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INTRODUCTION: 

 

 For our first application of General 

theory of Relativity, we consider a 

solution to the field equations that is time 

independent and spherically symmetric. 

Since we might be interested only in the 

field outside of the matter distribution, we 

can simplify things even further by 

restricting our attention to the matter-free 

regions of space in the vicinity of some 

mass. Within the context of relativity, this 

means that one can find a solution to the 

problem using the vacuum equations and 

ignore the stress-energy tensor. 

 The solution we will obtain is known 

as Schwarzschild Solution. It was found in 

1916 by the German Physicist Karl 
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Schwarzschild while he was serving on 

the Russian front during the first world 

war. 

 In this report I have tried to get the 

Schwarzschild solution with the help of 

Mathematica software.  If someone has 

tried earlier to get the solution by other 

methods, he can easily find that knowing 

Mathematica applications how easier it is 

than the other methods. Actually, using 

Mathematica we can easily solve tedious 

problems of Theoretical Physics. 

tion we will obtain is known as the 

Schwarzschild solution. It was 
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BLACK HOLE: 

 

● A black hole is a region of spacetime 

from which nothing, not even light, can 

escape. 

● The theory of general relativity 

predicts that a sufficiently compact mass 

will deform spacetime to form a black 

hole. 

● Around a black hole there is a 

mathematically defined surface called an 

event horizon that marks the point of no 

return. 

● It is called "black" because it absorbs 

all the light that hits the horizon, 

reflecting nothing, just like a perfect black 

body in thermodynamics. 

●  Quantum mechanics predicts that 
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black holes emit radiation like a black 

body with a finite temperature. This 

temperature is inversely proportional to 

the mass of the black hole, making it 

difficult to observe this radiation for black 

holes of stellar mass or greater.    

●  The first modern solution of general 

relativity that would characterize a black 

hole was found by Karl Schwarzschild in 

1916. 

● Long considered a mathematical 

curiosity, it was during the 1960s that 

theoretical work showed black holes were 

a generic prediction of general relativity. 

● Black holes of stellar mass are 

expected to form when very massive stars 

collapse at the end of their life cycle. 
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● After a black hole has formed it can 

continue to grow by absorbing mass from 

its surroundings. By absorbing other stars 

and merging with other black holes, 

supermassive black holes of millions of 

solar masses may form. 

● There is strong evidence of a black 

hole of more than 4 million solar masses 

at the center of our galaxy, the Milky Way. 

● Despite its invisible interior, the 

presence of a black hole can be inferred 

through its interaction with other matter 

and with light and other electromagnetic 

radiation. 

● From stellar movement, the mass and 

location of an invisible companion object 

can be calculated; in a number of cases 

the only known object capable of meeting 
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these criteria is a black hole. 

 Physical properties: 

● The simplest black holes have mass 

but neither electric charge nor angular 

momentum. 

● These black holes are often referred to 

as Schwarzschild black holes after Karl 

Schwarzschild who discovered this 
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solution in 1916. 

● According to Birkhoff's theorem, it is 

the only vacuum solution that is 

spherically symmetric. 

● The popular notion of a black hole 

"sucking in everything" in its 

surroundings is therefore only correct near 

a black hole's horizon; far away, the 

external gravitational field is identical to 

that of any other body of the same mass. 

● Solutions describing more general 

black holes also exist. Charged black 

holes are described by the Reissner–

Nordström metric, while the Kerr metric 

describes a rotating black hole. 

● The most general stationary black hole 

solution known is the Kerr–Newman 

metric, which describes a black hole with 
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both charge and angular momentum. 

 Black hole classifications 

  Class                   Mass        Size 

Supermassive  

black hole    ~105–109 MSun  ~0.001–10 AU 

Intermediate-mass  

black hole    ~103 MSun      ~103km =REarth 

Stellar black  

hole              ~10 MSun         ~30 km 

Micro black  

hole    up to ~MMoon up to ~0.1 mm 

 

● Black holes are commonly classified 

according to their mass, independent of 

angular momentum J or electric charge Q. 

● The size of a black hole, as 

determined by the radius of the event 

horizon, or Schwarzschild radius, is 
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roughly proportional to the mass M 

through 

 

  rsh = 2GM/c
2
 ~ 2.95 M/MSun km, 

 

 Where rsh is the Schwarzschild radius 

and MSun is the mass of  the Sun. 

● This relation is exact only for black 

holes with zero charge and angular 

momentum; for more general black holes 

it can differ up to a factor of 2. 

Singularity: 

● At the center of a black hole as 

described by general relativity lies a 

gravitational singularity, a region where 

the spacetime curvature becomes infinite. 

