

ROOT: Basics

PAVAN POOT
PANDEY

DEPARTMENT OF
PHYSICS &

ASTROPHYSICS

(UNIVERSITY OF
DELHI)

ROOT

ROOT is an OO(Object Oriented) C++ framework
developed for large scale data handling that
provides :

●an efficient data storage and access system
designed to support structured datasets of Peta
Byte scale
● a C++ interpreter
●Histogramming and fitting
●advanced statistical analysis algorithms (multi
dimensional histograms, fitting, minimization,
cluster finding etc.)

➔Thanks to the embedded CINT C++ interpreter,
both command line and scripting language is C++

➔The ROOT library can be accessed seamlessly
from Python/Ruby as well.

Object-Oriented Programming offers considerable

 benefits compared to Procedure-Oriented
Programming.

The user Interacts with ROOT via

A graphical user interface

The command line

C ++ scripts

Compiled programs etc.

To install ROOT one will need to go to the ROOT
website at: http://root.cern.ch/root/Availability.html.

Then one have
a choice to download the binaries or the source.
The source is quicker to transfer since it is only

~22 MB.
The binaries compiled with no degug information

range from ~35 MB to ~45MB.

Installing ROOT

Before downloading a binary
version make sure your machine

contains the right run-time
environment. In most

cases it is not possible to run a
version compiled with, e.g.,

gcc4.0 on a platform where only
gcc 3.2 is installed.

In such cases one'll have to
install ROOT from source.

How to Find More Information

● The ROOT web site has up to date documentation. The
ROOT source code automatically generates this
documentation, so each class is explicitly documented
on its own web page, which is always up to date with the
latest official release of ROOT.

● The ROOT Reference Guide web pages can be found at
http://root.cern.ch/root/html/ClassIndex.html.

● Each page contains a class description, and an
explanation of each method. It shows the class
inheritance tree and lets you jump to the parent class
page by clicking on the class name.

ROOT Library Structure
➔ROOT libraries are arranged in a layered
structure.
➔The Core classes are always required (support
for Run Time Type Information, basic I/O &
interpreter).
➔The optional libraries (you load only what you
use)
➔Why shared libraries?
➔reduce the application link time
➔reduce the application size
➔can be used with other class libraries
➔usually loaded via the plug-in manager

TObject – The Base Class

● TObject provides default behavior and protocol for
almost all objects in the ROOT system.

● object I/O (Read(), Write())
● error Handling (Warning(), Error(), Fatal())
● sorting (Compare(), IsEqual())
● inspection(Dump(), Inspect())
● drawing, printing
● bit handling (SetBit(), TestBit())
● An object of any class that inherits from TObject can

be made persistent (object I/O)
●

TROOT

● the TROOT object is the main entry point to the system
● –created as soon as the Core library gets loaded
● –initializes the rest of the ROOT system
● –a singleton, accessible via the global pointer gROOT
● An omnipotent global, handle with care
● provides many global services
● gROOT->GetListOfFiles()
● gROOT->GetListOfCanvases()

●

●

● via gROOT you can find basically every object

created by the system,

● TH1F *hpx = (TH1F*) gROOT-

>FindObject(“hpx”) // C-style
● TH1F *hpx = dynamic_cast<TH1F*>(gROOT-

>FindObject(“hpx”)) // C++ style
●

Latex Support
#include "TROOT.h"
#include "TCanvas.h"
#include "TLatex.h"
void latex()
{
gROOT->Reset();
TCanvas *c1 = new TCanvas("c1");
TLatex l;
l.SetTextAlign(23);
l.SetTextSize(0.1);
l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}#
rightarrowI#bar{I},
q#bar{q}");
c1->Print("latex2.ps");
}

Physics analysis using ROOT

● HEP analysis performed mainly with ROOT
● there are several ways:-
● simple macro to compiled classes
● TNtuple, Ttree, Tchain
● TClonesArray, TSelector, Tcut
●

●

(TNtuple is simple tree restricted to a list of float variables
only.Each variable goes to a separate branch. We'll
discuss Ttree in detail.)

Trees

● Efficient storage and
access for huge
amounts of structured
data

● a) allows selective
access of data

● b) TTree knows its
layout

●Trees allow direct and random access to any
entry
 ─sequential access is the best

●Trees have branches and leaves
-one can read a subset of all branches

●Optimized for network access (read-ahead)
●High level functions like TTree::Draw loop on all
entries with selection expressions
● Trees can be browsed via TBrowser
● Trees can be analyzed via TTreeViewer

Tree Access
●Databases have row wise access
─can only access the full object (e.g. full event)
●ROOT trees have column wise access
─direct access to any event, any branch or any
leaf even in the case of variable length structures
-designed to access only a subset of the object
Attributes(e.g. only particles’ energy)
-makes same members consecutive, e.g. for
object with
position in X, Y, Z, and energy E, all X are
consecutive,
then come Y, then Z, then E.

Tree structure

● Branches: directories
● Leaves: data containers
● Can read a subset of all branches

 --speeds up considerably the data analysis

 processes
● Branches of the same TTree can be written to

separate files

Five Steps to Build a Tree

● 1. Create a TFile
● 2. Create a TTree
● 3. Add TBranch to the TTree
● 4. Fill the tree
● 5. Write the file

Example code

void WriteTree()

{

TFile f("AFile.root", "RECREATE");

TTree *t = new TTree("myTree","A Tree");

Event *myEvent = new Event();

t->Branch("EventBranch", &myEvent);

for (int e=0;e<100000;++e) {

myEvent->Generate(); // hypothetical

t->Fill();

}

t->Write();

}

●

Step 1: Create a TFile Object

● Trees can be huge
● open a file for swapping

filled entries
● file has the ownership

e.g.

TFile *hfile =
TFile::Open("AFile.root",

"RECREATE");

Step 2: Create a TTree Object

● The TTree constructor

 -Tree name (e.g.
"myTree")

 - Tree title

TTree *tree= new
TTree("myTree","A Tree");

Step 3: Adding a Branch

● Branch name
● Address of pointer to the

object

Event *myEvent = new
Event();

myTree-
>Branch("eBranch",&myE
vent);

●

Step 4: Fill the Tree

● Create a for loop

● • Assign values to the object

● contained in each branch

● • TTree::Fill() creates a new

● entry in the tree: snapshot

● of values of branches’ objects

for (int e=0;e<100000;++e) {

myEvent->Generate(e); //fill event

myTree->Fill(); // fill the tree

}

●

Step 5: Write Tree To File

● myTree->Write();

Writing a Tree:a complete example
void tree1w() {
// create a tree file tree1.root - create the file,
// the Tree and a few branches
TFile f("tree1.root","recreate");
TTree t1("t1","a simple Tree with simple variables");
Float_t px, py, pz;
Double_t random;
Int_t ev;
t1.Branch("px",&px,"px/F");
t1.Branch("py",&py,"py/F");
t1.Branch("pz",&pz,"pz/F");
t1.Branch("ev",&ev,"ev/I");
// fill the tree
for (Int_t i=0; i<10000; i++) {
gRandom->Rannor(px,py);
pz = px*px + py*py;
random = gRandom->Rndm();
ev = i;
t1.Fill();
}
// save the Tree heade; the file will be automatically closed
// when going out of the function scope
t1.Write();
}

Summary: Trees

● TTree is one of the most powerful collections available for HEP

● Extremely efficient for huge number of data

sets with identical layout

● Very easy to look at TTree

─ using TBrowser!

● Write once, read many

─ ideal for experiments' data; use friends to extend

● Branches allow granular access

─ use splitting to create branch for each member,

even through collections

THANK YOUTHANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

