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Introduction to neutrino oscillations

• Anomalies in the neutrino sector
in a wide variety of systems (sun, atmospheric, reactor, accelerator)

• Pontecorvo proposed ν̄ → ν (similar to K0 → K̄0)
oscillations in 1957
to explain the rumors that neutrinos were observed in β-decay experiment of Davis

(only one neutrino known at that time !). The rumors turned out to be just so but the

remarkable insight remained, and

• Solution to anomalies
Neutrino flavor oscillations among the 3 flavors of light active neutrinos (conserving L)

• In SM, neutrinos are massless  can not oscillate
Neutrino flavor oscillations is the only firm evidence in favor of physics beyond the

Standard Model of particle physics, even though there are other strong indications

(BAU, DM, DE, ..)
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Information gleaned from experiments

• Experiments observing neutrinos from
cosmic ray interactions in the atmosphere, sun, reactor, terrestrial
experiments reveal that neutrinos undergo a change of flavor

• Atmospheric expts. νµ → ντ and ν̄µ → ν̄τ (SuperK)
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Future expts. in, R. Gandhi, PM and S. Uma Sankar, INO/HRI/2005/03 (2005)
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•• Very wide range for tunable parameters L, E.



Introduction Two flavor case Neutrinos and analogous two state systems

Present data

• 3 flavors νe, νµ, ντ ⇒ 9 leptonic mass and mixing parameters

PMNS mixing matrix contains θ12, θ23, θ13, δ, α2, α3

U =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



 ×

diag[1, eiα2/2, eiα3/2]
where cij = cos θij , sij = sin θij .

M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rep. 460, 1 (2008),

R. Z. Funchal, talk at ν2008
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Present data

•••• Mass and mixing parameters

• Low energy oscillation data -

• 3 mixing angles :
θ12 ≈ 32o , θ23 ≈ 45o, θ13 ∼< 10o (upper bound)

• 2 mass-squared differences :

∆m2
21 ≃ 7.7 × 10−5eV 2 and |∆m2

31| ≃ 2.5 × 10−3eV 2

• ∆m2

⊙/∆m
2

atm ∼ 0.03
• Solar data : ∆m2

⊙ > 0
• Sign of ∆m2

31
?

• Dirac CP phase δ ? ν
e

νµ

m1
2

ντ

m2
2

m3
2

m1
2

∆m
31

2 ∆m
21

2

m2
2

Normal ordering (∆m
31

2
 > 0)

m3
2

Inverted ordering (∆m
31

2
 < 0)
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Present data

••• Mass and mixing parameters

•• Absolute value of neutrino masses - inaccessible via oscillation

• β-decay experiments,
mβ =

√
∑

i |Uei|2m2

i =
√

c2
13
c2
12
m2

1
+ c2

13
s2
12
m2

2
+ s2

13
m2

3
,

mβ < 1.8 eV (Mainz+Troitsk)

• 0νββ experiments (sensitive to Majorana nature),
mββ = |

∑

i U
2

eimi| = |c2
13
c2
12
m1 + c2

13
s2
12
eiα2m2 + s2

13
eiα3m3|,

mββ = 0.16 − 0.52(0 − 0.25) eV (Heidelberg-Moscow

(Cuoricino)) LNV

• Cosmology, Ων ∝
∑

=
∑

imi,
∑

< 1.3eV (WMAP5)

• Two Majorana phases (α2, α3) - inaccessible via oscillation

0νββ experiments
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Why do the neutrinos oscillate ?

• Neutrinos are produced and detected via weak interaction

Weak (flavor) eigenstates differ from the stationary (mass) states of the Hamiltonian,

infact they are linear superpositions of the stationary mass states

• This leads to oscillation phenomena which is very similar to

birefringence in optics - depends on properties of the medium

• Oscillations of neutrinos takes place even in vacuum

This is driven by non-zero mass-squared splittings and non-zero mixing angles.

• In matter, oscillations are still driven by the non-zero
mass-squared splittings and non-zero mixing angles

which get modified due to CC potential for νe − e coherent forward scattering.

