
Presented By

Geeta Ray

PhD course Work: PHYS 601

Introduction to C++

• C++ is a programming language developed in
the 1970's alongside the UNIX operating
system.

• C++ provides a comprehensive set of features
for handling a wide variety of applications,
such as systems development and scientific
computation.

• C++ is an “extension” of the C language, in
that most C programs are also C++ programs.

• C++, as opposed to C, supports “object-
oriented programming.”

CS 103 3

• C++ is a superset of C.
• Any correct C program is also a correct
C++ program.

4

• The syntax of statements
 if-else, switch, the “?:” conditional
for/while/do-while loops
assignments
arithmetic/logic/relational/ bitwise expressions
declarations, structure

• Same preprocessor commands in C and C++.

CS 103 5

 Anything from // to the end of line is
considered a comment and thus ignored by the
compiler.

 The C-syntax for comments, /* … */, can still be
used for multi-line comments.

6

 Declarations need no longer be at the head of
blocks.

 Variables and functions can be declared any
time, anywhere in a program, preferably as
close to where a variable is used the first time.

 For example: i is declared within for

for (int i=0;i<n;i++)

7

 Instead of the complicated syntax of printf
and scanf, and the many variations of
print and scan, C++ offers a much simpler
syntax

 For standard output, use cout
 For standard input, use cin
 File IO is also simpler, and will be

discussed later
 Note: one can still use the IO syntax of C in

C++

include headers:- these are modules that include functions that
you may use in your program; we will almost always need to
include the header that defines cin and cout; the header is
called iostream.h

#include <iostream.h>

 main() {

//variable declaration

//read values input from user

//computation and print output to user

return 0;

}

After you write a C++ program you compile it; that is,
you run a program called compiler that checks
whether the program follows the C++ syntax
 if it finds errors, it lists them
 If there are no errors, it translates the C++ program into

a program in machine language which you can execute

 what follows after // on the same line is considered comment

 all statements end with a semicolon

 CASE MATTERS X is different from x
 Void is different than void.
 Main is different that main
 Void and Main are not recognized by C/C++

When learning a new language, the first program
people usually write is one that salutes the world
:)

Here is the Hello world program in C++.

#include <iostream.h>
 main() {

cout << “Hello world!”;

return 0;

}

THE FAMOUS 'HELLO WORLD' PROGRAM

Hello World Program

• How to compile?
$ g++ hello.cpp

g++g++ compiling commandcompiling command

hello.cpphello.cpp source filesource file

./a.out./a.out executable fileexecutable file

Note: the default output filename is “Note: the default output filename is “a.outa.out””

2 // A first program in C++
3 #include <iostream>
4
5 main()
6 {
7 std::cout << "Welcome to”; C+
+!\n";8 std::cout << "to C++!\n";
9 return 0; // indicate that
program ended successfully10 }

Welcome to C++!

preprocessor directive
Message to the C++ preprocessor.
Lines beginning with # are preprocessor directives.
#include <iostream> tells the preprocessor to
include the contents of the file <iostream>, which
includes input/output operations (such as printing to
the screen).

Comments
Written between /* and */ or following a //.
Improve program readability and do not cause the
computer to perform any action.

C++ programs contain one or more functions, one of
which must be main
Parenthesis are used to indicate a function
int means that main "returns" an integer value.

A left brace { begins the body of every function
and a right brace } ends it.

Prints the string of characters contained between the
quotation marks.

The entire line, including std::cout, the <<
operator, the string "Welcome to C++!\n" and
the semicolon (;), is called a statement.

All statements must end with a semicolon.

return is a way to exit a function
from a function.
return 0, in this case, means that
the program terminated normally.

• std::cout
– Standard output stream object
– “Connected” to the screen
– std:: specifies the "namespace" which cout belongs to

• std:: can be removed through the use of using statements
• <<

– Stream insertion operator
– Value to the right of the operator (right operand) inserted into

output stream (which is connected to the screen)
– std::cout << “Welcome to C++!\n”;

• \
– Escape character
– Indicates that a “special” character is to be output

Escape Sequence Description

\n Newline. Position the screen cursor to the beginning
of the next line.

\t Horizontal tab. Move the screen cursor to the next
tab stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote
character.

Welcome to C++!

