
Introduction to FORTRAN

  History and purpose of FORTRAN
  FORTRAN essentials

  Program structure
  Data types and specification statements
  Essential program control
  FORTRAN I/O
  subfunctions and subroutines

  Pitfalls and common coding problems
  Sample problems

 By: Manoj Malik

FORTRAN History
  One of the oldest computer languages

  created by John Backus and released in 1957
  designed for scientific and engineering computations

  Version history
  FORTRAN 1957
  FORTRAN II
  FORTRAN IV
  FORTRAN 66 (released as ANSI standard in 1966)
  FORTRAN 77 (ANSI standard in 1977)
  FORTRAN 90 (ANSI standard in 1990)
  FORTRAN 95 (ANSI standard version)
  FORTRAN 2003 (ANSI standard version)

  Many different “dialects” produced by computer vendors (one of
most popular is Digital VAX Fortran)

  Large majority of existing engineering software is coded in
FORTRAN (various versions)

Why FORTRAN

  FORTRAN was created to write programs to solve
scientific and engineering problems

  Introduced integer and floating point variables
  Introduced array data types for math computations
  Introduced subroutines and subfunctions
  Compilers can produce highly optimized code (fast)
  Lots of available numerical-math libraries
  Problems

  encouraged liberal use of GO TO statements
  resulted in hard to decipher and maintain (“spaghetti”) code
  limited ability to handle nonnumeric data
  no recursive capability (not completely true)

FORTRAN Today

  FORTRAN 77 is “standard” but FORTRAN 90/95 has
introduced contemporary programming constructs

  There are proprietary compilers
  Compaq/HP Visual Fortran; Absoft Fortran; Lahey Fortran

  There is a free compiler in Unix-Linux systems
  f77, g77
  g95, gfortran

  Available scientific libraries
  LINPACK: early effort to develop linear algebra library
  EISPACK: similar to Linpack
  IMSL: commercial library ($’s)
  NAG: commercial library ($’s)

Class Objectives

  Not nearly enough time to teach all the details of
FORTRAN (which has evolved into a VERY complex
language with many “dialects” …)

  We’ll try to highlight some of the most important features:
  that are confusing or often lead to problems,
  that appear in older programs written in FORTRAN 77 (or IV)
  that are quite different from contemporary languages
  For example:

–  I/O instructions
–  variable declarations
–  subprograms: functions and subroutines

  We’ll look at some code fragments, and
  You’ll program a simple example problem

How to Build a FORTRAN Program

  FORTRAN is a complied language (like C) so the source
code (what you write) must be converted into machine
code before it can be executed (e.g. Make command)

FORTRAN
Program

FORTRAN
Compiler

Libraries

Link with
Libraries

Executable
File

Source Code Object Code
Executable

Code

Execute
Program

Test & Debug
Program

Make Changes
in Source Code

Statement Format

  FORTRAN 77 requires a fixed format for programs

  FORTRAN 90/95 relaxes these requirements:
  allows free field input
  comments following statements (! delimiter)
  long variable names (31 characters)

 PROGRAM MAIN

C COMMENTS ARE ALLOWED IF A “C” IS PLACED IN COLUMN #1

 DIMENSION X(10)

 READ(5,*) (X(I),I=1,10)

 WRITE(6,1000) X

 1000 FORMAT(1X,’THIS IS A VERY LONG LINE OF TEXT TO SHOW HOW TO CONTINUE ’

 * ‘THE STATEMENT TO A SECOND LINE’,/,10F12.4)

1-5
Label

6 7-72 Statements 73-80
Optional
Line #s

Any character: continuation line

Program Organization

  Most FORTRAN programs consist of a main program
and one or more subprograms (subroutines, functions)

  There is a fixed order:

 Heading
 Declarations
 Variable initializations
 Program code
 Format statements

 Subprogram definitions
 (functions & subroutines)

Data Type Declarations

  Basic data types are:
  INTEGER – integer numbers (+/-)
  REAL – floating point numbers
  DOUBLE PRECISION – extended precision floating point
  CHARACTER*n – string with up to n characters
  LOGICAL – takes on values .TRUE. or .FALSE.
  COMPLEX – complex number

  Integer and Reals can specify number of bytes to use
  Default is: INTEGER*4 and REAL*4
  DOUBLE PRECISION is same as REAL*8

  Arrays of any type must be declared:
  DIMENSION A(3,5) – declares a 3 x 5 array (implicitly REAL)
  CHARACTER*30 NAME(50) – directly declares a character

array with 30 character strings in each element
  FORTRAN 90/95 allows user defined types

Implicit vs Explicit Declarations

  By default, an implicit type is assumed depending on the
first letter of the variable name:
  A-H, O-Z define REAL variables
  I-N define INTEGER variable

  Can use the IMPLICIT statement:
  IMPLICIT REAL (A-Z) makes all variables REAL if not

declared
  IMPLICIT CHARACTER*2 (W) makes variables starting with

W be 2-character strings
  IMPLICIT DOUBLE PRECISION (D) makes variables starting

with D be double precision

  Good habit: force explicit type declarations
  IMPLICIT NONE
  User must explicitly declare all variable types

Other Declarations

  Define constants to be used in program:
  PARAMETER (PI=3.1415927, NAME=‘BURDELL’)
  PARAMETER (PIO2=PI/2, FLAG=.TRUE.)
  these cannot be changed in assignments
  can use parameters to define other parameters

  Pass a function or subroutine name as an argument:
  INTRINSIC SIN – the SIN function will be passed as an

argument to a subprogram (subroutine or function)
  EXTERNAL MYFUNC – the MYFUNC function defined in a
FUNCTION subprogram will be passed as an argument to
another subprogram

Initializing Variables

  The DATA statement can be used to initialize a variable:
  DIMENSION A(10,10) – dimension a REAL array
  DATA A/100*1.0/ - initializes all values to 1.0
  DATA A(1,1),A(10,1),A(5,5) /2*4.0,-3.0/ - initialize

by element
  DATA ((A(I,J),I=1,5,2),J=1,5) /15*2.0/ - initialize

with implied-do list
  DATA FLAG /.TRUE./ - initialize a LOGICAL
  DATA NAME /30*’*’/ - initialize a CHARACTER string

  Cannot initialize:
  dummy argument in a function or subroutine definition
  function, function result
  variables in COMMON blocks (more details later…)

  DATA statements can appear within the program code

FORTRAN Assignment Statements

  Assignment statement:
<label> <variable> = <expression>
  <label> - statement label number (1 to 99999)
  <variable> - FORTRAN variable (max 6 characters,

alphanumeric only for standard FTN-77)

  Expression:
  Numeric expressions: VAR = 3.5*COS(THETA)
  Character expressions: DAY(1:3)=‘TUE’
  Relational expressions: FLAG= ANS .GT. 0
  Logical expressions: FLAG = F1 .OR. F2

Numeric Expressions

  Very similar to other languages
  Arithmetic operators:
  Precedence: ** (high) →- (low)

  Casting: numeric expressions are up-cast to the highest data
type in the expression according to the precedence:
(low) logical – integer – real – complex (high) and smaller byte
size (low) to larger byte size (high)

