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INTRODUCTION: 

 

When faced with a difficult set of mathematical equations, the first course of 

action one often takes is to look for special cases that are the easiest to solve. 

It turns out that such an approach often yields insights into the most 

interesting and physically relevant situations. This is as true for general 

relativity as it is for any other theory of mathematical physics. 

 Therefore for our first application of General theory of Relativity, we 

consider a solution to the field equations that is time independent and 

spherically symmetric. Such a scenario can describe the gravitational field 

found outside of the Sun, for example. Since we might be interested only in 

the field outside of the matter distribution, we can simplify things even further 

by restricting our attention to the matter-free regions of space in the vicinity of 

some mass. Within the context of relativity, this means that one can find a 

solution to the problem using the vacuum equations and ignore the stress-

energy tensor. 

 The solution we will obtain is known as Schwarzschild Solution. It was found in 

1916 by the German Physicist Karl Schwarzschild while he was serving on the Russian front 

during the first world war. 

 In this report I have tried to get the Schwarzschild solution with the 

help of Mathematica software.  If someone has tried earlier to get the solution 

by other methods, he can easily find that knowing Mathematica applications 

how easier it is than the other methods. Actually, using Mathematica we can 

easily solve tedious problems of Theoretical Physics. 

tion we will obtain is known as the Schwarzschild solution. It was 
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BLACK HOLE: 

 

A black hole is a region of 

spacetime from which nothing, 

not even light, can escape. The 

theory of general relativity 

predicts that a sufficiently 

compact mass will deform 

spacetime to form a black 

hole. Around a black hole 

there is a mathematically 

defined surface called an event 

horizon that marks the point of no return. It is called "black" because it absorbs all 

the light that hits the horizon, reflecting nothing, just like a perfect black body in 

thermodynamics. Quantum mechanics predicts that black holes emit radiation like a 

black body with a finite temperature. This temperature is inversely proportional to 

the mass of the black hole, making it difficult to observe this radiation for black 

holes of stellar mass or greater.                                            

Objects whose gravity field is too strong for light to escape were first considered in 

the 18th century by John Michell and Pierre-Simon Laplace. The first modern 

solution of general relativity that would characterize a black hole was found by Karl 

Schwarzschild in 1916, although its interpretation as a region of space from which 

nothing can escape was not fully appreciated for another four decades. Long 

considered a mathematical curiosity, it was during the 1960s that theoretical work 

showed black holes were a generic prediction of general relativity. The discovery of 

neutron stars sparked interest in gravitationally collapsed compact objects as a 

possible astrophysical reality. 

            Black holes of stellar mass are expected to form when very massive stars 

collapse at the end of their life cycle. After a black hole has formed it can continue to 

grow by absorbing mass from its surroundings. By absorbing other stars and merging 

with other black holes, supermassive black holes of millions of solar masses may 
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form. There is general consensus that supermassive black holes exist in the centers of 

most galaxies. In particular, there is strong evidence of a black hole of more than 4 

million solar masses at the center of our galaxy, the Milky Way. 

 Despite its invisible interior, the presence of a black hole can be inferred 

through its interaction with other matter and with light and other electromagnetic 

radiation. From stellar movement, the mass and location of an invisible companion 

object can be calculated; in a number of cases the only known object capable of 

meeting these criteria is a black hole. Astronomers have identified numerous stellar 

black hole candidates in binary systems by studying the movement of their 

companion stars in this way. 

 

Physical properties: 

 

 The simplest black holes have mass but neither electric charge nor angular 

momentum. These black holes are often referred to as Schwarzschild black holes 

after Karl Schwarzschild who discovered this solution in 1916. According to 

Birkhoff's theorem, it is the only vacuum solution that is spherically symmetric. This 

means that there is no observable difference between the gravitational field of such a 

black hole and that of any other spherical object of the same mass. The popular 

notion of a black hole "sucking in everything" in its surroundings is therefore only 

correct near a black hole's horizon; far away, the external gravitational field is 

identical to that of any other body of the same mass. 

 Solutions describing more general black holes also exist. Charged black holes 

are described by the Reissner–Nordström metric, while the Kerr metric describes a 

rotating black hole. The most general stationary black hole solution known is the 

Kerr–Newman metric, which describes a black hole with both charge and angular 

momentum. 

