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1 Introduction

Big Bang Nucleosynthesis is one of the successes of the standard model of Cosmology.

The original work done by Gamow & Ralph Alpher predicted the right amount of Helium

and even cosmic microwave background radiation before it was experimentally verified.

Owing to the complexity of the calculations involved, the nucleosynthesis process is to

be numerically simulated. This report gives an overview of the algorithm behind the

nucleosynthesis codes (mainly the original Kawano code). The simulations are performed

for standard values and results are presented.

The following report is divided into sections. After this introduction, the second section

talks about the basics of nucleosynthesis and the difference between stellar and big bang

nucleosynthesis. The third section starts with the thermal history of the universe and goes

on to discuss the fundamental interactions in the early universe leading to the expansion

and further processes in BBN. The fourth section focuses on the Helium nucleosynthesis

and the basic mathematics/algorithm that forms the crux of BBN codes. The fifth section

gives the basic components of a standard BBN code. The simulation parameters to be set

for run are briefed. The Results and conclusions are presented in the subsequent sections.

2 Nucleosynthesis

Nucleosynthesis is the process of formation of nucleus. For any nuclear reaction to take

place a particle of charge has to penetrate the electrostatic repulsion. For example, if

nuclei of charge Z1 and Z2 have to come closer to a distance r we need to overcome the

coloumb barrier.

V =
Z1Z2e

2

r
=

1.44Z1Z2

r(fm)
MeV

The average thermal energy of particles in the Maxwell-Boltzmann distribution is

kT = 8.62× 10−8T keV

As it evident from the energy needed from this equation we need the temperatures of

the order of 106 or higher to cross this barrier for the nuclear reaction to take place. We
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know that this order of temperatures exist typically in the stars. Gamow, first developed

the theory of alpha decay that gives us an idea (The penetration factor is proportional to

exp

(
−2πZ1Z2e

2

h̄v

)
) of the order of cross-section involved in the nuclear reactions. Later

this idea was extended to develop the theory for Big Bang Nucleosynthesis.

2.1 Stellar vs. Primordial

There is a remarkable difference between the nucleosynthesis process that takes place in

stars and the one that happens in the early universe right after the big bang. The time

scale available for nucleosynthesis in stars is typically of the order of billions of years

while for big bang nucleosynthesis the time scale is of the order of minutes. The stellar

nucleosynthesis process is like isothermic process where as primordial nucleosynthesis is

an adiabatic process of rapid cooling. The density in the stars is of the order of 100g/cm3

where as the density in the big bang conditions is as low as 10−5. The photon-to-baryon

ratio which is a very important parameter in the chain of nuclear reactions that effects

photo-disassociation in stellar nucleosynthesis is less than 1 photon per baryon but at big

bang conditions there are billions of photons available for a single baryon. These major

differences make the study of primordial nucleosynthesis interesting.

2.2 Why Primordial?

It is experimentally observed that the universe is mostly dominated by two elements

namely Hydrogen(7̃5%) and Helium(2̃5%). This implies there is one neutron for every 7

protons (i.e.
n

p
≈ 1

7
). We need theoretical explanation to this ratio. One might think

that this He could have been produced in the stars through the chain of nuclear reactions.

We can roughly calculate the order of He produced in stars.
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2.3 Helium Production in Stars

Let us assume that a He nucleus is created by fusing 4 protons in the stars (though, one

has to consider the whole network to calculate the exact rate of fusion)

4p→ 4He+ 2e+ + 2νe

The mass difference for this reaction is ∼ 25.7MeV , while the typical kinetic energy

of neutrinos ∼ 0.4MeV . Therefore about 25 MeV is released per four protons consumed.