  Example
3.42 + (A1+C0)/SIN(A) – R**3

Operator Function
** exponentiation
* multiplication
/ division
+ addition
- subtraction

Character Expressions

  Only built-in operator is Concatenation
  defined by // - ‘ILL’//‘-’//‘ADVISED’

  Character arrays are most commonly encountered…
  treated like any array (indexed using : notation)
  fixed length (usually padded with blanks)
  Example:

CHARACTER FAMILY*16
FAMILY = ‘GEORGE P. BURDELL’
PRINT*,FAMILY(:6)
PRINT*,FAMILY(8:9)
PRINT*,FAMILY(11:)
PRINT*,FAMILY(:6)//FAMILY(10:)

GEORGE
P.
BURDELL
GEORGE BURDELL

CODE OUTPUT

Hollerith Constants
  This is a relic of early FORTRAN that did not have the

CHARACTER type..
  Used to store ASCII characters in numeric variables using one byte

per character
  Examples: 2HQW, 4H1234, 10HHELLOWORLD
  Binary, octal, hexidecimal and hollerith constants have no intrinsic

data type and assume a numeric type depending on their use

  This can be VERY confusing; consult FORTRAN manual for target
compiler! (avoid whenever possible)

INTEGER*4 IWORD, KWORD
INTEGER*2 CODE
REAL*8 TEST
CODE = 2HXZ
IWORD = 4HABCD
KWORD = O’4761’ (octal)
TEST = Z’3AF2’ (hexidecimal)

Relational Expressions

  Two expressions whose values are compared to
determine whether the relation is true or false
  may be numeric (common) or non-numeric
  Relational operators:

  Character strings can be compared
  done character by character
  shorter string is padded with blanks for comparison

Operator Relationship
.LT. or < less than
.LE. or <= less than or equal to
.EQ. or == equal to
.NE. or /= not equal to
.GT. or > greater than
.GE. or >= greater than or equal to

Logical Expressions

  Consists of one or more logical operators and logical,
numeric or relational operands
  values are .TRUE. or .FALSE.
  Operators:

  Need to consider overall operator precedence (next slide)
  Remark: can combine logical and integer data with logical

operators but this is tricky (avoid!)

Operator Example Meaning
.AND. A .AND. B logical AND
.OR. A .OR. B logical OR

.NEQV. A .NEQV. B logical inequivalence
.XOR. A .XOR. B exclusive OR (same as .NEQV.)
.EQV. A .EQV. B logical equivalence
.NOT. .NOT. A logical negation

Operator Precedence

  Can be tricky; use () when in doubt…

Category Operator Precedence
numeric ** highest
numeric * or /
numeric unary + or -
numeric binary + or -
character //
relational .EQ. .NE. .LT. .LE. .GT. .GE.
logical .NOT.
logical .AND.
logical .OR.
logical .XOR. .EQV. .NEQV. lowest

Arrays in FORTRAN

  Arrays can be multi-dimensional (up to 7) and are
indexed using ():
  TEST(3)
  FORCE(4,2)

  Indices are normally defined as 1…N
  Can specify index range in declaration

  REAL L(2:11,5) – L is dimensioned with rows numbered 2-11
and columns numbered 1-5

  INTEGER K(0:11) – K is dimensioned from 0-11 (12 elements)
  Arrays are stored in column order (1st column, 2nd

column, etc) so accessing by incrementing row index
first usually is fastest.

  Whole array reference:
  K=-8 - assigns 8 to all elements in K (not in 77)

Execution Control in FORTRAN

  Branching statements (GO TO and variations)
  IF constructs (IF, IF-ELSE, etc)
  CASE (90+)
  Looping (DO, DO WHILE constructs)
  CONTINUE
  PAUSE
  STOP
  CALL
  RETURN
  END

NOTE:
We will try to present the
FORTRAN 77 versions and then
include some of the common
variations that may be
encountered in older versions.

Unconditional GO TO

  This is the only GOTO in FORTRAN 77
  Syntax: GO TO label
  Unconditional transfer to labeled statement

  Flowchart:

  Problem: leads to confusing “spaghetti code”

 10 -code-
 GO TO 30
 -code that is bypassed-
 30 -code that is target of GOTO-
 -more code-
 GO TO 10

GOTO 30 30

Other GO TO Statements

  Computed GO TO
  Syntax: GO TO (list_of_labels) [,] expression
  selects from list of labels based on ordinal value of expression
  Ex: GO TO (10, 20, 30, 50) KEY+1

  Assigned GO TO
  Syntax: ASSIGN label TO intvar

 GO TO intvar [[,] (list_of_valid_labels)]
  Ex: ASSIGN 100 TO L2
 - code –
 GO TO L2, (10, 50, 100, 200)

NOTE:
In syntax, [] means items
enclosed are optional

IF Statements

  Basic version #1
  Syntax: IF (logical_expression) GO TO label
  If logical expression is true, execute GO TO, otherwise continue

with next statement
  Ex: IF (X.LE.0) GO TO 340
  Flowchart:

  Basic version #2
  Syntax: IF (logical_expression) statement
  If logical expression is true, execute statement and continue,

otherwise, skip statement and continue
  Ex: IF (K.LE.0) K=0
  Flowchart

X < 0?

no

yes
340

X < 0?

no

yes
K=0

IF THEN ELSE Statement

  Basic version:
  Syntax: IF (logical_expression) THEN

 statement1(s)
 ELSE
 statement2(s)
 ENDIF

  If logical expression is true, execute statement1(s), otherwise
execute statemens2(s), then continue after ENDIF.

  Ex: IF (KEY.EQ.0) THEN
 X=X+1
 ELSE
 X=X+2
 ENDIF

  Flowchart: KEY= 0?

no

yes
X=X+1

X=X+2

IF ELSE IF Statement

  Basic version:
  Syntax: IF (logical_expr1) THEN

 statement1(s)
 ELSE IF (logical_expr2) THEN
 statement2(s)
 ELSE
 statement3(s)
 ENDIF

  If logical expr1 is true, execute statement1(s), if logical expr2 is
true, execute statement2(s), otherwise execute statemens3(s).

  Ex:
 10 IF (KSTAT.EQ.1) THEN
 CLASS=‘FRESHMAN’
 ELSE IF (KSTAT.EQ.2) THEN
 CLASS=‘SOPHOMORE’
 ELSE IF (KSTAT.EQ.3) THEN
 CLASS=‘JUNIOR’
 ELSE IF (KSTAT.EQ.4) THEN
 CLASS=‘SENIOR’
 ELSE
 CLASS=‘UNKNOWN’
 ENDIF

KEY= 1?

no

yes
X=X+1

X=X+2 KEY= 2?

KEY= N?

no
…

X=X+N

yes

yes

no

X=-1

Notes on IF Statements

  Avoid using IF with GO TO which leads to complex code
  Statement blocks in IF THEN and IF ELSE IF

statements can contain almost any other executable
FORTRAN statements, including other IF’s and loop
statements.

  CANNOT transfer control into an IF statement block
from outside (e.g., using a GO TO)

  CAN transfer control out of an IF statement block (e.g.,
using an IF () GO TO N statement)

  Use indenting to make code readable.

