively in an arbitrary order. Given a partially-

open or closed node u, the procedure transfers assignments from other partially-

open nodes to u, as long as the capacity at u is not violated. The transformation

is captured in Lemma 4.5.
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Pseudo-Stabilization The pseudo-stabilization phase is a variation of the sta-

bilization phase performed in case of BDBT graphs. Since the degree of a node in

a TBDBT graph is not bounded, we cannot color all the neighbors of a red node

brown, as we did for BDBT graphs. However, we note that it is sufficient to color

brown all the in-neighbors and a selected out-neighbor of a red node. Consider any

red node u. Let Gj be the BDBT graph to which it belongs. We color brown all

of its in-neighbors that are in Gj and not already red. In addition, we also color

its nearest non-red out-neighbor brown (even if it is not in Gj). In this process

we color brown all the in-neighbors of all the non-pivot nodes. However, some

in-neighbors of the pivot-nodes may not get colored brown (note that these are the

roots of some BDBT graphs). Next, if u is the root of Gj, we also color its pivot

brown (if it is not already red or brown). This process is repeated for all the red

nodes. The following proposition follows from the above procedure:

Proposition 5.4. If an in-neighbor, v, of a red node is neither red nor brown,

then v ∈ Roots(G).

Note that every node has a bounded number of neighbors (and hence in-

neighbors) in the BDBT to which it belongs and therefore the number of nodes

colored brown is bounded (recall that in general a node may have an arbitrary

number of neighbors in the TBDBT).

We now show that the solution is pseudo-stable. We take the set of all red

and brown nodes as R and the remaining nodes as P . The first two properties are

trivially satisfied. For the third property, consider any unsettled client, a, assigned

to a node v1 in R as well as a node v2 in P ; we need to show that a is attachable to

exactly one node in S. We first observe that a cannot be attachable to any brown

node since in such a case the brown node must have pulled the assignments of a

from nodes in P and therefore a would not be assigned to v2. This also implies

that v1 is red (not brown).

We now show that a is attachable to at least one node in S. Consider the directed

path from a to v1. Let v3 be the non-red node closest to v1 on this path and let v4
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be its red out-neighbor in this path. Note that by proposition 5.4, v3 must either

be brown or in Roots(G) ∩ P. But since a is not attachable to any brown node, v3

cannot be brown, implying that v3 ∈ Roots(G)∩P. Further, observe that v4 cannot

be in the same BDBT as v3 - otherwise because v4 is red, v3 is its in-neighbor and

hence we would have colored v3 brown in the browning process. This implies that

v4 is the pivot of v3. Moreover, it is rich. Therefore v3 ∈ S.

Next, we will prove that a cannot be attachable to more than one nodes in

S. For this, we observe the following.

Claim 5.5. Let a be a client attachable to a node u ∈ P . Then, the (shortest)

directed path from a to u cannot include a rich pivot.

The intuition for this claim is as follows (formal proof can be found in Sec-

tion 5.2.2). If the shortest directed path from a to u includes a brown pivot, then

a is attachable to a brown node. On the other hand, in case a directed path from

a to u passes through a red pivot, a would be attachable to the nearest non-red

out-neighbor of the red node farthest from a on this path. As the nearest non-red

out-neighbor of a red node is colored brown, in this case too a would be attachable

to a brown node. Both the cases contradict our inference that an unsettled client

cannot be attachable to a brown node. Hence the above claim holds.

Finally, we show that a cannot be attachable to two nodes in S. Suppose

a is attachable to two nodes, u1, u2 ∈ S. Since S ⊆ P , u1, u2 ∈ P . Also,

pivot(u1), pivot(u2) ∈ R. By Claim 5.5, the (shortest) directed paths from a to u1

and u2 do not include any rich pivot. Hence the path from a to u1 does not include

either pivot(u1) or pivot(u2). Similarly, the path from a to u2 does not include

either pivot(u1) or pivot(u2). Using the above observation, it can be shown that

a cannot be attachable to both u1 and u2. A detailed explanation is given in the

formal proof. Hence a must be attachable to exactly one node in S implying that

the solution is pseudo-stable.

The cost analysis is similar to that in Lemma 4.2. The change in factor arises

because earlier, for every red node, we colored at most d neighbors brown, but now
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we may color two additional neighbors brown. Firstly, in a TBDBT the nearest

non-red out-neighbor of a red node may be outside the BDBT. Secondly, for a

red node that is a root, we may color its pivot (not in the BDBT) brown. This

establishes Lemma 5.3.

5.2.1.2 Stage 2: Converting a pseudo-stable solution to a hierarchical

solution

In the second stage, we transform the pseudo-stable solution σps into a hierarchical

solution σh. LetR and P respectively be the rich and poor nodes of σps. Let t be the

maximum tree-width of any of the component BDBT graphs of the input TBDBT

graph G. Further, let A1 and A2 be the sets of settled and unsettled clients with

respect to σps. We split the original problem instance into two instances focusing

on the settled and unsettled clients, respectively. This is achieved by taking two

copies of the original graph, denoted I1 and I2; we set r(a) = 0 for all unsettled

clients in I1 and r(a) = 0 for all settled clients in I2. From σps, we can get two

feasible LP solutions σ1 and σ2 for the instances I1 and I2, respectively. The

solutions σ1 and σ2 are copies of σps, except that for every node u ∈ V , we set

xσ1(a, u) = 0 for all unsettled clients a, and xσ2(b, u) = 0 for every settled client b.

Note that σ1 is a stable solution for I1. Hence, the solution σ1 can be trans-

formed into an integrally open solution σ′1 for the instance I1, using the procedure

given in Lemma 4.3 (since a TBDBT graph has tree-width max{t, 1}). Let Z1 be

the nodes of P opened by this algorithm.

We now focus on the second instance I2, consisting of only unsettled clients,

and transform the solution σ2 into a hierarchical solution σ′2 using the following

lemma.

Lemma 5.6. Let R and P respectively be the rich and poor nodes of a pseudo-

stable solution σ2 of a TBDBT graph having only unsettled clients. Then σ2 can be

converted to a hierarchical solution σ′2 such that the nodes of R remain untouched,

i.e., yσ′2(u) = yσ2(u) for all u ∈ R and xσ′2(a, u) = xσ2(a, u) for all clients a and
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nodes u ∈ R. Thus, cost(σ′2, R) = cost(σ2, R). Moreover if Z2 is the set of fully

or partially open nodes of P in σ′2, then cost(σ′2, Z2) ≤ cost(σ2, P ).