This is the energy that keeps the electron gas in our sun hot: energy is produced in the

solar core at the required rate, just about balancing the energy that is carried off the sun

by the photons emitted from the photosphere. Thus we can estimate the rate of fusion in

the solar core from the measured solar constant.

solar constant ∼ 0.033cal/sec/cm2 distance to earth ∼ 1.49 × 1013cm = r therefore

the power output is

(4πr2)(.033cal/sec/cm2) ∼ 0.92× 1026cal/sec ∼ 2.4× 1039MeV/sec

but as 4 protons are consumed for every 25 MeV produced implies 4×1038p/sec consumed

Mass of the sun is ∼ 1.19×1057protons The sun is roughly 5 billion years and burning

at the current power level over that period. Then we can estimate the number of protons

consumed over that lifetime

(3.15× 107sec/year)(5× 109years)(4× 1038 protons/sec) ∼ 0.63× 1056 protons

But this is only 0.63/11.9 ∼ 5.3% of the sun’s mass. Thus only ∼ 5% of protons converted

in 5 b.y. (this He is also locked in the core of our sun, not in places like the inter-stellar

medium where it could be counted by those interested in determining abundances.) And

many protons are not in stars. Thus the tentative conclusion is that stellar burning

contributes to, but cannot account for all, of the 4He. In fact, looking at the 4He

abundance as a function of stellar metallicity, stars with poor metallicity presumably

were formed very early. The surfaces of such stars should not know about the 4He

synthesis in the core, but rather be representative of the star at its birth. So if the surface
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shows a large 4He abundance it has to be primordial rather being formed in the stellar

nucleosynthesis.

3 Thermal History of the Universe

3.1 Time Scale vs. Temperature

Gamow & Ralph Alpher in the 1940s proposed a big bang cosmology where the universe

began as a hot soup, then expanded and cooled. When cooled below about kT ∼ 1MeV ,

when e+,−e annihilation would occur, that soup would consists of the familiar stable

particles like p, n, e , and ν ′s. The basic idea of big bang nucleosynthesis is a nuclear

reaction network that begins with n+p→ D+γ and this must happen within minutes as

neutron’s half-life is (τ1/2(n)) ∼ 10min So if there is no nucleosynthesis, there would be no

neutrons now. That means neutrons exist in our present day world only because they bind

in nuclei. This forms the most important idea in the theory of Big Bang Nucleosynthesis.

Free neutrons have enough energy to decay to protons via beta decay. Bound neutrons do

not because their binding energy makes this decay energetically impossible. So nuclei from

the hot big bang must have freezed out which means the reaction rates have fallen below

the expansion rate of the universe. To understand this further in terms of temperatures

at which the dominant reactions and their respective time scales we can use the standard

model of cosmology formalism of expanding universe. Recalling that in the early radiation

dominated universe

ρ ∼ a−4 ⇒ ρ̇

ρ
= −4ȧ

a
= −4

(
8πGρ

3

)1/2

⇒ t =

(
3

32πGρ

)1/2

⇒ t =

(
c2

48πGaT 4

)1/2

= 1.09secs.

[
T

1010K

]−2

Which gives us the following correlation between temperature and time.
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Temperature — Time

1011K — 0.01secs

1010K — 1.07secs

109K — 3 mins

108 — 5.3 hrs

4× 103K — 105 yrs

3.2 Thermal History of Early Universe

Assume that the early universe is hot & consider particles in thermal equilibrium at

that temperature. It so happened that the particles outnumbered anti-particles causing

matter-anti-matter asymmetry at the beginning. Hence, only the particle distributions

are taken into account in calculating nuclear reactions.

T > 1012K: The soup consists of γ,leptons,mesons,n,p,n̄,p̄ this era is difficult to study

because of the strong interactions of the quark gluon plasma. It should be noted that the

inflation time scale is of the order of 10−33s and is before the process of baryogenesis.

T ∼ 1012K: constitution is γ,µ+,µ−,e±,ν, ν̄’s and small contamination of n, p & Nn ≈ Np

T < 1012K: µ+,µ− annihilation happens. All µ’s dissipate at T ∼ 1011K; ν, ν̄’s decouple

from leptons.

Below 1011K mass difference of n, p⇒ more protons than neutrons.

∼ 5× 109K (t ∼ 4 sec) e+,e− annihilate and heat up photons.
n

p
≈ 1

5
.

At around ∼ 109K n’s & p’s combine together to give nucleii.

At ∼ 4000K electrons captured by nucleii.