Old IF Statements

  Arithmetic IF statement (3-branch)
  Syntax: IF (num_expr) label1, label2, label3
  If num expr is <0 then go to label1, if =0 then label2, and if >0

then go to label3
  Ex: IF (THETA) 10, 20, 100

  Arithmetic IF statement (2-branch)
  Syntax: IF (num _ expr) label1, label2
  If num expr is <0 then go to label1, if >=0 then go to label2
  Ex: IF (ALPHA-BETA) 120, 16

  Notes:
  Avoid whenever possible!
  Leads to very confusing and hard to understand code..

Spaghetti Code

  Use of GO TO and arithmetic IF’s leads to bad code that
is very hard to maintain

  Here is the equivalent of an IF-THEN-ELSE statement:

  Now try to figure out what a complex IF ELSE IF
statement would look like coded with this kind of simple
IF. . .

 10 IF (KEY.LT.0) GO TO 20
 TEST=TEST-1
 THETA=ATAN(X,Y)
 GO TO 30
 20 TEST=TEST+1
 THETA=ATAN(-X,Y)
 30 CONTINUE

Loop Statements

  DO loop: structure that executes a specified number of times
  Nonblock DO

  Syntax: DO label , loop_control
 do_block
 label terminating_statement

  Execute do_block including terminating statement, a number of times
determined by loop-control

  Ex:

  Loop _control can include variables and a third parameter to specify
increments, including negative values.

  Loop always executes ONCE before testing for end condition

 K=2
 10 PRINT*,A(K)
 K=K+2
 IF (K.LE.11 GO TO 10
 20 CONTINUE

 DO 100 K=2,10,2
 PRINT*,A(K)
 100 CONTINUE

Spaghetti Code Version

Loop Statements – cont’d

  WHILE DO statement
  Syntax: WHILE (logical_expr) DO

 statement(s)
 ENDWHILE

  Executes statement(s) as long as logical_expr is true, and exits
when it is false. Note: must preset logical_expr to true to get
loop to start and must at some point set it false in statements or
loop will execute indefinitely.

  Ex:

  Use when cannot determine number of loops in advance.
  CANNOT transfer into WHILE loop.
  CAN transfer out of WHILE loop.

 READ*,R
 WHILE (R.GE.0) DO
 VOL=2*PI*R**2*CLEN
 READ*,R
 ENDWHILE

New Loop Statements

  Block DO
  Syntax: DO loop_control

 do_block
 END DO

  Execute do_block including terminating statement, a number of
times determined by loop-control

  Ex:

  Loop _control can include a third parameter to specify
increments, including negative values.

  Loop always executes ONCE before testing for end condition
  If loop_control is omitted, loop will execute indefinitely or until

some statement in do-block transfers out.

 DO K=2,10,2
 PRINT*,A(K)
 END DO

New Loop Statements – cont’d
  General DO

  Syntax: DO
 statement_sequence1
 IF (logical_expr) EXIT
 statement_sequence2
 END DO

  Execute do_block including terminating statement and loop back
continually (without the IF this is basically an “infinite loop”)

  Must include some means (i.e., IF) to exit loop
  Ex:

  Loop always starts ONCE before testing for exit condition
  If EXIT is omitted, loop will execute indefinitely or until some

statement in do-block transfers out.

 DO
 READ*,R
 IF (R.LT.0) EXIT
 VOL=2*PI*R**2*CLEN
 PRINT*,R
 END DO

New Loop Statements - cont’d

  DO WHILE
  Syntax: DO [label][,] WHILE (logical_expr)

 do_block
 [label] END DO

  Execute do_block while logical_expr is true, exit when false
  Ex:

  Loop will not execute at all if logical_expr is not true at start

 READ*,R
 DO WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 END DO

 READ*,R
 DO 10 WHILE (R.GE.0)
 VOL=2*PI*R**2*CLEN
 READ*,R
 10 CONTINUE

Comments on Loop Statements

  In old versions:
  to transfer out (exit loop), use a GO TO
  to skip to next loop, use GO TO terminating statement (this is a

good reason to always make this a CONTINUE statement)

  In NEW versions:
  to transfer out (exit loop), use EXIT statement and control is

transferred to statement following loop end. This means you
cannot transfer out of multiple nested loops with a single EXIT
statement (use GO TO if needed). This is much like a BREAK
statement in other languages.

  to skip to next loop cycle, use CYCLE statement in loop.

Input and Output Statements

  FORTRAN has always included a comprehensive set of
I/O instructions.
  Can be used with standard input and output devices such as

keyboards, terminal screens, printers, etc.
  Can be used to read and write files managed by the host OS.

  Basic instructions:
  READ – reads input from a standard input device or a specified

device or file.
  WRITE – writes data to a standard output device (screen) or to a

specified device or file.
  FORMAT – defines the input or output format.

  Advanced instructions
  Used to manipulate files maintained by the OS file manager.
  Often dependent on features in a particular OS or computer.

READ Statement

  Format controlled READ:
  Syntax: READ(dev_no, format_label) variable_list
  Read a record from dev_no using format_label and assign

results to variables in variable_list
  Ex: READ(5,1000) A,B,C
 1000 FORMAT(3F12.4)

  Device numbers 1-7 are defined as standard I/O devices and 1
is the keyboard, but 5 is also commonly taken as the keyboard
(used to be card reader)

  Each READ reads one or more lines of data and any remaining
data in a line that is read is dropped if not translated to one of
the variables in the variable_list.

  Variable_list can include implied DO such as:
READ(5,1000)(A(I),I=1,10)

READ Statement – cont’d

  List-directed READ
  Syntax: READ*, variable_list
  Read enough variables from the standard input device (usually a

keyboard) to satisfy variable_list
–  input items can be integer, real or character.
–  characters must be enclosed in ‘ ‘.
–  input items are separated by commas.
–  input items must agree in type with variables in variable_list.
–  as many records (lines) will be read as needed to fill variable_list

and any not used in the current line are dropped.
–  each READ processes a new record (line).

  Ex: READ*,A,B,K – read line and look for floating point values
for A and B and an integer for K.

  Some compilers support:
  Syntax: READ(dev_num, *) variable_list
  Behaves just like above.

WRITE Statement

  Format controlled WRITE
  Syntax: WRITE(dev_no, format_label) variable_list
  Write variables in variable_list to output dev_no using format

specified in format statement with format_label
  Ex: WRITE(6,1000) A,B,KEY
 1000 FORMAT(F12.4,E14.5,I6)

  Device number 6 is commonly the printer but can also be the
screen (standard screen is 2)

  Each WRITE produces one or more output lines as needed to
write out variable_list using format statement.

  Variable_list can include implied DO such as:
WRITE(6,2000)(A(I),I=1,10)

Output:
|----+----o----+----o----+----o----+----|
 1234.5678 -0.12345E+02 12

WRITE Statement – cont’d

  List directed WRITE
  Syntax: PRINT*, variable_list
  Write variables in variable_list to standard output device using

format appropriate to variable type. Variables are separated by
either spaces or commas, depending on system used.

  Ex: PRINT*,‘X=‘,X,’Y=‘,Y,’N=‘,N
Output:

X= 4.56, Y= 15.62, N= 4

Error Control

  It is possible to handle error conditions, such as
encountering an end-of-file, during READ statements.

