
Introduction to FORTRAN

  History and purpose of FORTRAN
  FORTRAN essentials

  Program structure
  Data types and specification statements
  Essential program control
  FORTRAN I/O
  subfunctions and subroutines

  Pitfalls and common coding problems
  Sample problems

 By: Manoj Malik

FORTRAN History
  One of the oldest computer languages

  created by John Backus and released in 1957
  designed for scientific and engineering computations

  Version history
  FORTRAN 1957
  FORTRAN II
  FORTRAN IV
  FORTRAN 66 (released as ANSI standard in 1966)
  FORTRAN 77 (ANSI standard in 1977)
  FORTRAN 90 (ANSI standard in 1990)
  FORTRAN 95 (ANSI standard version)
  FORTRAN 2003 (ANSI standard version)

  Many different “dialects” produced by computer vendors (one of
most popular is Digital VAX Fortran)

  Large majority of existing engineering software is coded in
FORTRAN (various versions)

Why FORTRAN

  FORTRAN was created to write programs to solve
scientific and engineering problems

  Introduced integer and floating point variables
  Introduced array data types for math computations
  Introduced subroutines and subfunctions
  Compilers can produce highly optimized code (fast)
  Lots of available numerical-math libraries
  Problems

  encouraged liberal use of GO TO statements
  resulted in hard to decipher and maintain (“spaghetti”) code
  limited ability to handle nonnumeric data
  no recursive capability (not completely true)

FORTRAN Today

  FORTRAN 77 is “standard” but FORTRAN 90/95 has
introduced contemporary programming constructs

  There are proprietary compilers
  Compaq/HP Visual Fortran; Absoft Fortran; Lahey Fortran

  There is a free compiler in Unix-Linux systems
  f77, g77
  g95, gfortran

  Available scientific libraries
  LINPACK: early effort to develop linear algebra library
  EISPACK: similar to Linpack
  IMSL: commercial library ($’s)
  NAG: commercial library ($’s)

Class Objectives

  Not nearly enough time to teach all the details of
FORTRAN (which has evolved into a VERY complex
language with many “dialects” …)

  We’ll try to highlight some of the most important features:
  that are confusing or often lead to problems,
  that appear in older programs written in FORTRAN 77 (or IV)
  that are quite different from contemporary languages
  For example:

–  I/O instructions
–  variable declarations
–  subprograms: functions and subroutines

  We’ll look at some code fragments, and
  You’ll program a simple example problem

How to Build a FORTRAN Program

  FORTRAN is a complied language (like C) so the source
code (what you write) must be converted into machine
code before it can be executed (e.g. Make command)

FORTRAN
Program

FORTRAN
Compiler

Libraries

Link with
Libraries

Executable
File

Source Code Object Code
Executable

Code

Execute
Program

Test & Debug
Program

Make Changes
in Source Code

Statement Format

  FORTRAN 77 requires a fixed format for programs

  FORTRAN 90/95 relaxes these requirements:
  allows free field input
  comments following statements (! delimiter)
  long variable names (31 characters)

 PROGRAM MAIN

C COMMENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1

 DIMENSION X(10)

 READ(5,*) (X(I),I=1,10)

 WRITE(6,1000) X

 1000 FORMAT(1X,’THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE ’

 * ‘THE STATEMENT TO A SECOND LINE’,/,10F12.4)

1-5
Label

6 7-72 Statements 73-80
Optional
Line #s

Any character: continuation line

Program Organization

  Most FORTRAN programs consist of a main program
and one or more subprograms (subroutines, functions)

  There is a fixed order:

 Heading
 Declarations
 Variable initializations
 Program code
 Format statements

 Subprogram definitions
 (functions & subroutines)

Data Type Declarations

  Basic data types are:
  INTEGER – integer numbers (+/-)
  REAL – floating point numbers
  DOUBLE PRECISION – extended precision floating point
  CHARACTER*n – string with up to n characters
  LOGICAL – takes on values .TRUE. or .FALSE.
  COMPLEX – complex number

  Integer and Reals can specify number of bytes to use
  Default is: INTEGER*4 and REAL*4
  DOUBLE PRECISION is same as REAL*8

  Arrays of any type must be declared:
  DIMENSION A(3,5) – declares a 3 x 5 array (implicitly REAL)
  CHARACTER*30 NAME(50) – directly declares a character

array with 30 character strings in each element
  FORTRAN 90/95 allows user defined types

Implicit vs Explicit Declarations

  By default, an implicit type is assumed depending on the
first letter of the variable name:
  A-H, O-Z define REAL variables
  I-N define INTEGER variable

  Can use the IMPLICIT statement:
  IMPLICIT REAL (A-Z) makes all variables REAL if not

declared
  IMPLICIT CHARACTER*2 (W) makes variables starting with

W be 2-character strings
  IMPLICIT DOUBLE PRECISION (D) makes variables starting

with D be double precision

  Good habit: force explicit type declarations
  IMPLICIT NONE
  User must explicitly declare all variable types

Other Declarations

  Define constants to be used in program:
  PARAMETER (PI=3.1415927, NAME=‘BURDELL’)
  PARAMETER (PIO2=PI/2, FLAG=.TRUE.)
  these cannot be changed in assignments
  can use parameters to define other parameters

  Pass a function or subroutine name as an argument:
  INTRINSIC SIN – the SIN function will be passed as an

argument to a subprogram (subroutine or function)
  EXTERNAL MYFUNC – the MYFUNC function defined in a
FUNCTION subprogram will be passed as an argument to
another subprogram

Initializing Variables

  The DATA statement can be used to initialize a variable:
  DIMENSION A(10,10) – dimension a REAL array
  DATA A/100*1.0/ - initializes all values to 1.0
  DATA A(1,1),A(10,1),A(5,5) /2*4.0,-3.0/ - initialize

by element
  DATA ((A(I,J),I=1,5,2),J=1,5) /15*2.0/ - initialize

with implied-do list
  DATA FLAG /.TRUE./ - initialize a LOGICAL
  DATA NAME /30*’*’/ - initialize a CHARACTER string

  Cannot initialize:
  dummy argument in a function or subroutine definition
  function, function result
  variables in COMMON blocks (more details later…)

  DATA statements can appear within the program code

FORTRAN Assignment Statements

  Assignment statement:
<label> <variable> = <expression>
  <label> - statement label number (1 to 99999)
  <variable> - FORTRAN variable (max 6 characters,

alphanumeric only for standard FTN-77)

  Expression:
  Numeric expressions: VAR = 3.5*COS(THETA)
  Character expressions: DAY(1:3)=‘TUE’
  Relational expressions: FLAG= ANS .GT. 0
  Logical expressions: FLAG = F1 .OR. F2

Numeric Expressions

  Very similar to other languages
  Arithmetic operators:
  Precedence: ** (high) →- (low)

  Casting: numeric expressions are up-cast to the highest data
type in the expression according to the precedence:
(low) logical – integer – real – complex (high) and smaller byte
size (low) to larger byte size (high)

  Example
3.42 + (A1+C0)/SIN(A) – R**3

Operator Function
** exponentiation
* multiplication
/ division
+ addition
- subtraction

