

Geeta Ray

X-Ray Diffraction

What is diffraction?

- incident radiation (e.g., light, X-rays) scatters as it passes through a finely spaced periodic array (e.g., grating, crystal lattice)

polychromatic (white) light

🛯 monochromatic light (e.g., laser)

- where beams of scattered radiation emerge from slit "in phase", constructive interference produces "diffraction maxima"
- position and intensity of maxima depends on spacing of array and integral number of λ contributing to signal (nλ)

WHY X-RAYS?

For electromagnetic radiation to be diffracted the spacing in the grating should be of the same order as the wavelength

 In crystals the typical interatomic spacing ~ 2-3 Å so the suitable radiation is X-rays

Hence, X-rays can be used for the study of crystal structures

Table 8.1 Characteristic Wavelengths (Å) of Metals CommonlyUsed as Targets in X-Ray Tubes^a

	Metal							
	Мо	Cu	Co	Fe	Cr			
Kβ	0.63225	1.38217	1.62073	1.75653	2.08479			
$K\alpha_1$	0.70926	1.54051	1.78892	1.93597	2.28962			
Ka ₂	0.71354	1.54433	1.79279	1.93991	2.29351			
Kā	0.7107	1.5418	1.7902	1.9373	2.2909			

^a $K\bar{\alpha}$ is the weighted average of $K\alpha_1$ and $K\alpha_2$.

X-Ray Diffraction

What is X-ray diffraction (XRD) crystallography?

- periodic atomic arrays in crystal lattice act like 3-D diffraction gratings
- for practical purposes, diffraction can be treated like reflection from multiple equivalent lattice planes (*hkl*)

BRAGG VIEW OF DIFFRACTION

	crystallab	@ubur	ntu: ~	
File Edit	View Se	earch	Terminal	Help
crystallab crystallab	@ubuntu: @ubuntu:	~\$ g++ ~\$./a	d.cpp .out	
9.608 d=9.19431		tue		
crystallab enter two	@ubuntu: theta va	~\$./a lue	.out	
d=8.31409 crystallab	@ubuntu:	~\$./a	lotes Han .out	
enter two 12.563 d=7.03753	theta va	lue		
crystallab enter two 15.935	@ubuntu: theta va	~\$./a lue	.out	
d=5.5551 crystallab enter two	@ubuntu: theta va	~\$./a lue	.out	
17.609 d=5.03059 crystallab	@ubuntu:	~\$ /a	out	
enter two 18.192	theta va	lue	0.12257 4.0 0.13601 3.6 0.13693 3.6 0.13697 3.5	
d=4.87067 crystallab enter two	@ubuntu: theta va	~\$./a lue	.out	
19.399 d=4.57025			2 0.16016 3.3 2 0.16314 3.3 9 0.16465 3.4	
enter two 19.743 d=4.4913 <u>9</u>	theta va	~\$./a lue	out	
crystallab enter two	@ubuntu: theta va	~\$./a lue	.out	

System	Lattice Parameters			
Triclinic	a≠b≠c α≠β≠γ≠90			
Monoclinic	a≠b≠c α=γ=90 , β≠90			
Orthorhombic	a≠b≠c α=β=γ=90			
Tetragonal	a=b≠c α=β=γ=90			
Hexagonal	a=b≠c α=β=90, γ=120			
Rhombohedral (Trigonal)	a=b=c α=β=γ≠90			
Cubic	a=b=c $\alpha=\beta=\gamma=90$			

Cubic:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$
Tetragonal:

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
Hexagonal:

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Rhombohedral:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2 \alpha + 2(hk + kl + hl)(\cos^2 \alpha - \cos \alpha)}{a^2(1 - 3\cos^2 \alpha + 2\cos^3 \alpha)}$$
Orthorhombic:
$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Monoclinic:
$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

Triclinic:
$$\frac{1}{d^2} = \frac{1}{V^2} \left(S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{13}hl \right)$$