Proof Sketch. We give a detailed sketch of the proof deferring formal details to

Section 5.2.3. Let Â be the set of unsettled clients. We process the nodes that are

special roots for some (unsettled) client iteratively in topological order (bottom-

up) of T . Let u be the node currently being processed. Let Bu be the set of

clients for which u is a special root and let Zu be the set of nodes of P to which

the clients in Bu are assigned (this may include u itself). We shall argue that all

the clients assigned to nodes in Zu have the same special root, i.e., u. We shall

perform the pulling procedure on u from Zu \ {u}. Note that all the clients in Bu

will be reassigned to u and no clients will remain assigned to nodes in Zu\{u}. We

shall close down all the nodes of Zu and open u to the extent min{cost(σ2, Zu), 1};

thus the solution remains feasible. We shall account for the cost of opening u by

charging the extent to which the nodes of Zu are open in the solution σ2. Since the

nodes in Zu have been closed, any node is charged at most once. This completes

the processing of u.

We now outline why all the clients assigned to nodes in Zu have u as their

special root. Consider any client b assigned to a node v in Zu. By definition of

Zu, there must be a client, c, assigned to v and having special root as u. It can be

argued that clients attachable to the same node in P will have the same special

root (this follows from Claim 5.5 and the fact that the roots of the BDBT graphs

are arranged in a tree-like manner in a TBDBT graph using a skeletal tree). Since

c and b are both attachable to v, they must have the same special root; therefore

the special root of b must also be u. Hence, all the clients assigned to nodes in Zu

have u as the special root. A detailed explanation is provided in the formal proof.

Note that the clients in Bu are not assigned to any poor node passing via

pivot(u). Therefore u and Bu will not participate in any further processing (of

other nodes that are special roots). Thus, any client in Bu is assigned to at most

one special root, viz. u, and hence at most one partially open node (u). Therefore

σ′2 is a hierarchical solution. The special roots are taken as the set Z2.
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We shall now combine the solutions σ′1 and σ′2 into a solution σh for the original

input TBDBT graph as follows. Let Z1 be the set of nodes of P that are fully open

in σ′1 and Z2 be the set of nodes of P that are fully or partially open in σ′2. The

nodes of R remain untouched in both the solutions. We construct σh by opening

all the nodes of R and Z1. Then, we open all the nodes in Z2\Z1 to the extent that

they were open in σ′2. The assignments are retained from both the solutions σ′1 and

σ′2 (the client sets are disjoint). Formally: (i) set yσh(u) = yσ′1(u) (which is 1) for all

u ∈ R∪Z1; (ii) set yσh(u) = yσ′2(u) for all u ∈ Z2 \Z1; (iii) set xσh(a, u) = xσ′1(a, u)

for all settled clients a and all nodes u; (iv) set xσh(a, u) = xσ′2(a, u) for all unsettled

clients a and all nodes u. Note that no node in Z1 ∪ Z2 can exceed its capacity

limit, because they belong to the set P . Moreover, the nodes of Z2 \ Z1 are also

sufficiently open to service the clients assigned to them as they are not assigned

any clients in the solution of the instance I1 and the solution to the instance I2 is

feasible. The solution σh is hierarchical as the unsettled clients are assigned to at

most one partially-open node since σ′2 is hierarchical.

Using the cost analyses as stated in Lemmas 4.3 and 5.6, we see that

cost(σh, R) = cost(σps, R)

and cost(σh, P ) ≤ cost(σ′1, Z1) + cost(σ′2, Z2)

≤ (max{t, 1}+ 1) · cost(σ1, P ) + cost(σ2, P )

≤ (max{t, 1}+ 2) · cost(σps, P ).

This establishes the following lemma.

Lemma 5.7. Let R and P respectively be the rich and poor nodes of a pseudo-stable

solution σps of a TBDBT graph, G. Let t be the maximum tree-width of any of its

component BDBT graphs. Then σps can be converted to a hierarchical solution σh

such that the nodes of R remain untouched, i.e., yσh(u) = yσps(u) for all u ∈ R and

xσh(a, u) = xσps(a, u) for all clients a ∈ A and nodes u ∈ R. Thus, cost(σh, R) =

cost(σps, R). Moreover, cost(σh, P ) ≤ (max{t, 1}+ 2) · cost(σps, P ).

In Section 5.2.3 we show that the transformation involved in Lemma 5.6 takes
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time polynomial in the input size and parameter t. Also, as argued in Section 4.2.3,

the time taken by the transformation in Lemma 4.3 is polynomial in the input size

and parameter t. Thus, the overall time taken by the transformation involved in

Lemma 5.7 takes time polynomial in the input size and parameter t.

5.2.1.3 Stage 3: Constant Factor Approximation Algorithm for TB-

DBT graphs

We now put together the different transformations and establish a constant factor

approximation algorithm for TBDBT graphs. Combining Lemmas 5.3 and 5.7,

we can convert the optimal LP solution σin into a hierarchical solution σh. A

procedure for converting any hierarchical solution into an integral solution is given

by the following lemma.

Lemma 5.8. Any hierarchical solution σh can be converted into an integral solution

σout such that cost(σout) ≤ 136 · cost(σh).

The above procedure works by reducing the task to an issue of rounding LP

solutions of a capacitated vertex cover instance, for which Saha and Khuller[SK12]

present a 34-approximation. The reduction and proof of the lemma are given in

Section 5.2.4.

Using the cost analysis as stated in the lemmas, we see that cost(σout) ≤

136·cost(σh) = 136·(cost(σh, R)+cost(σh, P )) ≤ 136·(cost(σps, R)+(max{t, 1}+

2) · cost(σps, P )) ≤ 136 · ((d + 2) · cost(σin) + (max{t, 1} + 2) · cost(σin)) = 136 ·

(d+ max{t, 1}+ 4) · cost(σin)

We have thus established Theorem 5.2.

In Section 5.2.2 we show that the transformation involved in obtaining a

pseudo-stable solution (Lemma 5.3) takes time polynomial in the number of nodes

and parameter d. As argued earlier, the transformation involved in obtaining a

hierarchical solution (Lemma 5.7) takes time polynomial in the input size and

parameter t. Also, in Section 5.2.4 we show that the transformation in Lemma 5.8

takes time polynomial in the input size. Thus, the overall transformation involved
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in Theorem 5.2 takes time polynomial in the input size, and parameters t and d.

5.2.2 Proof of Lemma 5.3

Let σin be the input LP Solution. The transformation is performed in two phases

called the de-capacitation phase and the pseudo-stabilization phase. Recall that

a solution σ is said to be de-capacitated, if all the partially-open and the closed

nodes in σ are de-capacitated. The de-capacitation phase transforms the input LP

solution into a de-capacitated solution. This phase is the same as described for

BDBT graphs, captured by Lemma 4.5.