Character Expressions

  Only built-in operator is Concatenation
  defined by // - ‘ILL’//‘-’//‘ADVISED’

  Character arrays are most commonly encountered…
  treated like any array (indexed using : notation)
  fixed length (usually padded with blanks)
  Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’
PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)

GEORGE
P.
BURDELL
GEORGE BURDELL

CODE OUTPUT

Hollerith Constants
  This is a relic of early FORTRAN that did not have the

CHARACTER type..
  Used to store ASCII characters in numeric variables using one byte

per character
  Examples: 2HQW, 4H1234, 10HHELLOWORLD
  Binary, octal, hexidecimal and hollerith constants have no intrinsic

data type and assume a numeric type depending on their use

  This can be VERY confusing; consult FORTRAN manual for target
compiler! (avoid whenever possible)

INTEGER*4 IWORD, KWORD
INTEGER*2 CODE
REAL*8 TEST
CODE = 2HXZ
IWORD = 4HABCD
KWORD = O’4761’ (octal)
TEST = Z’3AF2’ (hexidecimal)

Relational Expressions

  Two expressions whose values are compared to
determine whether the relation is true or false
  may be numeric (common) or non-numeric
  Relational operators:

  Character strings can be compared
  done character by character
  shorter string is padded with blanks for comparison

Operator Relationship
.LT. or < less than
.LE. or <= less than or equal to
.EQ. or == equal to
.NE. or /= not equal to
.GT. or > greater than
.GE. or >= greater than or equal to

Logical Expressions

  Consists of one or more logical operators and logical,
numeric or relational operands
  values are .TRUE. or .FALSE.
  Operators:

  Need to consider overall operator precedence (next slide)
  Remark: can combine logical and integer data with logical

operators but this is tricky (avoid!)

Operator Example Meaning
.AND. A .AND. B logical AND
.OR. A .OR. B logical OR

.NEQV. A .NEQV. B logical inequivalence
.XOR. A .XOR. B exclusive OR (same as .NEQV.)
.EQV. A .EQV. B logical equivalence
.NOT. .NOT. A logical negation

Operator Precedence

  Can be tricky; use () when in doubt…

Category Operator Precedence
numeric ** highest
numeric * or /
numeric unary + or -
numeric binary + or -
character //
relational .EQ. .NE. .LT. .LE. .GT. .GE.
logical .NOT.
logical .AND.
logical .OR.
logical .XOR. .EQV. .NEQV. lowest

Arrays in FORTRAN

  Arrays can be multi-dimensional (up to 7) and are
indexed using ():
  TEST(3)
  FORCE(4,2)

  Indices are normally defined as 1…N
  Can specify index range in declaration

  REAL L(2:11,5) – L is dimensioned with rows numbered 2-11
and columns numbered 1-5

  INTEGER K(0:11) – K is dimensioned from 0-11 (12 elements)
  Arrays are stored in column order (1st column, 2nd

column, etc) so accessing by incrementing row index
first usually is fastest.

  Whole array reference:
  K=-8 - assigns 8 to all elements in K (not in 77)

Execution Control in FORTRAN

  Branching statements (GO TO and variations)
  IF constructs (IF, IF-ELSE, etc)
  CASE (90+)
  Looping (DO, DO WHILE constructs)
  CONTINUE
  PAUSE
  STOP
  CALL
  RETURN
  END

NOTE:
We will try to present the
FORTRAN 77 versions and then
include some of the common
variations that may be
encountered in older versions.

Unconditional GO TO

  This is the only GOTO in FORTRAN 77
  Syntax: GO TO label
  Unconditional transfer to labeled statement

  Flowchart:

  Problem: leads to confusing “spaghetti code”

 10 -code-
 GO TO 30
 -code that is bypassed-
 30 -code that is target of GOTO-
 -more code-
 GO TO 10

GOTO 30 30

Other GO TO Statements

  Computed GO TO
  Syntax: GO TO (list_of_labels) [,] expression
  selects from list of labels based on ordinal value of expression
  Ex: GO TO (10, 20, 30, 50) KEY+1

  Assigned GO TO
  Syntax: ASSIGN label TO intvar

 GO TO intvar [[,] (list_of_valid_labels)]
  Ex: ASSIGN 100 TO L2
 - code –
 GO TO L2, (10, 50, 100, 200)

NOTE:
In syntax, [] means items
enclosed are optional

IF Statements

  Basic version #1
  Syntax: IF (logical_expression) GO TO label
  If logical expression is true, execute GO TO, otherwise continue

with next statement
  Ex: IF (X.LE.0) GO TO 340
  Flowchart:

  Basic version #2
  Syntax: IF (logical_expression) statement
  If logical expression is true, execute statement and continue,

otherwise, skip statement and continue
  Ex: IF (K.LE.0) K=0
  Flowchart

X < 0?

no

yes
340

X < 0?

no

yes
K=0

IF THEN ELSE Statement

  Basic version:
  Syntax: IF (logical_expression) THEN

 statement1(s)
 ELSE
 statement2(s)
 ENDIF

  If logical expression is true, execute statement1(s), otherwise
execute statemens2(s), then continue after ENDIF.

  Ex: IF (KEY.EQ.0) THEN
 X=X+1
 ELSE
 X=X+2
 ENDIF

  Flowchart: KEY= 0?

no

yes
X=X+1

X=X+2

IF ELSE IF Statement

  Basic version:
  Syntax: IF (logical_expr1) THEN

 statement1(s)
 ELSE IF (logical_expr2) THEN
 statement2(s)
 ELSE
 statement3(s)
 ENDIF

  If logical expr1 is true, execute statement1(s), if logical expr2 is
true, execute statement2(s), otherwise execute statemens3(s).

  Ex:
 10 IF (KSTAT.EQ.1) THEN
 CLASS=‘FRESHMAN’
 ELSE IF (KSTAT.EQ.2) THEN
 CLASS=‘SOPHOMORE’
 ELSE IF (KSTAT.EQ.3) THEN
 CLASS=‘JUNIOR’
 ELSE IF (KSTAT.EQ.4) THEN
 CLASS=‘SENIOR’
 ELSE
 CLASS=‘UNKNOWN’
 ENDIF

KEY= 1?

no

yes
X=X+1

X=X+2 KEY= 2?

KEY= N?

no
…

X=X+N

yes

yes

no

X=-1

Notes on IF Statements

  Avoid using IF with GO TO which leads to complex code
  Statement blocks in IF THEN and IF ELSE IF

statements can contain almost any other executable
FORTRAN statements, including other IF’s and loop
statements.

  CANNOT transfer control into an IF statement block
from outside (e.g., using a GO TO)

  CAN transfer control out of an IF statement block (e.g.,
using an IF () GO TO N statement)

  Use indenting to make code readable.

Old IF Statements

  Arithmetic IF statement (3-branch)
  Syntax: IF (num_expr) label1, label2, label3
  If num expr is <0 then go to label1, if =0 then label2, and if >0

then go to label3
  Ex: IF (THETA) 10, 20, 100

  Arithmetic IF statement (2-branch)
  Syntax: IF (num _ expr) label1, label2
  If num expr is <0 then go to label1, if >=0 then go to label2
  Ex: IF (ALPHA-BETA) 120, 16

  Notes:
  Avoid whenever possible!
  Leads to very confusing and hard to understand code..

