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Abstract 

 

 

 

 

Here forth order Runga Kutta method is formulated with its physical interpretation. 

Further this method is extended to solve the n coupled equation. A program in 

FORTRAN to solve coupled equation using Runga Kutta Methods is shown. As 

the application of this numerical method, I have considered the laser pulse 

interaction with parabolic quantum dot. Time dependent Schrodinger equation is 

used to solve this combination and getting some coupled equation in the form 

transition probabilities, which are solved here using the FORTRAN programming 

and Runge kutta methods. 
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 Introduction 

 The impressive progress in the fabrication of low-dimensional semiconductor 

structures during the last two decades has made it possible to reduce the effective device 

dimension from three-dimensional bulk materials, to quasi-two dimensional quantum well 

systems, to quasi-one dimensional quantum wires, and even to quasi-zero dimensional quantum 

dots. The modified electronic and optical properties of these quantum-confined structures, which 

are controllable to a certain degree through the flexibility in the structure design, have attracted 

considerable attention, and have made them very promising candidates for possible device 

applications in semiconductor lasers, microelectronics, non-linear optics, and many other fields. 

Quantum dots are small conductive regions in a semiconductor, containing a variable number of 

charge carriers (from one to a thousand), that occupy well-defined, discrete quantum states, for 

which they are often referred to as artificial atoms. There are several existing devices utilizing 

quantum effects in solids, such as semiconductor resonant tunneling diodes (based on 

quantum mechanical confinement), superconducting Josephson junction circuits (based on 

macroscopic phase coherence), metallic single electron transistors (based on quantization of 

charge), molecular electronic devices
 
 (based on the inter-dot coupling in a double quantum dot 

structure.  In this report, i am going to focus on quantum dot which may be called as artificial 

atom [1].When a semiconductor sturucture is confined in all direction, their density of states 

becomes discrete like  atoms as shown in fig 1. 

 Fig 1. Comparison of the quantization of density of states: (a) bulk, (b) quantum well, (c) quantum wire, (d) 

quantum dot. The conduction and valence bands split into overlapping subbands, that get successively narrower as 

the electron motion is restricted in more dimensions. 

  The peculiar quantum behavior of electrons in quantum dots is under investigation in 

many laboratories around the world. The tunable size, shape and electron number, as well as the 

enhanced electron correlation and magnetic field effects, makes quantum dots excellent objects 

for studying fascinating many-electron quantum physics in a controlled way. I am here to study 

the pulsed laser effects on quantum dot to find the optical transitions. 

A laser can be described as an optical source that emits a coherent beam of photons at an 

exact wavelength or frequencies. With the recent progress in ultrafast optics, it is now possible to 
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shape ultrashort laser signals with almost arbitrary temporal shapes. These shaped signals are 

generated from laser pulses through manipulation of the spectral phases and amplitudes of the 

frequency components of these pulses. With the ability to shape such pulses with high fidelity, 

excitations should not be limited to pulse pairs or simple pulse sequences, and it is natural to ask, 

then, what degree of control can be achieved by exciting quantum dot by such complex-shaped 

pulses. Coherent control strategies by tailoring ultrashort laser pulses are tremendously 

successful to manipulate the physical and chemical processes and properties. So it is very 

interesting to investigate theoretically the effects of ultrafast laser pulses on energy levels of 

quantum dot. 

 

                                  
 
FIG. 2. (a) The schematic energy-level diagram of two-photon transitions in two-level system, the population is 

initially in the ground state. (b) The schematic diagram of a spectral phase step applied on the femtosecond laser 

spectrum. 

 
  To solve this fruitful combination for finding the probability evolution, at first interaction 

Hamiltonian is formulated and then time-dependent Schrödinger equation is solved by taking the 

expansion of wave function. Here we have got coupled time dependent differential equation. 

These equations can be sloved by many numerical techniques like density matrix approach, 

floquet theory etc, but here, we are using Runga Kutta method for findings the solutions. So at 

first   Runga Kutta is discussed, and after that it is mentioned that how we can solve coupled 

equation using runga kutta method. Program of solution of various coupled equation in 

FORTRAN is also shown. After finding the solutions the results for optical transition 

probabilities are shown for quantum dot in the results section. 
 

