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INTRODUCTION:

For our first application of General
theory of Relativity, we consider a
solution to the field equations that is time
Independent and spherically symmetric.
Since we might be interested only in the
field outside of the matter distribution, we
can simplify things even further by
restricting our attention to the matter-free
regions of space in the vicinity of some
mass. Within the context of relativity, this
means that one can find a solution to the
problem using the vacuum equations and
Ignore the stress-energy tensor.

The solution we will obtain is known
as Schwarzschild Solution. It was found In
1916 by the German Physicist Karl



Schwarzschild while he was serving on
the Russian front during the first world
war.

In this report | have tried to get the
Schwarzschild solution with the help of
Mathematica software. If someone has
tried earlier to get the solution by other
methods, he can easily find that knowing
Mathematica applications how easier it Is
than the other methods. Actually, using
Mathematica we can easily solve tedious

problems of Theoretical Physics.
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BLACK HOLE:

A black hole is a region of spacetime
from which nothing, not even light, can
escape.

The theory of general relativity
predicts that a sufficiently compact mass
will deform spacetime to form a black
hole.

Around a black hole there is a
mathematically defined surface called an
event horizon that marks the point of no
return.

It is called "black™ because it absorbs
all the light that hits the horizon,
reflecting nothing, just like a perfect black
body in thermodynamics.

Quantum mechanics predicts that



black holes emit radiation like a black
body with a finite temperature. This
temperature Is inversely proportional to
the mass of the black hole, making it
difficult to observe this radiation for black
holes of stellar mass or greater.

The first modern solution of general
relativity that would characterize a black
hole was found by Karl Schwarzschild in
1916.

Long considered a mathematical
curiosity, it was during the 1960s that
theoretical work showed black holes were
a generic prediction of general relativity.

Black holes of stellar mass are
expected to form when very massive stars

collapse at the end of their life cycle.



After a black hole has formed it can
continue to grow by absorbing mass from
Its surroundings. By absorbing other stars
and merging with other black holes,
supermassive black holes of millions of
solar masses may form.

There Is strong evidence of a black
hole of more than 4 million solar masses
at the center of our galaxy, the Milky Way.

Despite its invisible interior, the
presence of a black hole can be inferred
through its interaction with other matter
and with light and other electromagnetic
radiation.

From stellar movement, the mass and
location of an invisible companion object
can be calculated; in a number of cases

the only known object capable of meeting



these criteria i1s a black hole.

Physical properties:

Simulated view of a black hole (center) in front of the Large

Magellanic Cloud. Note the gravitatonal lensing effect, which
produces two enlarged but highly distorted views of the Cloud.
Across the top, the Milky Way disk appears distorted into an arc.

The simplest black holes have mass
but neither electric charge nor angular
momentum.

These black holes are often referred to
as Schwarzschild black holes after Karl

Schwarzschild who discovered this



solution in 1916.

According to Birkhoff's theorem, it is
the only vacuum solution that Is
spherically symmetric.

The popular notion of a black hole
"sucking Iin  everything" In IS
surroundings Is therefore only correct near
a black hole's horizon; far away, the
external gravitational field is identical to
that of any other body of the same mass.

Solutions describing more general
black holes also exist. Charged black
holes are described by the Reissner—
Nordstrom metric, while the Kerr metric
describes a rotating black hole.

The most general stationary black hole
solution known is the Kerr—Newman

metric, which describes a black hole with



both charge and angular momentum.
Black hole classifications

Class Mass Size

Supermassive

black hole ~105-109 MSun ~0.001-10 AU
Intermediate-mass

black hole ~103 MSun  ~103km =REarth
Stellar black

hole ~10 MSun ~30 km
Micro black
hole up to ~MMoon up to ~0.1 mm

Black holes are commonly classified
according to their mass, independent of
angular momentum J or electric charge Q.