Spaghetti Code

  Use of GO TO and arithmetic IF’s leads to bad code that
is very hard to maintain

  Here is the equivalent of an IF-THEN-ELSE statement:

  Now try to figure out what a complex IF ELSE IF
statement would look like coded with this kind of simple
IF. . .

 10 IF (KEY.LT.0) GO TO 20
 TEST=TEST-1
 THETA=ATAN(X,Y)
 GO TO 30
 20 TEST=TEST+1
 THETA=ATAN(-X,Y)
 30 CONTINUE

Loop Statements

  DO loop: structure that executes a specified number of times
  Nonblock DO

  Syntax: DO label , loop_control
 do_block
 label terminating_statement

  Execute do_block including terminating statement, a number of times
determined by loop-control

  Ex:

  Loop _control can include variables and a third parameter to specify
increments, including negative values.

  Loop always executes ONCE before testing for end condition

 K=2
 10 PRINT*,A(K)
 K=K+2
 IF (K.LE.11 GO TO 10
 20 CONTINUE

 DO 100 K=2,10,2
 PRINT*,A(K)
 100 CONTINUE

Spaghetti Code Version

Loop Statements – cont’d

  WHILE DO statement
  Syntax: WHILE (logical_expr) DO

 statement(s)
 ENDWHILE

  Executes statement(s) as long as logical_expr is true, and exits
when it is false. Note: must preset logical_expr to true to get
loop to start and must at some point set it false in statements or
loop will execute indefinitely.

  Ex:

  Use when cannot determine number of loops in advance.
  CANNOT transfer into WHILE loop.
  CAN transfer out of WHILE loop.

 READ*,R
 WHILE (R.GE.0) DO
 VOL=2*PI*R**2*CLEN
 READ*,R
 ENDWHILE

New Loop Statements

  Block DO
  Syntax: DO loop_control

 do_block
 END DO

  Execute do_block including terminating statement, a number of
times determined by loop-control

  Ex:

  Loop _control can include a third parameter to specify
increments, including negative values.

  Loop always executes ONCE before testing for end condition
  If loop_control is omitted, loop will execute indefinitely or until

some statement in do-block transfers out.

 DO K=2,10,2
 PRINT*,A(K)
 END DO

New Loop Statements – cont’d
  General DO

  Syntax: DO
 statement_sequence1
 IF (logical_expr) EXIT
 statement_sequence2
 END DO

  Execute do_block including terminating statement and loop back
continually (without the IF this is basically an “infinite loop”)

  Must include some means (i.e., IF) to exit loop
  Ex:

  Loop always starts ONCE before testing for exit condition
  If EXIT is omitted, loop will execute indefinitely or until some

statement in do-block transfers out.

 DO
 READ*,R
 IF (R.LT.0) EXIT
 VOL=2*PI*R**2*CLEN
 PRINT*,R
 END DO

New Loop Statements - cont’d

  DO WHILE
  Syntax: DO [label][,] WHILE (logical_expr)

 do_block
 [label] END DO

  Execute do_block while logical_expr is true, exit when false
  Ex:

  Loop will not execute at all if logical_expr is not true at start

 READ*,R
 DO WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 END DO

 READ*,R
 DO 10 WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 10 CONTINUE

Comments on Loop Statements

  In old versions:
  to transfer out (exit loop), use a GO TO
  to skip to next loop, use GO TO terminating statement (this is a

good reason to always make this a CONTINUE statement)

  In NEW versions:
  to transfer out (exit loop), use EXIT statement and control is

transferred to statement following loop end. This means you
cannot transfer out of multiple nested loops with a single EXIT
statement (use GO TO if needed). This is much like a BREAK
statement in other languages.

  to skip to next loop cycle, use CYCLE statement in loop.

Input and Output Statements

  FORTRAN has always included a comprehensive set of
I/O instructions.
  Can be used with standard input and output devices such as

keyboards, terminal screens, printers, etc.
  Can be used to read and write files managed by the host OS.

  Basic instructions:
  READ – reads input from a standard input device or a specified

device or file.
  WRITE – writes data to a standard output device (screen) or to a

specified device or file.
  FORMAT – defines the input or output format.

  Advanced instructions
  Used to manipulate files maintained by the OS file manager.
  Often dependent on features in a particular OS or computer.

READ Statement

  Format controlled READ:
  Syntax: READ(dev_no, format_label) variable_list
  Read a record from dev_no using format_label and assign

results to variables in variable_list
  Ex: READ(5,1000) A,B,C
 1000 FORMAT(3F12.4)

  Device numbers 1-7 are defined as standard I/O devices and 1
is the keyboard, but 5 is also commonly taken as the keyboard
(used to be card reader)

  Each READ reads one or more lines of data and any remaining
data in a line that is read is dropped if not translated to one of
the variables in the variable_list.

  Variable_list can include implied DO such as:
READ(5,1000)(A(I),I=1,10)

READ Statement – cont’d

  List-directed READ
  Syntax: READ*, variable_list
  Read enough variables from the standard input device (usually a

keyboard) to satisfy variable_list
–  input items can be integer, real or character.
–  characters must be enclosed in ‘ ‘.
–  input items are separated by commas.
–  input items must agree in type with variables in variable_list.
–  as many records (lines) will be read as needed to fill variable_list

and any not used in the current line are dropped.
–  each READ processes a new record (line).

  Ex: READ*,A,B,K – read line and look for floating point values
for A and B and an integer for K.

  Some compilers support:
  Syntax: READ(dev_num, *) variable_list
  Behaves just like above.

WRITE Statement

  Format controlled WRITE
  Syntax: WRITE(dev_no, format_label) variable_list
  Write variables in variable_list to output dev_no using format

specified in format statement with format_label
  Ex: WRITE(6,1000) A,B,KEY
 1000 FORMAT(F12.4,E14.5,I6)

  Device number 6 is commonly the printer but can also be the
screen (standard screen is 2)

  Each WRITE produces one or more output lines as needed to
write out variable_list using format statement.

  Variable_list can include implied DO such as:
WRITE(6,2000)(A(I),I=1,10)

Output:
|----+----o----+----o----+----o----+----|
 1234.5678 -0.12345E+02 12

WRITE Statement – cont’d

  List directed WRITE
  Syntax: PRINT*, variable_list
  Write variables in variable_list to standard output device using

format appropriate to variable type. Variables are separated by
either spaces or commas, depending on system used.

  Ex: PRINT*,‘X=‘,X,’Y=‘,Y,’N=‘,N
Output:

X= 4.56, Y= 15.62, N= 4

Error Control

  It is possible to handle error conditions, such as
encountering an end-of-file, during READ statements.

  Extended READ statement
  Syntax: READ(dev_num, format_label, END=label) list or

 READ(*,*,END=label) list
  If an EOF is encountered by READ, transfer control to the

statement label specified by END=.
  Ex 1:

 READ(5,500,END=300) X,Y,Z
  Ex 2:

 READ(*,*,END=300) X,Y,Z

  Can also specify, ERR=label, to transfer control to label
in the event of a READ error of some kind.

