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Numerical Solution of Ordinary Differential Equations (ODE)

I. Definition
An equation that consists of derivatives is called a differential equation. Differential equations have
applications in all areas of science and engineering. Mathematical formulation of most of the physical
and engineering problems lead to differential equations. So, it is important for engineers and
scientists to know how to set up differential equations and solve them.
Differential equations are of two types
1) ordinary differential equation (ODE)
2) partial differential equations (PDE).
An ordinary differential equation is that in which all the derivatives are with respect to a single

independent variable. Examples of ordinary differential equation include
2
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Note: In this part, we will see how to solve ODE of the form

Ey = (%) (0) =

Il. Euler’s Method

We will use Euler's method to solve an ODE under the form:
y
T £, )(0)= yq

At x =0, we are given the value of y = Yo Letuscall x = 0 as X(- Now since we know the slope
of y with respect to x, that is, f(x,y), then at x = x;, the slope is f(xo,yo ) Both xyand y,

are known from the initial condition y(xo ) =)o-
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Figure 1.Graphical interpretation of the first step of Euler’'s method.
So the slope at x=xpas shown in the figure above

S|ope = u
X1 =X
= f(XO»yo)

Thus
=W +f(x05yo) (xl _xo)

If we consider x; — x as a step size h , we get

Yi=N +f(x09yo) h.

We are able now to use the value of y; (an approximate value of y atx = x;) to calculate y,, which

is the predicted value at x,,
W =nh +f(xlsy1) h
Xy =X +h

Based on the above equations, if we now know the value of y = y;atXx;, then

Yin =V +f(xi9yi) h

This formula is known as the Euler's method and is illustrated graphically in Figure 2. In some books,
it is also called the Euler-Cauchy method.
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Figure 2. General graphical interpretation of Euler's method.

It can be seen that Euler's method has large errors. This can be illustrated using Taylor series.

dzy

d 1 1d?
Yin =¥t dxy| (xl+1 X; ) ( z+1 7151‘ )2 +_| dx{ (xz+1 - X; )3 +...
Via =y oSG+ f(x,,ydf X, x) +§f"<x;,yi>( =)

As you can see the first two terms of the Taylor series

Yig =y + f(xi,yl- )h are the Euler’'s method.

The true error in the approximation is given by

E, = f,(xi’yi)h2 + f”(‘xi’yi)h3
2! 3!
The true error hence is approximately proportional to the square of the step size, thatis, as the step
size is halved, the true error gets approximately quartered. However from Table 1, we see that as the
step size gets halved, the true error only gets approximately halved. This is because the true error
being proportioned to the square of the step size is the local truncation error, that is, error from one
point to the next. The global truncation error is however proportional only to the step size as the error
keeps propagating from one point to another.

Il. Runge-Kutta 2" order



Euler's method was derived from Taylor series as:
Yisl = Vi +f(xi7yi )h

This can be considered to be Runge-Kutta 1* order method.
The true error in the approximation is given by

f,(xi’yi)h2 + f”(‘xi’yi)h3
2! 3!

Now let us consider a 2" order method formula. This new formula would include one more term of

E, =

the Taylor series as follows:
1.,
YVian =V f(xiayi )h + Ef ('xi’yi)h2

Let us now apply this to a simple example:
dy
= e -3y,9(0)=5
L 37,30
-2
Slxy)=e?" -3y
Now since yis a functic()n of)x, ( )
: olx,y) oflx,y)dy
f (x’y) = + _
ox dy dx

The 2" order formula would be

Yin = y,"'f( layl)h+ f( z’yz)

Vi =y +e? -3y,)"+_( 57 49y, Jo°

You could easily notice the difficulty of having to find f (x y) in the above method. What Runge and

Kutta did was write the 2" order method as

Vi =)+ (alkl +a,k, )h
where

k= f(x. )
ky = f(xi + pih,y; + Q11k1h)

This form allows us to take advantage of the 2" order method without having to calculate f'(x,y).

But, how do we find the unknowns a;, a,, p; and g;,;? Equating the above equations:

I,
Vit =i +f(xi9yi )h +5f (xi,yl.)hzand Vi =i +(a1k1 +a,k, )h

gives three equations.



a1+a2=1

1

%M=E

1
ad = E

Since we have 3 equations and 4 unknowns, we can assume the value of one of the unknowns. The

other three will then be determined from the three equations. Generally the value of a, is chosen to
1 2

evaluate the other three constants. The three values generally used for a, areE , 1 and=, and are

known as Heun’s Method, Midpoint method and Ralston’s method, respectively.

