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Introduction

What is Meant by Monte Carlo Method?

The term “Monte Carlo method” is used to embrace a
wide range of problem solving techniqgues which use
random numbers and the statistics of probability.

The term was coined after the casino in the principality

of Monte Carlo. Every game in a casino is a game of
chance relying on random events such as ball falling
Into a particular slot on a roulette wheel, being dealt
useful cards from a randomly shuffled deck, or the dice
falling the right way!

In principle, any method that uses random numbers to
examine some problem is a Monte Carlo method.



Monte Carlo methods are nowadays widely used, from
the integration of multi-dimensional integrals to solving
ab-initio problems in chemistry, physics, medicine,
biology etc.

The main requirements of performing Monte Carlo
simulation are as follows:-

Be able to generate random variables following a given

probability distribution function
Find a probability distribution function
Sampling rule for accepting a move

Compute standard deviation and other expectation
values

Techniques for improving errors




Basic Methods and Simple Application

1. Computing The Value Of Pi (1):

The value of pi can be obtain by finding the area of a
circle. In order to find the area of the circle consider
the following steps.

» Consider a unit circle which is an in-circle of a square
» Divide the square in 4 quadrants
» Choose the 15t quadrant




» Generate uniform random numbers lies between 0 & 1

» Count the number of the random numbers which fall
within the quarter of the circle and the unit square

Since larger the area of those region, the no. of points
fall inside it will be larger. Hence we can write

Area of unit Square Area of the quarter of the circle

Now dividing the above equations we get the following
equation




Now we can find the and . To count those
number we have the following code:

#include=iostream=
#include=ctime=
#Finclude=cmath=
#include<=iomanip=>
#ginclude=cstdlib=

using namespace std;

main(wveoid)

i

double x value, y value;
long int hit.n _darts=1;

S/generating the seed value for the random numbers
srand{time(8});

while({n dartsi=08)}{

Cout ==
couta< y ma
cin=>n_darts;

if (n_darts!=8)
i
f/ireset the hit wvariable
hit=0;
for{int 1=0;1<n_darts;i++)
i
S /generates a8 random value of x and vy between 8
Sffand 1 with the precision of a double variable
X value = static cast<double=(rand() ) /RAND_ MAX;




y value = static cast<double=(rand() ) /RAND_ MAX;

fFfi1ft the x and yv values are i1nside a circlue of
Sfunit 1 then we increase the hit counter
if ({{x value*x wvalue)+{(y value*y wvalue))<==1) hit++;

¥
ffusing the setprecision and setioflags functions to
/Ffset the precision to 18 digits and to show
f/ftrailing zeros we estimated the value of pi1
ffby multiplying the number of hits by 4 and dividing
//by the numbers of thrown darts.
There <<=hlt<< i

cout<=<
cout<=< g ate - — L 3
<zzsetiosflags{ios::fixed|10s: :showpoint)
<zsetprecision(18)

<<z{hit*4)/static cast<double>=(n _darts)<<

cout=<="1he ] |
<22 QS7.0;

Y/ 71t (darts!=0)
Y//end of while(n darts!=8)

Y//end of main()

This program estimates Pi by the Monte Carlo method.
How many darts do you want to throw? (0 to quit) 10000
There were 7857 hits in the circle

The estimated value of pi is: 3.1428000000

the original value of pi 1s:3.1428571429

This program estimates Pi by the Monte Carlo method.




2. Monte Carlo Integration:

The simplest Monte Carlo estimator is very similar to
the rectangular quadrature rule setting. Consider the
Integration

» Generate uniform random numbers which lies within
the interval

» Define a random function given by the equation
below

Since IS a random variable of the integral, we want to

find its expected value, and hopefully it could
approximate the real value we want:




Instead of using the uniform sampling, we can use other

sampling also. | order to perform this we have the
following steps.

Define a new random function as

where the denominator is
absorbed In




Now finding the expectation value of the function

Hence now we can see very easily that any type of
sampling can be use, but have to be careful about what we
have chosen, for a better result.

» Calculate the error given as




» Now the final value of the integration is given as

A code for calculating the integration is as follows:

program mc inte
implicit none
integer, parameter :: n=10000000

call random_ seed() ! needed to initialize the random number generator use
in MC ewval
call MC integration(n,2.0)

contains

subroutine MC integration(n,end val)
implicit none
integer :: n
real :: end val
real :: x, integral, integral _err
real (kind=8) :: f, f2
integer :: i

integral = 0.0

f= 0.0
T2 0.0

do i=1,n
call random number(x)
x=x*end val ! random number only returns uniformly distributed fro

m (8.8, 1_48]}




f+integrand(x)
T2 = T2+ (integrand(x)**2)
end do

f=ft/n
f2=f2/n

integral=(end val-0.0d0)*f
integral err= (end val-0.0d0)*SQRT((f2 - T**2.0d0)/n)

write (*,*) "# MC integration = ",integral,"+/-",integral _err

end subroutine MC integration

function integrand(x) result (value)
implicit none
real :: x
value

.lt. 0.00001) then
©.00001

value = exp(x)
end function integrand

end program mc_inte

# MC integration = 19.082798 4.89180535E-03

(program exited with code: 0)
Press return to continue




Reminder from Statistical Mechanics

The Partition function contains all thermodynamic

7 _ Ze—H IKgT
all states

Information:

The probability of the n' state appearing is:

P _ 1 —HikgT
VA

Thermodynamic properties are then determined from
the free energy where




3. 2-D Ising model:

Ising model is a statistical model, which was originally
used to study the behavior of magnetic particles in a
magnetic field. The model consists of a collection of
spins on lattice sites. Each spin takes only the value of

(up) or (down).