Runga Kutta Methods 

The Runge–Kutta methods are an important family of implicit and explicit iterative 

methods for the approximation of solutions of ordinary differential equations. Runge-Kutta 

methods are single-step methods, however, with multiple stages per step. They are motivated by 

the dependence of the Taylor methods [2]. These new methods are stable and easy to program, 

therefore these are general-purpose initial value problem solvers. Runge-Kutta methods are 

http://en.wikipedia.org/wiki/Ordinary_differential_equation
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among the most popular ODE solvers. They were first studied by Carle Runge and Martin Kutta 

around 1900. Modern developments are mostly due to John Butcher in the 1960s.The Runge-

Kutta 2nd order method is as follows: 

 For equation,       , ,
dy

f x y
dx


 
  00y y

 

         with intial condition, then solution is written as 

                                  

hkkyy ii 
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Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd order 

method.  In next sections, it is shown that how Runge-Kutta methods are used to solve higher 

order ordinary differential equations or coupled (simultaneous) differential equations. 

 

Runge-Kutta 4th order method. 

Runge-Kutta 4
th

 order method is a numerical technique used to solve ordinary differential 

equation of the form 

     00,, yyyxf
dx

dy
  

So only first order ordinary differential equations can be solved by using the Runge-Kutta 4
th 

order method. 4
th

 order means that in this method at every point four times the functions is used 

The Runge-Kutta 4
th

 order method is based on the following 
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Physical interpretation: since we are using this function four times at every single point for going 

near to the original curve, this gives more accurate results as comparable to others methods. This 

is shown in Fig 3   

 

                               

 

                                                                Fig 3 : Comparison of accuracy  

Up to now we are able to solve first order differential equation accurately, but questions arises 

how we can solve many coupled equation and 2
nd

 order equation. To solve this question we 

extend forth order solutions to two differential equations, 
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dx

    and     , ,
dz

g x y z
dx
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and        1 1 2 3 4
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In the same way we can formulate the solution of n equation , consider n equations are : 
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Hence we can solve n coupled equation (10) as from the above numerical procedure. Now we are 

going to formulate the above numerical methods in terms of the FORTRAN program. 

That is  

             SUBROUTINE RUNGE(ITYPE,N,NSTEPS,H,X,Y,XOUT,YOUT) 

 

 PARAMETER(MEQ=N) 
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 REAL Y(MEQ) 

 REAL Y0(MEQ) 

 REAL K0(MEQ) 

 REAL K1(MEQ) 

 REAL K2(MEQ) 

 REAL K3(MEQ) 

 

 DO 40 J=0,NSTEPS 

 CALL FUNC(K0,Y,X) 

 DO 42 I=1,N 

 Y0(I)=Y(I) 

 42 Y(I)=Y0(I)+K0(I)*0.5*H 

 X=X+H*0.5 

 CALL FUNC(K1,Y,X) 

 DO 43 I=1,N 

 43 Y(I)=Y0(I)+K1(I)*0.5*H 

 CALL FUNC(K2,Y,X) 

 DO 44 I=1,N 

 44 Y(I)=Y0(I)+K2(I)*H 

 X=X+0.5*H 

 CALL FUNC(K3,Y,X) 

 DO 45 I=1,N 

 45 Y(I)=Y0(I)+(K0(I)+2.0*(K1(I)+K2(I))+K3(I))/6.0*H 

 C1=Y(1)**2+Y(2)**2 

 C2=Y(3)**2+Y(4)**2 

 ct=C1+C2 

 WRITE(6,100) X,C1,C2,ct 

 

  100 format (6f15.10) 

 40 CONTINUE  

 RETURN 

 END 

 

So now we are able to solve n coupled equation using runga kutta method. Where the coupled 

equation arises? In the next section we will solve this question. 

          

Laser pulse effect on Quantum dot 
 
 In this section we find the effect of laser pulse on the quantum dot. For this at first we 

will find the eigenergies ang eigenfunction of parabolic quatum dot and the take the laser pulse 

interaction as a perturbation and solve this combination using schrodinger wave equation by 

taking the epansions of wave function. We will get the coupled equation and these are solved by 

runga kutta methods for the transition probabilities. Here we are considering the only two lowest 

levels for conveniences.  