The photons there after freely stream and are observed in the microwave frequencies,

forming the isotropic Cosmic Microwave Background.
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3.3 Weak Interactions

Consider the equilibrium condition at high temperatures. If at some temperature there

are particles in thermal equilibrium. no. density of ith species of particles with momentum

between q & q + dq is

ni(q) =
giq

2dq

h3
4π

 1

exp
(
Ei(q)−µi

kT

)
± 1


+ sign for fermions & − for bosons. Ei(q) = (m2

i + q2)1/2

µi = chemical potential, it is additivity & is conserved in all reactions

Therefore µγ = 0 & µparticle = −µanti particle From

e− + µ+ → νe + νµ

e− + p→ νe + n

µ− + p→ νµ + n

we can write

µe − µνe = µµ− − µνµ = µn − µp

Thus there are 4 conserved intrinsic quantum numbers: charge, baryon number, le (no.

of e−&νe minus e+&ν̄e), lµ (no. ofµ−&νµ minus µ+&ν̄µ). Thus we have 4 independent

chemical potentials. There are 4 chemical potentials taken as µp,µe,µνe ,µνµ are determined

by charge density, baryon number density, electron & muon number density. All ∼ a−3;

nB << nγ.

Though nν is not known it is a good first approximation to take all 4 conserved quantities

as ≈ 0

For relativistic particles E = q, p = 1
3
ρ, we know that

ρ ∝ T 4
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T ∝ 1

a

Consider now an epoch when kT ≤ mπ i.e. T < 1.5×1012K. The particle distribution

functions for electron & muon are given by

ne(q)dq = ne(q)dq =
8π

h3
q2dq

[
exp

(√
q2 +m2

e

kT

)
+ 1

]−1

nµ(q)dq = nµ(q)dq =
8π

h3
q2dq

[
exp

(√
q2 +m2

µ

kT

)
+ 1

]−1

ν’s are produced/destroyed/scattered in the following reactions

e− + µ+ ↔ νe + ν̄µ; e+ + µ− ↔ ν̄e + νµ

νe + µ− ↔ νµ + e−; ν̄e + µ+ ↔ ν̄µ + e+

νµ + µ+ ↔ νe + e+; ν̄µ + µ− ↔ ν̄e + e−

For kT < mµ:

Cross-section for all the above reactions is σωk ≈
g2
wk

h̄4 (kT )2, where

gwk = 1.4× 10−49erg − cm3

is weak coupling constant.

All particles are of a speed roughly close to the velocity of light c

⇒ ne±,µ± ≈
(
kT

h̄

)3

Therefore rate of single ν scattering & the rate of ν production per charged lepton is of

the order of

σwknl ≈ g2
wkh̄

−7(kT )5

Total energy density ρ ≈ kT

(
kT

h̄

)3

.

Expansion rate H =
ȧ

a
=
√
Gρ ≈ G−1/2h̄−3/2(kT )2
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when kT > mµ

On the other hand, when kT < mµ

σnl
H
≈ G−1/2h̄−112c−7/2g2

wk(kT )3 ≈
(

T

1010K

)3

no. density of particles with E > mµ is reduced by exp(−mµ/kT )

σnl
H
≈
(

T

1010K

)3

exp

(
−1012K

T

)
Therefore, all reactions involving µ’s decouple at T ≈ 1.3× 1011K

All reactions not involving µ’s decouple at T ≈ 1010K.

The ν-reactions decouple ν’s are still relativistic gas & therefore its effective temperature

Tν keeps falling as does the photon temperatures. Thus aTγ = aT = aTν = const..

Between 1012K > T > 5 × 109K, the gas consists of γ, e±, νµ, ν̄µ, νe, ν̄e all relativistic

particles (can add ντ , ν̄τ )

⇒ ρνe = ρν̄µ = ρνµ = ρν̄µ = ρν

ρν =
4π

h3

∫ ∞
0

q3dq
[
exp

( q

kT

)
+ 1
]−1

=
7π5

30h3
(kT )4 ≡ 7

16
αT 4

Where α =
8π5k4

15h3c3
= 7.56× 10−15erg cm−3K−4

ργ = αT 4

For kT > me, e
± are relativistic

ρe− = ρe+ = 2ρν =
7

8
αT 4

Therefore

ρtotal = ρνe + ρν̄e + ρνµ + ρν̄µ + ρe− + ρe+ + ργ =
9

2
αT 4

Can similarly write energy density for general temperatures exactly. General expression

for S is

S =
a3

T
[ρe− + ρe+ + pe− + pe+ + ργ + pγ]

