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Numerical Solution of Ordinary Differential Equations (ODE) 
 
 
I. Definition 
An equation that consists of derivatives is called a differential equation.  Differential equations have 
applications in all areas of science and engineering.  Mathematical formulation of most of the physical 
and engineering problems lead to differential equations.  So, it is important for engineers and 
scientists to know how to set up differential equations and solve them. 
          Differential equations are of two types  

1) ordinary differential equation (ODE)  
2) partial differential equations (PDE). 

 An ordinary differential equation is that in which all the derivatives are with respect to a single 
independent variable.  Examples of ordinary differential equation include 
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Note: In this part, we will see how to solve ODE of the form 
 

 ( ) ( ) 00,, yyyxf
dx
dy

==  

 
II. Euler’s Method 
 
 
We will use Euler’s method to solve an ODE under the form: 
 

( ) ( ) 00,, yyyxf
dx
dy

==  

 
At 0=x , we are given the value of .0yy =   Let us call 0=x  as 0x .  Now since we know the slope 

of y with respect to x , that is, ( )yxf , , then at 0xx = , the slope is ( )00 , yxf .  Both 0x and 0y  

are known from the initial condition ( ) 00 yxy = . 

 



 
Figure 1.Graphical interpretation of the first step of Euler’s method. 

So the slope at x=x0as shown in the figure above 
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 ( )00 , yxf=  

Thus  

 ( ) ( )010001 , xxyxfyy −+=  

 
If we consider 01 xx − as a step size h , we get 

 

 ( ) hyxfyy 0001 ,+= .                                                                                      

 
We are able now to use the value of 1y  (an approximate value of y at 1xx = ) to calculate 2y , which 

is the predicted value at 2x , 

 ( ) hyxfyy 1112 ,+=  

 hxx += 12  

Based on the above equations, if we now know the value of iyy = at ix , then 

  

( ) hyxfyy iiii ,1 +=+  

 
This formula is known as the Euler’s method and is illustrated graphically in Figure 2.  In some books, 
it is also called the Euler-Cauchy method. 
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Figure 2. General graphical interpretation of Euler’s method. 

 
 
 
It can be seen that Euler’s method has large errors.  This can be illustrated using Taylor series. 
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As you can see the first two terms of the Taylor series 
 
 ( )hyxfyy iiii ,1 +=+ are the Euler’s method. 

 
 
The true error in the approximation is given by 
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The true error hence is approximately proportional to the square of the step size,  that is, as the step 
size is halved, the true error gets approximately quartered.  However from Table 1, we see that as the 
step size gets halved, the true error only gets approximately halved.  This is because the true error 
being proportioned to the square of the step size is the local truncation error, that is, error from one 
point to the next.  The global truncation error is however proportional only to the step size as the error 
keeps propagating from one point to another. 
 
 
II. Runge-Kutta 2nd order 
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Euler’s method was derived from Taylor series as: 
 
  ( )hyxfyy iiii ,1 +=+  

 
This can be considered to be Runge-Kutta 1st order method. 
The true error in the approximation is given by 
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Now let us consider a 2nd order method formula.  This new formula would include one more term of 
the Taylor series as follows: 

 ( ) ( ) 2
1 ,

!2
1, hyxfhyxfyy iiiiii ʹ′++=+  

Let us now apply this to a simple example: 

 ( ) 50,32 =−= − yye
dx
dy x  

 ( ) yeyxf x 3, 2 −= −  

Now since y is a function of x, 
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The 2nd order formula would be 
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You could easily notice the difficulty of having to find ( )yxf ,ʹ′  in the above method.  What Runge and 

Kutta did was write the 2nd order method as 
 
 ( )hkakayy ii 22111 ++=+  

where 
 ( )ii yxfk ,1 =  

 ( )hkqyhpxfk ii 11112 , ++=  

 
This form allows us to take advantage of the 2nd order method without having to calculate ( )yxf ,ʹ′ . 