 

  Eigen energies and Eigen wavefunction of Quantum dot: 

For our purpose, we are considering GaAs parabolic quantum dot  with potential 

 

                         
* 2 2 21

( ) ( )
2

oV r m x y                                                                                     (12) 
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Where *m  is the effective mass of electron in conduction band and (
0  ) is the confinement 

potential strength corresponds to size of quantum dot. When this is placed in vertical magnetic 

fields [ B = (0, 0, B)] in symmetric gauge vector potential ( , ,0) / 2y x A B , then the single 

electron in  effective mass Hamiltonian without considering the spin is [1]  

                    
2 * 2 2 2

0 0*

1 1
( ) ( ) ( )

2 2
e m x y

m
    r p A                                                               (13) 

Eigen function of above Hamiltonian will be Fock-Darwin 
 
states  
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nl nlR r e 
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                                (14)  
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*
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m

 
  

 
, and 

2
2 2

0
4

c    , with  
*c

eB

m
    (cyclotron frequency). Eigen energies 

are as, (2 1)
2

nl cE n l l       (15) , where  n = 0,1,2,…, and l = 0, ±1, ±2,…. 

Interaction of Laser Pulse 

 Now laser pulse is applied on quantum dot. Laser pulse may be form of any shape like 

Gaussian, rectangular etc. in laser pluse electric field vary with time that can be written as 

0
ˆ( ) ( ) ( )E t ef t F Cos t                                                                                       (16) 

Where ê  is the unit polarization vector, 0F  is the maximal electric amplitude, And for pulse 

width  , ( )f t  is defined as 

                   ( )f t  = 1,    for 0 < t  <   

                            = 0,    otherwise                                                                                   (17) 

 

So, here in presence of laser pulse, total Hamiltonian can be written in to two parts one is time 

independent same as 0 and other is time dependent part arises due to interaction with pulse 

laser fields as: 
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0 int( , ) ( ) ( , )t t  r r r                                                                                                (18) 

Where  int 0( , ) ( ). ( ) ( ) ( )t eE t r r f t F Cos t     r                                                   (19) 

Where ( )r  is the QD dipole moment operator. 

To solve this dynamical problem, we need to solve  time – dependent schrodinger equation using 

the Hamiltonian of equation (18). So, the time evolution of the system wave function is 

determined by the  

        ( , ) ( , ) ( , )m mi t t t
t


   


r r r                                                                               (20) 

( , )m t r  is the system wave function, ‘m’ denotes particular state having quantum number ‘n,l’, 

this wavefunction can be expended in terms of eigenfunction of Hamiltonian 0 ( ) r  as   

        ( , ) ( ) ( )
k

i
t

k k

k

t C t e





 r r                                                                                              (21) 

Here ‘k’ denotes for the quantum number ‘n,l’ of the quantum dot. Using the expansion of the 

wave function ( , )t r  and orthogonally of the Eigen states in (14), a set of coupled equation is 

obtained as 

int( ) ( ) bki t

b b k k

k

i c t c t e
t

 


   


                                                                                  (22) 

Where  

b k
bk

E E



  is the bohr angular frequency, using equation (19), Eq.(22) becomes 

0( ) ( ) ( ) ( )bki t

b bk k

k

i c t c t e f t F Cos t
t

 






                                     (23) 

Here intbk b k b ker            , are the dipole matrix element. 

Equation (23) is the set of coupled equations, which are solved by Runga Kutta method as 

follows 
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Fortran program for Transition Probabilities 

 

 IMPLICIT REAL (a-h,o-z) 

 Dimension y(4), 

 open (6,file='abc2') 

 open (7,file='abc1') 

 t=0.0 

 y(1)=1.0 

 y(2)=0.0 

 y(3)=0.0 

 y(4)=0.0 

c--------------------------------- 

 BE=1.0d0   

c------ step size of Runge Kutta method H = dt = 0.1 

 dt=0.1 

c------------------------- 

 nstep=8000 

 t=0.0 

 call RUNGE (4,nstep,dt,t,y)  

 stop 

 end 

  

        FUNCTION pulse( ITYPE,E0,t,TP,TAU,OMEGA) 

        GO TO (1,2,3,4) ITYPE 

c-----------------------E(t)=E0 

   1    pul=E0 

        GO TO 5 

c-----------------------E(t)=E0*e^[ {-(t-TP)**2}/2*TAU ]* Cos(omega* t) 