I1.1. Heun’s method

1
Here we choose a, = 5 , giving

1

Cll = —

p=1

q =1
resulting in

1 1
=Y+ =k +=ky |h
Yis1 = Vi (2 1 5 2)

where
k, = f(xi’yi)
ky = f(x, +h,y, + kh)

This method is graphically explained in Figure 6.
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Figure 6.Runge-Kutta 2™ order method(Heun’s method).

11.2. Midpoint method

Here we choose a, =1, giving

a =0
_ 1
pPr= >
_ 1
g1 = 5
resulting in

Yiz1 = Vi +koh

where

ki = f(xi»yi)

1 1
k, = +—h,y. +—kh
=X > Yi K

11.3. Ralston’s method

2
Here we choose a, = 5 giving

Q
I

=
I

Sluw Blw W=

qn

resulting in

1 2
Yinn = Vi +(§k1 +§k2)h

where

ki = f(xi»yi)
3

3
k, = +=h,y. +—knh
=X 4 Yi 4

NOTE: How do these three methods compare with results obtained if we found f '(x, y) directly?

We know that since we are including first three terms in the series, if the solution is a polynomial of

order two or less (that is, quadratic, linear or constant), any of the three methods are exact. But for
any other case the results will be different.

Consider the following example



If we directly find the f’(x,y), the first three terms of Taylor series gives

Yirr =2+ 1 ,,y,)h+ S i
where

Sl y)=e?" -3y

flx,y)==5¢ +9y

For a step size of 4 = 0.2, using Heun’s method, we find
1(0.6)=1.0930

The exact solution

y(x) e 47
gives
y(0.6)= 6—2(0.6) +4 e—3(0.6)
=0.96239

Then the absolute relative true error is

E|- 10.96239 -1.0930] . '
096239 |
=13.571%

For the same problem, the results from the Euler and the three Runge-Kuttamethod are given below

Comparison of Euler's and Runge-Kutta 2" order methods
¥(0.6)
Exact Euler Direct 2nd Heun Midpoint Ralston
Value 0.96239 0.4955 1.0930 1.1012 1.0974 1.0994
Et % 48.514 13.571 14.423 14.029 14.236

lll. Runge-Kutta 4" order

Runge-Kutta 4" order method is based on the following



Vi =V + (alk1 +a,k, + a;k;, + a,k, )h

where knowing the value of y = y;atx;, we can find the value of y=y;.; at x, ,, and

i+1’
h=x,, -x

The above equation is equated to the first five terms of Taylor series

d 1 d? 1d° 3
Yin =i +ay Xy (xm _xi)"'z!gj; X0 (xm _xi)z +§$)3} Xy (xm _‘xi)
1d*
+Z dxi/ X\ Vi ('xi+1 _xi)4

i

Knowing that Z—y = f(x,y)and x,, —x, = h
e

1 . 1 . | R
yi+1=yi+f(xi’yi)h+5f(xi’yi)h2+§f (xiayi)h3+zf (xi’yi)h4

Based on equating the above equations, one of the popular solutions used is

Yiat =i +é(k1 + 2k, + 2k, + k4)h

k=f (xl., yl.)This is the slope at  x;.
k=1 ( X, + %h, Vi + %klh)This is an estimate of the slope at the midpoint

of the interval [x;,X;+1] using the Euler method
to predict the y approximation there.

1 1 . o
ky=f (xi + Eh’ Vi + Ekzh) This is an Improved Euler approximation for the slope at

the midpoint.
k,=f (xi +h,y, + k3h)This is the Euler method slope at x;+1, using the
Improved Euler slopek;at the midpoint to step
O Xij+1.

Errors
There are two main sources of the total error in numerical approximations:
1. The global truncation error arises from the cumulative effect of two causes:

At each step we use an approximate formula to determine yn+1 (leading to a local
truncation error).

The input data at each step are only approximately correct since in general (tn) yn.
2. Round-off error, also cumulative, arises from using only a finite number of digits.



It can be shown that the global truncation error for the Euler method is proportional to h,
for the Improved Euler method is proportional to h?, and for the RungeKutta method is
proportional to h*.