FORMAT Statement

  Very powerful and versatile but can be quite tedious to
master and may vary between dialects

  Designed for use with line printers (not screens)
  Only infrequently used for input unless data format is

clearly defined and consistently applied
  General:

  Syntax: label_no FORMAT(format-specifiers)
  Specifies format to be used in READ or WRITE statement that

references this label_no.
  format_specifiers are quite extensive and complex to master.
  each format specifier is separated by a comma.

Format Specifiers

  X format code
  Syntax: nX
  Specifies n spaces to be included at this point

  I format code
  Syntax: Iw
  Specifies format for an integer using a field width of w spaces. If

integer value exceeds this space, output will consist of ****
  F format code

  Syntax: Fw.d
  Specifies format for a REAL number using a field width of w

spaces and printing d digits to the right of the decimal point.
  A format code

  Syntax: A or Aw
  Specifies format for a CHARACTER using a field width equal to

the number of characters, or using exactly w spaces (padded
with blanks to the right if characters are less than w.

Format Specifiers – cont’d

  T format code
  Syntax: Tn
  Skip (tab) to column number n

  Literal format code
  Syntax: ‘quoted_string’
  Print the quoted string in the output (not used in input)

  L format code
  Syntax: Lw
  Print value of logical variable as L or F, right-justified in field of

width, w.

Format Specifiers – cont’d
  E format code

  Syntax: Ew.d
  Print value of REAL variable using “scientific notation” with a

mantissa of d digits and a total field width of w.
  Ex:

 E14.5 produces for the REAL value -1.23456789e+4:

  You must leave room for sign, leading 0,decimal point, E, sign,
and 2 digits for exponent (typically at least 7 spaces)

  If specified width is too small, mantissa precision, d, will be
reduced unless d<1 in which case *** will be output.

  Using nP prefix will shift mantissa digit right by n and reduce
exponent by –n. Ex; 1PE14.5 above yields:

|----+----o----+----o----+----o----+----|
 -0.12345E+05

|----+----o----+----o----+----o----+----|
 -1.23456E+04

Format Specifiers – cont’d
  G format code

  Syntax: Gw.d
  Print value of REAL variable using Fw.d format unless value is

too large or too small, in which case use Ew.d format.
  Ex:

 G14.5 produces for the REAL value -1.23456789e+4:

  When the number gets too big (or too small) for F, it is switched
to an E format. Ex: the value -1.23456789e-18 becomes:

  Note: the usefulness is more apparent when smaller field widths
(w values) are specified for more compact output.

|----+----o----+----o----+----o----+----|
 -12345.67890

|----+----o----+----o----+----o----+----|
 -0.1234567E-19

Other FORMAT Features

  Forward slash, /
  Used to cause a new line to be started
  Does not need to be separated by commas

  Repeat factor
  Format specifiers may be repeated by prepending a number to

specify the repeat factor
  Ex: 4F12.5 – same as F12.5,F12.5,F12.5,F12.5

  Carriage control
  Line printers interpret the first character of each line as a

carriage control command and it is not printed.
–  1 means start new page,
–  _(blank) means begin a new line,
–  + means over print current line

  Common use: 1000 FORMAT(1X,4F12.4)

Other FORMAT Features – cont’d

  When the end of the format_specifiers in a FORMAT statement are
reached before all of the variables in the variable_list have been
output, the format_specifiers are re-scanned starting at the first left
parenthesis, (.

  Many other format specifiers are available but are not included in
these notes. These include formats for Binary, Octal and
Hexidecimal data, formats for Double Precision numbers (replace E
with D), and formats for Complex numbers.

  When formatted READ is used, any decimal point in data will
override format specifier. If no decimal is supplied, format specifier
will determine where decimal should be (even though it is not in
input data)

 |----+----o----+----o----+----o----+----|
Data: 123456 1.23456

 READ(5,1000) A,B
1000 FORMAT(2F8.2)

Result: A=1234.56, B=1.23456

NAMELIST

  It is possible to pre-define the structure of input and
output data using NAMELIST in order to make it easier
to process with READ and WRITE statements.
  Use NAMELIST to define the data structure
  Use READ or WRITE with reference to NAMELIST to handle the

data in the specified format

  This is not part of standard FORTRAN 77… but it is
included in FORTRAN 90.

  It is being included in these notes because it has been
widely used in ASDL for a number of years.

NAMELIST Statement

  Used to define the structure of the I/O data
  Syntax: NAMELIST /group/ var_list [, [/group/var_list]]
  Associates a group name with a comma separated list of

variables for I/O purposes. Variables can appear in more than
one group.

  Ex:
 NAMELIST /INPUT/LENGTH,WIDTH,THICK,DENSITY,
*/OUTPUT/AREA,DENSITY,WEIGHT
This defines INPUT to include 4 variables and OUTPUT to
include 3 variables. One (density) is repeated.

  The READ or WRITE statement simply refers to the
NAMELIST statement rather than a list of variables.
  Syntax: READ(dev_no,NML=group)

 WRITE(dev_no,NML=group
  Ex:

 READ(5,NML=INPUT)

NAMELIST Data Structure

  On input, the NAMELIST data for the previous slide must
be structured as follows:

  And on executing the READ(5,NML=INPUT), the
following values are assigned:
  THICK=0.245, LENGTH=12.34, WIDTH=2.34,
DENSITY=0.0034

  It is not necessary to provide values for all variables in a
NAMELIST group; values not provided result in no changes.

  For arrays, assignment can be partial and can start at any index
and can skip values by including ,, in input.

&INPUT
 THICK=0.245,
 LENGTH=12.34,
 WIDTH=2.34,
 DENSITY=0.0034
/

Input NAMELIST Examples
  Parts or all of the data can be assigned
  Multiple READ’s can be used with successive NAMELIST data

 NAMELIST /TEST/TITLE,FLAG,A
 DIMENSION A(10)
 LOGICAL FLAG
 CHARACTER*10 TITLE
 ...
 READ(5,NML=TEST)
 ...
 READ(5,NML=TEST)

&TEST
 TITLE=‘TEST567890’,
 FLAG=.TRUE.,
 A=1.2,3.3,8*0.0
/
Results in:
TITLE=‘TEST567890’
FLAG=.TRUE.
A=1.2,3.3,rest=0

&TEST
 TITLE(9:10)=‘77’,
 A(5)=5*10.0
/
Results in:
TITLE=‘TEST567877’
FLAG=unchanged
A(5)…A(10)=10.0

Output NAMELIST Examples
  Output behavior is similar to input:

 CHARACTER*8 NAME(2)
 REAL PITCH,ROLL,YAW,POSITION(3)
 INTEGER ITER
 LOGICAL DIAG
 NAMELIST /PARAM/NAME,PITCH,ROLL,YAW,POSITION,DIAG,ITER
 DATA NAME/2*’ ‘/,POSITION/3*0.0/
 ...
 READ(5,NML=TEST)
 ...
 WRITE(6,NML=TEST)