 While the mass of a black hole can take any positive value, the charge and 

angular momentum are constrained by the mass. In Planck units, the total electric 

charge Q and the total angular momentum J are expected to satisfy for a black hole 

of mass M. Black holes saturating this inequality are called extremal. Solutions of 

Einstein's equations that violate this inequality exist, but they do not possess an event 

horizon. These solutions have so-called naked singularities that can be observed 

from the outside, and hence are deemed unphysical. The cosmic censorship 

hypothesis rules out the formation of such singularities, when they are created 
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through the gravitational collapse of realistic matter. This is supported by numerical 

simulations. 

 Due to the relatively large strength of the electromagnetic force, black holes 

forming from the collapse of stars are expected to retain the nearly neutral charge of 

the star. Rotation, however, is expected to be a common feature of compact objects. 

The black-hole candidate binary X-ray source GRS 1915+105 appears to have an 

angular momentum near the maximum allowed value. 

        

 Black hole classifications 

 

           Class                    Mass        Size 

 Supermassive black hole                     ~105–109 MSun  ~0.001–10 AU 

Intermediate-mass black hole    ~103 MSun    ~103km =REarth 

Stellar black hole                 ~10 MSun         ~30 km 

Micro black hole                 up to ~MMoon up to ~0.1 mm 

 

Black holes are commonly classified according to their mass, independent of 

angular momentum J or electric charge Q. The size of a black hole, as determined by 

the radius of the event horizon, or Schwarzschild radius, is roughly proportional to 

the mass M through 

 

  rsh = 2GM/c
2
 ~ 2.95 M/MSun km, 

 

Where rsh is the Schwarzschild radius and MSun is the mass of the Sun. This 

relation is exact only for black holes with zero charge and angular momentum; for 

more general black holes it can differ up to a factor of 2. 

 

Singularity: 

 At the center of a black hole as described by general relativity lies a 

gravitational singularity, a region where the spacetime curvature becomes infinite. 

For a non-rotating black hole this region takes the shape of a single point and for a 

rotating black hole it is smeared out to form a ring singularity lying in the plane of 

rotation. In both cases the singular region has zero volume. It can also be shown that 

the singular region contains all the mass of the black hole solution. The singular 

region can thus be thought of as having infinite density. 

 Observers falling into a Schwarzschild black hole (i.e. non-rotating and no 
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charges) cannot avoid being carried into the singularity, once they cross the event 

horizon. They can prolong the experience by accelerating away to slow their descent, 

but only up to a point; after attaining a certain ideal velocity, it is best to free fall the 

rest of the way. When they reach the singularity, they are crushed to infinite density 

and their mass is added to the total of the black hole. Before that happens, they will 

have been torn apart by the growing tidal forces in a process sometimes referred to 

as spaghettification or the noodle effect. In the case of a charged (Reissner–

Nordström) or rotating (Kerr) black hole it is possible to avoid the singularity. 

 Extending these solutions as far as possible reveals the hypothetical 

possibility of exiting the black hole into a different spacetime with the black hole 

acting as a wormhole. The possibility of traveling to another universe is however 

only theoretical, since any perturbation will destroy this possibility. It also appears to 

be possible to follow closed timelike curves (going back to one's own past) around 

the Kerr singularity, which lead to problems with causality like the grandfather 

paradox. It is expected that none of these peculiar effects would survive in a proper 

quantum mechanical treatment of rotating and charged black holes. 

 The appearance of singularities in general relativity is commonly perceived 

as signaling the breakdown of the theory. This breakdown, however, is expected; it 

occurs in a situation where quantum mechanical effects should describe these actions 

due to the extremely high density and therefore particle interactions. To date it has 

not been possible to combine quantum and gravitational effects into a single theory. 

It is generally expected that a theory of quantum gravity will feature black holes 

without singularities. 