● It can also be shown that the singular 

region contains all the mass of the black 
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hole solution. The singular region can thus 

be thought of as having infinite density. 

● Observers falling into a Schwarzschild 

black hole (i.e. non-rotating and no 

charges) cannot avoid being carried into 

the singularity, once they cross the event 

horizon. 

● In the case of a charged (Reissner–

Nordström) or rotating (Kerr) black hole it 

is possible to avoid the singularity. 

●  To date it has not been possible to 

combine quantum and gravitational 

effects into a single theory. It is generally 

expected that a theory of quantum gravity 

will feature black holes without 

singularities. 

 

Schwarzschild Solution: 
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● As a simple application of Einstein’s 

equations, let us determine the 

gravitational field (metric) of a static, 

spherically symmetric star. 

● Many stars conform to this condition. 

There are also many others that behave 

differently. 

● For example, a star may have 

asymmetries associated with it, it may be 

rotating or it may be pulsating. However, 

the static, spherically symmetric star is a 

simple example for which the metric can 

be solved exactly. 

● Therefore, it leads to theoretical 

predictions which can be verified as tests 

of general relativity. 

Line element: 

● Although Einstein’s equations are 
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highly nonlinear, the reason why we can 

solve them for a static, spherically 

symmetric star is that the symmetry 

present in the problem restricts the form 

of the solution greatly. 

● For example, since the gravitating 

mass (source) is static, the metric 

components would be independent of 

time. 

● Furthermore, the spherical symmetry 

of the problem requires that the 

components of the metric can depend only 

on the radial coordinate r. 

● Let us recall that in spherical 

coordinates, the flat space-time can be 

characterized by the line element: 

dτ 
2
 = dt

2
 − (dr 

2
 + r 

2
 (dθ 

2
 + sin

2
 θdφ

2
 )) 

  (1) 



15 

● We can generalize this line element to 

a static, isotropic curved space as 

dτ 
2
 = A(r)dt

2
 – (B(r)dr 

2
 + C(r)r 

2
 dθ 

2
 + 

D(r)r
2
 sin

2
 θdφ

2
 )  (2) 

(The following assumptions have gone 

into writing the line element in this form. 

First of all since the metric components 

are independent of time, the line element 

should be invariant if we let dt → −dt. 

This implies that linear terms in dt cannot 

occur. Isotropy similarly tells that if we let 

dθ → −dθ or dφ → −dφ, the line element 

should be invariant. Thus terms of the 

form drdθ, drdφ or dθdφ cannot occur 

either. This restricts the form of the metric 

to be diagonal.) 

● Let us now look at the line element (2) 

at a fixed time and radius. At the north 



16 

pole (dφ = 0) with Є= rdθ, we have 

    dτ² = −C(r) Є² .                   (3) 

● On the other hand, if we look at the 

line element in the same slice of space-

time but at the equator (θ = π ) with  Є = 

rdφ, then 

   dτ² = −D(r) Є²                          (4) 

● However, if the space is isotropic then 

these two lengths must be equal which 

requires 

C(r) = D(r).                               (5) 

Thus we can write the line element (2) as 

dτ² = A(r)dt² − B(r)dr² − C(r)r² (dθ² + 

sin² θdφ² ).        (6) 

We note here that the function C(r) in (6) 

is redundant in the sense that it can be 

scaled away. Namely, if we let 

r →r~ = [C(r)]
1/2

 r,     (7) 
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then 

dr~=  dr [(C(r)) 
1/2

  +r C’(r)/2(C(r))
1/2

] 

 

or  dr = f(r~) dr~      (8) 

where we have identified (prime denotes 

a derivative with respect to r) 

f(r~) = 2(C(r))
1/2 

/ 2C(r)+rC’(r)  (9) 

 This shows that with a proper choice 

of the coordinate system the line element 

for a static, spherically symmetric 

gravitational field can be written as 

dτ² = A(r)dt² − B(r)dr² − r² (dθ² + 

sin²θdφ² )        (10) 

which is known as the general 

Schwarzschild line element. 

Connection 

  As we see now, the Schwarzschild line 

element (10) is given in terms of two 
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unknown functions A(r) and B(r). The 

metric components can be read off from 

the line element (10) to be 

g00 = gtt = A(r), 

g11 = grr = −B(r), 

g22 = gθθ = −r
2
 , 

g33 = gφφ = −r
2
 sin

2
θ.     (11) 

This is a diagonal metric and hence the 

nontrivial components of the inverse 

metric can also be easily written down as 

g
00

 = g
tt
 =1/A(r), 

g
11

 = g
rr
 = -1/B(r), 

g
22

 = g
θθ

 = -1/r
2
, 

g
33

 = g
φφ

 = -1/r
2
sin

2
θ.     (12) 

● We can solve Einstein’s equations far 

away from the star to determine the forms 

of the functions A(r), B(r). That is outside 

the star we can solve the empty space 
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equation 

  Rµν= 0,       (13) 

● Subject to the boundary condition that 

infinitely far away from the star, the 

metric reduces to Minkowski form (8.1). 