In the equation for triclinic crystals,

$$V = \text{volume of unit cell (see below)},$$

$$S_{11} = b^2 c^2 \sin^2 \alpha,$$

$$S_{22} = a^2 c^2 \sin^2 \beta,$$

$$S_{33} = a^2 b^2 \sin^2 \gamma,$$

$$S_{12} = abc^2 (\cos \alpha \cos \beta - \cos \gamma),$$

$$S_{23} = a^2 bc (\cos \beta \cos \gamma - \cos \alpha),$$

$$S_{13} = ab^2 c (\cos \gamma \cos \alpha - \cos \beta).$$

Possible space groups For monoclinic system	Systematic absences
Pm, P2/m	hkl: none h0l: none 0k0: none
P2 ¹ , P2 ¹ /m	hkl: none h0l: none 0k0: k = 2n + 1
Pc, P2/c	hkl: none h0l: l = 2n + 1 0k0: none
P2 ¹ /c	hkl: none h0l: l = 2n + 1 0k0: k = 2n + 1
C2, Cm, C2/m	C2, Cm, C2/m h0l: (h = 2n + 1) 0k0: (k = 2n + 1)

MILLER PLANES

Atoms form periodically arranged planes

Any set of planes is characterized by:

(1) their orientation in the crystal (hkl) - Miller indices (2) their *d*-spacing (d_{hkl}) - distance between the planes

h, k, l correspond to the number of segments in which the a, b, c axes, respectively, are cut by the set of planes

Diffracted Beam Intensity

- Structure factor
- Polarization factor
- Lorentz factor
- Multiplicity factor
- Temperature factor
- Absorption factor

 $I(q) \propto \left| F(q) \right|^2$

$$I_C(q) = mALpK \left| F(q) \right|^2 + I_b$$

The Structure Factor

$$F_{hkl} = \sum_{1}^{N} f_n e^{2\pi i (hu_n + kv_n + lw_n)}$$

 $F_{hkl} = \frac{amplitude \ scattered \ by \ all \ atoms \ in \ aunit \ cell}{amplitude \ scattered \ by \ a \ single \ electron}$

- The structure factor contains the information regarding the types (*f*) and locations (*u*, *v*, *w*) of atoms within a unit cell.
- A comparison of the observed and calculated structure factors is a common goal of X-ray structural analysis.

The Polarization Factor

- The polarization factor *p* arises from the fact that an electron does not scatter along its direction of vibration
- In other directions electrons radiate with an intensity proportional to $(\sin \alpha)^2$:

The polarization factor (assuming that the incident beam is unpolarized):

$$p = \frac{1 + \cos^2 2\theta}{2}$$

The Lorentz - Polarization Factor

• The Lorenz factor *L* depends on the measurement technique used and, for the Diffractometer data obtained by the usual θ -2 θ scans, it can be written as

$$L = \frac{1}{\sin 2\theta}$$

• The combination of geometric corrections are lumped together into a single Lorentz-polarization (Lp) factor:

$$Lp = \frac{1 + \cos^2 2\theta}{\sin 2\theta}$$

The effect of the Lp factor is to decrease the intensity at intermediate angles and increase the intensity in the forward and backwards directions

The Temperature Factor

- As atoms vibrate about their equilibrium positions in a crystal, the electron density is spread out over a larger volume.
- This causes the atomic scattering factor to decrease with $\sin\theta/\lambda$ (or $|S| = 4\pi \sin\theta/\lambda$) more rapidly than it would normally.

by: $\exp\left[-B\frac{\sin^2\theta}{\lambda^2}\right]$ where the thermal factor B is related to the mean square displacement of the atomic vibration:

The temperature factor is given

$$B = 8\pi^2 \times \overline{u^2}$$

This is incorporated into the atomic scattering factor:

$$f \rightarrow f_0 e^{-M} \Longrightarrow f^2 \sim e^{-2M}$$

The Multiplicity Factor

- The multiplicity factor arises from the fact that in general there will be several sets of *hkl* -planes having different orientations in a crystal but with the same *d* and F^2 values
- Evaluated by finding the number of variations in position and sign in $\pm h$, $\pm k$ and $\pm l$ and have planes with the same *d* and F^2
- The value depends on *hkl* and crystal symmetry
- For the highest cubic symmetry we have:

 100, $\overline{1}$ 00, 010, $0\overline{1}$ 0, 001, 00 $\overline{1}$ $p_{100} = 6$

 110, $\overline{1}$ 10, $1\overline{1}$ 0, $\overline{1}$ $\overline{1}$ 0, 101, 10 $\overline{1}$, $\overline{1}$ 0 $\overline{1}$, $\overline{1}$ 01, 011, 0 $\overline{1}$ 1, 01 $\overline{1}$, 01 $\overline{1}$ $p_{110} = 12$

 111, 11 $\overline{1}$, $1\overline{1}$ 1, $\overline{1}$ 11, $1\overline{1}$, $\overline{1}$ 1 $\overline{1}$, $\overline{1}$ 1 $\overline{1}$, $\overline{1}$ 1 $\overline{1}$ $p_{111} = 8$

The Absorption Factor

• Angle-dependent absorption within the sample itself will modify the observed intensity

Absorption factor for thin films is given by:

$$A = 1 - \exp\left(-\frac{2\mu\tau}{\sin\theta}\right)$$

where μ is the absorption coefficient, τ is the total thickness of the film

Diffracted Beam Intensity

$$I \propto F_{hkl} F_{hkl}^* = \left| F_{hkl} \right|^2$$

$$I_{C}(q) = Ap(Lp)K |F(q)|^{2} + I_{b}$$

where K is the scaling factor, I_b is the background intensity, $q = 4\sin\vartheta/\lambda$ is the scattering vector for x-rays of wavelength λ

$$I_{C}(q) = \left[1 - \exp\left(-\frac{2\mu\tau}{\sin\theta}\right)\right] \frac{1 + \cos^{2}2\theta}{\sin 2\theta} K |F(q)|^{2} + I_{b}$$

X'Pert Highscore

USING FULLPROF SUIT

FullProf has been mainly developed for Rietveld analysis (structure profile refinement) of neutron (nuclear and magnetic scattering) or X-ray powder diffraction data collected at constant or variable step in scattering angle 20. The program can be also used as a Profile Matching without the knowledge of the structure.

WinPLOTR

WinPLOTR is a software to plot and analyse powder diffraction patterns It can be used to plot raw or normalized data files coming from neutron And x-ray diffractometers as well as Rietveld files created by several Rietveld type refinement program.

WinPLOTR has also been developed to be preferential graphic interface for The Rietveld type FullProf program : edition of PCR input file ,plot Rietveld Type plots.

The main window of **EdPCR** program contains a menu bar and a toolbar with the usual buttons. A brief information is obtained when you left the mouse on a button of the toolbar.

The information of the *PCR* file is distributed in seven buttons:

General

Define a general information as title, type of job: Rietveld, Profile Matching, Simulating Annealing.

Patterns

Define patterns information: types of profile, background, geometry aspects...

Phases

Define Phase information: Names, contribution to patterns, symmetry...

Refinement

This button is the access to the most important part of EdPCR: editing structural and profile parameters and conditions of refinement. Atom positions, profile shape parameters, magnetic moments, micro structural parameters, etc ... are accessible through this button.

Constraints

Define constrains for refinable parameters. You can modify, add and delete constrains relations easily by using mouse selection and clicks.

<u>Output</u>

Access to the selection of output options for each phase and pattern. This allows selecting output files: Fourier, hkl-lists, files for other programs, etc.