 

Schwarzschild Solution: 

 

As a simple application of Einstein’s equations, let us determine the 

gravitational field (metric) of a static, spherically symmetric star. Many stars 

conform to this condition. There are also many others that behave differently. For 

example, a star may have asymmetries associated with it, it may be rotating or it may 

be pulsating. However, the static, spherically symmetric star is a simple example for 

which the metric can be solved exactly. Therefore, it leads to theoretical predictions 

which can be verified as tests of general relativity. 
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Line element 

 

Although Einstein’s equations are highly nonlinear, the reason why we can solve 

them for a static, spherically symmetric star is that the symmetry present in the 

problem restricts the form of the solution greatly. For example, since the gravitating 

mass (source) is static, the metric components would be independent of time. 

Furthermore, the spherical symmetry of the problem requires that the components of 

the metric can depend only on the radial coordinate r. Let us recall that in spherical 

coordinates, the flat space-time can be characterized by the line element: 

     

dτ 
2
 = dt

2
 − (dr 

2
 + r 

2
 (dθ 

2
 + sin

2
 θdφ

2
 ))    (1) 

 

We can generalize this line element to a static, isotropic curved space as 

 

dτ 
2
 = A(r)dt

2
 – (B(r)dr 

2
 + C(r)r 

2
 dθ 

2
 + D(r)r 

2
 sin

2
 θdφ

2
 )    (2) 

 

The following assumptions have gone into writing the line element in this form. 

First of all since the metric components are independent of time, the line element 

should be invariant if we let dt → −dt. This implies that linear terms in dt cannot 

occur. Isotropy similarly tells that if we let dθ → −dθ or dφ → −dφ, the line element 

should be invariant. Thus terms of the form drdθ, drdφ or dθdφ cannot occur either. 

This restricts the form of the metric to be diagonal. 

     Let us now look at the line element (2) at a fixed time and radius. At the north 

pole (dφ = 0) with Є= rdθ, we have 

     

dτ² = −C(r) Є² .                        (3) 

 

On the other hand, if we look at the line element in the same slice of space-time but 

 

at the equator (θ = π ) with  Є = rdφ, then 

                                           

dτ² = −D(r) Є² .                                          (4) 

 

However, if the space is isotropic then these two lengths must be equal which 

requires 
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C(r) = D(r).                                            (5) 

 

Thus we can write the line element (2) as 

 

 

 

dτ² = A(r)dt² − B(r)dr² − C(r)r² (dθ² + sin² θdφ² ).   (6) 

 

We note here that the function C(r) in (6) is redundant in the sense that it can be 

scaled away. Namely, if we let 

 

 

r →r~ = [C(r)]
1/2

 r,        (7) 

 

then 

 

 dr~=  dr [(C(r)) 
1/2

  +rC’(r)/2(C(r))
1/2

] 

 

or  dr = f(r~) dr~       (8) 

 

where we have identified (prime denotes a derivative with respect to r) 

 

 f(r~) = 2(C(r))
1/2 

/ 2C(r)+rC’(r)     (9) 

  

This shows that with a proper choice of the coordinate system the line element for a 

static, spherically symmetric gravitational field can be written as 

 

 dτ² = A(r)dt² − B(r)dr² − r² (dθ² + sin²θdφ² )   (10) 

 

which is known as the general Schwarzschild line element. 

 

Connection 

 

  As we see now, the Schwarzschild line element (10) is given in terms 

of two unknown functions A(r) and B(r). The metric components can be read 
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off from the line element (10) to be 

 

 

g00 = gtt = A(r), 

 

g11 = grr = −B(r), 

 

g22 = gθθ = −r
2
 , 

 

g33 = gφφ = −r
2
 sin

2
θ.       (11) 

 

This is a diagonal metric and hence the nontrivial components of the inverse 

metric can also be easily written down as 

 

g
00

 = g
tt
 =1/A(r), 

 

g
11

 = g
rr
 = -1/B(r), 

 

g
22

 = gθθ = -1/r
2
, 

 

g
33

 = gφφ = -1/r
2
sin

2θ.       (12) 

 

 

We can solve Einstein’s equations far away from the star to determine the 

forms of the functions A(r), B(r). That is outside the star we can solve the 

empty space equation 

  

 Rµν= 0,        

 (13) 

 

Subject to the boundary condition that infinitely far away from the star, the 

metric reduces to Minkowski form (8.1). To solve Einstein’s equations we 

must, of course, calculate the connections and the curvature tensor. For 
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example, the definition of the Christoffel symbol we have 