  Extended READ statement
  Syntax: READ(dev_num, format_label, END=label) list or

 READ(*,*,END=label) list
  If an EOF is encountered by READ, transfer control to the

statement label specified by END=.
  Ex 1:

 READ(5,500,END=300) X,Y,Z
  Ex 2:

 READ(*,*,END=300) X,Y,Z

  Can also specify, ERR=label, to transfer control to label
in the event of a READ error of some kind.

FORMAT Statement

  Very powerful and versatile but can be quite tedious to
master and may vary between dialects

  Designed for use with line printers (not screens)
  Only infrequently used for input unless data format is

clearly defined and consistently applied
  General:

  Syntax: label_no FORMAT(format-specifiers)
  Specifies format to be used in READ or WRITE statement that

references this label_no.
  format_specifiers are quite extensive and complex to master.
  each format specifier is separated by a comma.

Format Specifiers

  X format code
  Syntax: nX
  Specifies n spaces to be included at this point

  I format code
  Syntax: Iw
  Specifies format for an integer using a field width of w spaces. If

integer value exceeds this space, output will consist of ****
  F format code

  Syntax: Fw.d
  Specifies format for a REAL number using a field width of w

spaces and printing d digits to the right of the decimal point.
  A format code

  Syntax: A or Aw
  Specifies format for a CHARACTER using a field width equal to

the number of characters, or using exactly w spaces (padded
with blanks to the right if characters are less than w.

Format Specifiers – cont’d

  T format code
  Syntax: Tn
  Skip (tab) to column number n

  Literal format code
  Syntax: ‘quoted_string’
  Print the quoted string in the output (not used in input)

  L format code
  Syntax: Lw
  Print value of logical variable as L or F, right-justified in field of

width, w.

Format Specifiers – cont’d
  E format code

  Syntax: Ew.d
  Print value of REAL variable using “scientific notation” with a

mantissa of d digits and a total field width of w.
  Ex:

 E14.5 produces for the REAL value -1.23456789e+4:

  You must leave room for sign, leading 0,decimal point, E, sign,
and 2 digits for exponent (typically at least 7 spaces)

  If specified width is too small, mantissa precision, d, will be
reduced unless d<1 in which case *** will be output.

  Using nP prefix will shift mantissa digit right by n and reduce
exponent by –n. Ex; 1PE14.5 above yields:

|----+----o----+----o----+----o----+----|
 -0.12345E+05

|----+----o----+----o----+----o----+----|
 -1.23456E+04

Format Specifiers – cont’d
  G format code

  Syntax: Gw.d
  Print value of REAL variable using Fw.d format unless value is

too large or too small, in which case use Ew.d format.
  Ex:

 G14.5 produces for the REAL value -1.23456789e+4:

  When the number gets too big (or too small) for F, it is switched
to an E format. Ex: the value -1.23456789e-18 becomes:

  Note: the usefulness is more apparent when smaller field widths
(w values) are specified for more compact output.

|----+----o----+----o----+----o----+----|
 -12345.67890

|----+----o----+----o----+----o----+----|
 -0.1234567E-19

Other FORMAT Features

  Forward slash, /
  Used to cause a new line to be started
  Does not need to be separated by commas

  Repeat factor
  Format specifiers may be repeated by prepending a number to

specify the repeat factor
  Ex: 4F12.5 – same as F12.5,F12.5,F12.5,F12.5

  Carriage control
  Line printers interpret the first character of each line as a

carriage control command and it is not printed.
–  1 means start new page,
–  _(blank) means begin a new line,
–  + means over print current line

  Common use: 1000 FORMAT(1X,4F12.4)

Other FORMAT Features – cont’d

  When the end of the format_specifiers in a FORMAT statement are
reached before all of the variables in the variable_list have been
output, the format_specifiers are re-scanned starting at the first left
parenthesis, (.

  Many other format specifiers are available but are not included in
these notes. These include formats for Binary, Octal and
Hexidecimal data, formats for Double Precision numbers (replace E
with D), and formats for Complex numbers.

  When formatted READ is used, any decimal point in data will
override format specifier. If no decimal is supplied, format specifier
will determine where decimal should be (even though it is not in
input data)

 |----+----o----+----o----+----o----+----|
Data: 123456 1.23456

 READ(5,1000) A,B
1000 FORMAT(2F8.2)

Result: A=1234.56, B=1.23456

NAMELIST

  It is possible to pre-define the structure of input and
output data using NAMELIST in order to make it easier
to process with READ and WRITE statements.
  Use NAMELIST to define the data structure
  Use READ or WRITE with reference to NAMELIST to handle the

data in the specified format

  This is not part of standard FORTRAN 77… but it is
included in FORTRAN 90.

  It is being included in these notes because it has been
widely used in ASDL for a number of years.

NAMELIST Statement

  Used to define the structure of the I/O data
  Syntax: NAMELIST /group/ var_list [, [/group/var_list]]
  Associates a group name with a comma separated list of

variables for I/O purposes. Variables can appear in more than
one group.

  Ex:
 NAMELIST /INPUT/LENGTH,WIDTH,THICK,DENSITY,
*/OUTPUT/AREA,DENSITY,WEIGHT
This defines INPUT to include 4 variables and OUTPUT to
include 3 variables. One (density) is repeated.

  The READ or WRITE statement simply refers to the
NAMELIST statement rather than a list of variables.
  Syntax: READ(dev_no,NML=group)

 WRITE(dev_no,NML=group
  Ex:

 READ(5,NML=INPUT)

NAMELIST Data Structure

  On input, the NAMELIST data for the previous slide must
be structured as follows:

  And on executing the READ(5,NML=INPUT), the
following values are assigned:
  THICK=0.245, LENGTH=12.34, WIDTH=2.34,
DENSITY=0.0034

  It is not necessary to provide values for all variables in a
NAMELIST group; values not provided result in no changes.

  For arrays, assignment can be partial and can start at any index
and can skip values by including ,, in input.

&INPUT
 THICK=0.245,
 LENGTH=12.34,
 WIDTH=2.34,
 DENSITY=0.0034
/

Input NAMELIST Examples
  Parts or all of the data can be assigned
  Multiple READ’s can be used with successive NAMELIST data

 NAMELIST /TEST/TITLE,FLAG,A
 DIMENSION A(10)
 LOGICAL FLAG
 CHARACTER*10 TITLE
 ...
 READ(5,NML=TEST)
 ...
 READ(5,NML=TEST)

&TEST
 TITLE=‘TEST567890’,
 FLAG=.TRUE.,
 A=1.2,3.3,8*0.0
/
Results in:
TITLE=‘TEST567890’
FLAG=.TRUE.
A=1.2,3.3,rest=0

&TEST
 TITLE(9:10)=‘77’,
 A(5)=5*10.0
/
Results in:
TITLE=‘TEST567877’
FLAG=unchanged
A(5)…A(10)=10.0

Output NAMELIST Examples
  Output behavior is similar to input:

 CHARACTER*8 NAME(2)
 REAL PITCH,ROLL,YAW,POSITION(3)
 INTEGER ITER
 LOGICAL DIAG
 NAMELIST /PARAM/NAME,PITCH,ROLL,YAW,POSITION,DIAG,ITER
 DATA NAME/2*’ ‘/,POSITION/3*0.0/
 ...
 READ(5,NML=TEST)
 ...
 WRITE(6,NML=TEST)

