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Chapter 1

Introduction

The partial neutrino mixing matrix predicts the three neutrino mixing angles in terms

of two parameters. These two parameters can be constrained using the experimental

value of the three neutrino mixing angles. A chi-square analysis is used to extract

the value of these two parameters. Moreover, a Monte Carlo study is used to check

accuracy of the result.

1.1 Mixing Matrix

In 1968 during an experiment at home-stake it had been observed that the flux of

electron neutrinos coming from sun was only about one third of that predicted by

Behcall. The so called ’Solar neutrino problem’. Solution of this problem was purposed

by B. Pontecorvo that electron neutrinos produced by sun are transformed in flight

into different species, to which home-stake experiment was insensitive. Later from

experiments like Super-kamiokande and SNO it was confirmed that electron neutrinos

2



were transforming into muon neutrinos. This is the mechanism we now call neutrino

oscillation.

In atmosphere neutrinos are produced from decay of pions and muons.

π+ → µ+ + νµ, µ+ → e+ + νe + ν̄µ

π− → µ− + ν̄µ, µ− → e− + ν̄e + νµ

Both these reactions produce muon neutrino whereas electron neutrino is produced

only in one reaction. Evidently it was supposed that there should be twice as many

muon neutrino as electron neutrino. Indeed this was the case for neutrinos coming

directly from overhead which travell a distance of 10 Km or so. As the zenith angle

increases and with this distance from the source, ratio of muon to electron neutrino

decreases. This suggest muon neutrinos are also changing into tau neutrino.

Neutrinos interact as flavour eigenstate(νe, νµ, ντ) and they travel as eigenstates of

free particle Hamiltonian which are (νe, νµ, ντ) called mass eigenstates. The the-

ory is similar to quantum mechanics of mixed states. flavour eigenstates are linear

combination of mass eigenstates.

νe = U11ν1 + U12ν2 + U13ν3

νµ = U21ν1 + U22ν2 + U23ν3 (1.1)

ντ = U31ν1 + U32ν2 + U33ν3 (1.2)
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These equations can also be written in matrix form:-
νe

νµ

ντ

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33



ν1

ν2

ν3


Matrix on right hand side is called Mixing matrix. General way of constructing this

matrix is: -

U = R23(θ23)R13(θ13, δ)R12(θ12)

Where,

R23 =


1 0 0

0 c23 s23

0 −s23 c23

, R13 =


c13 0 s13 ∗ e−ιδ

0 1 0

−s13 ∗ eιδ 0 c13



R12 =


c12 s12 0

s12 c12 0

0 0 1


such that

U =


c12c13 s12c13 s13e

−ιδ

−s12c23 − c12s23s13eιδ c12c23 − s12s23s13eιδ s23c13

s12s23 − c12c23s13eιδ −c12s23 − s12c23s13eιδ c23c13


In general case a mixing matrix has four parameters, three mixing angles and a CP

violating phase. However we can reduce free parameters by using flavour symmetries.
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Flavour symmetries reduce free parameters either by relating or predicting some of

them. We are studying the partial mixing matrix whose one column is

determine by symmetries and other two colkumns are fixed by unitary conditions. e.g

U =


a ∗ ∗

b ∗ ∗

c ∗ ∗

 Where a=2, b=c=1

Our U is a function of two parameters (θ and φ)

1.2 Statistical Methods

1.2.1 Error Propagation

We often want to determine a dependent variable q that is a function of one or more

different measured variables. Experientially, variables are often measured with uncer-

tainties. Then how these uncertainties propagate into the dependent variable q ?

Case I

Suppose we measured a quantity x and proceed to calculate the quantity

q = x+ A

Where A is a fixed number with no uncertainty. Suppose also that the measurements

of x are normally distributed about true valuie X with width σx
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Probability of obtaining any value x in the interval dx is :

e
−(x−X)2

2σ2x

Our problem is to obtain the probability of any value q=x+A, or x=q-A

probability of obtaining value x = Probability of obtaining value x=q-A

e
−[q−(X+A)]2

2σ2x

This result shows that calculated values of q are centred at X+A with uncertainty σx

Case II

This time consider quantity to be calculated as

q = Ax where A is a fixed number.