The size of a black hole, as
determined by the radius of the event
horizon, or Schwarzschild radius, s
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roughly proportional to the mass M

through

ry, = 2GM/c® ~ 2.95 M/Mg,, km,

Where rsh is the Schwarzschild radius
and Mg, 1S the mass of the Sun.

This relation is exact only for black
holes with zero charge and angular
momentum; for more general black holes

It can differ up to a factor of 2.

Singularity:

11

At the center of a black hole as
described by general relativity lies a
gravitational singularity, a region where
the spacetime curvature becomes infinite.

It can also be shown that the singular

region contains all the mass of the black
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hole solution. The singular region can thus
be thought of as having infinite density.

Observers falling into a Schwarzschild
black hole (i.e. non-rotating and no
charges) cannot avoid being carried into
the singularity, once they cross the event
horizon.

In the case of a charged (Reissner—
Nordstrom) or rotating (Kerr) black hole it
IS possible to avoid the singularity.

To date it has not been possible to
combine quantum and gravitational
effects into a single theory. It is generally
expected that a theory of quantum gravity
will  feature black holes without

singularities.

Schwarzschild Solution:




13

As a simple application of Einstein’s
equations, let us determine the
gravitational field (metric) of a static,
spherically symmetric star.

Many stars conform to this condition.
There are also many others that behave
differently.

For example, a star may have
asymmetries associated with it, it may be
rotating or it may be pulsating. However,
the static, spherically symmetric star is a
simple example for which the metric can
be solved exactly.

Therefore, it leads to theoretical
predictions which can be verified as tests
of general relativity.

Line element:

Although Einstein’s equations are
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highly nonlinear, the reason why we can
solve them for a static, spherically
symmetric star Is that the symmetry
present in the problem restricts the form
of the solution greatly.

For example, since the gravitating
mass (source) Is static, the metric
components would be independent of
time.

Furthermore, the spherical symmetry
of the problem requires that the
components of the metric can depend only
on the radial coordinate r.

Let us recall that in spherical
coordinates, the flat space-time can be
characterized by the line element:

dt?=dt*— (dr® +r *(d0 * + sin® 8do?))

(1)
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We can generalize this line element to

a static, i1sotropic curved space as
dt > = A(ndt* — (B(r)dr  + C(r)r 2 de * +
D(r)r* sin® 8do?) (2)
(The following assumptions have gone
Into writing the line element in this form.
First of all since the metric components
are independent of time, the line element
should be iInvariant If we let dt — —dt.
This implies that linear terms in dt cannot
occur. Isotropy similarly tells that if we let
d0 — —db or dp — —do, the line element
should be iInvariant. Thus terms of the
form drdO, drde or dOde cannot occur
either. This restricts the form of the metric

to be diagonal.)

Let us now look at the line element (2)

at a fixed time and radius. At the north
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pole (dop = 0) with €= rdf, we have
dr? = —C(r) €2. (3)
On the other hand, If we look at the
line element in the same slice of space-
time but at the equator (0 = n ) with € =
rde, then
di2 = —D(r) €7 (4)
However, if the space is isotropic then
these two lengths must be equal which
requires
C(r) = D(r). (5)
Thus we can write the line element (2) as
dr> = A(r)dt2 — B(r)dr? — C(r)r? (d6? +
sSin? Bdg? ). (6)
We note here that the function C(r) in (6)
IS redundant in the sense that it can be
scaled away. Namely, if we let
r —r~ = [C(N]**r, (7)
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then
dr~= dr [(C(r)) Y +r C’(1)/2(C(r))*?]

or dr =f(r~) dr~ (8)
where we have identified (prime denotes
a derivative with respect to r)
f(r~) = 2(C(r)"?/ 2C(r)+rC’(r) (9)

This shows that with a proper choice
of the coordinate system the line element
for a static, spherically symmetric
gravitational field can be written as
de? = A(r)dt2 — B(r)dr? — r? (d6? +
Sin26dgp? ) (10)
which i1s known as the general
Schwarzschild line element.