• Incoherent scattering cross-section is usually negligible ⇒
sustained coherence over astrophysical length scales �
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Two flavor approximation

• Mostly, one can treat the actual crossings as two at a time

three states crossing at a point unlikely to happen accidentally but can be

symmetry-enforced

• In most situations, one can use two flavor or quasi-two-flavor
approximation

θ13 is small and hierarchy of neutrino mass splittings, ∆m2
⊙/∆m

2
atm ≃ 0.03 << 1

• Mapping to a two-state system possible

Analogy can be used to visualize effects in different systems on the same footing.

• Conventionally, atmospheric data can be explained by ∆m2
32

and θ13 and solar data by ∆m2
21 and θ12.
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sphere (analogous to Poincaré sphere in optics)
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Dispersion relation for two flavor neutrinos

• In the ultra-relativistic limit, the relativistic dispersion relation
In vacuum, neutrinos obey

Ei =
√

p2 +m2
i ≃ p +

m2
i

2p
�

Assume equal and fixed momenta, p1 = p2 = p (monochromatic)

• Two flavor neutrinos  Two state quantum system

• Hilbert space of this system can be mapped onto a Blöch
sphere (analogous to Poincaré sphere in optics)

• In vacuum, the mass-squared difference and mixing between
the two neutrinos leads to flavor oscillations i.e.
Hfl = U

†(θ)HmU(θ) is not diagonal.
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Inclusion of matter effects (SM interactions)

In ordinary matter �

Hν =

(

p+
m2

1 +m2
2

4p
+
VC

2
+ VN

)

I

+
1

2

(

VC − ω cos 2θ ω sin 2θ
ω sin 2θ −(VC − ω cos 2θ)

)

• VC =
√

2GFne and VN = −
√

2GFnn/2 are the SM induced

potentials due to neutrino matter (e, n, p) interactions and ω = δm2/2p

vacuum case : VC , VN = 0
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Inclusion of matter effects (SM interactions)

In ordinary matter �

Hν =

(

p+
m2

1 +m2
2

4p
+
VC

2
+ VN

)

I

+
1

2

(

VC − ω cos 2θ ω sin 2θ
ω sin 2θ −(VC − ω cos 2θ)

)

• VC =
√

2GFne and VN = −
√

2GFnn/2 are the SM induced

potentials due to neutrino matter (e, n, p) interactions and ω = δm2/2p

vacuum case : VC , VN = 0

• Most dramatic effect is the MSW resonance due to vanishing
diagonal terms

Wolfenstein (1978), Mikhevev and Smirnov (1985)

• Absence of FCNC  if vacuum mixing and mass-splitting is
zero, then matter does not really matter (in oscillations).
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Neutrino refraction in vacuum and media

L. Wolfenstein, Phys. Rev. D 17, 2367 (1978), P. Langacker and Liu, Phys. Rev. D 46, 4140 (1992)

• In vacuum, neutrino refraction arises due to the m2/2E2 term

nrefr − 1 =
p

E
− 1 ≃ − m2

2E2

• In medium, one can use coherent forward scattering
amplitudes f(0) to compute the nrefr,

nrefr − 1 ≃ − m2

2E2
+

2π

E2
nef(0)

• For νe − e CC scattering (E′s << MW ), to leading order in
GF ,

f(0) = − E

2πne
(VC) �

• At zero temperature, nrefr ∝ ne, neglecting vacuum term,

nrefr − 1 ≃ − (
√

2GFne)

E

= −7.6 × 10−14Ye
ρ

[ g cm−3]

[ eV]

E
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Effects in optics and their counterparts in the

neutrino system

Effect of medium can be described in terms of

H = DI +Aσx + Bσy + Cσz

D just gives an overall phase, while A,B, C generate non-trivial optical effects

Optical effects Neutrino oscillations
• Circular Birefringence (Optical activity)
C,D 6= 0 while A,B = 0

• Linear Birefringence (Wave plate)
A,D 6= 0 while B,C = 0

• Elliptic Birefringence (Quartz plate)
A,B, C,D 6= 0 (most general)

• Dichroism (absorptive effect)