General Information	
pure anthra	
Calculations	
 Refinement/Calculation of a Powder Diffraction Profile 	
C Refinement on Single Crystal Data / Integrated Intensity Data	OK
C Simulated Annealing Optimization (Integrated Intensities)	S.A. Options Cancel
Optimize calculations according to the particular options used in this Job	
49	
Patterns Information	
Information	
Pattern: 1/1 Weight: 1.0000	Data file/Peak shape
	Decker and Tree
	Background Type
	Excluded Regions
Initial Previous Add Del Next Last	Geometry/IRF
	User Scatt. Factors
OK Cancel	

Patterns Information			
Information			
Pattern: 1/1	Weight: 1.0000	Data file/Peak shape	
		Background Tupe	
		Excluded Regions	
Initial Previous	Add Del Next Las	st Geometry/IRF	
		User Scatt. Factors	
	OK Cancel	1	
Data File: pantra Format		Browse	
O D1A/D2B (Old Format)	 Free Format (2thetal, step, 2ThetaF) 	O Variable Time X-ray Data	
C D1A/D2B/3T2/G42	C Two Axis Instrument, G41	C X,Y,SIGMA (XYDATA)	
D1B (Old Format)	C GSAS Format	C X'Celerator (PANalytical)	
C D1B/D20	C Socabim Software	SISIS multi-bank normalized	
C D4/D20L	C Synchroton (Brookhaven)		
O DMC/HRPD (P.S.I.)	Synchroton (DBWS Software)		

Prome Data mormation. Pattern z	
Data File / Format Refinement / Simulation Pattern Ca	alculation/Peak Shape
Simulation / Refinement Data	
○ X-Ray	C Pattern Calculation (X-Ray)
Neutron - CW (Nuclear and Magnetic)	C Pattern Calculation (Neutron - CW)
Neutron - LU.F [Nuclear and Magnetic]	Pattern Lalculation (Neutron - T.U.F.)
Wavelength	
User Defined	A2 0.000000 (I2/I1) 0.0000
OK	Cancel
Profile Data Information: Pattern 1	E
Profile Data Information: Pattern 1	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Cale	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Cal Peak Shape Pseudo-Voigt	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Cal Peak Shape Pseudo-Voigt	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Cal Peak Shape Pseudo-Voigt Scattering Variable	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Pseudo-Voigt Scattering Variable © T.O.F. (microsecon)	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Pseudo-Voigt Scattering Variable © T.O.F. (microsecon Range Range	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Peak Shape Pseudo-Voigt Scattering Variable © 2Theta © T.O.F. (microsecon Range Theta_min: 1.0000	Iculation/Peak Shape Codefil.SHP C Global.SHP Ids) C Energy (keV) max: 150.0000 Step: 0.0200
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Peak Shape Pseudo-Voigt Scattering Variable © 2Theta © T.O.F. (microsecon Range Theta_min: 1.0000 Theta_min: 1.0000 Theta_r Range of calculation of a single reflection in units of FW	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Pseudo-Voigt Scattering Variable © T.O.F. (microsecon Range Theta_min: 1.0000 Theta_min: 1.0000 Theta_r Range of calculation of a single reflection in units of FW Incident beam angle at sample surface (⁹):	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Call Peak Shape Peak Shape Pseudo-Voigt Scattering Variable © 2Theta © T.O.F. (microsecon) Range Theta_min: 1.0000 Theta_min: 1.0000 Theta_r Range of calculation of a single reflection in units of FW Incident beam angle at sample surface (*):	Iculation/Peak Shape
Profile Data Information: Pattern 1 Data File / Format Refinement / Simulation Pattern Cal Peak Shape Pseudo-Voigt Scattering Variable © T.O.F. (microsecon Range Theta_min: 1.0000 Theta_min: 1.0000 Theta_r Range of calculation of a single reflection in units of FW Incident beam angle at sample surface (*):	Iculation/Peak Shape

The pseudo-Voigt function

The pseudo-Voigt function has been shown to provide a good approximation to most peaks.

The pseudo-Voigt can be given by the following equation:

 $I(2\theta) = I_{hkl} [\eta L (2\theta - 2\theta_0) + (1 - \eta) G (2\theta - 2\theta_0)]$

where, respectively, **L** $(2\theta - 2\theta_0)$ and **G** $(2\theta - 2\theta_0)$ represent suitably normalised Lorentz and Gaussian functions,.