&PARAM
 NAME(2)(4:8)=‘FIVE’,
 PITCH=5.0,YAW=0.0,ROLL=-5.0,
 DIAG=.TRUE.,ITER=10
/

&PARAM
NAME= ‘ ‘,’ FIVE’,
PITCH= 5.0,
ROLL = -5.0,
YAW = 0.0,
POSITION= 3*0.00000e+00,
DIAG = T,
ITER = 10
/

Functions and Subroutines

  Functions & Subroutines (procedures in other
languages) are subprograms that allow modular coding
  Function: returns a single explicit function value for given

function arguments
  Subroutine: any values returned must be returned through the

arguments (no explicit subroutine value is returned)
  Functions and Subroutines are not recursive in FORTRAN 77

  In FORTRAN, subprograms use a separate namespace
for each subprogram so that variables are local to the
subprogram.
  variables are passed to subprogram through argument list and

returned in function value or through arguments
  Variables stored in COMMON may be shared between

namespaces (e.g., between calling program and subprogram)

FUNCTION Statement

  Defines start of Function subprogram
  Serves as a prototype for function call (defines structure)
  Subprogram must include at least one RETURN (can have more)

and be terminated by an END statement

  FUNCTION structure:
  Syntax: [type] FUNCTION fname(p1,p2, … pN)
  Defines function name, fname, and argument list, p1,p2, … pN,

and optionally, the function type if not defined implicitly.
  Ex:

  Note: function type is implicitly defined as REAL

REAL FUNCTION AVG3(A,B,C)
AVG3=(A+B+C)/3
RETURN
END

Use:
AV=WEIGHT*AVG3(A1,F2,B2)

Statement Function

  FORTRAN provides a “shortcut” method to define
simple, single expression functions without having to
create a separate subprogram…

  Statement Function:
  Syntax: function_name(p1,p2,…pN) = expression
  This definition can be continued to additional lines but must be a

single statement (no IF’s, DO’s, etc) and it must appear before
any other executable code but after all type declarations.

  Ex:

  Note: argument is treated as a dummy variable and may be
replaced by other variables or literals when used in program;
other variables in function are in program scope.

PROGRAM MAIN
REAL A,B,C
FUNC(X)=A*X**2-B*X+C
...program...
ANS=FUNC(4.2)+1.2
...
END

SUBROUTINE Statement

  Defines start of Subroutine subprogram
  Serves as a prototype for subroutine call (defines structure)
  Subprogram must include at least one RETURN (can have more)

and be terminated by an END statement
  SUBROUTINE structure:

  Syntax: SUBROUTINE sname(p1,p2, … pN)
  Defines subroutine name, sname, and argument list, p1,p2, … pN.
  Ex:

  Subroutine is invoked using the CALL statement.
  Note: any returned values must be returned through argument list.

SUBROUTINE AVG3S(A,B,C,AVERAGE)
AVERAGE=(A+B+C)/3
RETURN
END

Use:
CALL AVG3S(A1,F2,B2,AVR)
RESULT=WEIGHT*AVR

Placement of Subprograms

  Subprograms are placed immediately following main
program END statement.

  Subprograms can be written and compiled separately
but must then be made available to link-loader in order
to be linked into executable program. In not, an
“undefined externals” error will be generated.

 PROGRAM MAIN
 ...program body...
 END

 REAL FUNCTION AVG3(A,B,C)
 ...function body...
 END

 SUBROUTINE AVG3S(A,B,C,AV)
 ...subroutine body...
 END

Arguments

  Arguments in subprogram are “dummy” arguments used
in place of the real arguments used in each particular
subprogram invocation. They are used in subprogram to
define the computations.

  Actual subprogram arguments are passed by reference
(address) if given as symbolic; they are passed by value
if given as literal.
  If passed by reference, the subprogram can then alter the actual

argument value since it can access it by reference (address).
  Arguments passed by value cannot be modified.

CALL AVG3S(A1,3.4,C1,QAV)

CALL AVG3S(A,C,B,4.1)

OK: 2nd argument is passed by
value; QAV contains result.

NO: no return value is available
since 4.1 is a value and not a
reference to a variable!

Arguments – cont’d

  Dummy arguments appearing in a Subprogram
declaration cannot be an individual array element
reference, e.g., A(2), or a literal, for obvious reasons!

  Arguments used in invocation (by calling program) may
be variables, subscripted variables, array names, literals,
expressions, or function names.

  Using symbolic arguments (variables or array names) is
the only way to return a value (result) from a
SUBROUTINE.

  It is considered BAD coding practice, but FUNCTIONs
can return values by changing the value of arguments.
This type of use should be strictly avoided!

FUNCTION versus Array

  How does FORTRAN distinguish between a FUNCTION
and an array having the same name?
  REMAINDER(4,3) could be a 2D array or it could be a

reference to a function that returns the remainder of 4/3
  If the name, including arguments, matches an array declaration,

then it is taken to be an array.
  Otherwise, it is assumed to be a FUNCTION

  Be careful about implicit versus explicit Type
declarations with FUNCTIONs…

PROGRAM MAIN
INTEGER REMAINDER
...
KR=REMAINDER(4,3)
...
END

INTEGER FUNCTION REMAINDER(INUM,IDEN)
...
END

Arrays with Subprograms

  Arrays present special problems in subprograms…
  Must pass by reference to subprogram since there is no way to

list array values explicitly as literals.
  How do you tell subprogram how large the array is? (Answer

varies with FORTRAN version and vendor (dialect)…

  When an array element, e.g., A(1), is used in a
subprogram invocation (in calling program), it is passed
as a reference (address), just like a simple variable.

  When an array is used by name in a subprogram
invocation (in calling program), it is passed as a
reference to the entire array. In this case the array must
be appropriately dimensioned in the subroutine (and this
can be tricky…).

Arrays with Subprograms – cont’d

  Explicit array declaration in Subprogram
  If you know the dimension and it does not change for any

invocation of the subprogram, then declare it explicitly:

  Beware: calling this function with a scalar will cause problems!
(solution: always test argument type if possible)

  Note: this is really a badly designed function because it assumes
that the array dimension is 10. A better design would pass the
array dimension as an argument.

 REAL FUNCTION AAVG(ARRAY)
 DIMENSION ARRAY(10)
 SUM=0.0
 DO 100 I=1,10
 SUM=SUM+ARRAY(I)

 100 CONTINUE
 AAVG=SUM/10
 RETURN
 END

Arrays with Subprograms – cont’d

  Variable array dimensioning in Subprogram
  If the dimensions of arrays passed to the subprogram can vary

between calls, the dimension can be passed as part of the
argument list.

  Ex:

  Different FORTRAN 77 dialects offer variations. FORTRAN
90/95 defines above example as an “explicit-shape, adjustable
array” and also define “assumed-shape”, “assumed-size” and
“deferred-shape” arrays! You will need to check documentation
for your particular dialect…

 SUBROUTINE AADD(A,B,SUM,M,N)
 DIMENSION A(M,N),B(M,N),SUM(M,N)
 DO 200 I=1,M
 DO 100 J=1,N
 SUM(I,J)=A(I,J)+B(I,J)

 100 CONTINUE
 200 CONTINUE

 RETURN
 END

This is the only
way that arrays
can be handled

dynamically
(variable sizes) in

Fortran!