   2    ENVELOP=EXP(-((t-TP)**2.0D0)/2*TAU) 

        pul=E0*ENVELOP 

        GO TO 5 

c----------------------E(t)= E0* Gaussian 

   3    ENVELOP=EXP(-(t**2.0D0)/2*TAU) 

        pul=E0*ENVELOP 

        GO TO 5 

  4     IF (t.LE.TP) THEN 

        ENVELOP=1.0d0 

        ELSE 

        ENVELOP=0.0d0 

        ENDIF 

        pul=E0*ENVELOP 

        GO TO 5 

   5    pulse=pul 

        RETURN 

 END 

 

 subroutine FUNC(dy,y,t)  

 dimension y(4),dy(4) 

c------ Coupled Equations ------- 

c------- dy/dx = dy(1)=X* Y*z= t*Y(1)*Y(2) 

c------  dz/dx = dy(2)=X*Y/z = t* Y(1)/Y(2) 

c  ** dy(1)=y(1)*y(2)*t 

c  ** dy(2)=y(1)*t/y(2) 

c--------------------------------------------- 

c dy(1)=(y(2)-1.)*y(1)    !Eberly 

c dy(2)=-y(1)*y(2)        !Eberly Book   

 E0=5.0d-1 

 E1=0.0d0 

 E2=2.0d0 

 TP=5.0d0 

 TAU=2.0d0 
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c OMEGA=E2-E1 

 OMEGA=(E2-E1)*0.9 

c hi1=pulse(1,E0,t,TP,TAU,OMEGA) 

c hi1=1.0d1 

c hi2=DCV(0,0,0,0,1.0d0,1.0d0)   !B=1.0d0; A_0=1.0d-2 

c hi=hi1*hi2 

 hi=2.5d0 

 funs1=funsi(t,E2,E1,OMEGA) 

 func1=funcs(t,E2,E1,OMEGA) 

 funs2=funsi2(t,E2,E1,OMEGA) 

 func2=funcs2(t,E2,E1,OMEGA) 

 dy(1)=(-y(3)*funs1+y(4)*func1)*hi 

 dy(2)=-(y(3)*func1+y(4)*funs1)*hi 

 dy(3)=(-y(1)*funs2+y(2)*func2)*hi 

 dy(4)=-(y(1)*func2+y(2)*funs2)*hi 

 write(7,101) t, hi1 

  101 format(2f15.9) 

 return 

 end 

 

 function funsi(t,E2,E1,omega) 

 funsi=sin((E2-E1-omega)*t) 

 return  

 end 

 

 function funcs(t,E2,E1,omega) 

 funcs= cos((E2-E1-omega)*t) 

 return  

 end 

 

 

 function funsi2(t,E2,E1,omega) 

 funsi2= sin((-E2+E1+omega)*t) 

 return  

 end 

 

 function funcs2(t,E2,E1,omega) 

 funcs2= cos((-E2+E1+omega)*t) 

 return  

 end 

 SUBROUTINE RUNGE(ITYPE,N,NSTEPS,H,X,Y,XOUT,YOUT) 

 

 PARAMETER(MEQ=4) 

 

 REAL Y(MEQ) 

 REAL YOUT(MEQ) 

 REAL Y0(MEQ) 

 REAL K0(MEQ) 

 REAL K1(MEQ) 

 REAL K2(MEQ) 

 REAL K3(MEQ)   

 DO 40 J=0,NSTEPS 

 SUM=0.0 

 DO I=1,50 

 NORM=Y(I)*Y(I)+Y(I+50)*Y(I+50) 

 SUM=SUM+NORM 

 END DO 

 CALL FUNC(K0,Y,X) 

 DO 42 I=1,N 

 Y0(I)=Y(I) 

 42 Y(I)=Y0(I)+K0(I)*0.5*H 

 X=X+H*0.5 

 CALL FUNC(K1,Y,X) 

 DO 43 I=1,N 

 43 Y(I)=Y0(I)+K1(I)*0.5*H 

 CALL FUNC(K2,Y,X) 

 DO 44 I=1,N 

 44 Y(I)=Y0(I)+K2(I)*H 
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 X=X+0.5*H 

 CALL FUNC(K3,Y,X) 

 DO 45 I=1,N 

 45 Y(I)=Y0(I)+(K0(I)+2.0*(K1(I)+K2(I))+K3(I))/6.0*H 

 C1=Y(1)**2+Y(2)**2 

 C2=Y(3)**2+Y(4)**2 

 ct=C1+C2 

 WRITE(6,100) X,C1,C2,ct 

  100 format (6f15.10) 

 40 CONTINUE 

 RETURN 

 END 

 

 

c--------This function will calculate the dipole matrix elements for SAME BAND (conduction-conduction) transitions. 