Cycles of Refinement: 1 🗧
Stop Criterium of Covergence Relaxation Factors for Shifts
Forced Termination when shifts < 0.10 x E.S.D.
Others: Criterion of Convergence is NOT applied (Profile Matching Mode) 🗸 🕴 Atomic 1.00 Anisotropic 1.00 Profile 1.00 Global
Reflections ordering O Only at the first cycle Image: Bragg R-Factor excluding reflections limiting excluded regions
Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 4 > Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
- Befinement weighting model
Least Squares Background
Patterns Patterns
O Maximum Likelihood Instrumental
C Unit Weights Profile Micro-Structure
Micro-Absorption
Reduction factor of number of data points:
Profile Parameters: Phase 1 Pattern 1
Factors
Scale Overall B-factor
Coefficients 0.10000E-02 0.0000
Call Descention
a b c alpha beta gamma
Coefficients 8.619394 6.068911 11.407743 90.000 124.698 90.000
FWHM / Shape Parameters Asymmetry Parameters Preferred Orientation
FWHM Parameters Fix All
U V W IG
Coefficients 0.242040 0.119789 0.024257 0.010664
Shape Parameters
Eta 0 X
Coefficients 0.231880 0.011858

```
💵 FullProf Program
Load Edit PCR Mode Run Exit
=> Solving L.S. equations...
=> Writing results for cycle
                                 1
=> R-Factors: 10.6
                    14.4
                                Chi2: 14.4
                                               DW-Stat.: 0.1862 Patt#: 1
=> Expected :
                       3.79
                                                          1.8698
=> Conventional Rietveld R-factors for Pattern:
                                                    1
=> Rp: 23.9 Rwp: 24.4
                            Rexp:
                                    6.43
                                                                 Chi2: 14.4
   => Global user-weigthed Chi2 (Bragg contrib.): 17.09
   => ----> Pattern#
                               1
   => Phase:
                   1
         Bragg R-factor: 0.2845E-03
   =>
      RF-factor : 0.7207E-01
   =>
=> Normal end, final calculations and writing ...
                CPU Time:
                             0.172 seconds
=>
                             0.003 minutes
=>
        Date:16/04/2012 Time => 11:57:09.484
=> END
```

Cycle: 1

pured anthraceneb_INSTRM0.dat

$$R_{F} = \frac{\sum |I_{K}('obs')^{1/2} - I_{K}('calc')^{1/2}|}{\sum I_{K}('obs')^{1/2}}$$
$$R_{B} = \frac{\sum |I_{K}('obs') - I_{K}('calc')|}{\sum I_{K}('obs')}$$

R-Bragg factor

$$R_{p} = \frac{\sum \left| y_{i}(obs) - y_{i}(calc) \right|}{\sum y_{i}(obs)}$$

R-pattern

$$R_{wp} = \left\{ \frac{\sum w_i (y_i(obs) - y_i(calc))^2}{\sum w_i (y_i(obs))^2} \right\}^{1/2}$$

R-weighted pattern

The function that is minimised is the chi-square χ^2 :

$$\chi^2 = \frac{\sum_i w_i * \left| Y_{obs}^i - Y_{calc}^i \right|^2}{N - P}$$

where:

 $\begin{array}{ll} \sum_{i} & : \text{summation over the N points of the fitted region.} \\ w_{i} & : \text{weighting factor } (w_{i} = \frac{1}{\sigma(Y_{obs}^{i})}) \\ Y_{obs}^{i} & : \text{observed counts} \\ Y_{calc}^{i} & : \text{calculated counts} \\ \mathbf{P} & : \text{number of refined parameters.} \end{array}$

Wavelength: 1.54000 2theta_min: 5.00000 2theta_max: 50.00000 Space group: P 21/m Cell parameters: 8.54990 6.01000 11.17000 Cell angles: 90.00000 124.60000 90.00000