H need not be Hermitian

• Oscillations in vacuum
≡ Elliptic birefringence

A =
ω

2
sin 2θ,B = 0,C = −ω

2
cos 2θ

• Oscillations in normal matter + SM
≡ Elliptic birefringence

C = −ω
2

cos 2θ +
1

2

√
2GFne

A =
ω

2
sin 2θ,B = 0

• For neutrinos  absorption negligible.
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Visualization tool - The Poincaré sphere

x

y

z

|ϑ, + 〉

|να 〉

|ϑ,−〉

ϑ

|να 〉

|νβ 〉

An arbitrary state, | ψ 〉 = eiη

(

cos(ϑ/2) e−iφ/2

sin(ϑ/2) eiφ/2

)

Hν(θ) is real (x− z plane)
Half angles used : ϑ = 2θ
Orthogonal states - antipodal points
| να 〉 and | νβ 〉 ⇔ RCP and LCP states
| ϑ,+ 〉 and | ϑ,− 〉 ⇔ EP states
Oscillation phenomena can be viewed as
precession, unitary rotations
MSW effect ⇒ θ = π/4
complete swapping of flavors
NP rotated into SP (about equator with LP states at anti-podal
points)
Polarised states in optics have isomorphic connection with the
neutrino states
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The 2 flavor neutrino Hamiltonian

Let us examine the form of Hν

Hν =
ω

2
[− cosϑσz + sinϑσx]

| ϑ,+ 〉 =

(

cosϑ/2
sinϑ/2

)

| ϑ,− 〉 =

(

− sinϑ/2
cos ϑ/2

)

• CP conserved (coeff. of σy = 0), Eigenstates lie on a great circle (intersection

of x− z plane with Poincaré sphere)

Eigenstates change sign as ϑ changes from 0 → 2π

| ϑ,± 〉 = ∓| ϑ+ π,∓ 〉 = −| ϑ+ 2π,± 〉
= ±| ϑ+ 3π,∓ 〉 = | ϑ+ 4π,± 〉

• Global structure  Möbius band

• Expect a phase of ±1 first noticed in molecular physics in 1958
to appear in the neutrino system. Longuet-Higgins et. al. (1958) �
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• It is an interesting phenomena in quantum mechanics and
occurs in many physical systems. It has been tested in many
branches of physics - optics, molecular spectroscopy, nuclear
magnetic resonance, microwave cavities and so on.

Shapere and Wilczek, Geometric phases in Physics, (World Scientific, Singapore, (1989))



Why study geometric phases ? Geometric phases - the two avatars Geometric phases and neutrinos

Why study geometric phases ?

• Unified description of a variety of systems

• It is an interesting phenomena in quantum mechanics and
occurs in many physical systems. It has been tested in many
branches of physics - optics, molecular spectroscopy, nuclear
magnetic resonance, microwave cavities and so on.

Shapere and Wilczek, Geometric phases in Physics, (World Scientific, Singapore, (1989))

• The greatest value lies in providing a completely new
viewpoint to look at the quantum theory.

Anandan, The geometric phase, (Nature 360, 307 (1992))
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The Berry phase

• Adiabatic closed circuit C in the parameter space

• Hamiltonian H(R(t)), R → external parameters
• Slow variation of R (compared to ~/(Ei − Ej))

| ψ(0) 〉 = | n,R(0) 〉 ⇒ | ψ(t) 〉 ∝ | n,R(t) 〉
 the state clings to an eigenstate (no level crossing) !

and the basis states (upto a phase) obey
H(R(t))| n,R(t) 〉 = En(R(t))| n,R(t) 〉

• Cyclic evolution : at t = T , R(T ) = R(0)

E

R
R

C

C

t=0
t=T

| ψ(T ) 〉 = eiϕ| ψ(0) 〉  “What is ϕ after cyclic evolution”

M. Berry, Proc. Roy. Soc. Lond. A392, 45 (1984)
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The Berry phase

•• Adiabatic closed circuit C in the parameter space

• Naive guess : ϕ = −
∫ T
0
En(R(t))dt (dynamical phase)

is wrong !