Pseudo-stabilization Phase. We next discuss how to transform a given de-

capacitated solution σ′ into a pseudo-stable solution σps. While performing this

transformation, we shall encounter three types of nodes - fully open, partially

open and fully closed. Let FO′ and PO′ be respectively the sets of fully-open and

partially open nodes in σ′. The idea is to carefully select a subset of partially open

and closed nodes, fully-open them and perform the pulling procedure on these

nodes. We maintain sets R and P of rich and poor nodes. Initialize R to be the

set of fully-open nodes in σ′ and P to be the set of partially open or closed nodes

in σ′. The transformation is captured by the following lemma.

Lemma 5.9. Any de-capacitated solution σ′ = 〈x′, y′〉 for a TBDBT graph can be

transformed into a pseudo-stable solution σps = 〈xps, yps〉 such that cost(σps, R) ≤

(d+ 3) · cost(σ′, FO′) and cost(σps, P ) ≤ cost(σ′, PO′) where FO′ and PO′ are

the fully-open and partially-open nodes in σ′ respectively and R and P are the rich

and poor nodes of the stable solution σs.

Proof. To begin with, we color the nodes red, blue and brown as described below.

All the fully-open nodes are colored red and the remaining nodes (partially-open

nodes and fully-closed nodes) are colored blue, i.e., the nodes in R are colored red

and the nodes in P are colored blue. We next identify the set of nodes, Br, to be

colored brown. For this, we first identify for every red node, v, the set of nodes,

Br(v), to be colored brown. We then take Br to be the union of the sets Br(v)
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corresponding to the red nodes. We now describe how to determine Br(v) for a

red node v. Let Gj be the BDBT graph to which v belongs. Define N−(v) to be

the set of all non-red in-neighbors of v in Gj, i.e.,

N−(v) = {u ∈ P ∩ V (Gj) : u is an in-neighbor of v}.

Define N+(v) to be the set of all non-red out-neighbors of v, i.e.,

N+(v) = {u ∈ P : u is an out-neighbor of v}.

Further, define NN+(v) to be the nearest non-red out-neighbor of v (ties broken

arbitrarily), i.e.,

NN+(v) = argminu{dist(v, u)| u ∈ P is an out-neighbor of v}.

Now, if v ∈ Roots(G) and its pivot is not red, we takeBr(v) = N−(v)∪{NN+(v)}∪

{pivot(v)} else we simply take Br(v) = N−(v) ∪ {NN+(v)}. We now take

Br = ∪{Br(v) : v is red}. We process the nodes of Br iteratively in an arbi-

trary order. The processing for a node u ∈ Br is as follows. Let πold be the

solution at the start of the current iteration; we form a new solution πnew in the

current iteration. We perform the pulling procedure from P onto u with πold as

input; let πnew be the solution after the pulling procedure. We also open u and set

yπnew(u) = 1. All other values of xπnew(., .) and yπnew(.) are retained as in πold. It

is easy to see that the solution πnew is feasible as the assignments only increase on

u but we have fully-opened node u. Finally, we update sets R and P by moving

u to R, i.e., R = R ∪ {u} and P = P \ {u}. We color the node u brown. This

completes the processing of the current iteration (for u). We take the solution

πnew as the input πold for the next iteration. The solution πnew at the end of the

last iteration is taken as the solution σps output by this procedure. The sets R

and P obtained at the end are taken as the rich and poor nodes. The set of all

nodes in Roots(G) ∩ P having a red pivot are taken as the set S output by the

procedure. This completes the description of the procedure. We now show that

σps is a pseudo-stable solution.
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Claim 5.10. The solution σps is pseudo-stable.

Proof. The first condition is trivially satisfied since R consists of red and brown

nodes, both of which are fully open. The second condition is ensured by the

decapacitation process. To check the third condition, consider an unsettled client a

assigned to v1 ∈ R and v2 ∈ P . We first observe that a cannot be attachable to any

brown node since in that case, the brown node must have pulled the assignments

of a from nodes in P and hence a would not be assigned to v2. We now need to

show that any client assigned to a node in R as well as to a node in P must be

attachable to exactly one node in S. This is established by Claims 5.11 and 5.12

below. Hence σps is pseudo-stable solution.

We recall and prove Claim 5.5 required in proving the subsequent claims.

Claim 5.5. Let a be a client attachable to a node u ∈ P . Then, the (shortest)

directed path from a to u cannot include a rich pivot.

Proof. Consider a client a attachable to u ∈ P . Further, suppose that the shortest

directed path from a to u includes a rich pivot v. Clearly, v is either red or brown.

If v is brown, then a is attachable to a brown node. This contradicts the fact that

an unsettled client cannot be attachable to a brown node. Now suppose v is red.

Consider the red node, say v∗ farthest from a on this directed path from a to u.

Then, a is attachable to the non-red out-neighbor of v∗ lying on this path (which

may be u itself). Thus, a must be attachable to the nearest non-red out-neighbor

of v∗. But since the nearest non-red out-neighbor of a red node is colored brown,

this would imply that a is attachable to a brown node. Therefore in this case

also we arrive at a contradiction since an unsettled client cannot be attachable

to a brown node. Hence the directed path from a to u does not include any rich

pivot.

Claim 5.11. Let a be a client assigned to v1 ∈ R and v2 ∈ P ; then a is attachable

to at least one node in S.

Proof. First observe that v1 must be red since a is not attachable to any brown

node. Now, consider the directed path from a to v1. Let v3 be the node closest
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to v1 on this path such that color(v3) 6= red. Further, let v4 be its red out-

neighbor on this path. Clearly, a is attachable to v3. We next show that v3 is

in S, i.e., v3 ∈ Roots(G) ∩ P and it has a rich pivot. Firstly, observe that by

Proposition 5.4, either color(v3) = brown or v3 ∈ Roots(G)∩P . But since a is not

attachable to any brown node, v3 cannot be brown, implying that v3 ∈ Roots(G)∩P.

Also, observe that v3 and v4 cannot be in the same BDBT since in such a case,

v3 ∈ N−(v4) ⊆ Br(v4) and would have therefore been colored brown during the

browning procedure. This implies that v4 is the pivot of v3. Moreover, since v4 ∈ R,

so v3 ∈ S.

Claim 5.12. Let a be a client assigned to v1 ∈ R and v2 ∈ P ; then a is attachable

to at most one node in S.

Proof. We prove the claim by contradiction. Suppose a is attachable to two nodes

u1 and u2 in S. Since S ⊆ P , we have that u1 ∈ P and u2 ∈ P . Also, by the

definition of S, pivot(u1) ∈ R and pivot(u2) ∈ R. Now, by Claim 5.5, the directed

path from a to u1 does not include pivot(u1). Similarly, the directed path from a

to u2 does not include pivot(u2). Then, since a TBDBT consists of BDBT graphs

arranged in a tree-like manner through a skeletal tree, it must be that the directed

path from a to one of u1 and u2 must include the pivot of the other. Again, by

Claim 5.5, the directed path from a to u1 does not include pivot(u2). Similarly,

the directed path from a to u2 does not include pivot(u1). Hence, our assumption

is wrong and therefore a must be attachable to at most one node in S.