&PARAM
 NAME(2)(4:8)=‘FIVE’,
 PITCH=5.0,YAW=0.0,ROLL=-5.0,
 DIAG=.TRUE.,ITER=10
/

&PARAM
NAME= ‘ ‘,’ FIVE’,
PITCH= 5.0,
ROLL = -5.0,
YAW = 0.0,
POSITION= 3*0.00000e+00,
DIAG = T,
ITER = 10
/

Functions and Subroutines

  Functions & Subroutines (procedures in other
languages) are subprograms that allow modular coding
  Function: returns a single explicit function value for given

function arguments
  Subroutine: any values returned must be returned through the

arguments (no explicit subroutine value is returned)
  Functions and Subroutines are not recursive in FORTRAN 77

  In FORTRAN, subprograms use a separate namespace
for each subprogram so that variables are local to the
subprogram.
  variables are passed to subprogram through argument list and

returned in function value or through arguments
  Variables stored in COMMON may be shared between

namespaces (e.g., between calling program and subprogram)

FUNCTION Statement

  Defines start of Function subprogram
  Serves as a prototype for function call (defines structure)
  Subprogram must include at least one RETURN (can have more)

and be terminated by an END statement

  FUNCTION structure:
  Syntax: [type] FUNCTION fname(p1,p2, … pN)
  Defines function name, fname, and argument list, p1,p2, … pN,

and optionally, the function type if not defined implicitly.
  Ex:

  Note: function type is implicitly defined as REAL

REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3
RETURN
END

Use:
AV=WEIGHT*AVG3(A1,F2,B2)

Statement Function

  FORTRAN provides a “shortcut” method to define
simple, single expression functions without having to
create a separate subprogram…

  Statement Function:
  Syntax: function_name(p1,p2,…pN) = expression
  This definition can be continued to additional lines but must be a

single statement (no IF’s, DO’s, etc) and it must appear before
any other executable code but after all type declarations.

  Ex:

  Note: argument is treated as a dummy variable and may be
replaced by other variables or literals when used in program;
other variables in function are in program scope.

PROGRAM MAIN
REAL A,B,C
FUNC(X)=A*X**2-B*X+C
...program...
ANS=FUNC(4.2)+1.2
...
END

SUBROUTINE Statement

  Defines start of Subroutine subprogram
  Serves as a prototype for subroutine call (defines structure)
  Subprogram must include at least one RETURN (can have more)

and be terminated by an END statement
  SUBROUTINE structure:

  Syntax: SUBROUTINE sname(p1,p2, … pN)
  Defines subroutine name, sname, and argument list, p1,p2, … pN.
  Ex:

  Subroutine is invoked using the CALL statement.
  Note: any returned values must be returned through argument list.

SUBROUTINE AVG3S(A,B,C,AVERAGE)
AVERAGE=(A+B+C)/3
RETURN
END

Use:
CALL AVG3S(A1,F2,B2,AVR)
RESULT=WEIGHT*AVR

Placement of Subprograms

  Subprograms are placed immediately following main
program END statement.

  Subprograms can be written and compiled separately
but must then be made available to link-loader in order
to be linked into executable program. In not, an
“undefined externals” error will be generated.

 PROGRAM MAIN
 ...program body...
 END

 REAL FUNCTION AVG3(A,B,C)
 ...function body...
 END

 SUBROUTINE AVG3S(A,B,C,AV)
 ...subroutine body...
 END

Arguments

  Arguments in subprogram are “dummy” arguments used
in place of the real arguments used in each particular
subprogram invocation. They are used in subprogram to
define the computations.

  Actual subprogram arguments are passed by reference
(address) if given as symbolic; they are passed by value
if given as literal.
  If passed by reference, the subprogram can then alter the actual

argument value since it can access it by reference (address).
  Arguments passed by value cannot be modified.

CALL AVG3S(A1,3.4,C1,QAV)

CALL AVG3S(A,C,B,4.1)

OK: 2nd argument is passed by
value; QAV contains result.

NO: no return value is available
since 4.1 is a value and not a
reference to a variable!

Arguments – cont’d

  Dummy arguments appearing in a Subprogram
declaration cannot be an individual array element
reference, e.g., A(2), or a literal, for obvious reasons!

  Arguments used in invocation (by calling program) may
be variables, subscripted variables, array names, literals,
expressions, or function names.

  Using symbolic arguments (variables or array names) is
the only way to return a value (result) from a
SUBROUTINE.

  It is considered BAD coding practice, but FUNCTIONs
can return values by changing the value of arguments.
This type of use should be strictly avoided!

FUNCTION versus Array

  How does FORTRAN distinguish between a FUNCTION
and an array having the same name?
  REMAINDER(4,3) could be a 2D array or it could be a

reference to a function that returns the remainder of 4/3
  If the name, including arguments, matches an array declaration,

then it is taken to be an array.
  Otherwise, it is assumed to be a FUNCTION

  Be careful about implicit versus explicit Type
declarations with FUNCTIONs…

PROGRAM MAIN
INTEGER REMAINDER
...
KR=REMAINDER(4,3)
...
END

INTEGER FUNCTION REMAINDER(INUM,IDEN)
...
END

Arrays with Subprograms

  Arrays present special problems in subprograms…
  Must pass by reference to subprogram since there is no way to

list array values explicitly as literals.
  How do you tell subprogram how large the array is? (Answer

varies with FORTRAN version and vendor (dialect)…

  When an array element, e.g., A(1), is used in a
subprogram invocation (in calling program), it is passed
as a reference (address), just like a simple variable.

  When an array is used by name in a subprogram
invocation (in calling program), it is passed as a
reference to the entire array. In this case the array must
be appropriately dimensioned in the subroutine (and this
can be tricky…).

Arrays with Subprograms – cont’d

  Explicit array declaration in Subprogram
  If you know the dimension and it does not change for any

invocation of the subprogram, then declare it explicitly:

  Beware: calling this function with a scalar will cause problems!
(solution: always test argument type if possible)

  Note: this is really a badly designed function because it assumes
that the array dimension is 10. A better design would pass the
array dimension as an argument.

 REAL FUNCTION AAVG(ARRAY)
 DIMENSION ARRAY(10)
 SUM=0.0
 DO 100 I=1,10
 SUM=SUM+ARRAY(I)

 100 CONTINUE
 AAVG=SUM/10
 RETURN
 END

Arrays with Subprograms – cont’d

  Variable array dimensioning in Subprogram
  If the dimensions of arrays passed to the subprogram can vary

between calls, the dimension can be passed as part of the
argument list.

  Ex:

  Different FORTRAN 77 dialects offer variations. FORTRAN
90/95 defines above example as an “explicit-shape, adjustable
array” and also define “assumed-shape”, “assumed-size” and
“deferred-shape” arrays! You will need to check documentation
for your particular dialect…

 SUBROUTINE AADD(A,B,SUM,M,N)
 DIMENSION A(M,N),B(M,N),SUM(M,N)
 DO 200 I=1,M
 DO 100 J=1,N
 SUM(I,J)=A(I,J)+B(I,J)

 100 CONTINUE
 200 CONTINUE

 RETURN
 END

This is the only
way that arrays
can be handled

dynamically
(variable sizes) in

Fortran!