The model has also been used to study alloys, where

Instead of representing the lattice site as spins it
represents what type of atom is in that site. Say If a site
Is of the A-type atom, than we can assign 1 or otherwise
0, also same condition for B-type atom.




Define a Hamiltonian for a system that is dependent on
the arrangement of spins on a lattice as

Each indices consist of a pair of integers, for
lattice

For a system of N spins have 2N
states!




In order to neglect the surface effect, we consider the
periodic boundary condition (pbc).

and

which means that the grid points & are east-
west neighbors and & are north-south
neighbors.

Theoretically, such a system can
be solved by first solving the
partition function given as

_ —H 7kgT
L= Ze where
all states

H=-J ZGiG,- —B,uZGi, o =t1

<i,j> i
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Then the probability of finding the system in a certain
state, denoted nt" is

Now we can find the other physical quantities

Magnetization,

Susceptibility,

Internal Energy,

Specific Heat,




For a zero external magnetic field, we have

Even if the external field is not applied, there is still a
net magnetization if we allow it to decrease the
temperature to a certain value. The value of is given
below

This spontaneous magnetization happens after at a
certain temperature is due to the occurrence of phase
transition from paramagnet to ferromagnet.




Magnetization M/V

1.5 2 2.5 3
Temperature KT/J

This figure shows that there Is non-zero
magnetization below the critical temperature




In order to solve the above problem, we can use the
Monte Carlo Simulation.

Single spin-flip sampling for the Ising model
Produce the  state from the mt" state ... relative

probability is — need only the energy difference,
l.e. between the states

Any transition rate that satisfies detailed balance is
acceptable, usually the Metropolis form

where IS the time required to attempt a spin-flip.




Metropolis Recipe.:

1. Choose an initial state

2. Choose a site

3. Calculate the energy change that results if the
spin at site is overturned

4. Generate a random number such that

5. If , flip the spin

6. Go to 2




The code of solving the 2-D Ising Model

program ferromagnetism

integer lbox,ntime,itime,phi,i,j,nsite,isite,idum,ntemp,itemp
real r,w,T,ran2,a,b,de,u,v

parameter (lbox = 256)

dimension phi(lbox,1lbox),phin(lbox,lbox),rr(lbox),11l(1lbox)

nsite Loy %2
ntime 5000
idum -1234567
ntemp 40

T =

1Setting of Periodic Boundary Conditions
do i =1 , 1lbox

rrfi) i =% 1
LLga ) i = 14
end do
rr{lbox) = 1
11L(1l) = 1lbox

1Setting of the initial wvalues of the order parameter
do 1 = 1 ; 1Thox
do j = 1 , 1lbox
r = 2.09¥ran2(i1dum) - 1.0
if(r.gt.0.0)then
phin(i,j) =1
else
phin{i.; j) -1
end if
end do
end do




IVariation of Temperatute's
do itemp = 1 , ntemp
T =

1)
1)
*(phi{rr[l »3 PFphid i, rrlj
o o ] j}+Phi{11{1}; prphiliarel] J)tphabi; LLLd]

']}+Phi(i-11(j};i

)then
~ phail.3)

w = exp(-de/T)
r = ran2(idum)
if(w.gt.r)then
phi(i,j) = - phi(i,])
else
end if
end if




iphals . g))
(v/nsite)

write(10,*)T,abs(u)

end do

end program ferromagnetism

FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IAl1,IA2.I0Q01,IQ2,IR1,IR2,.NTAB,NDIV
REAL ran2,AM,EPS, RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,IA1=40014)
PARAMETER (IA2=40692,IQ1=53668,1IQ2=52774,IR1=12211,IR2=3791,NTAB=32)
PARAMETER (NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.@) then
idum=max(-idum, 1)
idum2=idum
do 11 j=NTAB+8,1, -1
k=idum/IQ1l
idum=IAl*(idum-k*IQ1l)-k*IR1
if (idum.1t.0) idum=idum+IM1
if (j-le.NTAB) iv(j)=idum




11 continue

iy=iv (1)

endif
k=idum/IQ1l
idum=IAl*(idum-k*IQl)-k*IR1
if (idum.1t.0) idum=idum+IM1
k=1idum2/IQ2
idum2=IA2*(idum2-k*IQ2)-k*IR2
if (idum2.1t.0) idumZ2=idum2+IM2
j=1+iy/NDIV
iy=iv(j)-idum?2
iv(j)=idum
if(iy.lt.1l)iy=iy+IMM1
ran2=min (AM*iy, RNMX)
return

END




Types of Computer Simulations

Deterministic methods . .. (Molecular dynamics)

A2y
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Stochastic methods . .. (Monte Carlo)
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Conclusions

» Makes it possible to study more complicated models,

which do not have an analytical solution (or solution is
difficult).

» Don’t have to make as many simplifying assumptions-
get more flexible models that can be more valid.
» Can include randomness in a controlled way

» Don’t get exact answers-only estimates, which

Include uncertainty - that should also be estimated