 

 `Г
μ

νλ = -(1/2)  g
μρ 

(∂ν gλρ+ ∂λ gρν - ∂ρ gνλ ),    (14) 

 

 

And since we know the metric components, these can be calculated. But this 

method is tedious and let us try to determine the components of the connection 

using Mathematica software package. 
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PDF version of subprograms run into Mathematica to get Schwarzschild blackhole 

solution have been shown in the next page. 
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 so that the 11-component of (13) leads to 

 

 
   R11 = 0 
 

 => R11 = A''/2B – A'B'/2B
2
 -A'/2B(A'/2A B'/2B -2/r) = 0. 
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 or, 

 

A''/2B – (A'/4B) (A'/A +B'/B)+ A'/rB=0.      (15) 

 

 The 22- component of (13) leads to 

 

 R22 = 0, 
  

 

or, A''/2A  - (¼) (A'/A)(A'/A + B'/B)  - B'/rB = 0     (16) 

 

 

 The 33- component of (13) yields 

 

 R33 = 0, 
 

 or, (1/B) + (r/2B) (A'/A -B'/B) – 1 = 0 

  

 Multiplying (15) by B/A and subtracting from (16) we have 

 

   lim A(r)   ----> 1 

   r-->∞ 
   
   lim B(r)  ----> 1 

   r-->∞                  (17) 
 

  This therefore. Determines the constant of integration in  to be 
 

 

k = 1,            (18) 
 

 and we have 
 

 A(r) B(r) = 1 
 

 or, B(r) = 1/A(r)           

       (19) 
 

 If we now substitute this relation , we obtain       
 

A(r) + (rA/2) (A'/A + A'/A) – 1 = 0        
    
   or, A(r) + rA'(r) = 1 
    
   or, d(rA(r))/dr  = 1 
 

or, rA(r) = r + const.  = r + m      (20) 
 

 so that 
 

 

 

   A(r) = 1+ m/r , 
 

    
B(r) = 1/A(r)  =  (1 + m/r ) 

- 1
           (21) 
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 here m is a constant of integration to be determined. 
   
   We can now write down the Schwarzschild line element (13) in the form 

 

 

 

dτ² = ( 1 + m/r) dt² − ( 1+ m/r) 
- 1

 dr² − r² (dθ² + sin²θdφ² )    (22) 

 

Let us emphasise here that there are ten equations of Einstein 

 

Rµν = 0       (23) 

 

and we have used only three of them to determine the form of the Schwarzschild line 

element. Therefore, it remains to be shown that the seven equations are consistent with the 

solution in (22). In fact it can be easily shown that 

 

 Rµν = 0,  for µ ≠ν , 

 

 R33 = sin
2
Θ R22  = 0       (24) 

 

so that all the ten equations are consistent with the line element (22). 

 

 To determine the constant o integration m, let us note that very far away from a star 

of mass M we have seen that the metric has the form 

 

 g00  = 1 + 2 ∅(r) = 1 – 2GNM/r      (25) 

 

Where M denotes the mass of the star. Comparing this with the solution in (22) we 

determine the constant of integration to be 

 

 m= - 2GNM,        (26) 

 

 

so that the Schwarzschild line element (22) takes the final form 

 

dτ² = (1 - 2GNM /r) dt² − ( 1- 2GNM /r) 
- 1

 dr² − r² (dθ² + sin²θdφ² )        (27) 

 

This determines the form of the line element and, therefore, the metric uniquely. 

 

 One striking feature of the Schwarzschild metric (27) is that at r =  2GNM, 
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  g00 = 0,  grr  ∞             (28) 

 That is, the Schwarzschild metric is singular at the Schwarzschild radius defined by 

 

  rs =  2GNM 

 

 For most objects, this radius lies inside the object. For example, since 

 

  GN ≈ 7 X 10-29 cm gm
-1

, 

  M (earth) ≈ 6 X1024
 kg = 6 X 1027

 gm,   (29) 

 

 The Schwarzschild radius for earth has the value 

  

  rs(earth) = 2GNM (earth) 

  ≈ 0.84 cm,       (30) 

 

Which is well inside the earth. 
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