> Number of reflexions: 101

h k l mult stl(A-1) d hkl(A) 2theta(deg) 1 0 0 1 2 0.05438 9.19443 9.608 2 -1 0 1 2 0.06014 8.31373 10.628 3 1 0 0 2 0.07105 7.03773 12.563 4 -1 0 2 2 0.09001 5.55520 15.935 5 0 1 1 4 0.09939 5.03062 17.609 0.10266 4.87061 18.192 6 -1 1 1 4 7 0 0 2 2 0.10876 4.59722 19.284 8 1 1 0 4 0.10940 4.57029 19.399 0.11132 4.49149 19.743 9 1 0 1 2 10 -2 0 1 2 0.11988 4.17077 21.278 11 -2 0 2 2 0.12028 4.15686 21.350 0.12257 4.07944 21.760 12 -1 1 2 4 13 -1 0 3 2 0.13601 3.67611 24.181 14 0 1 2 4 0.13693 3.65144 24.347 0.13897 3.59779 24.716 15 1 1 1 4 16 2 0 0 2 0.14209 3.51887 25.280 17 -2 0 3 2 0.14310 3.49396 25.463 18 -2 1 1 4 0.14592 3.42650 25.973 19 -2 1 2 4 0.14625 3.41878 26.032 20 -1 1 3 4 0.15944 3.13598 28.427 0.16016 3.12183 28.559 21 1 0 2 2 22 0 0 3 2 0.16314 3.06481 29.102 23 2 1 0 4 0.16465 3.03665 29.378

😣 🗖 🗊 🛛 crystallab@ubuntu: ~ File Edit View Search Terminal Help crystallab@ubuntu:~\$ g++ d.cpp crystallab@ubuntu:~\$./a.out enter two theta value 9.608 d=9.19431 crystallab@ubuntu:~\$./a.out enter two theta value 10.628 d=8.31409 crystallab@ubuntu:~\$./a.out enter two theta value 12.563 d=7.03753 crystallab@ubuntu:~\$./a.out enter two theta value 15.935 d=5.5551 crystallab@ubuntu:~\$./a.out enter two theta value 17.609 d=5.03059 crystallab@ubuntu:~\$./a.out enter two theta value 18.192 d=4.87067 crystallab@ubuntu:~\$./a.out enter two theta value 19.399 d=4.57025 crystallab@ubuntu:~\$./a.out enter two theta value 19.743 d=4.49139 crystallab@ubuntu:~\$./a.out enter two theta value

24	-2	1	3	4	0.16553	3.02060	29.537
25	0	2	0	2	0.16639	3.00500	29.694
26	0	2	1	4	0.17505	2.85632	31.278
27	-3	0	2	2	0.17587	2.84303	31.428
28	-1	2	1	4	0.17692	2.82606	31.622
29	2	0	1	2	0.17867	2.79847	31.942
30	-2	0	4	2	0.18001	2.77760	32.188
31	-3	0	3	2	0.18042	2.77124	32.264
32	1	1	2	4	0.18048	2.77038	32.275
33	1	2	0	4	0.18092	2.76362	32.356
34	0	1	3	4	0.18313	2.73030	32.762
35	-1	0	4	2	0.18658	2.67979	33.397
36	-3	0	1	2	0.18767	2.66420	33.598
37	-1	2	2	4	0.18917	2.64308	33.875
38	-3	1	2	4	0.19455	2.56998	34.869
39	2	1	1	4	0.19709	2.53693	35.338
40	-2	1	4	4	0.19831	2.52135	35.564
41	-3	1	3	4	0.19868	2.51659	35.633
42	0	2	2	4	0.19878	2.51531	35.652
43	1	2	1	4	0.20019	2.49757	35.914
44	-3	0	4	2	0.20023	2.49717	35.919
45	-1	1	4	4	0.20429	2.44751	36.674
46	-2	2	1	4	0.20508	2.43809	36.821
47	-3	1	1	4	0.20529	2.43562	36.860
48	-2	2	2	4	0.20531	2.43531	36.864
49	1	0	3	2	0.21172	2.36159	38.05
51	-1	2	3	4	0.21491	2.32659	38.654
52	-3	1	4	4	0.21682	2.30603	39.012
53	0	0	4	2	0.21752	2.29861	39.143
54	2	2	0	4	0.21880	2.28515	39.383
55	-2	2	3	4	0.21946	2.27828	39.507
56	2	0	2	2	0.22264	2.24575	40.104
57	-2	0	5	2	0.22415	2.23063	40.387
58	1	1	3	4	0.22748	2.19799	41.014
59	3	1	0	4	0.22880	2.18533	41.262
60	1	2	2	4	0.23095	2.16498	41.668
61	-3	0	5	2	0.23139	2.16083	41.752
62	0	1	4	4	0.23289	2.14694	42.035
63	0	2	3	4	0.23303	2.14569	42.060
64	-4	0	3	2	0.23393	2.13741	42.231
65	2	1	2	4	0.23768	2.10368	42.941
66	-1	0	5	2	0.23883	2.09353	43.160
67	-2	1	5	4	0.23909	2.09124	43.210
68	-4	0	2	2	0.23976	2.08538	43.337
69	-4	0	4	2	0.24057	2.07843	43.489
70	-3	2	2	4	0.24211	2.06521	43.782