COMMON Statement

  The COMMON statement allows variables to have a
more extensive scope than otherwise.
  A variable declared in a Main Program can be made accessible

to subprograms (without appearing in argument lists of a calling
statement)

  This can be selective (don’t have to share all everywhere)
  Placement: among type declarations, after IMPLICIT or

EXPLICIT, before DATA statements
  Can group into labeled COMMONs

  Must use the BLOCK DATA subprogram to initialize
variables declared in a COMMON statement

COMMON Statement – cont’d

  The COMMON statement (also called blank COMMON)
  Syntax: COMMON variable_list
  Declares that the variables in the variable_list are stored in a

special area where they can be shared with other subprograms.
Each subprogram must include a COMMON statement in order
to access these shared (common) variables. The variable_list
must agree strictly in type of variable but different names can be
used in each subprogram (can be VERY confusing).

  Ex: PROGRAM MAIN
 COMMON D(3),KEY(4,4)
 D(1)=2.2
 D(2)=-1.3
 D(3)=5.6
 RESULT=FUNC(-4.3)
 END

 REAL FUNCTION FUNC(X)
 COMMON C(3)
 FUNC=C(1)*X**2+C(2)*X+C(3)
 RETURN
 END

COMMON is declared larger in
main program

Use different name in function and
don’t declare all of COMMON

COMMON Statement – cont’d

  Can declare array dimensions in COMMON or not…
  These are all acceptable:

  But this is not:

  Can combine:

  Cannot initialize with DATA statement:

 REAL X
 COMMON X(100)

 REAL X(100)
 COMMON X

 COMMON X(100)

 REAL X(100)
 COMMON X(100)

 COMMON A,B
 COMMON C(10,3)
 COMMON KPY

 COMMON A,B,C(10,3),KPY

EQUIVALENT

 COMMON X(100)
 DATA X/100*1.0/

Labeled COMMON Statement

  When the defined COMMON block is large, a single
subprogram may not need to refer to all variables.

  Solution: labeled COMMON:
  Syntax: COMMON [/block_name1/] var_list /block_name2/

var_list /block_name3/var_list/ …
  Defines one or more labeled COMMON blocks containing

specified lists of variables. If first block name is omitted, this
defines “blank” common. For some dialects, COMMON blocks
must have same length in all subprograms and if character arrays
appear in a block, no other types can appear in that block.

  Ex:
 PROGRAM MAIN
 COMMON D(3)/PARAMS/A,B,C(4)
 COMMON /STATE/X(100),Y(100),Z(100)
 ...code...
 END

Multiple COMMON’s are treated as a single long
statement, and variables are defined in order

D is in blank common

BLOCK DATA Subprogram

  BLOCK DATA is a subprogram that simply assigns
values to arrays and variables in a COMMON block.
  Syntax: BLOCK DATA name

 specifications
 END [BLOCK DATA [name]]

  This is placed with subprograms and is used to initialize
variables in COMMON and labeled COMMON.

  Ex:
 PROGRAM MAIN
 COMMON D(3)/PARAMS/A,B,C(4)
 COMMON /STATE/X(100),Y(100),Z(100)
 ...code...
 END

 BLOCK DATA
 DIMENSION X(100),Y(100),Z(100)
 COMMON D(3)/PARAMS/A,B,C(4)/STATE/X,Y,Z
 DATA X,Y,X/300*0.0/,C/4*1.0/,D/3*0.0/,A/22/
 END

Slightly different
declaration than above

A More Complicated Example

  Finite element structural analysis programs:
  must assemble an N by N global stiffness matrix, K, from

individual element stiffness matrices, where N is the total
number of unconstrained DOF’s.

  must also generate a force vector, LOAD, with N components for
each loading case.

  must construct a solution for the displacements at each DOF
that is defined by: DISP = K-1 * LOAD.

  Program considerations:
  global stiffness is defined in labeled COMMON
  load vector is defined in labeled COMMON
  subroutine to compute stiffness inverse must access COMMON
  matrices must be defined for largest problem since FTN77 does

not support dynamic memory allocation

A More Complicated Example – cont’d

  Skeleton of a program…
 PROGRAM MAIN
 REAL KGLO,FORC,KEL
 COMMON /STIF/KGLO(100,100)/LOAD/FORC(100)/DEF/D(100)

C ...read in data and initialize problem...
 DO 100 IELEM=1,NELEMS

C ...assemble global stiffness matrix...
 CALL KELEM(IELEM,KEL)
 CALL ASMBK(IELEM,KEL)

100 CONTINUE
 DO 200 ILOAD=1,NLOADS

C ...assemble load vector...
 CALL LODVEC(ILOAD,LOAD)

200 CONTINUE
 CALL CONSTR(KDOFS)
 CALL SOLVE(NDOFS)

C ...print out results, etc. ...
 END

partial list of declarations

Construct FORC from
individual loads defined in
LOAD array

Calculate stiffness matrix,
KEL, for a single element

Add KEL to global stiffness
matrix, KGLO

Must constrain problem at specified
DOF’s (or no solution possible)

Compute solution for displacements

A More Complicated Example – cont’d

  Example code for SOLVE

  Avoids having to include all arrays in all calls to
subroutines that process some or all of data.

 SUBROUTINE SOLVE(NDOFS)
 DIMENSION CGLO(100,100)
 COMMON /STIF/KGLO(100,100)/LOAD/FORC(100)/DEF/D(100)
 CALL MATINV(KGLO,CGLO,NDOFS)
 CALL MMULT(CGLO,FORC,D,NDOFS)
 RETURN
 END

 SUBROUTINE MATINV(A,B,N)
 DIMENSION A(N,N),B(N,N)

C ...compute inverse of A and return as B...
 RETURN
 END SUBROUTINE MMULT(A,B,C,N)

 DIMENSION A(N,N),B(N),C(N)
C ...compute A*B=C ...

 RETURN
 END

Additional Subprogram Details

  Multiple entries into a subprogram
  Syntax: ENTRY name(p1,p2,…pN)
  Provides an alternate entry point into a subprogram with an

alternate set of arguments. When included in a FUNCTION, this
name will return a value.

  Ex:
 PROGRAM MAIN
 REAL X(2,3),RS(2),CS(3)
 CALL MAT(2,3)
 ...define X values...
 CALL RMAT(X,2,3,RS,CS)
 ...code...
 CALL CMAT(X,2,3,CS)
 ...code...

 SUBROUTINE MAT(A,M,N)
 REAL A(M,N),RSUM(M),CSUM(N)
 DO 10 I=1,M
 DO 5 J=1,N

 5 A(I,J)=0.0
 10 CONTINUE

 RETURN
 ENTRY RMAT(A,M,N,RSUM,CSUM)
 DO 14 I=1,M
 RSUM(I)=0.0
 DO 12 J=1,N

 12 RSUM(I)=RSUM(I)+A(I,J)
 14 CONTINUE

 ENTRY CMAT(A,M,N,CSUM)
 DO 18 J=1,N
 CSUM(J)=0.0
 DO 16 I=1,M

 16 CSUM(J)=CSUM(I)+A(I,J)
 18 CONTINUE

 RETURN
 END

NOTE:
Lack of RETURN before CMAT means
call to RMAT will calc both sums.