We know ργ + pγ =
4

3
αT 4 and

ρe− =

∫
E(q)n(q, T )dq
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and

pe− =
q2

3E(q)
n(q, T )dq

where E =
√
q2 +m2 and

n(q, T ) =
8π

h3

q2dq[
exp

(√
q2+m2

kT

)
+ 1

]
q

kT
→ y,

m

kT
→ x

⇒ S =
4

3
α(aT )3ξ(m/kT )

Where

ξ(m/kT ) ≡ 1 +
45

(2π)4

∫ ∞
0

y2dy

[√
x2 + y2 + y2

3
√
x2+y2

]
exp(

√
x2 + y2) + 1

⇒ Tν =

(
4

11

)1/3

T
[
ξ
(me

kT

)]1/3

It is easy to see that below 1010K only e± & γ in equilibrium with specific entropy in

volume a3:

s =
a3

T
[ρe− + ρe+ + pe− + pe+ + ργ + pγ]

For T > me, pe±,γ =
1

3
ρe±,γ, electrons & positrons being relativistic

⇒ s =
4

3

a3

T
[ρe− + ρe+ + ργ] =

11

3
α(aT )3

Below 5× 109K, e+e− annihilate, eventually leaving only photons in equilibrium.

s =
4

3

a3

T
ργ =

4

3
α(aT )3

By conservation of entropy, one must have increase of aT by a factor

(
11

4

)1/3

≈ (2.75)1/3

But ν’s do not heat up as weak interactions are out of equilibrium and therefore aTν is

unchanged.
aTν
aT

for T < 109K →
(

4

11

)1/3

≈ (1.401)−1

Therefore, Tγ is 40% larger. So at present Tγ ≈ 2.7K ⇒ Tν ≈ 1.9K.
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The density of gas gets contribution from γ’s and ν’s so:

ρR(γ + ν ′s) = ρνe + ρν̄e + ρνµ + ρν̄µ + ργ

= aT 4
γ +

7

4
aT 4

ν

=

[
1 +

7

4

(
4

11

)4/3
]
aT 4

γ ≈ 1.45αT 4
γ

Now the energy density of non-relativistic matter= mNnN ∼ a−3 ∼ T 3
γ=mNnN

⇒ nN = nN0

(
Tγ
Tγ0

)3

Therefore mNnN = ρR at TC =
mNnN0

1.45αT 3
γ0

= 4200K

[
mNnN0

10−30g/cm3

]
Estimate of current matter density vary from mNnN0 ≈ 2× 10−29 to 3× 10−31g/cm3

Therefore TC lies between 84,000K to 1200K

TRecombination ' 4000K

4 Helium Synthesis

4.1 Neutron-proton abundance ratio

Nucleons weakly interact by the following reactions:

n+ νe ↔ p+ e−

n+ e+ ↔ p+ ν̄e

n↔ p+ e− + ν̄e

Recall the lepton number density expressions:

ne±(p)dp =
8π

h3
p2dp

1

exp
[
Ee
kT

]
+ 1
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nν,ν̄(p)dp =
4π

h3
p2dp

1

exp
[
Eν
kT

]
+ 1

Where Ee =
√
p2 +m2

e & Eν = p

Rates of reactions are given by the V-A theory. Pauli’s principle implies that the phase

space availability is suppressed by the number of filled states.

1−
[
exp

(
Ee
kT

)
+ 1

]−1

=
[
1 + e−Ee/kT

]−1

1−
[
exp

(
Eν
kT

)
+ 1

]−1

=
[
1 + e−Eν/kT

]−1

The rates of the above weak interactions are evaluated in a standard manner.

Consider for example

n+ ν → p+ e−

Rate of this process per nucleon is

λ(n+ ν → p+ e−) = A

∫
veE

2
e

p2
νdpν

[eEν/kT + 1]

δ(Ee − Eν −Q)

[e−Ee/kT + 1]

with A =
d2
wk

2π3h̄7

∫
p2
edpe →

∫
peEdE(pe = veE) gives

∫
veE

2
e .

Overall conservation of Energy is taken care by
∫
δ[Ee − Eν −Q].

