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Numerical Integration : 

In numerical analysis, numerical integration constitutes a broad family of algorithms for 

calculating the numerical value of a definite integral, and by extension, the term is also 

sometimes used to describe the numerical solution of differential equations. This article focuses 

on calculation of definite integrals. Numerical integration over more than one dimension is 

sometimes described as cubature,
[1]

 although the meaning of quadrature is understood for 

higher dimensional integration as well. 

The basic problem considered by numerical integration is to compute an approximate solution to 

a definite integral: 

 

 

If f(x) is a smooth well-behaved function, integrated over a small number of dimensions and the 

limits of integration are bounded, there are many methods of approximating the integral with 

arbitrary precision. 

There are several reasons for carrying out numerical integration. The integrand f(x) may be 

known only at certain points, such as obtained by sampling. Some embedded systems and other 

computer applications may need numerical integration for this reason. 

A formula for the integrand may be known, but it may be difficult or impossible to find 

an antiderivative which is an elementary function. An example of such an integrand is f(x) = 

exp(−x
2
), the antiderivative of which (the error function, times a constant) cannot be written 

in elementary form. 

 

What is integration? 

Integration is the process of measuring the area under a function plotted on a graph.  Why would 

we want to integrate a function?  Among the most common examples are finding the velocity of 

a body from an acceleration function, and displacement of a body from a velocity function.  

Throughout many engineering fields, there are countless applications for integral calculus. 

Sometimes, the evaluation of expressions involving these integrals can become daunting, if not 

indeterminate.  For this reason, a wide variety of numerical methods has been developed to 

simplify the integral.   

We will discuss the trapezoidal rule of approximating integrals of the form 
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where  

  )(xf  is called the integrand, 

  a  lower limit of integration 

  b  upper limit of integration 

 

 The methods that are based on equally spaced data points: these are Newton-cotes 

formulas: the mid-point rule, the trapezoid rule and simpson rule. 

  The methods that are based on data points which are not equally spaced:these are Gaussian 

quadrature formulas. 

In numerical analysis, the Newton–Cotes formulae, also called the Newton–Cotes quadrature 

rules or simply Newton–Cotes rules, are a group of formulae for numerical integration (also 

called quadrature) based on evaluating the integrand at equally-spaced points. 

Newton–Cotes formulae can be useful if the value of the integrand at equally-spaced points is 

given. If it is possible to change the points at which the integrand is evaluated, then other 

methods such as Gaussian quadratureand Clenshaw–Curtis quadrature are probably more 

suitable. 

Types of  Newton–Cotes  formulas 

 Mid-Point rule 

 Trapezoidal Rule 

 Simpson Rule 

 

 

 

 

 

 

 

 
this rule does not make any use of the end points. 

Mid-point Rule: 

compute the area of the rectangle formed by the four points  

(a,0),(0,b),(a,f(a+b)/2)) and (b,f(a+b)/2)) such that such 

that the approximate integral is given by 
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Trapezoidal Rule : 

The trapezoidal rule is based on the Newton-Cotes formula that if one approximates the 

integrand by an thn  order polynomial, then the integral of the function is approximated by the 

integral of that thn  order polynomial.  Integrating polynomials is simple. 

Composite Mid-point Rule: 
 the interval [a ,b] can be break into smaller intervals and 

compute the  approximation on each sub interval. 

 Sub-intervals of size h =    
   

  

 
   

 

 

Error in Mid-point Rule 

If we reduce the size of the interval to half its width, the error in the mid-point method will be reduced by a factor of 8. 

expanding both f (x) and f (a
1
/2) about the the left endpoint a, and then integrating the taylor expansion 

we get error

 
 

   



 

Figure 1 Integration of a function 

 

So if we want to approximate the integral 
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to find the value of the above integral, one assumes 
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where )(xf n  is a thn  order polynomial.  The trapezoidal rule assumes 1n , that is, 

approximating the integral by a linear polynomial (straight line), 

 

Derivation of the Trapezoidal Rule: 

Method 1: Derived from Calculus: 
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Now choose, ))(,( afa  and ))(,( bfb  as the two points to approximate )(xf  by a straight line 

from a  to b , 
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Solving the above two equations for 1a  and 0a , 
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Hence from Equation (1), 
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Method 2: Derived from Geometry: 

The trapezoidal rule can also be derived from geometry. Consider Figure 2.  The area under the 

curve )(1 xf  is the area of a trapezoid.  The integral 

 

 

 



 

 

 

 

 

 

                                                        Figure 2 Geometric representation of trapezoidal rule. 
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Composite Trapezoidal Rule: 

Extending this procedure we now divide the interval of integration ],[ ba  into n  equal segments 

and then applying the trapezoidal rule over each segment, the sum of the results obtained for 

each segment is the approximate value of the integral. 

Divide )( ab  into n  equal segments as shown in Figure 4.  Then the width of each segment is 

n
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The integral I  can be broken into h  integrals as 
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Figure 4  Multiple ( 4n ) segment trapezoidal rule 

 

Applying trapezoidal rule Equation (2) on each segment gives 
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Error in Multiple-segment Trapezoidal Rule: 

The true error for a single segment Trapezoidal rule is given by 
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Where  is some point in ba, . 