Return from MAT()

Return from RMAT() and CMAT()

Additional Subprogram Details – cont’d

  Multiple RETURNS to calling program from subprogram
  Syntax: CALL subname(p1,p2,&s1,p3,&s2,…) where

 SUBROUTINE subname(a1,*,a2,a3,*,…)
  Allows a subroutine to return to multiple locations in calling

program where entry points are specified by labels s1… Note that
subroutine definition includes * for return points in argument list.

  Example: it is somewhat difficult to come up with meaningful
examples of what is basically poor program design today… One
possible example is to return to a different location if an error
condition is encountered.

 PROGRAM MAIN
 ...define X values...
 CALL ROOT(GUESS,VALUE,&10)
 ...code...
 STOP

10 PRINT*,’NO ROOT FOUND NEAR GUESS.’
 ...code...
 END

 SUBROUTINE ROOT(GUESS,VALUE,*)
 ...code...
 IF (ITER.GT.MAX) RETURN 1
 RETURN
 END

Passing Function as Arguments

  Often it is useful to be able to pass the name of a
function to a subroutine. For example:
  a subroutine, NEWTON() that computes a root of f(x) using

Newton’s Method will need to be able to evaluate the function, f
(x), and its derivative, df(x)/dx, for arbitrary values of x.

  How can we tell the subroutine how to compute these two
functions?

  We could simply pass the name of a FUNCTION
subprogram as an argument to the subroutine
  How can this be distinguished from another variable name?
  We need to “tag” the function name somehow

  Solution: the EXTERNAL or INTRINSIC statements

Passing Function as Arguments – cont’d

  EXTERNAL statement
  Syntax: EXTERNAL list_of_names
  Define names in list_of_names of user-written subprograms that

are to be passed as arguments to a function or subroutine
  Ex:

 PROGRAM MAIN
 EXTERNAL FUNC,DFUNC
 ...code...
 CALL NEWTON(GUESS,ROOT,FUNC,DFUNC,&30)
 PRINT*,’ROOT IS:’,ROOT
 ...

30 PRINT*,’NO ROOT FOUND.’)
 END

 REAL FUNCTION FUNC(X)
 FUNC=X**5-5.3*SIN(3.2*X)
 RETURN
 END

 REAL FUNCTION DFUNC(X)
 DFUNC=5*X**4-5.3*3.2*COS(3.2*X)
 RETURN
 END

 SUBROUTINE NEWTON(G,R,F,DF,*)
C ...Newton’s Method...
 R=G-F(G)/DF(G)
 RETURN

C ...didn’t converge...
 RETURN 1
 END

Passing Function as Arguments – cont’d

  INTRINSIC statement
  Syntax: INTRINSIC list_of_names
  Define names in list_of_names of built-in functions that are to be

passed as arguments to another function or subroutine
  Ex:

 PROGRAM MAIN
 INTRINSIC SIN
 EXTERNAL DFSIN
 ...code...
 CALL NEWTON(GUESS,ROOT,SIN,DFSIN,&30)
 PRINT*,’ROOT IS:’,ROOT
 ...

30 PRINT*,’NO ROOT FOUND.’)
 END

 REAL FUNCTION DFSIN(X)
 DFUNC=COS(X)
 RETURN
 END

 SUBROUTINE NEWTON(G,R,F,DF,*)
C ...Newton’s Method...
 R=G-F(G)/DF(G)
 RETURN

C ...didn’t converge...
 RETURN 1
 END

Comments on Subprograms

  The present presentation is essentially FORTRAN 77
with a few minor extensions for popular dialects

  FORTRAN 90 considerable extends the language and
introduces a number of significant changes
  Major changes are in area of new type declarations and in how

code can be modularized
  many changes are to make FORTRAN more “contemporary”
  You will need to consult a FORTRAN 90 reference manual for

more details.

  However, the most readily available compilers (e.g., gnu
g77) support only a limited set of extensions to
FORTRAN 77.

File-Directed Input and Output

  Much of early FORTRAN was devoted to reading input
data from Cards and writing to a line printer, and what
we have seen so far is quite adequate.

  Today, most I/O is to and from a file.
  Requires more extensive I/O capabilities.
  This was not standardized until FORTRAN 77 but each

manufacturer often created a specific “dialect.”
  It is included in FORTRAN 90 which we will discuss.

  Important concepts:
  OPEN, CLOSE and position commands manipulate a file,
  Once opened, file is referred to by an assigned device number,
  Files can have variable length records (sequential access), or

they can be fixed length (direct access) which is faster,
  Can use unformatted READ & WRITE if no human readable

data are involved (much faster access, smaller files).

Sequential versus Direct Access

  When each record can be a different length, individual
records cannot easily be accessed randomly:
  it is necessary to read sequentially through the file,
  the file can be rewound to beginning or backspaced to previous

record,
  generally a slow process.

  If each record is a fixed length, it is possible to easily
position to individual records because the offset from the
start can quickly be computed:
  can use a seek operation to go to a specified record,
  provides the fastest access.

  Requires special care to handle EOF on input or output.

OPEN Statement
  OPEN is used to make file available to READ & WRITE

  Syntax: OPEN ([UNIT=]io_unit [,FILE=name] [,ERR=label]
[,IOSTAT=i_var], slist)

  Named FILE will be opened and associated with given UNIT, transfer
to ERR label if error, also IOSTAT=0 if no error or positive error
number if error; slist is list of specifier=‘value’ pairs as defined by
OPEN command.

  Ex:
 OPEN (12,FILE=‘D:\AE\test.dat’,ERR=1000,IOSTAT=IER)
 Opens file D:\AE\test.dat for sequential read&write (default)
 and specifies device number 12 for access.

  Ex:
 OPEN (14,FILE=‘D:\test1.dat’,ERR=1000,IOSTAT=IER,
*ACCESS=‘SEQUENTIAL’,ACTION=‘WRITE’)
 Opens file D:\test1.dat for sequential, write-only mode to device 14.

  Default format is formatted. To use for unformatted READ or WRITE,
include: FORM=‘UNFORMATTED’

Writing an Output File

  Commands have detailed parameters defined in
reference manuals:
  OPEN file for output (typically using sequential access)
  WRITE each record (presence of “/” in FORMAT will cause

another record to be started).
  CLOSE file (automatically leaves EOF at end of data)
  Need to check for error conditions on each operation.
  When writing direct access file, it is necessary to specify the

record to be written.

Reading an Input File

  Commands have detailed parameters defined in
reference manuals:
  OPEN file for input (typically using sequential access),
  READ each record (use formatted or list-directed READ),
  Can position using BACKSPACE or REWIND if needed,
  CLOSE file (OPEN with same io_unit closes previous),
  Need to check for error conditions on each operation.
  When reading direct access file, it is necessary to specify the

record to be read.