Adding up all the processes in which n goes to p, and then p goes to n, one finds numer-

ically that all p→ n reaction decouples at T ≈ 1010K

For T > 1010K

λ(p→ n)

λ(n→ p)
= exp

(
−Q
kT

)
with Q = mn −mp

For equilibrium, the principles of detailed balance implies

λ(n→ p)× neutron density = λ(p→ n)× proton density
nn
np

=
λ(p→ n)

λ(n→ p)
= exp

(
−Q
KT

)
Xn =

nn
nn + np

=
[
1 + eQ/kT

]−1
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4.2 Nucleii Abundances

ni =

∫
ni(q)dq =

4πgi
h3

∫
q2dq

exp
(
Ei(q)−µi

kT

)
± 1

For every non-relativistic nuclei, (very good approximation), the ±1 is ignorable

Ei(q) ≈ mi +
q2

2mi

⇒ ni =
4πgi
h3

exp

(
µi −mi

kT

)∫ ∞
0

q2dqexp

(
−q2

2mikT

)

= gi

(
2πmikT

h2

)3/2

exp

(
µi −mi

kT

)
Let there be a nucleus i of Zi p’s & (Ai − Zi) n’s in equilibrium

⇒ µi = Ziµp + (Ai − Zi)µn

Xi =
niAi
nN

; Xn =
nn
nN

; Xp =
np
nN

Where nN= total no. density of nucleons (bound or free)

nN = nN0

(a0

a

)3

=
ρN0

mN

(a0

a

)3

The expressions for np, nn, ni are

np = 2

(
2πmpkT

h2

)3/2

exp

[
µp −mp

kT

]

nn = 2

(
2πmnkT

h2

)3/2

exp

[
µn −mn

kT

]

ni = gA

(
2πmAkT

h2

)3/2

exp

[
µi −mi

kT

]
From

exp (µi/kT ) = exp [(Zimp + (Ai − Zi)mn)/kT ]

≈ nZp n
A−Z
n

(
2π

mNkT

)3A/2

2−Aexp [(Zimp + (Ai − Zi)mn)/kT ]

14



but Bi = Zimp + (Ai − Zi)mn −mA

⇒ nAi = gAA
3/22−A

(
2π

mNkT

)3(A−1)/2

nZip n
Ai−Z
n exp(BA/T )

For closure density ρc =
3H2

8πG
for H = h× 100km/sec/Mpc & ρB = ΩBρc

η = 2.68× 10−8ΩBh
2

nB =
ΩBρc
mN

and nγ =
2ζ(3)

π3

(
kT

ch̄

)3

Xi =
nAi
nN

= gAA
3/22−A

(
2π

mNkT

)3(A−1)/2

XZi
p X

Ai−Zi
n (nN)Ai−1exp[BA/T ]

Next use expression for nγ to get

Xi = gi
[
ζ(3)A−1Π(1−A)/22(3A−5)/2

]
A5/2

(
kT

mn

)3(A−1)/2

ηA−1XZ
p X

A−Z
n exp [Bi/kT ]

where η =
nN
nγ

gi = 2, A = 2, BD = 2.2MeV

For Deuterium,

XD = giO(1)2(3A−5)/2A5/2

⇒ XD ' 16

[
kT

mn

]3/2

ηexp

[
BD

T

]
XnXp

For ⇒ XD ≈ 1 for Xn,Xp ∼ O(1)

⇒ 0 ≈ 3

2
(A− 1) ln

[
kT

mN

]
+ (A− 1) ln η +

BD

T

⇒ BD

T (A− 1)
= ln(η−1) + 1.5 ln

[mN

kT

]
⇒ T =

B/(A− 1)

ln(η−1) + 1.5 ln(mN/kT )
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For η ∼ 10−9 we get TD ∼ 0.07MeV

At this temperature, XD ≈ 1. However, Deuterium never gets to such high values as it

gets involved in a nuclear reaction network. Binding Energy of 2H ' 2.2MeV

p+ n↔ 2H + γ

2H + n→ 3H + γ

3H + p→ 4He+ γ

2H + p→ 3He+ γ

3He+ n→ 4He+ γ

3He+ 2H → 4He+ p

etc The first reaction in the above chain is reversible till temperature is below 109K after

which there exits too few γ with large enough energy to dissipate 2H. Subsequently

remaining neutrons land up as 4He once the Deuterium starts getting consumed.

