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Abstract

Monte Carlo methods (or Monte Carlo experiments) are a class of com-
putational algorithms that rely on repeated random sampling to compute
their results. Monte Carlo methods are often used in computer simulations
of physical and mathematical systems. These methods are most suited to
calculation by a computer and tend to be used when it is infeasible to com-
pute an exact result with a deterministic algorithm. This method is also
used to complement theoretical derivations.

In this project we are trying to use this method for finding value of π,
numerical integration and 2-d Ising model.

1 Finding the value of π

For finding the value of π, one way is to find the area of a circle and from
the equation given below we can find it.

Area, ∆ = πR2 (1)

provided R is the radius of the circle. First we consider a square and inside
it there is also an in-circle whose radius is unity for simplicity. Now we are
going to consider only the first quadrant of the square i.e. area of the square
in first quadrant is unity. Now we are generating random numbers between
0 and 1, and count the points which is inside the square and the quarter of
the circle.

Area of the square, R2 ∝ Nsquare (2)

where Nsquare is # of points hit inside the square.
Area of the circle in the first quadrant,

1

4
πR2 ∝ Ncircle (3)

where Ncircle is the # of points hit inside the area of the circle in 1st quadrant.
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Dividing we can find the value of π as

π =
4×Ncircle

Nsquare

(4)

Since we can count the number of points hit inside the square as well as
inside the quarter of the circle, we can find the value of π. The more points
is generated greater is the accuracy.

2 2-D Ising Model

One of the most important uses of the Monte Carlo Simulation in statistical
physics is its application in Ising model. Ising model is a statistical model,
which was originally used to study the behavior of magnetic particles in a
magnetic field. The model consists of a collection of spins on lattice sites.
Each spin takes only the value of +1 (up) or −1 (down). The model has also
been used to study alloys, where instead of representing the lattice site as
spins it represents what type of atom is in that site. Say if a site is of the
A-type atom, than we can assign 1 or otherwise 0, also same condition for
B-type atom.

We can define a Hamiltonian for a system that is dependent on the ar-
rangement of spins on a lattice and from that deduce properties such as
magnetization and susceptibility. Suppose that the Hamiltonian is

H = −J
∑
<ij>

SiSj − µB
∑
i

Si (5)

provided J and B are exchanged interaction between nearest spins and mag-
netic field strength respectively and µ is the magnetic moment possess by
the lattice sites. The variable Si denotes a spin of ith site and can take values
either +1 or −1.

For the case of B = 0, even if the external magnetic field is not applied
to the system, there is still a spontaneous magnetization after lowering the
temperature of the system to a certain value called critical temperature (Tc)
where the second-order phase transition happens from paramagnet to ferro-
magnet. Below the critical temperature, therefore, the spins of all atoms are
oriented in the same direction. As a result the material develops non-zero
magnetization. This type of transition can be modeled using Monte Carlo.

To analyze this spontaneous magnetization where B = 0, we are going to
use “the spin-flipping method“. The Hamiltonian in ths case is given by

H = −J
∑
<ij>

SiSj (6)
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For a positive J, the above equation takes the minimum value if all the
spins are aligned. In statistical mechanics, the all-down configuration is most
probable, but other configurations also exist with a probability proportional
to the Boltzmann factor e−H/kBT . For an L × L two-dimensional lattice,
each spin index consists of a pair of integers, i = (α, ν), (0 ≤ α, ν ≤ L − 1).
The nearest four neighbors of grid point (α, ν) are, (α± 1, ν) and (α, ν ± 1).
Used to simulate bulk systems without surface effects. It allows a wrap-
around condition. For an L×L two-dimensional lattice, grid points (L−1, ν)
and (0, ν) are east-west neighbors and (α,L− 1) and (α, 0) are north-south
neighbors.

The simulation consists of a series of single-spin updates. One grid point,
(α, ν), is flipped and the corresponding change in energy is calculated. The
spin flip is accepted or rejected according to the Metropolis algorithm. In
each MC step, one grid point on the lattice is randomly selected. Take the
Hamiltonian as

H = −J
∑
<ij>

SiSj (7)

Let us consider a 2-dimensional lattice model whose state on each lattice
site can only be spin-up (S = +1) or spin-down (S = −1). Based on this
setup, we can now describe the Ising model which possesses the energy given
by the above equation. With this Hamiltonian (energy), we can carry out a
classical Monte Carlo simulation using Metropolis algorithm as follows.

1. Initially align all spins on the 2D model lattice to up, i.e. S = +1.
2. Randomly choose a lattice site i and determine its initial energy Ei

and attempt to flip the spin, i.e. from up to down or vice versa and
calculate Ej.

3. If flip involves energy downhill i.e. Ej ≤ Ei, accept the move.
4. Otherwise if Ej > Ei, generate a uniformly distributed random

numbers q ∈ [0, 1], accept the move if q < e−β(Ej−Ei).
5. If rejected, do not flip the spin and propose another flip at a new

random lattice site.
6. If accepted, flip the spin and propose another flip at a new random

lattice site.
7. Repeat this again and again, until the ”system” is thermalized.
8. After the thermalization stage, one can start making measurements.

To find the magnetization, just sum up all the spins after flipping the
spins in the above steps,

M = µ
N∑
i

Si (8)
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or magnetization per spin is

m = µ
N∑
i

Si
N

(9)

provided N is the total number of spin. Also by varying the temperature of
the system, we can find the phase transition curve which is plotted between
magnetization and temperature.

For the case of non-zero magnetic field i.e. B 6= 0, then we can find a
relation between magnetization per spin and the applied external magnetic
field. In 1-D Ising model the relation between them is given as

m = µ tanh(βµB + βJm) (10)

where β = 1/κT . Hence the magnetization depends the direction of magnetic
field whether the magnetization is up or down.

3 Numerical Integration

The Monte Carlo method can be used to numerically approximate the value
of an integral. For a function of one variable the steps are:

(i) pick n randomly distributed points x1, x2, ...., xn in the interval [a, b].
(ii) determine the average value of the function

< f >=
1

n

n∑
i=1

f(xi) (11)

(iii) compute the approximation to the integral∫ b

a
f(x)dx ≈ (b− a) < f > (12)

(iv) an estimate for the error is

σ ≈ (b− a)

√
< f 2 > − < f >2

n
(13)

Every time a Monte Carlo simulation is made using the same sample size
it will come up with a slightly different value. Larger values n of will produce
more accurate approximations. The values converge very slowly O(n−1/2) .
This property is a consequence of the Central Limit Theorem.
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