• So, what happens to the state | ψ(T ) 〉 under Schrödinger evolution :

i
d

dt
| ψ(t) 〉 = H| ψ(t) 〉

The correct answer

| ψ(T ) 〉 = ei(δn+γn(C))| ψ(0) 〉
δn = −

∫ T
0 En(R(t))dt (dynamical phase)

γn = i
∮

C〈 n,R(t) | ∇R |n,R(t) 〉 · dR (pure geometric phase)

An(R) = i〈 n,R(t) | ∇R |n,R(t) 〉 the Berry connection (like vector poten-

tial in parameter space)
γn(C) = i

∮

C
An(R) · dR (like AB phase in parameter space)
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Berry’s phase and quantum parallel transport

• J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988)

• Upon removing the dynamical phase,

| φ(t) 〉 = e+i
∫ t
0 〈 ψ(t′) | H |ψ(t′) 〉dt′ | ψ(t) 〉

Schrödinger equation implies the parallel-transport rule for
neighbouring states,
ℑm〈 φ(t) | φ̇(t) 〉 = 0 (natural connection)

• Non-integrable law, as we go round a closed loop C, | φ(T ) 〉
returns with a changed phase, | φ(T ) 〉 = eiγn(C)| n,R(T ) 〉
which is quantum geometric phase γn(C)

• γ̇n(t) = i〈 n,R(t) | ṅ,R(t) 〉 6= 0

• Finally, one gets | ψ(T ) 〉 = ei(δn+γn(C))| ψ(0) 〉

Essential requirements :-

multi-dimensional parameter space (n ≥ 2) to explore curvature,
adiabatic and cyclic evolution of non-degenerate eigenstates
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The Pancharatnam phase

S. Pancharatnam, Proc. Ind. Acad. Sci. A44, 247 (1956)

M. V. Berry, J. Mod. Opt. 34, 1401 (1987)

• What would be a natural way to compare the phases of non-orthogonal states ?

• Notion of geometric parallelism from the inner product, 〈 A | B 〉
Reference condition : Pancharatnam’s connection or rule

If 〈 A |B 〉 real and positive  “in phase” or parallel

||| A 〉 + | B 〉||2 = 〈 A |A 〉 + 〈 B | B 〉 + 2|〈 A | B 〉| cos(ph(〈 A |B 〉))

• Geometrically, norm of resultant vector is maximum. Physically, interference of

superposed beams gives maximum probability (intensity)

• Pancharatnam’s connection is both reflexive and symmetric, but not transitive

 Pancharatnam’s phase

• Out of three non-orthogonal rays, if pairwise any two of them are in phase i.e. if

| A 〉 “in phase” | B 〉 and | B 〉 “in phase” | C 〉 then | C 〉 “not in phase” | A 〉
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The Pancharatnam phase

A

BC

Pancharatnam’s non-integrable phase ß

phase of the complex number, 〈 A | C 〉〈 C | B 〉〈 B |A 〉 ≡ reiß

= half the solid angle Ω subtended by the geodesic triangle A B C on the Poincaré
sphere for a two level system at its center

• Pancharatnam’s Phase reflects the curvature of the projective Hilbert space and

is independent of any parameterization or slow variation.

• The state does not have to be an eigenstate of H. Pancharatnam’s Phase can

appear in situations when H is constant in time. �



Why study geometric phases ? Geometric phases - the two avatars Geometric phases and neutrinos

The Pancharatnam phase and collapses

• Schrödinger Evolution (possibly) interrupted by measurements
can lead to Pancharatnam’s Phase

• If we take any state and subject it to multiple quantum
collapses and bring it back to itself, then the resulting state is
given by | A 〉〈 A | C 〉〈 C | B 〉〈 B |A 〉 where the phase of the
complex number is given by Ω/2.