But, how do we find the unknowns 1a , 2a , 1p  and 11q ?  Equating the above equations:  

 

( ) ( ) 2
1 ,

!2
1, hyxfhyxfyy iiiiii ʹ′++=+ and ( )hkakayy ii 22111 ++=+  

gives three equations. 
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Since we have 3 equations and 4 unknowns, we can assume the value of one of the unknowns.  The 
other three will then be determined from the three equations.  Generally the value of 2a  is chosen to 

evaluate the other three constants.  The three values generally used for 2a  are
2
1

, 1 and
3
2

, and are 

known as Heun’s Method, Midpoint method and Ralston’s method, respectively. 
 
II.1. Heun’s method 

Here we choose
2
1

2 =a , giving 
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where 
 ( )ii yxfk ,1 =  

 ( )hkyhxfk ii 12 , ++=  

 
This method is graphically explained in Figure 6. 
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Figure 6.Runge-Kutta 2nd order method(Heun’s method). 

 
 
 
II.2. Midpoint method 
 
Here we choose 12 =a , giving 
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resulting in 

hkyy ii 21 +=+  

where 
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II.3. Ralston’s method 

Here we choose 
3
2

2 =a , giving 
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where 
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NOTE: How do these three methods compare with results obtained if we found ( )yxf ,ʹ′  directly? 

We know that since we are including first three terms in the series, if the solution is a polynomial of 
order two or less (that is, quadratic, linear or constant), any of the three methods are exact.  But for 
any other case the results will be different. 
 
Consider the following example 
 



  ( ) 50,32 =−= − yye
dx
dy x  

 
If we directly find the ( )yxf ,ʹ′ , the first three terms of Taylor series gives 

 

 ( ) ( ) 21 ,
!2
1, hyxfhyxfyy iiiiii ʹ′++=+  

where 

 ( ) yeyxf x 3, 2 −= −  

 ( ) yeyxf x 95, 2 +−=ʹ′ −  

 
 
 
For a step size of 2.0=h , using Heun’s method, we find  
 
 ( ) 0930.16.0 =y  

 
The exact solution  

 ( ) xx eexy 32 4 −− +=  

gives 

 ( ) ( ) ( )6.036.02 46.0 −− += eey  

   96239.0=  
Then the absolute relative true error is 

 100
96239.0

0930.196239.0
×

−
=∈t  

  %571.13=  
 
For the same problem, the results from the Euler and the three Runge-Kuttamethod are given below 
 

Comparison of Euler’s and Runge-Kutta 2nd order methods 

 y(0.6) 
Exact Euler Direct 2nd Heun Midpoint Ralston 

Value 0.96239 0.4955 1.0930 1.1012 1.0974 1.0994 

t∈ %  48.514 13.571 14.423 14.029 14.236 

 
 
 
 
  
 
III. Runge-Kutta 4th order 
 
Runge-Kutta 4th order method is based on the following 
 



 ( )hkakakakayy ii 443322111 ++++=+  

 
where knowing the value of iyy = at ix , we can find the value of y=yi+1 at 1+ix , and  

 ii xxh −= +1  

The above equation is equated to the first five terms of Taylor series 
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Knowing that  ( )yxf
dx
dy ,=  and hxx ii =−+1  

 ( ) ( ) ( ) ( ) 4'''3''2'
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Based on equating the above equations, one of the popular solutions used is 
 

  ( )hkkkkyy ii 43211 22
6
1

++++=+   

  
 ( )ii yxfk ,1 = This is the slope at   xi. 

 ⎟
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⎛ ++= hkyhxfk ii 12 2
1,

2
1 This is an estimate of the slope at the midpoint 

of the interval [xi,xi+1] using the Euler method 
to predict the y approximation there. 
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1 This is an Improved Euler approximation for the slope at                                                                                                                             

the midpoint. 
 ( )hkyhxfk ii 34 , ++= This is the Euler method slope at xi+1, using the 
                                                                   Improved Euler slopek3at the midpoint to step 
to xi+1. 
 
 
 
Errors  
There are two main sources of the total error in numerical approximations:  
1. The global truncation error arises from the cumulative effect of two causes:  
At each step we use an approximate formula to determine yn+1 (leading to a local 
truncation error).  
The input data at each step are only approximately correct since in general (tn) yn.  
2. Round-off error, also cumulative, arises from using only a finite number of digits.  
 



It can be shown that the global truncation error for the Euler method is proportional to h, 
for the Improved Euler method is proportional to h2, and for the RungeKutta method is 
proportional to h4. 