COMMON Statement

  The COMMON statement allows variables to have a
more extensive scope than otherwise.
  A variable declared in a Main Program can be made accessible

to subprograms (without appearing in argument lists of a calling
statement)

  This can be selective (don’t have to share all everywhere)
  Placement: among type declarations, after IMPLICIT or

EXPLICIT, before DATA statements
  Can group into labeled COMMONs

  Must use the BLOCK DATA subprogram to initialize
variables declared in a COMMON statement

COMMON Statement – cont’d

  The COMMON statement (also called blank COMMON)
  Syntax: COMMON variable_list
  Declares that the variables in the variable_list are stored in a

special area where they can be shared with other subprograms.
Each subprogram must include a COMMON statement in order
to access these shared (common) variables. The variable_list
must agree strictly in type of variable but different names can be
used in each subprogram (can be VERY confusing).

  Ex: PROGRAM MAIN
 COMMON D(3),KEY(4,4)
 D(1)=2.2
 D(2)=-1.3
 D(3)=5.6
 RESULT=FUNC(-4.3)
 END

 REAL FUNCTION FUNC(X)
 COMMON C(3)
 FUNC=C(1)*X**2+C(2)*X+C(3)
 RETURN
 END

COMMON is declared larger in
main program

Use different name in function and
don’t declare all of COMMON

COMMON Statement – cont’d

  Can declare array dimensions in COMMON or not…
  These are all acceptable:

  But this is not:

  Can combine:

  Cannot initialize with DATA statement:

 REAL X
 COMMON X(100)

 REAL X(100)
 COMMON X

 COMMON X(100)

 REAL X(100)
 COMMON X(100)

 COMMON A,B
 COMMON C(10,3)
 COMMON KPY

 COMMON A,B,C(10,3),KPY

EQUIVALENT

 COMMON X(100)
 DATA X/100*1.0/

Labeled COMMON Statement

  When the defined COMMON block is large, a single
subprogram may not need to refer to all variables.

  Solution: labeled COMMON:
  Syntax: COMMON [/block_name1/] var_list /block_name2/

var_list /block_name3/var_list/ …
  Defines one or more labeled COMMON blocks containing

specified lists of variables. If first block name is omitted, this
defines “blank” common. For some dialects, COMMON blocks
must have same length in all subprograms and if character arrays
appear in a block, no other types can appear in that block.

  Ex:
 PROGRAM MAIN
 COMMON D(3)/PARAMS/A,B,C(4)
 COMMON /STATE/X(100),Y(100),Z(100)
 ...code...
 END

Multiple COMMON’s are treated as a single long
statement, and variables are defined in order

D is in blank common

BLOCK DATA Subprogram

  BLOCK DATA is a subprogram that simply assigns
values to arrays and variables in a COMMON block.
  Syntax: BLOCK DATA name

 specifications
 END [BLOCK DATA [name]]

  This is placed with subprograms and is used to initialize
variables in COMMON and labeled COMMON.

  Ex:
 PROGRAM MAIN
 COMMON D(3)/PARAMS/A,B,C(4)
 COMMON /STATE/X(100),Y(100),Z(100)
 ...code...
 END

 BLOCK DATA
 DIMENSION X(100),Y(100),Z(100)
 COMMON D(3)/PARAMS/A,B,C(4)/STATE/X,Y,Z
 DATA X,Y,X/300*0.0/,C/4*1.0/,D/3*0.0/,A/22/
 END

Slightly different
declaration than above

A More Complicated Example

  Finite element structural analysis programs:
  must assemble an N by N global stiffness matrix, K, from

individual element stiffness matrices, where N is the total
number of unconstrained DOF’s.

  must also generate a force vector, LOAD, with N components for
each loading case.

  must construct a solution for the displacements at each DOF
that is defined by: DISP = K-1 * LOAD.

  Program considerations:
  global stiffness is defined in labeled COMMON
  load vector is defined in labeled COMMON
  subroutine to compute stiffness inverse must access COMMON
  matrices must be defined for largest problem since FTN77 does

not support dynamic memory allocation

A More Complicated Example – cont’d

  Skeleton of a program…
 PROGRAM MAIN
 REAL KGLO,FORC,KEL
 COMMON /STIF/KGLO(100,100)/LOAD/FORC(100)/DEF/D(100)

C ...read in data and initialize problem...
 DO 100 IELEM=1,NELEMS

C ...assemble global stiffness matrix...
 CALL KELEM(IELEM,KEL)
 CALL ASMBK(IELEM,KEL)

100 CONTINUE
 DO 200 ILOAD=1,NLOADS

C ...assemble load vector...
 CALL LODVEC(ILOAD,LOAD)

200 CONTINUE
 CALL CONSTR(KDOFS)
 CALL SOLVE(NDOFS)

C ...print out results, etc. ...
 END

partial list of declarations

Construct FORC from
individual loads defined in
LOAD array

Calculate stiffness matrix,
KEL, for a single element

Add KEL to global stiffness
matrix, KGLO

Must constrain problem at specified
DOF’s (or no solution possible)

Compute solution for displacements

A More Complicated Example – cont’d

  Example code for SOLVE

  Avoids having to include all arrays in all calls to
subroutines that process some or all of data.

 SUBROUTINE SOLVE(NDOFS)
 DIMENSION CGLO(100,100)
 COMMON /STIF/KGLO(100,100)/LOAD/FORC(100)/DEF/D(100)
 CALL MATINV(KGLO,CGLO,NDOFS)
 CALL MMULT(CGLO,FORC,D,NDOFS)
 RETURN
 END

 SUBROUTINE MATINV(A,B,N)
 DIMENSION A(N,N),B(N,N)

C ...compute inverse of A and return as B...
 RETURN
 END SUBROUTINE MMULT(A,B,C,N)

 DIMENSION A(N,N),B(N),C(N)
C ...compute A*B=C ...

 RETURN
 END

Additional Subprogram Details

  Multiple entries into a subprogram
  Syntax: ENTRY name(p1,p2,…pN)
  Provides an alternate entry point into a subprogram with an

alternate set of arguments. When included in a FUNCTION, this
name will return a value.

  Ex:
 PROGRAM MAIN
 REAL X(2,3),RS(2),CS(3)
 CALL MAT(2,3)
 ...define X values...
 CALL RMAT(X,2,3,RS,CS)
 ...code...
 CALL CMAT(X,2,3,CS)
 ...code...

 SUBROUTINE MAT(A,M,N)
 REAL A(M,N),RSUM(M),CSUM(N)
 DO 10 I=1,M
 DO 5 J=1,N

 5 A(I,J)=0.0
 10 CONTINUE

 RETURN
 ENTRY RMAT(A,M,N,RSUM,CSUM)
 DO 14 I=1,M
 RSUM(I)=0.0
 DO 12 J=1,N

 12 RSUM(I)=RSUM(I)+A(I,J)
 14 CONTINUE

 ENTRY CMAT(A,M,N,CSUM)
 DO 18 J=1,N
 CSUM(J)=0.0
 DO 16 I=1,M

 16 CSUM(J)=CSUM(I)+A(I,J)
 18 CONTINUE

 RETURN
 END

NOTE:
Lack of RETURN before CMAT means
call to RMAT will calc both sums.