What is the error then in the multiple-segment trapezoidal rule?  It will be simply the sum of the 

errors from each segment, where the error in each segment is that of the single segment 

trapezoidal rule.  The error in each segment is 
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Hence the total error in the multiple-segment trapezoidal rule is 
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The term 
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 is an approximate average value of the second derivative bxaxf ),(" .   

Hence 
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 The methods we presented so far were defined over finite domains, but it will be often the 

case that we will be dealing with problems in which the domain of integration is infinite.  

 We will now investigate how we can transform the problem to be able to use standard 

methods to compute the integrals. 

 

 

 Gaussian Quadrature & Optimal Nodes 

 Using Legendre Polynomials to Derive Gaussian Quadrature Formulae 

 Gaussian Quadrature on Arbitrary Intervals 

 

Gaussian Quadrature: Contrast with Newton-Cotes 

 The Newton-Cotes formulas were derived by integrating  interpolating polynomials. 

 The error term in the interpolating polynomial of degree n involves the (n + 1)st derivative of 

the function being approximated, . . . 

 so a Newton-Cotes formula is exact when approximating the integral of any polynomial of 

degree less than or equal to n. 

 All the Newton-Cotes formulas use values of the function at equally-spaced points. 

 This restriction is convenient when the formulas are combined to form the composite rules 

which we considered earlier, . . . 

But in Gaussian Quadrature 

 we may find sets of weights and abscissas that make the formulas exact for  integrands that 

are composed of some real function multiplied by a polynomial  

 gives us a huge advantage in calculating integrals numerically. 

Gauss Quadrature 



 

Consider, for example, the Trapezoidal rule applied to determine the integrals of the functions 

whose graphs are as shown. 

 

It approximates the integral of the function by integrating the linear function that joins the 

endpoints of the graph of the function. 

But this is not likely the best line for approximating the integral. Lines such as those shown 

below would likely give much better approximations in most cases. 

 

Gaussian quadrature chooses the points for evaluation in an optimal, rather than equally-spaced, 

way. 

 

Gaussian Quadrature: Introduction 

Choice of Integration Nodes : 

 The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients  c1, c2, . . . , cn, are chosen 

to minimize the expected error obtained in the approximation 



 

 assume that the best choice of these values produces the exact result for the largest class 

of polynomials, . . . 

 The coefficients c1, c2, . . . , cn, in the approximation formula are arbitrary, and the nodes 

x1, x2, . . . , xn are restricted only by the fact that they must lie in [a, b], the interval of 

integration. 

 This gives us 2n parameters to choose. 

 The way that this is done is through viewing the integrand as being composed of some 

weighting function W(x) multiplied by some polynomial P(x) so that  

                                                f(x)=W(x)P(x) 

  

 Instead of using simple polynomials to interpolate the function, quadrature use the set of 

polynomials that are orthogonal over the interval with weighting function W(x).  

 With this choice of interpolating polynomial, we find that if we evaluate P(x) at the 

zeroes (xi) of the interpolating polynomial of desired order, and multiply each evaluation 

by a weighting factor (wi) 

 we can obtain a result that is exact up to twice the order of the interpolating polynomial! 

 Gaussian quadrature method based on the polynomials pm as follows 

 

Let x0, x1, . . . , xn be the roots of pn+1. 

Let li the ith Lagrange interpolating polynomial for these roots, i.e. li is the unique polynomial of 

degree  ≤ n . Then 

 

 

 

 



where the weights wi are given by 

 

 

 

 

 

 



 

 

 

Using Legendre Polynomials to Derive Gaussian Quadrature Formulae: 

 

An Alternative Method of Derivation 

 We will consider an approach which generates more easily the nodes and coefficients for 

formulas that give exact results for higher-degree polynomials. 

  This will be achieved using a particular set of orthogonal polynomials (functions with 

the property that a particular definite integral of the product of any two of them is 0). 

 



 

 

The first few Legendre Polynomials 

 

 

 

 The roots of these polynomials are distinct, lie in the interval (−1, 1), have a symmetry 

with respect to the origin, and, most importantly, 

 they are the correct choice for determining the parameters that give us the nodes and 

coefficients for our quadrature method 

The nodes x1, x2, . . . , xn needed to produce an integral approximation formula that gives exact 

results for any polynomial of degree less than 2n are the roots of the nth-degree Legendre 

polynomial. 

 



 

 

Proof :  

 Let us first consider the situation for a polynomial P(x) of degree less than n. 

 Re-write P(x) in terms of (n − 1)st Lagrange coefficient polynomials with nodes at the 

roots of the nth Legendre polynomial Pn(x). 

Since P(x) is of degree less than n, the nth derivative of P(x) is 0, and this representation of is 

exact. So 

 

 

 

 



 

 

 

 

 



 

 

 

 

 



Gaussian Quadrature on Arbitrary Intervals: 

Transform the Interval of Integration from [a,b] to [−1, 1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gauss–Laguerre quadrature  : 

Gauss–Laguerre quadrature is an extension of Gaussian quadrature method for approximating 

the value of integrals of the following kind: 

 

 

In this case 

 

 

where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by  

 

 

 

 

 

Gauss–Hermite quadrature : 

Gauss–Hermite quadrature is also an extension of Gaussian quadrature method for 

approximating the value of integrals of the following kind: 

 

In this case  

 

where n is the number of sample points to use for the approximation. The xi are the roots of 

the  Hermite polynomial Hn(x) (i = 1,2,...,n) and the associated weights wi are given by  

 

 

 

 

http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Hermite_polynomial

