
Numerical Methods of Integration

Department of Physics & Astrophysics
 University of Delhi

Richa Sharma

Outline :

 Integartion

 Different methods of Numerical Integration :

 Uniformly-spaced samples
 Newton–Cotes formulas

 Non-uniformly spaced samples
 Gaussian Quadrature Formulas

 Program Code

What is Integration?

y

The process of measuring the area
under a curve.

Where:
f(x) is the integrand
a= lower limit of integration
b= upper limit of integration

Numerical Integration :
 constitutes a broad family of algorithms for calculating the numerical

value of a integral.
 The integrand f(x) may be known only at certain points, such as

obtained by sampling.
 A formula for the integrand may be known, but it may be difficult or

impossible to find an antiderivative .
 It may be possible to find an antiderivative symbolically, but it may be

easier to compute a numerical approximation than to compute the
antiderivative.

 The methods that are based on equally spaced data points: these are

Newton-cotes formulas: the mid-point rule, the trapezoid rule and
simpson rule.

 The methods that are based on data points which are not equally
spaced:these are Gaussian quadrature formulas.

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Antiderivative

Newton–Cotes formulas

 derived from interpolating polynomials
 evaluate the integrand at equally-spaced points.
 the formulas are exact for polynomials of degree less than or equal to n.

 Types of Newton–Cotes formulas

 Mid-Point rule
 Trapezoidal Rule
 Simpson Rule

Mid-point Rule:

compute the area of the rectangle
formed by the four points
(a,0),(0,b),(a,f(a+b)/2)) and
(b,f(a+b)/2))

such that such that the approximate
integral is given by

this rule does not make any use of the end points.

Composite Mid-point Rule:

the interval [a ,b] can be break into smaller
intervals and compute the approximation on
each sub interval.

Sub-intervals of size h =

n+1 data points

Value of integral is :

Error in Mid-point Rule

If we reduce the size of the interval to half its width, the error in the mid-
point method will be reduced by a factor of 8.

expanding both f (x) and f (a1/2) about the the left endpoint a, and then integrating
the taylor expansion we get error

Em =

Trapezoidal Rule :

 Newton-Cotes Formula that states if one can approximate the

integrand as an nth order polynomial…

b

a

dx)x(fI where)x(f)x(f n

n
n

n
nn xaxa...xaa)x(f 1

110and

Then the integral of that function is approximated by the integral of
that nth order polynomial.

b

a

n

b

a

)x(f)x(f

 Trapezoidal Rule assumes n=1, that
is, the area under the linear
polynomial,

2

)b(f)a(f
)ab(

b

a

dx)x(f

trapezoidofAreadxxf

b

a

)(

)height)(sidesparallelofSum(
2

1

)ab()a(f)b(f
2

1

2

)b(f)a(f
)ab(

Proof :

Composite Trapezoidal Rule :

b

h)n(a

h)n(a

h)n(a

ha

ha

ha

a

dx)x(fdx)x(f...dx)x(fdx)x(f
1

1

2

2

The integral I can be broken into h integrals as:

b

a

dx)x(f

Applying Trapezoidal rule on each segment gives:

b

a

dx)x(f)b(f)iha(f)a(f
n

ab n

i

1

1

2
2

Error in Trapezoidal Rule

Et =

even though the trapezoid rule uses two values of f , the error estimate is
slightly larger than the estimate for the midpoint method.

the exponent on (b-a), which tells us how quickly the error goes to 0
when the interval width is reduced, and from this point of view the two
methods are the same.

Simpson Rule :

 Simpson’s 1/3 Rule :

derived by approximating the integrand f (x) (in blue)
by a second order polynomial

 (in red).

f2(x)

Because the above form has 1/3 in its formula, it is called Simpson’s 1/3rd
Rule.

Composite Simpson’s 1/3rd Rule :

 one can subdivide the interval [a, b] into n segments
and apply Simpson’s 1/3rd Rule repeatedly over every
two segments.
 the segment width h,

 x0 = a , xn = b

Apply Simpson’s 1/3rd Rule over each interval,

Rule is :

Error in Simpson Rule :

The error in Simpson’s 1/3rd Rule is given as

4
5

90
f

h
Et

04f

Since the error term is proportional to the fourth derivative of f at ξ, this shows

that Simpson's rule provides exact results for any polynomial f of degree three or
less,

Integrates a cubic exactly:

The methods we presented so far were defined over finite domains, but it
will be often the case that we will be dealing with problems in which the
domain of integration is infinite.

We will now investigate how we can transform the problem to be able to
use standard methods to compute the integrals.