We now analyse the cost. There are at most d in-neighbors of a red node

within the BDBT graph that are colored brown ; one out-neighbor which is colored

brown; and if the red node is a root then there is an additional pivot that is colored

brown. Thus the total number of brown nodes is at most (d + 2) · cost(σ′, FO′)

(where FO′ is the set of fully-open nodes in σ′). This implies that cost(σps, R) ≤

(d + 3) · cost(σ′, FO′). As the extent of openness of the remaining nodes is un-

touched, it follows that cost(σps, P ) ≤ cost(σ′, PO′) (where PO′ is the set of

partially-open nodes in σ′).
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Lemma 5.3 follows by combining Lemmas 4.5 and 5.9. Combining the cost

analyses of Lemmas 4.5 and 5.9, together with the fact that the newly opened

nodes in the de-capacitation phase become rich, we have:

cost(σps, R) ≤ (d + 3) · cost(σ′, FO′) ≤ (d + 3) · cost(σin) and cost(σps, P ) ≤

cost(σ′, PO′) ≤ cost(σin).

This completes the proof of Lemma 5.3.

The time taken by the de-capacitation procedure is clearly polynomial in

the size of the input. The pseudo-stabilization step involves identification of the

following for some nodes - in-neighbors within their own BDBT graphs, closest

out-neighbor and (possibly) the corresponding pivot. Once identified, the pulling

procedure is performed on all these nodes. Any node has at most d in-neighbors

within its own BDBT graph and the pulling procedure runs in polynomial time.

Thus, the overall time taken in obtaining a pseudo-stable solution is polynomial

in the number of nodes and parameter d.

5.2.3 Proof of Lemma 5.6

Let σ2 be the input pseudo-stable solution. As σ2 is a pseudo-stable solution, each

client is attachable to exactly one node in S. We process the nodes of S iteratively

in topological order (bottom-up) of T , i.e., we process a node x ∈ S only after

we have processed all nodes y ∈ S such that if x is the root of BDBT Gi and y

is the root of BDBT Gj then i is an ancestor of j in T . Let u ∈ S be the root

being processed in the current iteration and πold be the solution at the beginning

of the iteration. Let Â be the set of unsettled clients. If no unsettled client is

attachable to u, we proceed to the next root. Define Bu = {a ∈ Â : u is the special

root of a} and Zu = {v ∈ P : x(a, v) > 0 for some a ∈ Bu}. Note that u ∈ Zu.

We perform the pulling procedure from Zu \ {u} onto u to form a new solution

πnew. In order to maintain feasibility, we increase the capacity of u as follows: set

yπnew(u) = min{1, cost(σ2, Zu)}. We use a special color, say green, to color u.

We next show that the nodes in Zu \ {u} have no more clients assigned to them,

i.e., all the clients assigned to Zu have the same special root, i.e., u. Consider any
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client b assigned to a node v in Zu. By definition of Zu, there must be a client, c,

assigned to v and having special root as u. The following claim shows that clients

attachable to the same node will have the same special root.

Claim 5.13. Unsettled clients attachable to the same node in P have the same

special root.

Proof. Let a and a′ be two unsettled clients attachable to a node v ∈ P . Further,

let s and s′ be the special roots of a and a′ respectively and let Gi and Gi′ be the

BDBT graphs for which s and s′ are respectively the roots. Suppose that s 6= s′.

Since S ⊆ P , we have that s, s′ ∈ P . Also, by the definition of S, pivot(s) ∈ R and

pivot(s′) ∈ R. Now, by Claim 5.5, the paths from a to v and a to s cannot include

pivot(s). This implies that both v and a belong to BDBTs that are descendants

of i (including possibly i itself) in T . By the same argument, v and a′ belong to

BDBTs that are descendants of i′. This implies that v belongs to a BDBT that is

a descendant of both i and i′. This means that either i is an ancestor of i′ or i′ is

an ancestor of i in T . Without loss of generality, assume that i′ is an ancestor of i.

Now, since the path from a′ to v cannot pass through a rich pivot, it must be that

a′ also belongs to a BDBT that is a descendant of i. But then the directed path

from a′ to s′ passes through pivot(s) contradicting the fact that this path cannot

pass through a rich pivot. Hence it must be that s = s′.

Since c and b are attachable to the same node, v, they must have the same

special root; therefore the special root of b must also be u. This implies that all the

clients assigned to Zu have u as the special root. Thus, after the pulling procedure,

no more clients are assigned to nodes in Zu \ {u}. Hence we close these nodes by

setting yπnew(v) = 0 ∀v ∈ Zu \ {u}. Clearly, the LP remains feasible. Let σ′2 be

the solution at the end of these iterations, i.e., σ′2 is taken to be the solution πnew

formed in the last iteration.

We next analyse the cost. Since the nodes in R remain untouched, we only

bother about the partially-open nodes. Let Z2 ⊆ P be the nodes that were colored

green (these are the only open nodes other than nodes of R). We charge the extent
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to which any green node u of Z2 is opened to the corresponding set Zu obtained

in the corresponding iteration when u was colored green; note that the sets Zu

are disjoint for different nodes u ∈ S. We have cost(σ′2, Z2) =
∑

u∈Z2
yσ′2(u) ≤∑

u∈Z2
cost(σ2, Zu) ≤ cost(σ2, P ). The above transformation involves performing

the pulling procedure on the roots of some of the component BDBT graphs during

a bottom up traversal of the TBDBT graph. Since the pulling procedure runs

in polynomial time, the above transformation takes time polynomial in the input

size.

5.2.4 Proof of Lemma 5.8

The transformation from the input hierarchical solution σh to an integral solution

σout works in three stages. We first convert the solution σh into a dual assigned

solution σda, wherein a client is assigned to at most one partially open and one

fully open node. Next σda is converted into an integrally open solution σio and

finally σio is transformed into the final integral solution σout.

The hierarchical solution σh can be transformed into a dual assigned solution

σda at a factor 2 loss in approximation as follows. Any client a ∈ A can be serviced

by at most one partially-open node and possibly many fully-open nodes in σh. We

invoke Proposition 2.12 with F as the set of fully open nodes in σh and A as the

set of all clients A, to obtain a new solution σda in which every client is serviced

by at most one fully-open node. Clearly, cost(σda) ≤ 2 · cost(σh). This establishes

Lemma 5.14. The result is formally captured in the following lemma.