● To solve Einstein’s equations we must, 

of course, calculate the connections and 

the curvature tensor. For example, the 

definition of the Christoffel symbol we 

have 

Г
μ

νλ = -(1/2)  g
μρ 

(∂ν gλρ+ ∂λ gρν - ∂ρ gνλ ), (14) 

 And since we know the metric 

components, these can be calculated. But 

this method is tedious and let us try to 

determine the components of the 

connection using Mathematica software 

package. 
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PDF version of subprograms run into 

Mathematica to get Schwarzschild blackhole 
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solution have been shown in the next page. 
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30  so that the 11-component of (13) leads to 
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  R11 = 0 

 

=> R11 = A''/2B – A'B'/2B
2
 -A'/2B(A'/2A B'/2B -

2/r) = 0. 

 or, 

A''/2B – (A'/4B) (A'/A +B'/B)+ A'/rB=0.  (15) 

 

 The 22- component of (13) leads to 

 

 R22 = 0, 

or, A''/2A  - (¼) (A'/A)(A'/A + B'/B)  - B'/rB = 0 

    (16) 

 

 The 33- component of (13) yields 

 

 R33 = 0, 

 

 or, (1/B) + (r/2B) (A'/A -B'/B) – 1 = 0 

  

 Multiplying (15) by B/A and subtracting from 

(16) we have 

 

   lim A(r)   ----> 1 

   r-->∞ 

   lim B(r)  ----> 1 

   r-->∞         (17) 
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  This therefore. Determines the constant of 

integration to be 1. 

 and we have 

 A(r) B(r) = 1 

 

 or, B(r) = 1/A(r)       (19) 

 If we now substitute this relation , we obtain 

      

A(r) + (rA/2) (A'/A + A'/A) – 1 = 0     

  or, A(r) + rA'(r) = 1 

  or, d(rA(r))/dr  = 1 

or, rA(r) = r + const.  = r + m     (20) 

 

 so that 

   A(r) = 1+ m/r , 

B(r) = 1/A(r)  =  (1 + m/r ) 
- 1

        (21) 

 here m is a constant of integration to be 

determined. 

  We can now write down the Schwarzschild 

line element (13) in the  form 

dτ² = ( 1 + m/r) dt² − ( 1+ m/r) 
- 1

 dr² − r² (dθ² 

+ sin²θdφ² )  (22) 

Let us emphasise here that there are ten 

equations of Einstein 

Rµν = 0       (23) 
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and we have used only three of them to 

determine the form of the Schwarzschild 

line element. 

● Therefore, it remains to be shown that 

the seven equations are consistent with the 

solution in (22). In fact it can be easily 

shown that 

  Rµν = 0,  for µ ≠ν , 

 R33 = sin
2θ R22  = 0    (24) 

so that all the ten equations are consistent 

with the line element (22). 

● To determine the constant of 

integration m, let us note that very far 

away from a star of mass M we have seen 

that the metric has the form 

g00  = 1 + 2 ∅ (r) = 1 – 2GNM/r  (25) 

 Where M denotes the mass of the star. 

● Comparing this with the solution in 
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(22) we determine the constant of 

integration to be 

 m= - 2GNM,      (26) 

so that the Schwarzschild line element 

(22) takes the final form 

dτ² = (1 - 2GNM /r) dt² − ( 1- 2GNM /r) 
- 1

 

dr² − r² (dθ² + sin²θdφ² )        (27) 

This determines the form of the line element 

and, therefore, the metric uniquely. 

One striking feature of the Schwarzschild 

metric (27) is that at r =  2GNM, 

  g00 = 0,  grr -->∞   (28) 

 That is, the Schwarzschild metric is 

singular at the Schwarzschild radius 

defined by 

  rs =  2GNM 

● For most objects, this radius lies 

inside the object. For example, since 
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  GN ≈ 7 X 10
-29

 cm gm
-1

, 

M (earth) ≈ 6 X10
24

 kg = 6 X 10
27

 gm,  (29) 

The Schwarzschild radius for earth has 

the value 

  rs(earth) = 2GNM (earth) 

  ≈ 0.84 cm,      (30) 

Which is well inside the earth. 
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