Return from MAT()

Return from RMAT() and CMAT()

Additional Subprogram Details – cont’d

  Multiple RETURNS to calling program from subprogram
  Syntax: CALL subname(p1,p2,&s1,p3,&s2,…) where

 SUBROUTINE subname(a1,*,a2,a3,*,…)
  Allows a subroutine to return to multiple locations in calling

program where entry points are specified by labels s1… Note that
subroutine definition includes * for return points in argument list.

  Example: it is somewhat difficult to come up with meaningful
examples of what is basically poor program design today… One
possible example is to return to a different location if an error
condition is encountered.

 PROGRAM MAIN
 ...define X values...
 CALL ROOT(GUESS,VALUE,&10)
 ...code...
 STOP

10 PRINT*,’NO ROOT FOUND NEAR GUESS.’
 ...code...
 END

 SUBROUTINE ROOT(GUESS,VALUE,*)
 ...code...
 IF (ITER.GT.MAX) RETURN 1
 RETURN
 END

Passing Function as Arguments

  Often it is useful to be able to pass the name of a
function to a subroutine. For example:
  a subroutine, NEWTON() that computes a root of f(x) using

Newton’s Method will need to be able to evaluate the function, f
(x), and its derivative, df(x)/dx, for arbitrary values of x.

  How can we tell the subroutine how to compute these two
functions?

  We could simply pass the name of a FUNCTION
subprogram as an argument to the subroutine
  How can this be distinguished from another variable name?
  We need to “tag” the function name somehow

  Solution: the EXTERNAL or INTRINSIC statements

Passing Function as Arguments – cont’d

  EXTERNAL statement
  Syntax: EXTERNAL list_of_names
  Define names in list_of_names of user-written subprograms that

are to be passed as arguments to a function or subroutine
  Ex:

 PROGRAM MAIN
 EXTERNAL FUNC,DFUNC
 ...code...
 CALL NEWTON(GUESS,ROOT,FUNC,DFUNC,&30)
 PRINT*,’ROOT IS:’,ROOT
 ...

30 PRINT*,’NO ROOT FOUND.’)
 END

 REAL FUNCTION FUNC(X)
 FUNC=X**5-5.3*SIN(3.2*X)
 RETURN
 END

 REAL FUNCTION DFUNC(X)
 DFUNC=5*X**4-5.3*3.2*COS(3.2*X)
 RETURN
 END

 SUBROUTINE NEWTON(G,R,F,DF,*)
C ...Newton’s Method...
 R=G-F(G)/DF(G)
 RETURN

C ...didn’t converge...
 RETURN 1
 END

Passing Function as Arguments – cont’d

  INTRINSIC statement
  Syntax: INTRINSIC list_of_names
  Define names in list_of_names of built-in functions that are to be

passed as arguments to another function or subroutine
  Ex:

 PROGRAM MAIN
 INTRINSIC SIN
 EXTERNAL DFSIN
 ...code...
 CALL NEWTON(GUESS,ROOT,SIN,DFSIN,&30)
 PRINT*,’ROOT IS:’,ROOT
 ...

30 PRINT*,’NO ROOT FOUND.’)
 END

 REAL FUNCTION DFSIN(X)
 DFUNC=COS(X)
 RETURN
 END

 SUBROUTINE NEWTON(G,R,F,DF,*)
C ...Newton’s Method...
 R=G-F(G)/DF(G)
 RETURN

C ...didn’t converge...
 RETURN 1
 END

Comments on Subprograms

  The present presentation is essentially FORTRAN 77
with a few minor extensions for popular dialects

  FORTRAN 90 considerable extends the language and
introduces a number of significant changes
  Major changes are in area of new type declarations and in how

code can be modularized
  many changes are to make FORTRAN more “contemporary”
  You will need to consult a FORTRAN 90 reference manual for

more details.

  However, the most readily available compilers (e.g., gnu
g77) support only a limited set of extensions to
FORTRAN 77.

File-Directed Input and Output

  Much of early FORTRAN was devoted to reading input
data from Cards and writing to a line printer, and what
we have seen so far is quite adequate.

  Today, most I/O is to and from a file.
  Requires more extensive I/O capabilities.
  This was not standardized until FORTRAN 77 but each

manufacturer often created a specific “dialect.”
  It is included in FORTRAN 90 which we will discuss.

  Important concepts:
  OPEN, CLOSE and position commands manipulate a file,
  Once opened, file is referred to by an assigned device number,
  Files can have variable length records (sequential access), or

they can be fixed length (direct access) which is faster,
  Can use unformatted READ & WRITE if no human readable

data are involved (much faster access, smaller files).

Sequential versus Direct Access

  When each record can be a different length, individual
records cannot easily be accessed randomly:
  it is necessary to read sequentially through the file,
  the file can be rewound to beginning or backspaced to previous

record,
  generally a slow process.

  If each record is a fixed length, it is possible to easily
position to individual records because the offset from the
start can quickly be computed:
  can use a seek operation to go to a specified record,
  provides the fastest access.

  Requires special care to handle EOF on input or output.

OPEN Statement
  OPEN is used to make file available to READ & WRITE

  Syntax: OPEN ([UNIT=]io_unit [,FILE=name] [,ERR=label]
[,IOSTAT=i_var], slist)

  Named FILE will be opened and associated with given UNIT, transfer
to ERR label if error, also IOSTAT=0 if no error or positive error
number if error; slist is list of specifier=‘value’ pairs as defined by
OPEN command.

  Ex:
 OPEN (12,FILE=‘D:\AE\test.dat’,ERR=1000,IOSTAT=IER)
 Opens file D:\AE\test.dat for sequential read&write (default)
 and specifies device number 12 for access.

  Ex:
 OPEN (14,FILE=‘D:\test1.dat’,ERR=1000,IOSTAT=IER,
*ACCESS=‘SEQUENTIAL’,ACTION=‘WRITE’)
 Opens file D:\test1.dat for sequential, write-only mode to device 14.

  Default format is formatted. To use for unformatted READ or WRITE,
include: FORM=‘UNFORMATTED’

Writing an Output File

  Commands have detailed parameters defined in
reference manuals:
  OPEN file for output (typically using sequential access)
  WRITE each record (presence of “/” in FORMAT will cause

another record to be started).
  CLOSE file (automatically leaves EOF at end of data)
  Need to check for error conditions on each operation.
  When writing direct access file, it is necessary to specify the

record to be written.

Reading an Input File

  Commands have detailed parameters defined in
reference manuals:
  OPEN file for input (typically using sequential access),
  READ each record (use formatted or list-directed READ),
  Can position using BACKSPACE or REWIND if needed,
  CLOSE file (OPEN with same io_unit closes previous),
  Need to check for error conditions on each operation.
  When reading direct access file, it is necessary to specify the

record to be read.