Lemma 5.14. Any hierarchical solution σh can be converted into a dual assigned

solution σda such that cost(σda) ≤ 2 · cost(σh).

The dual assigned solution σda can be transformed into an integrally open so-

lution σio at a factor 34 loss in approximation by reducing the solution σda to an LP

solution for the capacitated vertex cover problem. Saha and Khuller[SK12] present

a 34-approximation LP rounding procedure for the capacitated vertex cover prob-

lem. Using their procedure we can get an integrally open solution. This result is
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formally captured in the following lemma. The proof is provided in Section 5.2.4.1.

Lemma 5.15. Any dual assigned solution σda can be converted into an integrally

open solution σio such that cost(σio) ≤ 34 · cost(σda).

Finally, we transform the integrally open solution σio into an integral solution

σout by invoking Lemma 4.4 (as done for BDBT graphs).

This completes the procedure. Using the cost analyses as stated in Lemmas

5.14, 5.15 and 4.4, we see that cost(σout) ≤ 2 · cost(σio) ≤ 68 · cost(σda) ≤ 136 ·

cost(σh). This completes the proof of Lemma 5.8. Clearly, since Proposition 2.12

runs in polynomial time (as argued in Section 2.5), the transformation in Lemma

5.14 takes polynomial time. We show in Section 5.2.4.1, that the transformation

in Lemma 5.15 takes time polynomial in the input size. Also, as argued in Section

4.2.1, the transformation in Lemma 4.4 takes polynomial time. Thus, the overall

transformation in Lemma 5.8 takes time polynomial in the input size.

5.2.4.1 Proof of Lemma 5.15

The proof goes via the capacitated vertex cover problem. In the capacitated vertex

cover problem, we are given a multi-graph Ĝ = (V̂ , Ê) and a capacity w(u) for

each vertex u ∈ V . A feasible solution is to choose a subset of vertices U ⊆ V

and assign each edge e = (u, v) to one of its endpoints such that the following

constraints are satisfied: (i) for any edge e = (u, v), the endpoint to which e is

assigned must belong to U ; (ii) for any node u ∈ U , the number of edges assigned

to u is at most w(u). The goal is to minimize the cardinality of the set U .

Consider the natural LP formulation for the problem (similar to that of our

LP for the replica placement problem). For each vertex u, we introduce a variable

y(u) and for each edge e = (u, v), we introduce two variables x(e, u) and x(e, v).
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We write e ∼ u to mean that e is incident on u.

Minimize
∑
u∈V̂

y(u)

s.t.
∑
e∼u

x(e, u) ≤ y(u) · w(u) ∀ u ∈ V

x(e, u) + x(e, v) ≥ 1 ∀ e = (u, v)

x(e, u) ≤ y(u) ∀ e ∼ u

Saha and Khuller [SK12] provide a procedure for rounding fractional solutions of

the above LP.

Lemma 5.16 ([SK12]). There exists a polynomial time procedure that takes as

input a multi-graph Ĝ and an LP solution σ and outputs an integral solution U

along with edge assignments such that |U | ≤ 34 · cost(σ).

Consider the input dual assigned solution σda. For each node u ∈ V , add

a vertex u in V̂ with capacity w(u) = W . Consider any client a ∈ A; since σda

is a dual-assigned solution, a is serviced by at most two nodes; let ua and va be

the two nodes (if a is assigned to only one node, then choose any arbitrary node

to which a is attachable as the second node). 1 Add r(a) parallel edges between

the vertices ua and va (called edge copies of a). The above construction yields an

instance of the capacitated vertex cover problem. We can construct an LP solution

σ̂ for the above instance from the solution σda, in a straightforward manner. For

each node u ∈ V , set yσ̂(u) = yσda(u); for each client a and each edge copy e of a,

set xσ̂(e, ua) = xσda(e, ua) and xσ̂(e, va) = xσda(e, va). The cost of σ̂ is the same as

that of σda. Using Lemma 5.16, we can convert σ̂ into an integral solution U , along

with an assignment f̂ that assigns each edge to one of its end points. The solution

U and f̂ can be readily converted back into an integrally open solution σio for our

problem. Notice that σio is not an integral solution since the request of a client

1In case some client is not attachable to any other node, it has to be fully open and fully

serving itself. Also, recall that no other client can be assigned to it. Such a client can therefore

be removed from consideration. Thus, we assume that the input does not include any such client.
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has been mapped to r(.) parallel edges which might be assigned to different nodes

in σ̂; thus, a client may be assigned to more than one nodes in σio. The above

reduction clearly takes polynomial time. Also, Lemma 5.16 involves a polynomial

time procedure. Therefore, the overall time taken by the procedure in Lemma 5.15

is polynomial in the input size.

5.3 Algorithm for (undirected) TBDBT graphs

In this section we present an approximation algorithm for the replica placement

problem on (undirected) TBDBT graphs that uses the algorithm for directed TB-

DBT graphs (recall that in both these variants, clients are not part of the network

nodes).

Let I be an instance of the replica placement problem on an (undirected) TBDBT

graph G = (V,E). We create an instance I ′ of the replica placement problem

on a directed BDBT graph as follows. The graph G′ = (V,E ′) is obtained from

G by adding two directed edges e1 = (u, v) and e2 = (v, u) to E ′ for every edge

e = (u, v) ∈ E and taking w(e1)=w(e2)=w(e). The capacity W for the nodes of

the graph, r(.) and dmax(.) for every client remain the same in the new instance.

Moreover, for any client a, att(a) remains the same. Note that the instances I

and I ′ are equivalent in the sense that every solution of one is also a solution of

the other. Let d′ denote the degree of G′, and t′ denote the tree-width of any

component directed BDBT graph of G′. Observe that d′ = 2d and tree-width

t′ = t. We use Theorem 5.2 to find a 136 · (d′ + max{t′, 1}+ 4) · cost(σin) approx-

imate solution for I ′. As I and I ′ are equivalent, this is also a solution of cost

136 · (d′ + max{t′, 1} + 4) · cost(σin) to I. Since d′ = 2d and t′ = t, this yields a

solution of cost 136 · (2d + max{t, 1} + 4) · cost(σin) to I. This establishes Theo-

rem 1.6. Since the transformation involved in Theorem 5.2 takes time polynomial

in the input size and parameters d and t, the time taken by the transformation in

Theorem 1.6 is also polynomial in the size of the input, and parameters t and d.
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Chapter 6

Typed Data Placement

6.1 Introduction

In this chapter we give a 4-approximation algorithm for the typed data placement

problem to prove Theorem 1.8. This result appeared in [AGK+14].