Connection
As we see now, the Schwarzschild line

element (10) is given in terms of two
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unknown functions A(r) and B(r). The
metric components can be read off from
the line element (10) to be

Joo = G = A(r),

011 = Qrr = —B(1),

022 = Qoo = 1,

Qa3 = Jop = —T° SIN°0. (11)
This Is a diagonal metric and hence the
nontrivial components of the Inverse
metric can also be easily written down as
g” = g" =1/A(r),

g =g" =-1/B(n),

gzz — gee = 1r%

9> = g* = -1/r’sin°0. (12)

We can solve Einstein’s equations far

away from the star to determine the forms
of the functions A(r), B(r). That is outside

the star we can solve the empty space
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equation
R,=0, (13)
Subject to the boundary condition that
Infinitely far away from the star, the
metric reduces to Minkowski form (8.1).
To solve Einstein’s equations we must,
of course, calculate the connections and
the curvature tensor. For example, the
definition of the Christoffel symbol we

have

I =-(1/2) 9" (0,9t 00 - OpGn), (14)

And since we know the metric
components, these can be calculated. But
this method is tedious and let us try to
determine the components of the
connection using Mathematica software

package.



Christoffel Symbols and Geodesic Equation

This is a Mathematica program to compute the Christoffel and the geodesic equations, starting from a given metric by
The Christoffel symbols are calculated from the formula

=38 0, 8o+, 8y =0 )

where g is the matrix inverse of gy, called the inverse metric. This is the solution of the relation (8.19) and the notation
for the inverse metric is standard [cf (20.17)]. The components of the geodesic equation are

di'ldr=-I"y, '
You must input the covariant components of the metric tensor g, by editing the relevant input line in this Mathematica

notebook. You may also wish to change the names of the coordinates. The nonzero components of the above quantities are
displayed as the output.

8 Clearing the values of symbols:

First clear any values that may already have been assigned to the names of the various objects to be calculated. The names
of the coordinates that you will use are also cleared.

Clear[coord, metric, inversemetric, affine, r, 6, 0, t]

1 Setfing The Dimension

The dimension n of the spacetime (or space) must be set:
n=4
{

20



8 Defining a list of coordinates:

The example given here is the wormhole metric (7.40). Note that for convenience f is denoted by x* rather than ’ and
summations run from | to 4 rather than 0to 3.

coord = (r, 6, ¢, t}

(56,0, t]

You can change the names of the coordinates by simply editing the definition of coord, for example, to coord = {x, y, z, t},
when another sef of coordinate names is more appropriae.

8 Defining the metric:

[nput the metric as a list of lists, 1.e., as a matrix. You can input the components of any metric here, but you must specify
them as explicit functions of the coordinates,

metric= ({1, 0,0, 0}, {0, £*24b%2, 0, 0}, {0, 0, (£*2+b*2) 8in[6] *2, 0), {0, 0, 0, -1})
[(,0,0,0, (0, 8+£,0,0), (0,0, (5" +2) Sinf5]", 0], {0, 0,0, -1}

You can also display this in matrix form;

metric// MatrixForm

10 0 0
0 B2 0 0
0 0 (B:r) Sinfs]* 0
00 0 1

21



1 Note;

It 15 important ot fo use the symbols, i, J, K, |, n,or s as constants or coordinates n the merc that you specify above, The
teason i5 that the first four of those symbols are used as summation or table indices in the calculations done below. The [as
Is the dimension of the space,

1 Calculating the inverse mefri:

The inverse metric 15 obtained through matrix nvesion,

inversemetric= Simplify[Inverse(metric]]

Csc[s]’

140,00, {0 B

g 0000

0,10,0,0,-1)

The inverse metric can also be displayed in matrix form;

inversemetric /| MatrixFomm

1 0 0 0
1
OWOO
K
oo%o
00 0 -l
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1 Calculating the affine connection:

The calculation of the components of the affine connection is done by transcribing the definition given earlier into the
notation of Mathematica and using the Mathematica functions D for taking partial derivatives, Sum for summing over
repeated indices, Table for forming a list of components, and Simplify for simplifying the result

affine := affine = Simplify[Table[(1/2) + Sum[ (inversemetric([i, s]]) #
(D[metric[[s, j]], coord[[k]] ] +
D[metric([s, k]], coord([j]] ] - D[metric[(], k]], coord[[s]] ]), {s, 1, n}],
(i, 1,0}, (j, 1, n}, {k 1, n}] ]

1 Displaying the affine connecfion:

The nonzeo components of the aftine connections are displayed below. You ned not follow the defais of constructing the
functions that we use for that purpose. Because the atfine connection is symmetric under nterchange of the last two Indices,
only the independent components are displayed.

listaffine := Table[ If{ UnsameQ[affine[[1, j, K]], 0],
(ToString[P[d, j, k], affine[[1, j, KII}], {4, 1, m}, {3, 1, n}, {k, 1, j})

TableForm[Part it ion| DeleteCases| Flatten| listaffine], Null], 2], TableSpacing+ (2, 2}]
ML 22 -r

111, 3,3 -rSinjs)’

12,2 1 ﬁ

[12, 3, 3] -Cos[g] Sin[g]

M3, 3,1 o=

[13, 3,2 Cotld]
23



1 Caleulafing the geodesic equafions:

The geodesic equations are calculated by asking Mathematica to carry ot the sum 4 Muﬁ I, where if* are the compo-
nents of the four-velocity. (This gives the derivitive of i with respect to proper time 7. (This is replaced by s if the
gedesics are spacelike

geodesic := geodesic = Simplify(Table[-Sun[affine[[1, j, k] u[j] u[k], {j, I, n},
(k, 1, n}], {4, 1, n}]]

1 Displaying the geodesic equations:
listgeodesic := Table[{"d/di" ToString{u[i]], "=", geodesic[[1]]}, {1, 1, n}]
TableForn[listgeodesic, TableSpacing+ {2)]

didru[l] = r(u[2)?+Sine)’ u3)

d/dru2] = -257 7 4 Cos[g] Sin[g) u[3]’
didruf3] = -2 - 200t (6] u[2] u[3]
ddru/d] = 0

1 Acknowledgment

This program was adapted from the notebook Curvature and the Einstein equation kindly written by Leonard Parker
especially for this text.

PDF version of subprograms run into

Mathematica to get Schwarzschild blackhole
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solution have been shown in the next page.
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Clear[coord, metric, inversemetric, affine, t, r, 6, ¢]

n=4{

{

coord = {t, r, 6, ¢}

{t, £, 6,0]

metric = {{-A[r], 0, 0, 0}, {0, B[r], 0, 0}, {0, 0, £*2, 0}, {0, 0,0, (r*2) Sin[6] *2}}
{[-alz], 0,0, 0, {0, Blz], 0,0], {0,0, 2%, 0], {0, 0,0, £* sin[5]*)]

metric /| MatrixForm

[-Ar] 0 0 0

inversemetric = Simplify [ Inverse [metric]]

1 1 1 Csc[6)?

H— 0, 0, UHU, 0, oHo, 0, —2,0}, {a, 0,0, — H

Alr] B[r] r r

affine := affine = Simplify [Table[(1/2) « Sum[( inversemetric[[i, 5]]) #
(D[metric([s, j]], coord[[k]] ]+
D[metric[[s, k]], coord([]]] | - Dmetric[[J, k]|, coord[[s]] ]), {s, 1, n}],
(i, 1, n}, {j, 1, n}, {k, 1, n}] ]
listaffine ;= Table [If[UnsameQ[affine[[i, j, k]], 0], {ToString[I'[i, j, k]|, affine[[1, j, k]]}],
(i, 1, 0}, {3 1, n}, {k, 1, 3}]

26



TableForm | Partition | DeleteCases| Flatten | Listaffine|, Null], 2|, TablaSpacing < {2, 2}]

i, g1 A
0]
o, 1,1 —=
28]1]