Proceeding same as before we can say that

Probability of obtaining value q = Probability of obtaining value x=q/b

e
−(q−BX)2

2B2σ2x (1.3)

In other words the values of q=BX will be normally distributed , with center at q=BX

and uncertainty Bσx

General Case

Suppose we want to measure two independent quantities x and y whose

observed values are normally distributed, and we now calculate quantity q(x, y). We
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are making an assumption that there uncertainties σx and σy are very small as com-

pared to central value X and Y. This assumption means that we are concerned with

only that values of x and y which are very close to X and Y. Then we can write q(x,y) as

q(x, y) ≈ q(X, Y ) +
(
∂q
∂x

)
δx+

(
∂q
∂y

)
δy

This approximation is good because most of the time values occur close to central val-

ues X and Y. Two partial derivatives are fixed numbers because they are evaluated

at X and Y Here first term is simply a constant term so it mainly shifts the

distribution of answers. The second number is the fixed number ∂q
∂x times δx whose

distribution has width (or uncertainty in x) σx, so the values of second term are cen-

tred on zero with width

(
∂q
∂x

)
δx

similarly the values of third term are centred on zero with width(
∂q
∂y

)
δy

combining above three equations we can say that values of q(x,y) are normally dis-

tributed about the true value q(X,Y) with width

σq =

√(
∂q
∂xδx

)2
+
(
∂q
∂yδy

)2
If we identify the standard deviation σx and σy as uncertainties in x and y then

above result is precisely the rule for propagation of random errors for the case when q
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is function of just two variables. If q depends on several variables then this equation

can be generalised easily as

σq =
√

( ∂q∂xδx)2 + (∂q∂yδy)2.....

1.2.2 χ2

Suppose we perform some experiment for which we know the distribution of experi-

mental results. We perform experiment several times to record our observations, now

question is how can we decide whether our observed values are in agreement with the-

oretical values. This can be done by χ2 test. Consider during experiment we get values

of dependent variables qi. Theoretically qi’s are functions of two unknown variables

x and y. If Oi and Ei represents observed and expected values respectively then χ2

can be given as

χ2 =
n∑
i=1

(
pi − fpi(x, y)

dpexpi

)2

In numerator Difference signifies that we are comparing observed and expected value

of pi. Square is used so that we always get positive value of difference because if

we do not take square then difference can be negative and negative errors can cancel

other errors leading to underestimate of errors. It can happen that during experiment

that we measure p1 with very large accuracy but some other variable p2 with small

accuracy. Then in χ2 weightage of term including p1 should be greater then that of

p2. That is why we divide the numerator by dpi

During estimation of parameters (Here x and y) We replace Ei with expression

for Ei then we plot χ2 either contour plot or 3D plot to know minimum value of χ2.
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Minimum value of χ2 curve corresponds to best fit values of x and y.

Monte Carlo

Practically Monte Carlo provides a mathod of simulating experiment and creating

models of experimental data. With a Monte Carlo calculation, we can test the statis-

tical significance of data with relative simple calculations that require neither a deep

theoretical understanding of statistical analysis nor sophisticated programming tech-

nique.

We have three equations of mixing angles in terms of two known variables θ

and φ. We know there experimental values and uncertainties in them. We also know

the distribution followed by θ and φ. We will generate 10000 values of θ and φ

randomly around there central value. These values when inserted into expressions of

mixing angles we will get random values of mixing angles. By making histogram of

these values of mixing angles we can know standard deviation and central values of

mixing angles.

9



Chapter 2

Results

2.0.3 Estimation of θ and φ using χ2

sin2 θ13 = sin2 θ
3 (2.1)

sin2 θ12 = 1− a2

(a2+b2+c2) cos θ13
(2.2)

sin2 θ23 = 1
2 +

(abc sin 2θ
√
a2+b2+c2)

(b2+c2)(a2+(b2+c2) cos2 θ) cosφ (2.3)