We begin with an overview of the algorithm. Recall that the typed data

placement problem has a bound on the number of services that can be offered by

a server. Also, the cost model does not involve facility opening costs; only the

distance travelled by the clients contributes to the cost. The main challenge in

this problem lies in dealing with clients having both types of demands with the co-

located facility having storage capacity 1. We refer to such clients as dual-clients.

The key idea is to resolve one of the demands of each dual-client by carefully

assigning it to some facility (this may involve opening the facility). For this, we

determine the average cost per unit demand paid by each client, j, for each object-

type, o, in the relaxed LP solution; let this be denoted by Co
j . Thereafter we discard

the LP solution, i.e., we do not use the assignments made in the LP solution and

build a new solution. The algorithm proceeds iteratively, opening some facilities

and assigning some clients in each iteration. The average cost paid by the group

of clients assigned in an iteration is no more than 4 times the cost paid by them

in the LP solution. This is shown by amortized analysis. An iteration begins by

constructing a ball around each client for each object-type with radius proportional
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to the corresponding average cost. Observe that a dual-client will have two balls

around it. We define the outer-ball of a dual-client j (denoted by OB(j)) as the

larger of its balls. We then process the dual-clients iteratively in increasing order

of the size of their outer-balls. Let j be the client with the smallest outer ball. In

the current iteration, we group demands to yield a simpler structure – no other

outer balls overlap with the outer ball of j (this is similar to the consolidation due

to Shmoys et al.[STA97] and Baev et al.[BRS08] in the sense that the structure is

simplified by removal of overlapping balls). We then assign the demand associated

with the outer-ball of j and the demands grouped with it to appropriate facilities.

Note that our algorithm performs grouping in iterations.

6.2 Algorithm

The algorithm is formally described in Figure 6.2 and the various procedures used

are described in Figure 6.3. The input is an instance, I, specifying the clients, D,

along with their demands and the facilities, F , along with their storage capacities,

such that D ⊆ F . We also refer to a client as a ‘facility’ depending on the context.

The algorithm starts by solving the relaxed LP on the instance I; let < x, y

> denote the optimal LP solution. For every client and object-type pair, we define

Co
j =

∑
i∈F cij · xoij; this is the average cost per unit demand paid by the client j

for the object type o in the LP solution. We construct a ball around each client j,

for each object-type, o, with radius 4
3
Co
j . Observe that at least one-fourth of the

demand must be satisfied from within this ball.

We define some terms that will be useful in describing the algorithm further.

We call a facility to be open if it is open for o1 or o2. We call a facility to be

free if it is neither open nor has any demand associated with it. A facility is said

to be a dual-client if it has demand for both types of objects and a single-client

if it has demand for only one type of object. A dual-client is categorized as o1o2

dual-client if Co1
j < Co2

j , and as o2o1 dual-client otherwise. A client is said to be

independent if it does not lie in the outer ball of any dual-client and has demand
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for only one object-type, and dependent if it lies within the outer ball of a dual-

client and has demand for only one object-type. A single-client is referred to as

an o1 client if it has an o1 demand and an o2 client otherwise. We treat co-located

facilities as follows. If there is a single demand at that location, we categorize one

of the facilities as a single-client with the associated demand, and the other as a

free facility. If the location has both types of demands, then we treat each of the

facilities as a single-client with one of the two demands associated to it.

We next construct an integral solution < x̂, ŷ >. We first open all the

independent-single clients for their own type, i.e., the type for which they have

a positive demand; they are then assigned to themselves. These demands can now

be removed from consideration as they have been assigned. Therefore, we update

the set D to include only the unassigned demands. The algorithm then iteratively

processes the dual-clients.

The input to an iteration is (i) a set of unassigned clients, D (along with

their demands), (ii) a set of facilities F (where D ⊆ F ), (iii) two disjoint subsets

F1, F2 ⊆ F that are open for o1 and o2 respectively, (iv) distances cij ∀ i ∈ F ,

j ∈ D (satisfying the metric property), and (v) for every client j having demand

for object type o, Co
j , the average cost paid by this demand in the LP solution.

Moreover, the input satisfies the additional property that for any dual-client, j,

there is no open facility within the outer ball of j. Since a subset of the unassigned

demands gets assigned in every iteration, we encounter a reduced problem at the

end of every iteration - this forms the input to the next iteration. Clearly, there

is no open facility within the outer-ball of any dual-client at the start of the first

iteration. We maintain the following invariant to ensure this condition holds at

the start of every iteration:

(Inv) For any dual-client, j, there is no open facility within the outer ball of j.

An iteration starts by partitioning the facilities into the following sets: (i)

open facilities (Fopen), (ii) free facilities (Ffree), (iii) dual-clients (Ddual), (iv)

independent-single-clients (Dind); and (v) dependent-single-clients (Ddep). These

sets dynamically change as the algorithm proceeds. We then determine the dual-
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Figure 6.1: Pair-dissolve Scenarios. Here Bo
j denotes j’s ball for type o. (a) jp is

o2o1 dual-client (b) jp is dependent-single.

client having the smallest outer ball; we denote this client by jsob and its outer

ball by SOB. Let R be the radius of the SOB. Without loss of generality, assume

that the SOB is of type o2 (i.e. jsob is of o1o2 category). We say that a ball is

dissolved if the demand corresponding to it is assigned to some facility. We now try

to dissolve the SOB by applying one of the following procedures: Simple-Dissolve,

Pair-Dissolve or Group-Dissolve in that order.

We first examine if Simple-Dissolve is applicable. If there is a ‘close-by’ facility

js that is open for o2, we assign the o2 demand of jsob to js and thus dissolve the

SOB. Here, ‘close-by’ means at a distance of ≤ 2R from jsob. Observe that in this

case invariant (Inv) is trivially satisfied since no new facility is opened.

If Simple Dissolve is not possible, we check for Pair-Dissolve. If there exists

a client (say jp), that is either a ‘close-by’ dependent-single-client of type o2 or a

‘close-by’ o2o1 dual-client, we open jsob for o1 and jp for o2 (this can be done as

(Inv) implies that jsob and jp are not already open). The two cases are shown in

Figure 6.1. We then assign jp to itself for its o2 demand and jsob to itself for its

o1 demand. Also, we assign jsob to jp for its o2 demand. Now, we assign the outer

balls of all the dual-clients containing jsob or jp to either jp or jsob appropriately.

Invariant (Inv) is satisfied at the end of this case as a facility inside the outer-ball

of a dual-client may be opened in (S3) or (S4) but this outer-ball gets dissolved in

(S5).

