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What is Integration? 

y 

 
The process of measuring the area 
under a curve. 

 
Where:  
f(x) is the integrand 
a= lower limit of integration 
b= upper limit of integration 



Numerical Integration : 
 constitutes a broad family of algorithms for calculating the numerical 

value of a integral. 
 The integrand f(x) may be known only at certain points, such as 

obtained by sampling.  
 A formula for the integrand may be known, but it may be difficult or 

impossible to find an antiderivative . 
 It may be possible to find an antiderivative symbolically, but it may be 

easier to compute a numerical approximation than to compute the 
antiderivative. 

 
 The methods that are based on equally spaced data points: these are 

Newton-cotes formulas: the mid-point rule, the trapezoid rule and 
simpson rule. 
 

  The methods that are based on data points which are not equally 
spaced:these are Gaussian quadrature formulas. 

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Antiderivative


Newton–Cotes formulas 
 
 derived from interpolating polynomials 
 evaluate the integrand at equally-spaced points. 
 the formulas are exact for polynomials of degree less than or equal to n. 

 
 

 Types of  Newton–Cotes  formulas 
 

 Mid-Point rule 
 Trapezoidal Rule 
 Simpson Rule 
 

 
 
 



Mid-point Rule: 
 
compute the area of the rectangle 
formed by the four points  
(a,0),(0,b),(a,f(a+b)/2)) and 
(b,f(a+b)/2)) 
 
such that such that the approximate 
integral is given by 
 

 

this rule does not make any use of the end points. 



Composite Mid-point Rule: 
 
the interval [a ,b] can be break into smaller 
intervals and compute the  approximation on 
each sub interval. 
 
Sub-intervals of size h =   
 

n+1 data points 

Value of integral is : 



Error in Mid-point Rule 

If we reduce the size of the interval to half its width, the error in the mid-
point method will be reduced by a factor of 8. 

expanding both f (x) and f (a1/2) about the the left endpoint a, and then integrating 
the taylor expansion we get error 

Em =  



Trapezoidal Rule : 
 
       Newton-Cotes Formula that states if one can approximate the 

integrand as an nth order polynomial… 
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Then the integral of that function is approximated by the integral of 
that nth order polynomial. 
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      Trapezoidal Rule assumes n=1, that 
is, the area under the linear 
polynomial,  
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Proof : 



Composite Trapezoidal Rule : 
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The integral I can be broken into h integrals as: 
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Error in Trapezoidal Rule 

Et  =  

even though the trapezoid rule uses two values of f , the error estimate is 
slightly larger than the estimate for the midpoint method. 
 
the exponent on (b-a), which tells us how quickly the error goes to 0 
when the interval width is reduced, and from this point of view the two 
methods are the same. 



Simpson Rule : 
 
 Simpson’s 1/3 Rule : 
 

derived by approximating the integrand f (x) (in blue)  
by a second order  polynomial    
                                                 
                                              (in red). 

f2(x) 



Because the above form has 1/3 in its formula, it is called Simpson’s 1/3rd 
Rule. 



Composite Simpson’s 1/3rd Rule : 
 

 one can subdivide the interval  [a, b] into n segments  
and apply Simpson’s 1/3rd Rule repeatedly over every  
two segments.  
 the segment width h,  

 
 
 
 
 

                       x0 = a  ,         xn = b 
 
 

 
 
 



Apply Simpson’s 1/3rd Rule over each interval, 

Rule is :  



Error in Simpson Rule :  
 

The error in Simpson’s 1/3rd Rule is given as 
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Since the error term is proportional to the fourth derivative of f at ξ, this shows 

that Simpson's rule provides exact results for any polynomial f of degree three or 
less, 

Integrates a cubic exactly: 



The methods we presented so far were defined over finite domains, but it 
will be often the case that we will be dealing with problems in which the 
domain of integration is infinite.  
 
We will now investigate how we can transform the problem to be able to 
use standard methods to compute the integrals. 
 
                                               
 

 
 

 Gaussian Quadrature & Optimal Nodes 
 Using Legendre Polynomials to Derive Gaussian Quadrature Formulae 
 Gaussian Quadrature on Arbitrary Intervals 

Gaussian Quadrature  



Gaussian Quadrature: Contrast with Newton-Cotes 
 
 The Newton-Cotes formulas were derived by integrating  interpolating 

polynomials. 
 The error term in the interpolating polynomial of degree n involves the 

(n + 1)st derivative of the function being approximated, . . . 
 so a Newton-Cotes formula is exact when approximating the integral of 

any polynomial of degree less than or equal to n. 
 All the Newton-Cotes formulas use values of the function at equally-

spaced points. 
 This restriction is convenient when the formulas are combined to form 

the composite rules which we considered earlier, . . . 
 

But in Gaussian Quadrature 
 

   we may find sets of weights and abscissas that make the formulas exact    
     for  integrands that are composed of some real function multiplied by a   
     polynomial 
   gives us a huge advantage in calculating integrals numerically. 