 Gaussian Quadrature & Optimal Nodes
 Using Legendre Polynomials to Derive Gaussian Quadrature Formulae
 Gaussian Quadrature on Arbitrary Intervals

Gaussian Quadrature

Gaussian Quadrature: Contrast with Newton-Cotes

 The Newton-Cotes formulas were derived by integrating interpolating

polynomials.
 The error term in the interpolating polynomial of degree n involves the

(n + 1)st derivative of the function being approximated, . . .
 so a Newton-Cotes formula is exact when approximating the integral of

any polynomial of degree less than or equal to n.
 All the Newton-Cotes formulas use values of the function at equally-

spaced points.
 This restriction is convenient when the formulas are combined to form

the composite rules which we considered earlier, . . .

But in Gaussian Quadrature

 we may find sets of weights and abscissas that make the formulas exact
 for integrands that are composed of some real function multiplied by a
 polynomial
 gives us a huge advantage in calculating integrals numerically.

Consider, for example, the Trapezoidal rule applied to determine the
integrals of the functions whose graphs are as shown.

It approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function.

Gaussian Integration: Optimal integration points

But this is not likely the best line for approximating the integral. Lines such
as those shown below would likely give much better approximations in most
cases.

Gaussian quadrature chooses the points for evaluation in an optimal, rather
than equally-spaced, way.

Gaussian Quadrature: Introduction

Choice of Integration Nodes :
 The nodes x1, x2, . . . , xn in the interval [a, b] and coefficients c1, c2, . . . ,

cn, are chosen to minimize the expected error obtained in the
approximation

 assume that the best choice of these values produces the exact result for

the largest class of polynomials, . . .
 The coefficients c1, c2, . . . , cn, in the approximation formula are arbitrary,

and the nodes x1, x2, . . . , xn are restricted only by the fact that they must
lie in [a, b], the interval of integration.

 This gives us 2n parameters to choose.

The way that this is done is through viewing the integrand as being
composed of some weighting function W(x) multiplied by some polynomial
P(x) so that
 f(x)=W(x)P(x)

Instead of using simple polynomials to interpolate the function,
quadrature use the set of polynomials that are orthogonal over the interval
with weighting function W(x).

With this choice of interpolating polynomial, we find that if we evaluate
P(x) at the zeroes (xi) of the interpolating polynomial of desired order, and
multiply each evaluation by a weighting factor (wi)

we can obtain a result that is exact up to twice the order of the
interpolating polynomial!

Gaussian quadrature method based on the polynomials pm as follows

Let x0, x1, . . . , xn be the roots of pn+1.
Let li the ith Lagrange interpolating polynomial for these roots, i.e. li is the
unique polynomial of degree ≤ n . Then

where the weights wi are given by

Using Legendre Polynomials to Derive Gaussian
Quadrature Formulae

Gaussian Quadrature: Legendre Polynomials

An Alternative Method of Derivation

 We will consider an approach which generates more easily the nodes and

coefficients for formulas that give exact results for higher-degree
polynomials.

 This will be achieved using a particular set of orthogonal polynomials
(functions with the property that a particular definite integral of the
product of any two of them is 0).

The first few Legendre Polynomials

 The roots of these polynomials are distinct, lie in the interval (−1, 1), have
a symmetry with respect to the origin, and, most importantly,

 they are the correct choice for determining the parameters that give us
the nodes and coefficients for our quadrature method

The nodes x1, x2, . . . , xn needed to produce an integral approximation
formula that gives exact results for any polynomial of degree less than 2n
are the roots of the nth-degree Legendre polynomial.

Proof :

 Let us first consider the situation for a polynomial P(x) of degree less

than n.

 Re-write P(x) in terms of (n − 1)st Lagrange coefficient polynomials with
nodes at the roots of the nth Legendre polynomial Pn(x).

 Since P(x) is of degree less than n, the nth derivative of P(x) is 0, and this

representation of is exact. So

The following table lists these values for n = 2, 3, 4, and 5.

Gaussian Quadrature on Arbitrary Intervals

Transform the Interval of Integration from [a,b] to
[−1, 1]

Gauss–Laguerre quadrature :

 numerical analysis Gauss–Laguerre quadrature is an extension of Gaussian
quadrature method for approximating the value of integrals of the following kind:

 In this case

 To integrate the function

where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Gaussian_quadrature
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Laguerre_polynomial
http://en.wikipedia.org/wiki/Laguerre_polynomial

Gauss–Hermite quadrature

 method for approximating the value of integrals of the following kind:

 In this case

where n is the number of sample points to use for the approximation.