71	2	2	1	4	0.24415	2.04794	44.171
72	-2	2	4	4	0.24513	2.03972	44.358
73	-3	2	3	4	0.24544	2.03720	44.416
74	-3	1	5	4	0.24589	2.03339	44.504
75	3	0	1	2	0.24809	2.01541	44.922
76	-4	1	3	4	0.24828	2.01385	44.959
77	-1	2	4	4	0.25000	2.00003	45.287
78	-3	2	1	4	0.25081	1.99352	45.443
79	-1	1	5	4	0.25291	1.97702	45.844
80	-4	1	2	4	0.25379	1.97015	46.013
81	-4	1	4	4	0.25455	1.96429	46.158
82	0	3	1	4	0.25544	1.95741	46.330
83	-1	3	1	4	0.25673	1.94759	46.577
84	-4	0	1	2	0.25723	1.94381	46.673
85	-4	0	5	2	0.25872	1.93259	46.960
86	1	3	0	4	0.25950	1.92679	47.110
87	-3	2	4	4	0.26034	1.92058	47.272
88	3	1	1	4	0.26167	1.91083	47.527
89	1	0	4	2	0.26441	1.89098	48.058
90	-1	3	2	4	0.26532	1.88454	48.232
91	1	2	3	4	0.26928	1.85681	49.000
92	-3	0	6	2	0.27002	1.85173	49.143
93	-4	1	1	4	0.27035	1.84948	49.207
94	3	2	0	4	0.27039	1.84916	49.216
95	2	0	3	2	0.27043	1.84892	49.223
96	-4	1	5	4	0.27177	1.83981	49.483
97	0	0	5	2	0.27190	1.83889	49.509
98	-2	0	6	2	0.27203	1.83806	49.533
99	0	3	2	4	0.27225	1.83653	49.577
100	1	3	1	4	0.27328	1.82959	49.778
101	0	2	4	4	0.27386	1.82572	49.890

Application of XRD

XRD is a nondestructive technique. Some of the uses of x-ray diffraction are;

- 1. Differentiation between crystalline and amorphous materials;
- 2. Determination of the structure of crystalline materials;
- 3. Determination of electron distribution within the atoms, and throughout the unit cell;
- 4. Determination of the orientation of single crystals;
- 5. Determination of the texture of polygrained materials;
- 6. Measurement of strain and small grain size.....etc

Advantages and disadvantages of X-rays

<u>Advantages;</u>

- X-ray is the cheapest, the most convenient and widely used method.
- X-rays are not absorbed very much by air, so the specimen need not be in an evacuated chamber.

<u>Disadvantage;</u>

• They do not interact very strongly with lighter elements.