Experimental Values of mixing angles are

• sin2 θ13 = 0.026± 0.003

• sin2 θ12 = 0.32± 0.01

• sin2 θ23 = 0.49± 0.08

and χ2 expression is:-

χ2 =

(
0.026− sin2 θ13

0.003

)2

+

(
0.49− sin2 θ23

0.08

)2

+

(
0.32− sin2 θ12

0.01

)2
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Figure 2.1: Here black region represent the minimized value of θ and φ. Region

outside this is contour corresponding to 1σ. Minimum numerical value of χ2 is 0.07

corresponding to θ = 0.28 ± 0.03 and φ = 1.61 ± 0.6. Width and height of 1σ

contour gives us uncertainties for central values of θ and φ
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Mathematica Code - χ2

a =

2

3
;

b =

1

6

;

c =

1

6

;

ts13@Θ_ D :=

Sin@ΘD2

3

chis13@Θ_ D :=

0.026 - ts13@ΘD

0.004

2

H* Chi Square Value of Sin2
Θ13*L

H* Calculation of Chi Square for Sin2
Θ23*L

tA @Θ_ D :=

a * b * c * Sin@2 ΘD a 2 + b 2 + c 2

Ib 2 + c 2M Ia 2 + Ib 2 + c 2M Cos@ΘD2M
ts23@Θ_ , Φ_ D := 0.5 + tA @ΘD * Cos@ΦD

chis23@Θ_ , Φ_ D :=

ts23@Θ, ΦD - 0.49

0.08

2

H* Chi Square for Sin2
Θ23*L

H* Calculation of Chi Square for Sin2
Θ12*L

tΘ13@Θ_ D := ArcSinB ts13@ΘD F

tΘ12@Θ_ D := ArcCosB
a * Sec@tΘ13@ΘDD

a 2 + b 2 + c 2

F

tsin12@Θ_ D := Sin@tΘ12@ΘDD2

chis12@Θ_ D :=

0.32 - tsin12@ΘD

0.017

2

H* Final Chi Squared *L
chisquare@Θ_ , Φ_ D := chis13@ΘD + chis23@Θ, ΦD + chis12@ΘD

Plot3D@chisquare@Θ, ΦD, 8Θ, 0.17, 0.35<, 8Φ, - 3, 3<D
kk1 = ContourPlot@chisquare@Θ, ΦD, 8Θ, 0.17, 0.35<,

8Φ, - 3, 3<, Contours ® 82.30, 4.61, 9.21<, FrameLabel ® AutomaticD;

FindMinimum @chisquare@Θ, ΦD, 88Θ, 0.2<, 8Φ, 1.5<<DH* Minimum Value of Θ and Φ*L
kk2 = ContourPlot@chisquare@Θ, ΦD � 0.0779592,

8Θ, 0.17, 0.35<, 8Φ, - 3, 3<, ContourStyle ® Directive@Black, ThickDD;

Show @
kk1,

kk2D
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2.1 Error Propagation

We can calculate errors in mixing angles by using expressions previously discussed in

1.2.1 to get

σ13 =
sin 2θ

3
δθ

σ12 = 2(Na)2 sec2 θ13 tan θ13δθ13 (2.4)

where δθ13 = cos θ
√
3

√
1− sin2 θ

3

δθ (2.5 )

and N = 1√
a2+b2+c2

(2.6 )

σ23 =
√

(δAA )2 + (δ cosφcosφ )2 (2.7 )

where δA =

(√
2
3Cos[2θ]

2
3+

Cos[θ]2
3

+

√
2
3Cos[θ]Sin[θ]Sin[2θ]

3
(

2
3+

Cos[θ]2
3

)2
)
δθ (2.8 )

and δ cosφ = sinφδφ (2.9)

Experimental values of mixing angles:-

• sin2 θ13 = 0.026± 0.004

• sin2 θ12 = 0.32± 0.01

• sin2 θ23 = 0.49± 0.08

Values of mixing angles from error propagation: -

• sin2 θ13 = 0.026± 0.005

• sin2 θ12 = 0.32± 0.01
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• sin2 θ23 = 0.49± 16.37

Here error in sin2 θ23 is very large because in expression of error propagation for

sin2 θ23 there is cosφ term in denominator which goes to inf as φ goes to 90 de-

gree.
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Mathematica Code - Error Propagation

H*********************************************************************************

**************************************L

H* Error Propagation in Mathematica 8*L

Quit@D

a =

2

3
;

b =

1

6

;

c =

1

6

;

Θ = 0.2838;

∆Θ = 0.03;

Φ = -1.61;

∆Φ = 1.3;