12,22 —=

[2, 313 -—

M2, 4, 4] -

1332 -

I[3, 4, 4] -Cos[0) Sin[0]

1

T[4, 4, 2

I

Il4, 4, 3 cetlf

geodesic := geodesic = Simplify [Table|- Sun|affine[[1, 5, k]] u[3] u[k], {j, 1, n},
(k, 1, 0], {i, 1, n]]

listgeodagic := Tabla[{"d/ dr" ToString[u[i]], "=", geodssic|[1]]}, {1, I, n}]



TahleFor| listgaodesic, TahleSpacing < {2}]

i[1] a2 21
d/d: ull] -

2r a3 ain 5] o0 Yo 1T 2R
d/d: w2 |

23(1]

202 u3

d/d:u[3 [ o + Cos 8] Sin[6] u[4]?
4

2|2 +r ot [6) 03] uld

d;rdEU[ﬂ (UHI ||U‘ ‘ UH

riemann ;= riemam = Simplify [ Table
D[affine([1, 5, 1]], coord[[k]] | - D[affine[[i, J, k]|, coord[[1]] |+
Sum[affine[[s, j, || affine[[i, k, s|] - affine[[s, j, k]| affine[[1, 1, 3]],
(s, 1},
(i, 1, n}, {3, 1,0}, {k 1, n}, {1, 1, n}]]

listriemamn ;=
Teble | If{ Unsene0) rienamn [[1, J, k, 1], 0], {Tosteing(R[, j; k, 1]], riemam[[3, j, k, 1]]}],
(1, 1,0}, {1, 0}, {k, I, 0}, {1, 1, k-1}]

TableForm Partition | DeleteCases | Flatten | listriamann|, Null|, 2|, TebleSpacing - {2, 2}]
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Alr] A'(x] B[x)+B[x] (A'[r)%-2412] 2 [1]|
R[I, 2, 2, 1] -

(e B
RIL, 3 31—t
24[z] Br]
. JQ '
R[4, 41 28 (6] 4 [z]
24[z] Br]

' ' ' H " |
Ar| X'[r] B'[z] B[z| (A'[r)"-2A[r] A"[1]|

RI2, 1, 2, 1

(2[r Bz
Br|
R[2,3 32 -1
[r 1 ] ”|f|2
Sin 161 B (1]
R[2, 4 4,2 -°
1442 22
R[3, 1,31 2
2rBr]
Br|
R[J, 2, 3 2] P

(~1+B]x]| sin |6’

R34, 4,3

Br]
Al

R4 1,41

4,1, 4, 1 P
Bz

R4, 2, 4 2

4,2, 4, 2 P

R[4, 34,3 1-—
Blr|

ricel := ricel = Simplify [Table|Sun|riemann[[i, §, i, 1]], {1, I, n}], {3, 1, n}, {1, 1, n}]]

listricel :=

Table [ If | UhsaneQ|[ ricci [, 1]], 0], {Tostring[R[j, 1], ricei[[§, I[1}} , {4 1, n}, {1, 1, 3}]

29



TableForm[Partition|DeleteCases|Flatten[listricei], Null], 2], TablaSpacing = {2, 2}]

Al A'r?oatr
- +

R[L 1] _J"t'll'JB'll'JJr r 4 2
48z Br]

Alr| (4A[r]+r &' [r]| B'[r]-x B[r] (A*[r]f-u[rj A

R|2, 2
2 2] drarlne
P rd|r

1 | x] B
RI3, 3 ¢ 2. iR

2 Blr] B[z

§in |61 (-r Br) A4 [£)+A|x] (-2Bz)2B[r] x B 2]
R[4, {] | | &

24(r] B|r)?
scalar = Simplify [Sum | inversemetric[[i, j]| rieci[[1, jl], {i, I, n}, {], 1, n}] ]
(r‘? B[r] &' [r]*+ 4[]} (—B[r] +Blr]*+r B [r]) +
rAlr] (ra'[r] B'[r]-2B[r] gzr[r]ua”[:]))]f (2% ar) Br)?
einstein ;= einstein = Simplify[ricei- (1/2) scalar « matric|

listeinstein := Table|

If[ UnsameQ [einstein[[ j; 1]], 0], {Tostring[G[], 1]], einstein[[J, 1]]}], {3, 1, n}, {1, 1, 3}]
TableForm[Partition|DeleteCases|Flatten[listainstein|, Null], 2], TableSpacing = {2, 2}]