 FUNCTION DCC(N,L,NP,LP,BE) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C OPEN (6,FILE='test') 

c AC=SQRT(27.2D3/0.67D0)  !IN ATOMIC UNIT.. AC=sqrt[(hbar^2)/(m^* omega)] 

c AC=1.0d0 

 AC1=(0.067d1/27.2d0)*sqrt((5.0d-3)**2 + (BE/(2.5d5*2.0d0*0.067d0))**2) 

        AC=SQRT(1.00/AC1)                                                                                          

c N=1 

c L=1 

c NP=0 

c LP=2 

 SUM1=0. 

 DO 05 IH=0,N 

 DO 05 IK=0,NP 

 COEF=(-1)**(IH+IK) 

 L1=IABS(L) 

 LP1=IABS(LP) 

 GAM1=(L1+LP1+1)/2 

 GAM2=IH+IK+1 

 GAM3=GAM1+GAM2 

 CALL LGAMA(1,GAM3,GAMA)   !GAMA((L+LP+1)/2 +IH+IK+1) 

 CNL=C2(N,L,IH)               

 CNLP=C2(NP,LP,IK) 

 XX=1.0d0/(IFACL(IH)*IFACL(IK)) 

 SUM1=COEF*GAMA*CNL*CNLP*XX+SUM1 

  05  CONTINUE 

 TERM1=C1(N,L,NP,LP)*AC/SQRT(2.0d0) 

 DCC=TERM1*SUM1 

C WRITE(6,*)"SUM1,TERM1, DIOPLE", SUM1,TERM1, DIPOLE 

 RETURN 

  END 

 

 

 

C======= THIS FUNCTION CALCULATES ^(N+|L|)C_(N-IH) 

C-------  

 FUNCTION C2(N,L,IH) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

C        N=2 

C L=2 

C IH=1 

 L1=IABS(L) 

  AUM=FLOAT(IFACL(N+L1)) 

 NN=IABS(N-IH) 

 DENO=FLOAT(IFACL(NN)*IFACL(L1+IH)) 

c DENO=FLOAT(IFACL(N-IH)*IFACL(L1+IH)) 

 C2=AUM/DENO 

C WRITE(6,*)"NUM,DENO,C2", NUM,DENO, C2    

 RETURN        

 END 

 

 

C===================================================================== 
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c----------This function will calculate {[(n!)*(np!)]/[(n+l)! *(np+lp)!]}^(1/2)* del_{l,lp} 

C===================================================================== 

C---------- (N & L) AND  (NP & LP) ARE THE PRINCIPLE AND ANGULAR QUANTUM NUMBERS OF THE TWO STATES in different 

BANDS. 

        FUNCTION CV1(N,L,NP,LP) 

        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        NUM=IFACL(N)*IFACL(NP) 

 L1=IABS(L) 

 LP1=IABS(LP) 

        DENO=IFACL(N+L1)*IFACL(NP+LP1) !(N+L)! * (NP+LP)! 

        IF (L.EQ.LP) THEN 

        CV1=SQRT(NUM/DENO) 

        ELSE 

        CV1=0                     !THE if STATEMENT GIVES THE DELTA FUNCTION. 

        ENDIF 

 RETURN 

        END 

C----------------------------------- 

 

 

 

c----------This function will calculate {[(n!)*(np!)]/[(n+l)! *(np+lp)!]}^(1/2) *del_{l,lp+-1}  

c (N & L) AND  (NP & LP) ARE THE PRINCIPLE AND ANGULAR QUANTUM NUMBERS OF THE TWO STATES in the same band...  

 FUNCTION C1(N,L,NP,LP) 

 IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

 NUM=IFACL(N)*IFACL(NP) 

 L1=IABS(L) 

 LP1=IABS(LP) 

 DENO=IFACL(N+L1)*IFACL(NP+LP1) !(N+L)! * (NP+LP)! 