PrintA"True Value of SinΘ
2

13 is : - "E

ts13 =

Sin@ΘD2

3
H* True Value Of SinΘ

2
13*L

PrintA"Error in the value of SinΘ
2

13 is : - "E
es13 = Sin@2 ΘD * ∆Θ

H*fes13=
2* Cos@ΘD
3* Sin@ΘD * ∆Θ ; H* Error in Sin2

Θ13*L
es13= fes13*ts13;*L

tA =

a * b * c * Sin@2 ΘD a 2 + b 2 + c 2

Ib 2 + c 2M Ia 2 + Ib 2 + c 2M Cos@ΘD2M
;H* True Value of A *L

PrintA"True Value of SinΘ
2

23 is : - "E

ts23 =

c 2

b 2 + c 2
+ tA * Cos@ΦDH* True Value of SinΘ23*L

ecΦ = Sin@ΦD * ∆Φ;

numeratortA = a * b * c * Sin@2 ΘD a 2
+ b 2

+ c 2 ;

denominatortA = Ib 2
+ c 2M Ia 2

+ Ib 2
+ c 2M Cos@ΘD2M;

numeratoreA = a * b * c * 2 * 2 * Cos@2 ΘD * a 2
+ b 2

+ c 2
* ∆Θ;

denominatoreA = 2 * Sin@ΘD * ∆Θ Ib 2
+ c 2M2

;

fraceA =

numeratoreA

numeratortA
+

denominatoreA

denominatortA
;

eA = fraceA * tA ;
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2.2 Monte Carlo

Sin2
Θ 13 Mean = 0.026

Standard Deviation = 0.003

Experimental Value = 0.026

Experimental Error = 0.003
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Here in all the histograms we get same best fit and uncertainties of mixing angles as

given by experiments which verifies our result of χ2
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Mathematica Code - Monte Carlo

a =

2

3
;

b =

1

6

;

c =

1

6

;

ttheta := RandomVariate@NormalDistribution@16.5 °, 1 °DD
pphi := RandomVariate@NormalDistribution@- 91.85 °, 20 °DD

ss13 :=

Sin@tthetaD2

3
;

H*Sin13
2
*L

ttheta13 := ArcSinB ss13 F;H* Θ13*L

ss12 := 1 -

a 2

Ia 2 + b 2 + c 2M Cos@ttheta13D
;H*Sin12

2
*L

ss23 := 0.5 +

a * b * c * Sin@2 * tthetaD a 2 + b 2 + c 2

Ib 2 + c 2M Ia 2 + Ib 2 + c 2M Cos@tthetaD2M
* Cos@pphiD

Histogram ALabeled ATable@ss13, 8j, 1, 1000<D, "Sin2
Θ13", AboveE,

ChartElementFunction ® "FadingRectangle", ChartStyle ® OrangeE
Histogram ALabeled ATable@ss12, 8j, 1, 1000<D, "Sin2

Θ12", AboveE,

ChartElementFunction ® "FadingRectangle", ChartStyle ® Red E
Histogram ALabeled ATable@ss23, 8j, 1, 1000<D, "Sin2

Θ23", AboveE,

ChartElementFunction ® "FadingRectangle", ChartStyle ® BlueE
n = 10 000;

PrintA"Mean Value of Sin2
Θ12 "E

mss12 = Mean@Table@ss12, 8j, 1, n<DD
PrintA"Mean Value of Sin2

Θ23 "E
mss23 = Mean@Table@ss23, 8j, 1, n<DD
PrintA"Mean Value of Sin2

Θ13 "E
mss13 = Mean@Table@ss13, 8j, 1, n<DD
PrintA"Standard Deviation of Sin2

Θ12"E
StandardDeviation@Table@ss12, 8j, 1, n<DD
PrintA"Standard Deviation of Sin2

Θ23"E
StandardDeviation@Table@ss23, 8j, 1, n<DD
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Chapter 3

Summary

We studied how to estimate parameters using χ2 which we then used to estimate two

variables from experimental values of three mixing angles. These results are verified

first using error propagation and then Monte Carlo method. Uncertainties for sin2 θ12

given by error propagation are not matching with experimental values because error

propagation assumes that uncertainty should be very small as compared to central

value but in case of sin2 θ12 uncertainty becomes infinite as φ approaches 90 degree.

However results provided by Monte Carlo are in exact match with experimental values

verifying our result of χ2.
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