5 BBN Codes

Big bang nucleosynthesis process consists of a chain of more than 60 reactions considering

26 nucleides. The network of reactions is shown in Figure 1. This has to be simulated

in a computer numerically to find out the nuclei abundances. The first and the most

popular of the nucleosynthesis codes is the Kawano code(NUC123) written in Fortran 77

based on the paper by Wagnorr. It is extremely user-friendly with menu driven interface.

The parameters for simulation as well as the physical parameters can be set or changed

manually to run the code for different cases of interest. There are many other codes like

AlterBBN (written in C) however, the underlying algorithm remains the same.
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Figure 1: Network of Reactions simulated in NUC123

5.1 Reaction Rates

The total rate of change of abundance of nucleus i is given by the following first-order

differential equation

1

Ai

dXi

dt
= ±

∑
j

Xj

Aj
λk(j)±

∑
jk

Xj

Aj

Xk

Ak
[jk]±

∑
jkl

Xj

Aj

Xk

Ak

Xl

Al
[jkl]

Here λk is the reaction rate of the kth species. Similarly [jk] is the rate of reaction between

jth and kth species calculated from their reactions thermally averaged cross-section that

takes care of the velocity distribution of the interacting nuclei at a given temperature.

For all the reactions shown in the Figure there are these coupled differential equations

to be solved. The whole network of reactions is solved by two-step Runge-Kutta method

with evolving time/temperature parameter.
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5.2 Resonant vs. Non-Resonant

Nuclear reaction rates are calculated for both resonant and non-resonant reactions. It is

very important to consider the resonant reaction rates as their cross-section values tend

to be higher by the orders of magnitude in comparison to non-resonant reactions. They

are important when the energy is higher than the most effective energy for thermonuclear

reactions. Hence, relevant nuclear models are taken into account in the nucleosynthesis

codes to account for both these types of reactions. very important to consider the resonant

reaction rates as their cross-section values tend to be higher by the orders of magnitude in

comparison to non-resonant reactions. They are important when the energy is higher than

the most effective energy for thermonuclear reactions. Hence, relevant nuclear models

are taken into account in the nucleosynthesis codes to account for both these types of

reactions.

5.3 Simulation Parameters

As NUC123 is menu-driven application, one can set the parameters in the code by choosing

relevent options in the menu. There are Computational parameters as well as the model

parameters. Both types of parameters are briefly explained below.

5.3.1 Computational Parameters

As the coupled differential equations in Kawano code are solved using Runge-Kutta

method, one can change the initial time step, time-step limiting constant etc. by choos-

ing the concerned option in the menu to solve the equations with desired accuracy. We

can also choose to set the initial and final temperatures of the simulation as multiples of

109 K. The default run is set to 1011 K to 107 K. To avoid singularities in the coupled

differential equations matrix, we need to take a non-zero initial abundances of the nucleii

and it also serves as the minimum amount of abundance below which the nucleii can be

ignored. non-zero initial abundances of the nucleii and it also serves as the minimum

amount of abundance below which the nucleii can be ignored.
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5.3.2 Model Parameters

In the model parameters submenu, one can play God by choosing various parameters

such as gravitational constant, neutron lifetime, no. of neutrino species, final Baryon-to-

photon ratio, cosmological constant and neutrino degeneracies. The default values are set

to the known standard values. Most of these parameters need not be changed. However,

if one wants to check the nucleosynthesis code for alternative models, one has to make

modifications in the relevant parts of the code. One can also vary the model parameters

linearly and do multiple runs.

6 Results & Conclusion

The Nucleii abundances calculated through NUC123 code are plotted in figure 2. One

can notice the sudden spike in Deuterium production (shown in red) that lasts for few

minutes causes raise in the other elemental abundances mainly Helium (shown in yellow).

The mass percentage or mass fractions of Hydrogen (in green) & Helium can be seen

in figure 3. As it is clearly seen the neutron percentage reduction (shown in blue) causes

spike in the Helium mass fraction(yellow colored).

Hence, in this project, the algorithm of Big Bang Nucleosynthesis synthesis codes is

studied. Simulations varying different parameters is done a few of which is presented in

the report. The nucleii abundances in the universe is systematically understood with the

help of the results.
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Figure 2: Nucleii Abundances vs. Time (Log)
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Figure 3: Helium, Hydrogen & Neutron mass fractions vs. Time (Log)
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