 IF (L.EQ.(LP+1)) THEN 

 C1=SQRT(NUM/DENO) 

 ELSE IF (L.EQ.(LP-1)) THEN 

 C1=SQRT(NUM/DENO) 

 ELSE 

 C1=0                     !THE if STATEMENT GIVES THE DELTA FUNCTION. 

 ENDIF 

 RETURN 

 END 

C-----------------------------------  

c----------THIS FUNCTION CALCULATES THE FACTORIAL OF NN..  

        FUNCTION IFACL(NN) 

        INTEGER NN,NN1,IFACL 

        IFACL=1 

        DO 11 NN1=1,NN 

        IFACL=IFACL*NN1 

                                                                                                  

 11     CONTINUE 

        RETURN 

        END 

  

c--------------------------------- 

 

        SUBROUTINE GAMMA(X,GA) 

C 

C       ================================================== 

C       Purpose: Compute the gamma function â(x) 

C       Input :  x  --- Argument of â(x) 

C                       ( x is not equal to 0,-1,-2,úúú ) 

C       Output:  GA --- â(x) 

C       ================================================== 

C 

        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        DIMENSION G(26) 

        PI=3.141592653589793D0 

        IF (X.EQ.INT(X)) THEN 

           IF (X.GT.0.0D0) THEN 

              GA=1.0D0 
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              M1=X-1 

              DO 10 K=2,M1 

10               GA=GA*K 

           ELSE 

              GA=1.0D+300 

           ENDIF 

        ELSE 

           IF (DABS(X).GT.1.0D0) THEN 

              Z=DABS(X) 

              M=INT(Z) 

              R=1.0D0 

              DO 15 K=1,M 

15               R=R*(Z-K) 

              Z=Z-M 

           ELSE 

              Z=X 

           ENDIF 

           DATA G/1.0D0,0.5772156649015329D0, 

     &          -0.6558780715202538D0, -0.420026350340952D-1, 

     &          0.1665386113822915D0,-.421977345555443D-1, 

     &          -.96219715278770D-2, .72189432466630D-2, 

     &          -.11651675918591D-2, -.2152416741149D-3, 

     &          .1280502823882D-3, -.201348547807D-4, 

     &          -.12504934821D-5, .11330272320D-5, 

     &          -.2056338417D-6, .61160950D-8, 

     &          .50020075D-8, -.11812746D-8, 

     &          .1043427D-9, .77823D-11, 

     &          -.36968D-11, .51D-12, 

     &          -.206D-13, -.54D-14, .14D-14, .1D-15/ 

           GR=G(26) 

           DO 20 K=25,1,-1 

20            GR=GR*Z+G(K) 

           GA=1.0D0/(GR*Z) 

           IF (DABS(X).GT.1.0D0) THEN 

              GA=GA*R 

              IF (X.LT.0.0D0) GA=-PI/(X*GA*DSIN(PI*X)) 

           ENDIF 

        ENDIF 

        RETURN 

        END 

 

Results and Discussion 

Using the above numerical technique, coupled equations are solved, and we get the 

transition probabilities of electron between the energy levels of quantum dot causing by laser 

pulse, here we are using three different types of laser pulses. So we are getting three different 

transition probabilities between the first two levels.   
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Fig 4 : transitition probabitlity between two lowest level are shown for the constant value of laser pulse electric field 

magnitude. These oscilation are known as rabi oscilations. 

(1) for laser pulse with constant electric fields, the transition probabilities are shown in Fig4, on 

x axis the time scale is represented in seconds and on y axis the transition probability is shown. 

The upper curve showing the ground state probability and lower state showing first level 

transistion probability. 

(2) for Gausisan laser pluse ( as shown in Fig5) the transition probabilities are shown in fig6 

              

                                      Fig5: Gaussian pulse shape 
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                 Fig6: Transition Probabilites corresponding to gausian laser pulse shape 
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Fig 7 : in the lower figure transitition probabilities are shown on y axis and time in second is shown on x axis, in the 

above part electric field is represented on y axis and time is represented on x axis for a pulse. 

As it can be seen that transition probability appears during which pulse remains non zero. 

In conclusion we can solve the coupled equation using Runga Kutta method. 
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