Positioning and Closing

  To BACKSPACE a sequential access file:
  Syntax: BACKSPACE io_unit or

 BACKSPACE ([unit=]io_unit [,ERR=label] [,IOSTAT=i_var])
  Ex: BACKSPACE 14

  To REWIND a file (position at start):
  Syntax: REWIND io_unit or

 REWIND ([unit=]io_unit [,ERR=label] [,IOSTAT=i_var])
  Ex: REWIND (12, ERR=2000)

  To CLOSE a file:
  Syntax: CLOSE ([unit=]io_unit [,STATUS=p] [,ERR=label]

 * [,IOSTAT=i_var])
  Ex: CLOSE (14,STATUS=‘DELETE’) (deletes file, default=save)

Unformatted vs Formatted I/O
  Unformatted READ or WRITE

  Syntax: READ(dev_no[,IOSTAT=i_var][,ERR=label]) var_list
 WRITE(dev_no[,IOSTAT=i_var][,ERR=label]) var_list

  Simply leaving out the FORMAT label creates a form in which the
internal binary data is read or written (fastest I/O).

  Control arguments are optional.
  Ex: READ(12)A,B,C or WRITE(14) DATA

  Formatted READ or WRITE
  Syntax: READ(dev_no,format_label [,IOSTAT=i_var]

 [,ERR=label]) variable_list
 WRITE(dev_no,format_label [,IOSTAT=i_var]
 [,ERR=label]) variable_list

  Can use list-directed READ by using * in place of format_label.
  Ex: WRITE(12,1000,ERR=2200) DATA
 READ(10,*,ERR=2100) RAWDAT

Direct Access I/O

  Direct Access READ or WRITE
  Must specify the actual record number to seek and read.
  Syntax: READ(dev_no,format_label,REC=rec [,IOSTAT=i_var]

 [,ERR=label]) variable_list
 WRITE(dev_no,format_label,REC=rec [,IOSTAT=i_var]
 [,ERR=label]) variable_list

  It is only necessary to add the REC=rec specifier to set the record
number to be read or written. User must compute positions.

  Ex: READ(12,*,REC=KR,ERR=2200) DATA

Some Other Interesting Stmts

  EQUIVALENCE statement
  Syntax: EQUIVALENCE (list_of_variables) [,…]
  Used to make two or more variables share the same storage in

memory. This used to be an important way to conserve memory
without having to use the same variable names everywhere. It
can also be used to access an array element using a scalar
variable name (or to represent a subarray with another name).

  Ex:
 PROGRAM MAIN
 DIMENSION A(5),B(5),C(10,10),D(10)
 EQUIVALENCE (A(1),B(1)),(A(5),ALAST)
 EQUIVALENCE (C(1,1),D(1))
 ...

 PROGRAM MAIN
 CHARACTER A*7,B*7,C(2)*5
 EQUIVALENCE (A(6:7),B),(B(4:),C(2))
 ...

A

B

C(1) C(2)

A(6:7)

B(4:)

A and B are same

A(5) can be referred
to as ALAST

D refers to first column of C (because
arrays are stored columnwise)

Reading & Writing to/from Internal Storage

  Older code may include statements that transfer data
between variables or arrays and internal (main memory)
storage. This is a fast but temporary storage mechanism
that was popular before the widespread appearance of
disks.

  One method is to use the ENCODE & DECODE pairs
  DECODE – translates data from character to internal form,
  ENCODE – translates data from internal to character form.

  Another method that is in some FORTRAN 77 dialects
and is in FORTRAN 90 is to use Internal READ/WRITE
statements.

ENCODE/DECODE Statements

  DECODE statement
  Syntax: DECODE (c,f,b [,IOSTAT=i_var] [,ERR=label]) [var_list]
  Translate data from character into internal form, where:

–  c = scalar integer expr defining number of characters to be
 translated into internal form,

–  f = format label (error if more than one record is specified),
–  b = scalar or array to be decoded (if array, it is processed by columns)
–  var_list = variables used to store internal form
–  IOSTAT, ERR = as before for other file I/O statements

  Ex:
 INTEGER*4 K(3)
 CHARACTER*12 A,B
 DATA A/’ABCDEFGHIJKL’/
 ...
 DECODE(12,100,A) K

100 FORMAT(3I4)

Internal storage Characters

How to fit characters
into INTEGER*4

Results:
K(1)=ABCD
K(2)=EFGH
K(3)=IJKL

ENCODE/DECODE Statements – cont’d

  ENCODE statement
  Syntax: ENCODE (c,f,b [,IOSTAT=i_var] [,ERR=label]) [var_list]
  Translate data from internal (binary) form into character, where:

–  c = scalar integer expr defining number of characters to be
 translated into character form,

–  f = format label (error if more than one record is specified),
–  b = scalar or array where encoded characters are put (if array,

 it is processed by columns)
–  var_list = variables to be translated (encoded)
–  IOSTAT, ERR = as before for other file I/O statements

  Ex:
 INTEGER*4 K(3)
 CHARACTER*12 A,B
 DATA A/’ABCDEFGHIJKL’/
 ...
 DECODE(12,100,A) K

100 FORMAT(3I4)
 ENCODE(12,100,B) K(3),K(2),K(1)

Internal storage Encoded characters (returned)

How to fit characters
into INTEGER*4

Results:
B=‘IJKLEFGHABCD’

Values:
K(1)=ABCD
K(2)=EFGH
K(3)=IJKL

Internal WRITE Statement

  Internal WRITE does same as ENCODE
  Syntax: WRITE (dev_no, format_label [,IOSTAT=i_var]

 [,ERR=label]) [var_list]
  Write variables in var_list to internal storage defined by

character variable used as dev_no where:
–  dev_no = default character variable (not an array),
–  format_label = points to FORMAT statement or * for list-directed,
–  var_list = list of variables to be written to internal storage.

  Ex:
 INTEGER*4 J,K
 CHARACTER*50 CHAR50
 DATA J,K/1,2/
 ...
 WRITE(CHAR50,*)J,K

Results:
CHAR50=‘ 1 2’

Variables Internal storage

Writes using list-
directed format

Variables to
be written

Padded with blanks

Internal READ Statement

  Internal READ does same as DECODE
  Syntax: READ (dev_no, format_label [,IOSTAT=i_var]

 [,ERR=label] [END=label]) [var_list]
  Read variables from internal storage specified by character

variable used as dev_no and output to var_list where:
–  dev_no = default character variable (not an array),
–  format_label = points to FORMAT statement or * for list-directed,
–  var_list = list of variables to be written from internal storage.

  Ex:

 INTEGER K
 REAL A,B
 CHARACTER*80 REC80
 DATA REC80/’1.2, 2.3, -5’/
 ...
 READ(REC80,*)A,B,K

Results:
A=1.2, B=2.3, K=-5

Variables
Internal storage

Fill internal
storage with data

Variables to be
assigned values

List-directed input

Conclusions

  FORTRAN in all its standard versions and vendor-
specific dialects is a rich but confusing language.

  FORTRAN is still ideally suited for numerical
computations in engineering and science
  most new language features have been added in FORTRAN 95
  “High Performance FORTRAN” includes capabilities designed

for parallel processing.
  You have seen most of FORTRAN 77 but only a small

part of FORTRAN 90/95.
  Many new FORMAT and I/O statements and options
  Several new control statements
  New derived variable types (like structures)
  Recursive functions
  Pointers and dynamic variables
  Modules