Consider, for example, the Trapezoidal rule applied to determine the 
integrals of the functions whose graphs are as shown. 

It approximates the integral of the function by integrating the linear 
function that joins the endpoints of the graph of the function. 



Gaussian Integration: Optimal integration points 

But this is not likely the best line for approximating the integral. Lines such 
as those shown below would likely give much better approximations in most 
cases. 

Gaussian quadrature chooses the points for evaluation in an optimal, rather 
than equally-spaced, way. 



Gaussian Quadrature: Introduction 

Choice of Integration Nodes : 
 The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients  c1, c2, . . . , 

cn, are chosen to minimize the expected error obtained in the 
approximation 

 
 
 
 
 
 assume that the best choice of these values produces the exact result for 

the largest class of polynomials, . . . 
 The coefficients c1, c2, . . . , cn, in the approximation formula are arbitrary, 

and the nodes x1, x2, . . . , xn are restricted only by the fact that they must 
lie in [a, b], the interval of integration. 

 This gives us 2n parameters to choose. 



The way that this is done is through viewing the integrand as being 
composed of some weighting function W(x) multiplied by some polynomial 
P(x) so that  
                                                f(x)=W(x)P(x) 
  
Instead of using simple polynomials to interpolate the function, 
quadrature use the set of polynomials that are orthogonal over the interval 
with weighting function W(x).  
 
With this choice of interpolating polynomial, we find that if we evaluate 
P(x) at the zeroes (xi) of the interpolating polynomial of desired order, and 
multiply each evaluation by a weighting factor (wi) 
 
we can obtain a result that is exact up to twice the order of the 
interpolating polynomial! 



Gaussian quadrature method based on the polynomials pm as follows 
 
Let x0, x1, . . . , xn be the roots of pn+1. 
Let li the ith Lagrange interpolating polynomial for these roots, i.e. li is the 
unique polynomial of degree  ≤ n . Then 
 
 

where the weights wi are given by 









Using Legendre Polynomials to Derive Gaussian 
Quadrature Formulae 



Gaussian Quadrature: Legendre Polynomials 
 
An Alternative Method of Derivation 

 
 We will consider an approach which generates more easily the nodes and 

coefficients for formulas that give exact results for higher-degree 
polynomials. 

 This will be achieved using a particular set of orthogonal polynomials 
(functions with the property that a particular definite integral of the 
product of any two of them is 0). 
 



The first few Legendre Polynomials 

 The roots of these polynomials are distinct, lie in the interval (−1, 1), have 
a symmetry with respect to the origin, and, most importantly, 

 they are the correct choice for determining the parameters that give us 
the nodes and coefficients for our quadrature method 
 

The nodes x1, x2, . . . , xn needed to produce an integral approximation 
formula that gives exact results for any polynomial of degree less than 2n 
are the roots of the nth-degree Legendre polynomial. 





Proof :  
 
 Let us first consider the situation for a polynomial P(x) of degree less 

than n. 
 

 Re-write P(x) in terms of (n − 1)st Lagrange coefficient polynomials with 
nodes at the roots of the nth Legendre polynomial Pn(x). 

 
 Since P(x) is of degree less than n, the nth derivative of P(x) is 0, and this 

representation of is exact. So 











The following table lists these values for n = 2, 3, 4, and 5. 



Gaussian Quadrature on Arbitrary Intervals 



Transform the Interval of Integration from [a,b] to 
[−1, 1] 



Gauss–Laguerre quadrature : 

 numerical analysis Gauss–Laguerre quadrature is an extension of Gaussian 
quadrature method for approximating the value of integrals of the following kind: 

 In this case 

 To integrate the function  

where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by  

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Laguerre_polynomial


Gauss–Hermite quadrature 

 method for approximating the value of integrals of the following kind: 

 In this case 
 

where n is the number of sample points to use for the approximation. 

The xi  are the roots of the  Hermite polynomial Hn(x) (i = 1,2,...,n) and the 
associated weights wi are given by  

http://en.wikipedia.org/wiki/Hermite_polynomial
http://en.wikipedia.org/wiki/Hermite_polynomial
http://en.wikipedia.org/wiki/Hermite_polynomial