Ar] (-Blr] B[z +r B'[x]|

6l1, 1]

rf et

Alr|-Alr] Blr]+r &' [£]

G2, 2
[ f ] I'EA[I‘J

r{-rBr Az 2802 B [z] A[x] |-rA'[r] B'[r]+2B[r] (A'[r]<r A" [r]] |

G[3, 3 —
4A[r]° B[r]

r Sin[$]2 -r B[r] A'[r]z-z}l[rlz B'r|+A[r] (-rA'[r] B'[r]+2Br] (& [r]+r A" [r]|]|

G[4, { | | -

4air)? Br)?

2 5o that the 11-component of (13) leads to



R]_]_ =0
=>R;; =A"/2B — A'B'/2B? -A'/2B(A'/2A B'/2B -
2/r) = 0.
or,
A"[2B — (A'/4B) (A'/A +B'/B)+ A'/rB=0. (15)
The 22- component of (13) leads to

or,RX"TZ,OA: - (V4) (A'TA)(A'/A+B'/B) -B/rB=0
(16)
The 33- component of (13) yields
R33 =0,
or, (1/B) + (r/2B) (A'/A-B'/B)-1=0

Multiplying (15) by B/A and subtracting from
(16) we have

IimA() --->1
[-->00
IimB(r) ---->1

r-->00 (17)
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This therefore. Determines the constant of
Integration to be 1.

and we have

A(r)B(r) =1

or, B(r) = 1/A(r) (19)
If we now substitute this relation , we obtain

A(r) + (rA/2) (ATA+A'TA)-1=0
or, A(r) +rA'(r)=1
or, d(rA(rn)/dr =1

or, rA(r) =r+const. =r+m (20)
so that
A(r) =1+ m/r,
B()=1/A() = (L+m/r)* (21)

here m is a constant of integration to be
determined.
We can now write down the Schwarzschild
line element (13) inthe form
dz=(1+m/r)dt2—( 1+ m/r) *dr2— 12 (d6?
+ 5in20d? ) (22)
Let us emphasise here that there are ten
equations of Einstein

R, =0 (23)
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and we have used only three of them to
determine the form of the Schwarzschild
line element.

Therefore, it remains to be shown that
the seven equations are consistent with the

solution in (22). In fact it can be easily

shown that
R,=0, forp#v,
Ra3 = Sin29 R, =0 (24)

so that all the ten equations are consistent
with the line element (22).

To determine the constant of
Integration m, let us note that very far
away from a star of mass M we have seen
that the metric has the form

oo =1+20(r)=1-2G\M/r (25)

Where M denotes the mass of the star.

Comparing this with the solution iIn
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(22) we determine the constant of
Integration to be
m= - 2G\M, (26)
so that the Schwarzschild line element
(22) takes the final form
dz=(1-2G\M /) dt2— ( 1- 2GyM /r) !
drz — r2 (d0? + sin0de? ) (27)
This determines the form of the line element
and, therefore, the metric uniquely.
One striking feature of the Schwarzschild
metric (27) is that at r = 2GyM,
Joo =0, Qi -->0 (28)
That Is, the Schwarzschild metric is
singular at the Schwarzschild radius
defined by
r.= 2GyM
o For most objects, this radius lies

Inside the object. For example, since



Gy~ 7 X 10 cmgm™,
M (earth) = 6 X10** kg = 6 X 10°" gm, (29)
The Schwarzschild radius for earth has
the value
rs(earth) = 2GyM (earth)
~0.84 cm, (30)

Which 1s well inside the earth.
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