Positioning and Closing

  To BACKSPACE a sequential access file:
  Syntax: BACKSPACE io_unit or

 BACKSPACE ([unit=]io_unit [,ERR=label] [,IOSTAT=i_var])
  Ex: BACKSPACE 14

  To REWIND a file (position at start):
  Syntax: REWIND io_unit or

 REWIND ([unit=]io_unit [,ERR=label] [,IOSTAT=i_var])
  Ex: REWIND (12, ERR=2000)

  To CLOSE a file:
  Syntax: CLOSE ([unit=]io_unit [,STATUS=p] [,ERR=label]

 * [,IOSTAT=i_var])
  Ex: CLOSE (14,STATUS=‘DELETE’) (deletes file, default=save)

Unformatted vs Formatted I/O
  Unformatted READ or WRITE

  Syntax: READ(dev_no[,IOSTAT=i_var][,ERR=label]) var_list
 WRITE(dev_no[,IOSTAT=i_var][,ERR=label]) var_list

  Simply leaving out the FORMAT label creates a form in which the
internal binary data is read or written (fastest I/O).

  Control arguments are optional.
  Ex: READ(12)A,B,C or WRITE(14) DATA

  Formatted READ or WRITE
  Syntax: READ(dev_no,format_label [,IOSTAT=i_var]

 [,ERR=label]) variable_list
 WRITE(dev_no,format_label [,IOSTAT=i_var]
 [,ERR=label]) variable_list

  Can use list-directed READ by using * in place of format_label.
  Ex: WRITE(12,1000,ERR=2200) DATA
 READ(10,*,ERR=2100) RAWDAT

Direct Access I/O

  Direct Access READ or WRITE
  Must specify the actual record number to seek and read.
  Syntax: READ(dev_no,format_label,REC=rec [,IOSTAT=i_var]

 [,ERR=label]) variable_list
 WRITE(dev_no,format_label,REC=rec [,IOSTAT=i_var]
 [,ERR=label]) variable_list

  It is only necessary to add the REC=rec specifier to set the record
number to be read or written. User must compute positions.

  Ex: READ(12,*,REC=KR,ERR=2200) DATA

Some Other Interesting Stmts

  EQUIVALENCE statement
  Syntax: EQUIVALENCE (list_of_variables) [,…]
  Used to make two or more variables share the same storage in

memory. This used to be an important way to conserve memory
without having to use the same variable names everywhere. It
can also be used to access an array element using a scalar
variable name (or to represent a subarray with another name).

  Ex:
 PROGRAM MAIN
 DIMENSION A(5),B(5),C(10,10),D(10)
 EQUIVALENCE (A(1),B(1)),(A(5),ALAST)
 EQUIVALENCE (C(1,1),D(1))
 ...

 PROGRAM MAIN
 CHARACTER A*7,B*7,C(2)*5
 EQUIVALENCE (A(6:7),B),(B(4:),C(2))
 ...

A

B

C(1) C(2)

A(6:7)

B(4:)

A and B are same

A(5) can be referred
to as ALAST

D refers to first column of C (because
arrays are stored columnwise)

Reading & Writing to/from Internal Storage

  Older code may include statements that transfer data
between variables or arrays and internal (main memory)
storage. This is a fast but temporary storage mechanism
that was popular before the widespread appearance of
disks.

  One method is to use the ENCODE & DECODE pairs
  DECODE – translates data from character to internal form,
  ENCODE – translates data from internal to character form.

  Another method that is in some FORTRAN 77 dialects
and is in FORTRAN 90 is to use Internal READ/WRITE
statements.

ENCODE/DECODE Statements

  DECODE statement
  Syntax: DECODE (c,f,b [,IOSTAT=i_var] [,ERR=label]) [var_list]
  Translate data from character into internal form, where:

–  c = scalar integer expr defining number of characters to be
 translated into internal form,

–  f = format label (error if more than one record is specified),
–  b = scalar or array to be decoded (if array, it is processed by columns)
–  var_list = variables used to store internal form
–  IOSTAT, ERR = as before for other file I/O statements

  Ex:
 INTEGER*4 K(3)
 CHARACTER*12 A,B
 DATA A/’ABCDEFGHIJKL’/
 ...
 DECODE(12,100,A) K

100 FORMAT(3I4)

Internal storage Characters

How to fit characters
into INTEGER*4

Results:
K(1)=ABCD
K(2)=EFGH
K(3)=IJKL

ENCODE/DECODE Statements – cont’d

  ENCODE statement
  Syntax: ENCODE (c,f,b [,IOSTAT=i_var] [,ERR=label]) [var_list]
  Translate data from internal (binary) form into character, where:

–  c = scalar integer expr defining number of characters to be
 translated into character form,

–  f = format label (error if more than one record is specified),
–  b = scalar or array where encoded characters are put (if array,

 it is processed by columns)
–  var_list = variables to be translated (encoded)
–  IOSTAT, ERR = as before for other file I/O statements

  Ex:
 INTEGER*4 K(3)
 CHARACTER*12 A,B
 DATA A/’ABCDEFGHIJKL’/
 ...
 DECODE(12,100,A) K

100 FORMAT(3I4)
 ENCODE(12,100,B) K(3),K(2),K(1)

Internal storage Encoded characters (returned)

How to fit characters
into INTEGER*4

Results:
B=‘IJKLEFGHABCD’

Values:
K(1)=ABCD
K(2)=EFGH
K(3)=IJKL

Internal WRITE Statement

  Internal WRITE does same as ENCODE
  Syntax: WRITE (dev_no, format_label [,IOSTAT=i_var]

 [,ERR=label]) [var_list]
  Write variables in var_list to internal storage defined by

character variable used as dev_no where:
–  dev_no = default character variable (not an array),
–  format_label = points to FORMAT statement or * for list-directed,
–  var_list = list of variables to be written to internal storage.

  Ex:
 INTEGER*4 J,K
 CHARACTER*50 CHAR50
 DATA J,K/1,2/
 ...
 WRITE(CHAR50,*)J,K

Results:
CHAR50=‘ 1 2’

Variables Internal storage

Writes using list-
directed format

Variables to
be written

Padded with blanks

Internal READ Statement

  Internal READ does same as DECODE
  Syntax: READ (dev_no, format_label [,IOSTAT=i_var]

 [,ERR=label] [END=label]) [var_list]
  Read variables from internal storage specified by character

variable used as dev_no and output to var_list where:
–  dev_no = default character variable (not an array),
–  format_label = points to FORMAT statement or * for list-directed,
–  var_list = list of variables to be written from internal storage.

  Ex:

 INTEGER K
 REAL A,B
 CHARACTER*80 REC80
 DATA REC80/’1.2, 2.3, -5’/
 ...
 READ(REC80,*)A,B,K

Results:
A=1.2, B=2.3, K=-5

Variables
Internal storage

Fill internal
storage with data

Variables to be
assigned values

List-directed input

Conclusions

  FORTRAN in all its standard versions and vendor-
specific dialects is a rich but confusing language.

  FORTRAN is still ideally suited for numerical
computations in engineering and science
  most new language features have been added in FORTRAN 95
  “High Performance FORTRAN” includes capabilities designed

for parallel processing.
  You have seen most of FORTRAN 77 but only a small

part of FORTRAN 90/95.
  Many new FORMAT and I/O statements and options
  Several new control statements
  New derived variable types (like structures)
  Recursive functions
  Pointers and dynamic variables
  Modules