The xi are the roots of the Hermite polynomial Hn(x) (i = 1,2,...,n) and the
associated weights wi are given by

http://en.wikipedia.org/wiki/Hermite_polynomial
http://en.wikipedia.org/wiki/Hermite_polynomial
http://en.wikipedia.org/wiki/Hermite_polynomial

Program code

#include<iostream.h>
#include<math.h>
#include<conio.h>
#include<stdio.h>

double f(double x)
{
double y;
//y = (arctan(x))/(pow(x,2));
y= log(1+pow(x,2));
//y=1;
//y= 1/(x+3);
return (y);
}

double g_quad(double a,double b, int n1)
{
double x[20],w[20],z[20],s3,ans,s;
int i;
/* x[0] = 0.33998; x[1] =0.8611363 ;x[2] =-0.33998 ;x[3] =-0.8611363 ;

w[0] = 0.652145; w[1] = 0.347854;w[2] =0.652145 ;w[3] = 0.347854;
*/
w[0] = 0.3626837833783620;w[1] = 0.3626837833783620;
w[2] =0.3137066458778873 ;w[3] = 0.3137066458778873;
w[4] = 0.2223810344533745;w[5] = 0.2223810344533745;
w[6] =0.1012285362903763 ;w[7] = 0.1012285362903763;
x[0] = -0.1834346424956498;x[1] = 0.1834346424956498;
x[2] = -0.5255324099163290;x[3] = 0.5255324099163290;
x[4] =-0.7966664774136267 ;x[5] = 0.7966664774136267;
x[6] = -0.9602898564975363;x[7] = 0.9602898564975363;
s3=0.0;
for(i=0; i<n1; i++)
{
z[i] = (((b+a)/2) + ((b-a)/2)*x[i]);
s=z[i];
s3 = s3 + (w[i]*f(z[i]));
}
ans = ((b-a)/2.0)*s3;
return(ans);
}

double g_lag(int n1)
{
double x[20],w[20],z[20],s4;
int i;
s4 =0.0;
x[0] = 0.32254; x[1] = 1.74757;x[2] = 4.53662;x[3] = 9.39507;
w[0] =0.60315 ;w[1] = 0.35741;w[2] =0.038887 ;w[3] = 0.0005392;

for(i=0; i<n1; i++)
{
s4 = s4 + (w[i] * f(x[i]));
}
return(s4);
}

double g_her(int n1)
{
double x[20],w[20],z[20],s7;
int i;
s7=0.0;

x[0] =0.38118 ; x[1] =1.1571 ;x[2] = 1.9816;x[3] =2.93063 ;
x[4] =-0.3811 ; x[5] =-1.15719 ; x[6] = -1.98165; x[7] = -2.930;
w[0] = 0.66114; w[1] =0.2078 ;w[2] = 0.01707;w[3] = 0.000109;
w[4] =0.66114 ;w[5] =0.2078 ;w[6] = 0.01707;w[7] = 0.000109;
for(i=0; i<n1; i++)
{
s7 = s7+ (w[i]*f(x[i]));
}
return(s7);
}

main()
{
clrscr();
double a,b,s1,s2,s5,s6,y1,y2,h,r;
int n,n1,i,c;

s1= 0.0;
s2=0.0;

cout<<"Enter 1: For finite limits \n";
cout<<" 2: Limits from zero to infinity \n";
cout<<" 3: Infinite limits \n";

cout<<"Enter Choice \n";
cin>>c;

switch(c)
{
case 1:

cout<<"\n";
cout<<"Enter values of a , b and n \n";
cin>>a>>b>>n;
cout<<" Enter value of n for gauss quadrature :\n";
cin>>n1;

h=(b-a)/n;
for(i=1; i<=(n-1);i++)
{
s1=s1+f(a + (i*h));
}

r = (h*(f(a) + f(b) + (2*s1)))/2;
cout<<"\n";
cout<<"Using trapezoidal rule : I = "<<r<<"\n";

//----simpson rule----------
for(i=1; i<=(n/2); i++)
{
y1 = y1 + f(a + (((2*i) - 1)*h));
}
for(i=1; i<=(n/2)-1; i++)
{
y2 = y2 + f(a + (2*i*h));
}
r = (h*(f(a) + f(b) + (4*y1) + (2*y2)))/3;
cout<<"\n";
cout<<"Using Simpson Rule : I = "<<r<<"\n";
//------end-------------

//----------Gauss Quadrature-----------------

s2 = g_quad(a,b,n1);
cout<<"Using Gauss Quadrature : I = "<<s2<<"\n";

cout<<"\n";
//---------end------------------

break;

case 2:

//---------Gauss Laguerre--------------

cout<<" Enter value of n for gauss laguerre :\n";
cin>>n1;

s5 = g_lag(n1);
cout<<"Using Gauss Laguerre : I = "<<s5<<"\n";
cout<<"\n";
//-------end------------------------
break;

//----------------Gauss hermite-----------
case 3 :
cout<<" Enter value of n for gauss hermite :\n";
cin>>n1;

s6 = g_her(n1);
cout<<"Using Gauss Hermite : I = "<<s6<<"\n";
cout<<"\n";
//----------end---------------
break ;

}
getch();
}

Thank You