If Simple and Pair Dissolve are not possible, we perform Group-Dissolve. We
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The 4-approximation algorithm

Solve relaxed LP; let solution be < x, y >

Maintain assignments and open facilities of our algorithm in < x̂, ŷ >

Open indep-clients for own type and assign to self ...(S1.1)

While there is any dual-client remaining

Let jsob be the dual-client having the smallest outer ball

Assume that jsob is of o1o2 category (o2o1 case is similar)

Let R = 4
3C

o2
jsob

If ∃ a facility js open for o2 within a distance of 2R from jsob

Invoke Simple-Dissolve

else if ∃ a client jp within a distance of 2R from jsob such that

jp is either an o2 dependent-single or an o2o1 dual-client

Invoke Pair-Dissolve

else Invoke Group-Dissolve

Open new indep-clients for own type and assign to self ...(S1.2)

End-While

Return < x̂, ŷ > – new solution: assignments & facilities open

Figure 6.2: The 4-approximation algorithm

begin by ‘grouping’ onto the SOB, the outer balls of all dual-clients that overlap

with it (i.e., ∃ a common facility in both). Grouping means the following: the

demand corresponding to the outer-ball of the client is temporarily removed. We

ensure that at the end of the iteration, these demands are introduced back and

assigned to some facility not very far from jsob. As these facilities are yet to be

identified, we keep track of the grouped demands in the set Commit. Now, no

dual-clients overlap with the SOB. We next dissolve the SOB.

We first consider the simple case wherein there is a facility j′ 6= jsob within

the SOB that has no demand for o1 (i.e., a dependent-single of type o2 or a free
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Simple-Dissolve, Pair-Dissolve and Group-Dissolve procedures

Procedure Simple-Dissolve

Assign jsob to js for its o2 demand ...(S2)

Procedure Pair-Dissolve

Open jsob for o1 and assign it to itself for o1 ...(S3)

Open jp for o2 and assign to it both jp and jsob for o2 ...(S4)

For each dual-client, jd, whose outer ball contains jp or jsob

If it is of o1o2 category, set x̂o2jdjp = 1, else set x̂o1jdjsob = 1 ...(S5)

Procedure Group-Dissolve

Let Commit = {dual-clients jc: OB(jc) and OB(jsob) overlap }

‘Group’ the outer-ball of each client in Commit with the SOB

If OB(jsob) contains a free facility or an o2 client (say j′)

Open j′ for o2 and assign jsob to it for o2 ...(S6)

If j′ is an o2 client, then assign it to itself for o2 ...(S7)

Open jsob for o1 and assign it to itself for o1 ...(S8)

For each client, jc in Commit

If it is of o1o2 category, set x̂o2jcj′ = 1, else set x̂o1jcjsob = 1 ...(S9)

else

Let j∗ ∈ SOB having minimum demand-weighted service cost

to its nearest-neighbour, nn(j∗)

Open j∗ for o2 and assign jsob to it for o2 ...(S10)

Open nn(j∗) for o1 (if it is not already open)

Assign j∗ and nn(j∗) to nn(j∗) for o1...(S11)

For each dual-client, jc s.t. jc ∈ Commit or nn(j∗) ∈ OB(jc)

If it is of o2o1 category, set x̂o1jcnn(j∗) = 1, else set x̂o2jcj∗ = 1...(S12)

Figure 6.3: Simple-dissolve, Pair-dissolve and Group-dissolve procedures
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facility). We open j′ for o2 and assign jsob to it. Also, j′ is assigned to itself (if

it has an o2 demand). We open jsob for o1 and assign it to itself. This can be

done since both jsob and j′ are not already open (by (Inv)). We then assign all the

demands in Commit to jsob or j′ appropriately. This takes care of assigning the

‘grouped’ demands. This completes the simple case. Note that the invariant (Inv)

is satisfied at the end of this case as a facility inside the outer-ball of a dual-client

may be opened in (S6) or (S8) but this outer-ball gets dissolved in (S9).

We now consider the more involved cases wherein either all dependent-single-

clients in SOB are of type o1 (Figure 6.4a) or there is no dependent-single-client

in SOB (Figure 6.4b). Let j∗ be the o1 client in the SOB whose demand-weighted

service cost, when served by its nearest neighbor (denoted by nn(j∗)), is the min-

imum (j∗ could be a dependent-single in SOB or jsob itself). We open j∗ for o2

and assign the o2 demand of jsob to it. This can be done because j∗ is not already

open (by (Inv)). We open nn(j∗) for o1 if it is not already open (we shall shortly

argue that nn(j∗) cannot be an o2 client and moreover, if it is already open, it

must be for o1). We then assign j∗ and nn(j∗) to nn(j∗) for their o1 demands.

Note that all the other o1 clients in the SOB become independent; these will be

opened for o1 at the end of the current iteration. We will later bound the cost paid

by j∗ for its o1 demand by amortizing it over the cost paid by the other o1 clients

in the SOB. Since j∗ and nn(j∗) have been opened for different types, we dissolve

the outer balls that contain j∗ or nn(j∗) to one of them appropriately. Finally, we

assign all the demands in Commit to j∗ or nn(j∗) appropriately. This takes care

of assigning the ‘grouped’ demands. Note that invariant (Inv) continues to hold

as a facility inside the outer-ball of a dual-client may be opened in (S10) or (S11)

but this outer-ball gets dissolved in (S12).

We still need to prove the following for nn(j∗) above.

Claim 6.1. At S10, nn(j∗) is not already open for o2.

Proof. It can be argued that at step S10, cjsobnn(j∗) ≤ 2R (cf. Proposition 6.3).

Thus, if nn(j∗) was already open for o2 before the current iteration, the SOB
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would have dissolved in step S2 (simple-dissolve) of this iteration. On the other

hand, if nn(j∗) was opened for o2 in this iteration, it must have been done so in

step S3 (pair-dissolve); but in this case the SOB itself would have dissolved and

therefore we would not have reached step S10.

jsob

Bo2
jsob

Bo1
jsob

j∗
Bo1
j∗

j′

Bo2
j′

nn(j∗)

Bo1
nn(j∗)

55

jsob

Bo2
jsob

Bo1
jsob

j′

Bo2
j′

nn(j∗)

Bo1
nn(j∗)

44

(a) (b)

Figure 6.4: Some involved Group-Dissolve Scenarios. Here Bo
j denotes j’s ball for

type o. (a) All dependent-single-clients in SOB are of type o1 and nn(j∗) /∈ SOB
(b) There is no dependent-single-client in SOB.

At the end of each iteration, we resolve all the newly formed independent-

single-clients (dual-clients whose outer-balls have been dissolved) by opening them

for their own types and assigning their demands to themselves. Clearly, (Inv)

continues to hold after S1.2. We can now remove the demands that are already

assigned – this yields the input for the next iteration.