Program code 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#include<iostream.h> 
#include<math.h> 
#include<conio.h> 
#include<stdio.h> 
 
double f(double x) 
{ 
double y; 
//y = (arctan(x))/(pow(x,2)); 
y= log(1+pow(x,2)); 
//y=1; 
//y= 1/(x+3); 
return (y); 
} 
 
double g_quad(double a,double b, int n1) 
{ 
double x[20],w[20],z[20],s3,ans,s; 
int i; 
/* x[0] = 0.33998; x[1] =0.8611363 ;x[2] =-0.33998 ;x[3] =-0.8611363 ; 



w[0] = 0.652145;  w[1] = 0.347854;w[2] =0.652145 ;w[3] = 0.347854; 
*/ 
w[0] = 0.3626837833783620;w[1] = 0.3626837833783620; 
w[2] =0.3137066458778873 ;w[3] = 0.3137066458778873; 
w[4] = 0.2223810344533745;w[5] = 0.2223810344533745; 
w[6] =0.1012285362903763 ;w[7] = 0.1012285362903763; 
x[0] = -0.1834346424956498;x[1] = 0.1834346424956498; 
x[2] = -0.5255324099163290;x[3] = 0.5255324099163290; 
x[4] =-0.7966664774136267 ;x[5] = 0.7966664774136267; 
x[6] = -0.9602898564975363;x[7] = 0.9602898564975363; 
s3=0.0; 
for(i=0; i<n1; i++) 
{ 
z[i] = (((b+a)/2) + ((b-a)/2)*x[i]); 
s=z[i]; 
s3 = s3 + (w[i]*f(z[i])); 
} 
ans = ((b-a)/2.0)*s3; 
return(ans); 
} 
 
 



double g_lag(int n1) 
{ 
double x[20],w[20],z[20],s4; 
int i; 
s4 =0.0; 
x[0] = 0.32254; x[1] = 1.74757;x[2] = 4.53662;x[3] = 9.39507; 
w[0] =0.60315 ;w[1] = 0.35741;w[2] =0.038887 ;w[3] = 0.0005392; 
 
for(i=0; i<n1; i++) 
{ 
s4 = s4 + (w[i] * f(x[i])); 
} 
return(s4); 
} 
 
double g_her(int n1) 
{ 
double x[20],w[20],z[20],s7; 
int i; 
s7=0.0; 



x[0] =0.38118 ;  x[1] =1.1571 ;x[2] = 1.9816;x[3] =2.93063 ; 
x[4] =-0.3811 ;   x[5] =-1.15719 ; x[6] = -1.98165; x[7] = -2.930; 
w[0] = 0.66114;   w[1] =0.2078 ;w[2] = 0.01707;w[3] = 0.000109; 
w[4] =0.66114 ;w[5] =0.2078 ;w[6] = 0.01707;w[7] = 0.000109; 
for(i=0; i<n1; i++) 
{ 
s7 = s7+ (w[i]*f(x[i])); 
} 
return(s7); 
} 
 
main() 
{ 
clrscr(); 
double a,b,s1,s2,s5,s6,y1,y2,h,r; 
int n,n1,i,c; 
 
s1= 0.0; 
s2=0.0; 
 



cout<<"Enter     1:  For finite limits      \n"; 
cout<<"          2:  Limits from zero to infinity    \n"; 
cout<<"          3:  Infinite limits       \n"; 
 
cout<<"Enter Choice \n"; 
cin>>c; 
 
switch(c) 
{ 
case 1: 
 
cout<<"\n"; 
cout<<"Enter values of a , b and n \n"; 
cin>>a>>b>>n; 
cout<<" Enter value of n for gauss quadrature :\n"; 
cin>>n1; 
 
h=(b-a)/n; 
for(i=1; i<=(n-1);i++) 
{ 
s1=s1+f(a + (i*h)); 
} 



r = (h*(f(a) + f(b) + (2*s1)))/2; 
cout<<"\n"; 
cout<<"Using trapezoidal rule :  I = "<<r<<"\n"; 
 
//----simpson rule---------- 
for(i=1; i<=(n/2); i++) 
{ 
y1 = y1 + f(a + (((2*i) - 1)*h)); 
} 
for(i=1; i<=(n/2)-1; i++) 
{ 
y2 = y2 + f(a + (2*i*h)); 
} 
r = (h*(f(a) + f(b) + (4*y1) + (2*y2)))/3; 
cout<<"\n"; 
cout<<"Using Simpson Rule  :   I = "<<r<<"\n"; 
//------end------------- 
 
//----------Gauss Quadrature----------------- 
 
s2 = g_quad(a,b,n1); 
cout<<"Using Gauss Quadrature  :  I = "<<s2<<"\n"; 



cout<<"\n"; 
//---------end------------------ 
 
break; 
 
case 2: 
 
//---------Gauss Laguerre-------------- 
 
cout<<" Enter value of n for gauss laguerre :\n"; 
cin>>n1; 
 
s5 =  g_lag(n1); 
cout<<"Using Gauss Laguerre  :  I = "<<s5<<"\n"; 
cout<<"\n"; 
//-------end------------------------ 
break; 
 
//----------------Gauss hermite----------- 
case 3 : 
cout<<" Enter value of n for gauss hermite :\n"; 
cin>>n1; 
 
 
 
 
 
 
 
 
 
 



s6 = g_her(n1); 
cout<<"Using Gauss Hermite  :  I = "<<s6<<"\n"; 
cout<<"\n"; 
//----------end--------------- 
break ; 
 
} 
getch(); 
} 
 



Thank You 