2 // Printing a line with multiple
statements3 #include <iostream>
4
5 main()
6 {
7 std::cout << "Welcome ";
8 std::cout << "to C++!\n";
9
10 return 0; // indicate that
program ended successfully11 }

Unless new line '\n' is specified, the text continues
on the same line.

Using namespace std statements
Eliminate the need to use the std:: prefix

i.e.
using std::cout;
using std::cin;
using std::endl;

Allow us to write cout instead of
std::cout

// Program: Display greetings
// Author(s): Ima Programmer
// Date: 3/24/2012
#include <iostream>
#include <string>
using namespace std;
 main() {
 cout << "Hello world!" << endl;
 return 0;
}

A First Program -
Greeting.cpp

Preprocessor
directives

Insertion
statement

Ends executions
of main() which ends

program

Comments

Function

Function
named
main()

indicates
start of

program

Provides simple
access

type variable-name;
Meaning: variable <variable-name> will be a variable of type

<type>

Where type can be:
 int //integer
 double //real number
 char //character

Example:
int a, b, c;
double x;
int sum;
char my-character;

NameName DescriptionDescription Size*Size* Range*Range*

charchar Character or small Character or small
integerinteger

1 byte1 byte signed: -128 to 127signed: -128 to 127
unsigned: 0 to 255 unsigned: 0 to 255

short intshort int
(short)(short)

Short integerShort integer 2 bytes2 bytes signed: -32768 to 32767signed: -32768 to 32767
unsigned: 0 to 65535 unsigned: 0 to 65535

intint IntegerInteger 4 bytes4 bytes signed: -2147483648 to signed: -2147483648 to
21474836472147483647
unsigned: 0 to 4294967295 unsigned: 0 to 4294967295

long intlong int
(long)(long)

Long integerLong integer 4 bytes4 bytes signed: -2147483648 to signed: -2147483648 to
21474836472147483647
unsigned: 0 to 4294967295unsigned: 0 to 4294967295

floatfloat Floating point Floating point
numbernumber

4 bytes4 bytes 3.4e +/- 38 3.4e +/- 38

doubledouble Double precision Double precision
floating point numberfloating point number

8 bytes8 bytes 1.7e +/- 308 1.7e +/- 308

long long
doubledouble

Long double Long double
precision floating precision floating
point numberpoint number

8 bytes8 bytes 1.7e +/- 308 1.7e +/- 308

Data types

cin >> variable-name;
Meaning: read the value of the variable called

<variable-name> from the user

Example:

cin >> a;
cin >> b;
cin >> x;
cin >> my-character;

cout << variable-name;
Meaning: print the value of variable <variable-name> to the
user

cout << “any message “;
Meaning: print the message within quotes to the user

cout << endl;
Meaning: print a new line

Example:
cout << a;
cout << b << c;
cout << “This is my character: “ << my-character << “
he he he”

<< endl;

Arithmetic Operations

..are built using
 Comparison operators

== equal
!= not equal
< less than
> greater than
<= less than or equal
>= greater than or equal

 Boolean operators
&& and
|| or
! not

Assume we declared the following variables:

int a = 2, b=5, c=10;

Here are some examples of boolean conditions we
can use:

 if (a == b) …
 if (a != b) …
 if (a <= b+c) …
 if(a <= b) && (b <= c) …
 if ((a < b) && (b<c)) …

 if (condition)

{
S1;

}
else
{

S2;
}
S3;

condition

S1 S2

S3

True False

#include <iostream.h>

void main() {
int a,b;
cin >> a >> b;

if (a <=b) {
cout << “min is “ << a << endl;
}

else {
cout << “ min is “ << b << endl;

}
cout << “happy now?” << endl;
}

while (condition)
{

S1;
}
S2;

condition

S1

S2

True False

//read 100 numbers from the user and output their sum
#include <iostream.h>

void main()
{

int i, sum, x;
sum=0;
i=1;
while (i <= 100)
– {

cin >> x;
sum = sum + x;
i = i+1;

}
cout << “sum is “ << sum << endl;

}

Functions
Functions are easy to use; they allow complicated programs to be

broken into small blocks, each of
which is easier to write, read,
and maintain. This is called
modulation.

• How does a function look like?
returntype
function_name(parameters…)

{

local variables declaration;

function code;
return result;

}

• Sample function
 int addition(int x, int y)

{
int add;
add = x + y;

return add;
}

• How to call a function?
main()

{ int result;
 int i = 5, j = 6;
 result = addition(i, j);

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