Finally, the algorithm returns the newly formed solution. This completes the

description of the algorithm. Clearly the solution is integral. It is easy to see that

the solution is feasible as independent clients are all assigned and outer-balls of

dual-clients are eliminated through simple-dissolve, pair-dissolve or group-dissolve

thereby making the dependent-singles independent, which are subsequently as-

signed. Hence, at the end of the algorithm, all demands are assigned. This yields

the following result.

Lemma 6.2. < x̂, ŷ > is an integral feasible solution.
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6.3 Analysis

We now show that the algorithm presented in Figure 6.2 is a 4-factor approximation

algorithm. The following results will be useful in our analysis.

Proposition 6.3. At step S10, if there exists some client j other than jsob in the

SOB, then cj∗nn(j∗) ≤ R else cj∗nn(j∗) ≤ 2R. In either case, cjsobnn(j∗) ≤ 2R.

Proof. The claim is trivial when there exists some client j (6= jsob) in the SOB.

Else, the claim follows from the fact that more than 1/2 of both o1 and o2 type of

demands of jsob must lie within a distance of 2Co2
jsob
≤ 2R.

Lemma 6.4. Consider a particular iteration of the algorithm. Let Asg be the

set of demands (< client, object > pairs) that are assigned to facilities in this

iteration. Then, the cost paid by the demands in Asg is no more than 4 times the

cost paid by these demands in the LP solution, i.e.,
∑

<j,o>∈Asg dj · cσ(j,o)j ≤ 4 ·∑
<j,o>∈Asg dj · Co

j where σ(j, o) denotes the facility in Asg to which j’s demand

for o is assigned.

Proof. We prove the claim by considering the cases under which the demands are

added to the set Asg.

The claim is trivial when a client is assigned to itself in S1.1. For S2 in

Simple-Dissolve, the claim follows as cjsobjs ≤ 2R and R = (4/3) · Co
jsob

.

We next focus on the assignments in Pair-Dissolve. The claim is trivial for

S3. For S4, it follows as cjsobjp ≤ 2R and R = (4/3) · Co
jsob

. In S5, since jp or

jsob (as the case may be) belongs to the outer ball of jd, the assignment costs

≤ 2R+Rd ≤ 3Rd, where Rd is the radius of the outer ball of jd and R ≤ Rd as R

corresponds to the SOB.

We now focus on the assignments in Group-Dissolve. We first consider the

simple case wherein there is a free facility or an o2 client in the SOB. For S6, the

claim follows as j′ lies in the SOB. S7 and S8 trivially satisfy the claim. For S9,

cj′jc ≤ cjsobjc +R ≤ Rc +R +R ≤ 3Rc, where Rc is the radius of the outer ball of

jc.
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Lastly, we focus on the case wherein dependent-single-clients in the SOB (if

any) are only of o1 type. Let X be the set of all the o1 demands in the SOB. For

S10, the claim follows as j∗ lies in the SOB.

Now consider S11, where j∗ is assigned to nn(j∗) for o1. Since the SOB is

resolved in the current iteration and all the clients inside it become independent

and are subsequently resolved in step S1.2 of this iteration, it follows that X ⊆ Asg.

The following claim shows that X satisfies the inequality of this lemma.

Claim 6.5. The set X of all the o1 demands in the SOB satisfies:
∑

<j,o>∈X dj ·

cσ(j,o)j ≤ 4 ·
∑

<j,o>∈X dj · Co
j

Proof. Since
∑

<j,o1>∈X y
o2
j ≥ 1/4, at least 1/4 fraction of the o1 demands in X

are not being served locally (i.e. from their co-located facility). Note that these

demands will have to travel at least to their closest facilities (other than themselves)

to get served. Since, j∗ pays the minimum cost in getting services from its closest

facility, this implies that the cost paid by the LP solution for the demands in X

must be at least (1/4) · (dj∗ · cj∗nn(j∗)). In our integral solution, σ(j∗, o1) = nn(j∗).

Moreover, all the o1 demands in X other than j∗ are assigned to themselves in

step S1.2; therefore σ(j, o1) = j for all j ∈ X, j 6= j∗ and hence they pay a cost of

0. Thus, the set X satisfies the claim.

Next, consider the assignments in S12. If jsob lies in the intersection of the

outer balls of jsob and jc, then since nn(j∗) and j∗ lie within a distance of 2R from

jsob by Proposition 6.3, the cost of assignment is ≤ Rc + 2R ≤ 3Rc, where Rc

is the radius of the outer ball of jc and R ≤ Rc as R corresponds to dual-client

with the smallest outer ball. If jsob does not lie in the intersection of the outer

balls of jsob and jc then there exists a client j′ in the SOB having demand for

o1. Thus by Proposition 6.3, cj∗,nn(j∗) ≤ R and hence the cost of assignment is

again ≤ Rc + R + R ≤ 3Rc. For all the remaining clients in Asg (/∈ X) assigned

to themselves in S1.2, the claim follows trivially. This completes the proof of the

lemma.
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Theorem 1.8 is implied by the following: (i) observation that for all the

demands allocated in step S1.1, cσ(j,o)j = 0; (ii) applying Lemma 6.4 over all

the iterations and summing up the inequalities; and (iii) correctness follows from

Lemma 6.2. It is easy to see from Figures 6.2 and 6.3 that the algorithm runs in

polynomial time.
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Chapter 7

Conclusion

In this work we studied two types of data placement problems - Replica Placement

and typed Data Placement.

We began by studying the replica placement problem on tree graphs with

unit edge lengths and presented a constant factor approximation algorithm. We

next considered generalizations of this basic variant along two dimensions - con-

sidering more general graphs and allowing for arbitrary lengths on the edges. We

first studied a variant allowing for more general graphs and showed that the replica

placement problem with hop counts on bounded tree-width graphs admits an O(t)-

approximation algorithm where t is the tree-width of the input graph. We next

considered variants of the replica placement problem allowing for arbitrary edge

lengths. In this direction we first studied graphs having bounded degree and

bounded tree-width (BDBT graphs); we gave an O(d + t)-approximation algo-

rithm for these graphs where d and t are respectively the degree and tree-width

of the graph. Thereafter, in order to generalize the above result to include trees,

we studied a more general class of graphs called Tree of BDBT graphs (TBDBT

graphs) and presented O(d+ t)-approximation algorithm for these graphs where d

and t are respectively the degree and tree-width of any component BDBT graph.

The following problems/questions remain open in the context of replica placement

problem.
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• replica placement on bounded tree-width graphs having arbitrary edge-lengths

• determining the lower bound on approximation ratio for replica placement

on graphs with bounded tree-width having unit edge-lengths

Regarding the typed data placement problem, we studied the variant with two

object types and no facility opening costs; we presented an 4-approximation algo-

rithm for this problem. It remains open to find an algorithm with approximation

factor smaller than 10 for the variant with facility opening costs.
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