Essential requirements :-

minimum 3 states (neighbouring ones non-orthogonal) for non-
transitivity and exploring the curvature of ray space (which is always
curved) and
cyclic projection of states
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Geometric phases and neutrinos

A long history

Neutrino flavor oscillations :

Berry’s geometric phase :
• N. Nakagawa, Ann. Phys. 179, 145 (1987)

• V. A. Naumov, JETP Lett. 54, 185 (1991)

• V. A. Naumov, Sov. Phys. JETP Lett. 74, 1
(1992)

• V. A. Naumov, Int. Jour. Mod. Phys. D1, 379
(1992)

• V. A. Naumov, Phys. Lett. B323, 351 (1994)

• X-G. He et. al., Phys. Rev. D72, 053012 (2005)
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Direct detection of geometric phases

• The key ingredient :
Split-beam experiment

||(| ψ1 〉 + eiγ | ψ2 〉)||2 = 〈 ψ1 |ψ1 〉 + 〈 ψ2 |ψ2 〉 + e−iγ〈 ψ2 |ψ1 〉 + eiγ〈 ψ1 |ψ2 〉

• A beam is split into two parts, which traverse different
histories on the Poincaré sphere and finally recombined.

• Main obstacle : One needs a source and detector of neutrinos
and the beam has to take two paths between them.

• The refractive index of neutrinos is so small that the focal
length of any object in the solar system is astronomical. �

• So, we cannot do what is done in optics : use mirrors or
lenses to separate and recombine a beam.
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Split-beam experiment in physical space

• Clearly impossible !
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Split-beam interference experiment in energy

space

Think of oscillations in flavor space as

performing a split beam experiment in energy space by doing quantum collapses along
with adiabatic evolution

|να 〉 |νβ 〉

|ϑ1, + 〉 |ϑ2, + 〉

|ϑ1,−〉 |ϑ2,−〉

Split-beam two-path-interferometer
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Two flavor neutrino oscillation probability

Start with flavor states | να 〉
| να 〉 = να+| ϑ1,+ 〉 + να−| ϑ1,− 〉

where, | ϑ1,± 〉 are the eigenstates of Hν(ϑ1) = [(sinϑ1)σx + (− cos ϑ1)σz ].

Adiabatic evolution of mass states from | ϑ1,± 〉 to | ϑ2,± 〉

| ϑ1,± 〉 → e−iD± | ϑ2,± 〉 with

D± ≃ ±1

2

∫
√

(ω sinϑ)2 + (VC − ω cosϑ)2dt

Amplitude

A(να → νβ) = 〈 νβ | U | να 〉 where U is the unitary evolution operator given by,

U = e−iD+ | ϑ2,+ 〉〈 ϑ1,+ | + e−iD− | ϑ2,− 〉〈 ϑ1,− | .
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Two flavor neutrino oscillation probability

Probability

P(να → νβ) = |A(να → νβ)|2

P(να → νβ) = 〈 να |ϑ1,+ 〉〈 ϑ2,+ | νβ 〉〈 νβ |ϑ2,+ 〉〈 ϑ1,+ | να 〉
+ 〈 να |ϑ1,− 〉〈 ϑ2,−| νβ 〉〈 νβ |ϑ2,− 〉〈 ϑ1,−| να 〉
+ [〈 να |ϑ1,− 〉eiD−〈 ϑ2,− | νβ 〉〈 νβ |ϑ2,+ 〉e−iD+ 〈 ϑ1,+ | να 〉 + c.c.]

• cross-terms (upon removing the dynamical phase) are
connected to the two path interferometer in energy space

• can be viewed as closed loop quantum collapses with
intermediate adiabatic evolutions

• great circle in x− z plane.
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Interference terms as collapses + adiabatic

evolution
Cross-terms

〈 να |ϑ1,− 〉〈 ϑ2,− | νβ 〉〈 νβ |ϑ2,+ 〉〈 ϑ1,+ | να 〉 ≡ reiß

Appearance terms (να → νβ) Disappearance terms (να → να)

ß = π ß = 0

z

x

z

x

| νβ 〉

| ϑ1, + 〉

| ϑ2, + 〉

| ϑ1,−〉

| ϑ2,−〉

| να 〉 | να 〉

| ϑ1, + 〉

| ϑ2, + 〉

| ϑ1,−〉

| ϑ2,−〉

ϑ1 ϑ2 ϑ1 ϑ2

(b)(a)
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Compare with the standard expressions
Transition probability

P(νe → νµ) = U
⋆
e+(θ1)Uµ+(θ2)U⋆

µ+(θ2)Ue+(θ1)

+ U
⋆
e−(θ1)Uµ−(θ2)U⋆

µ−(θ2)Ue−(θ1)

[U⋆
e−(θ1)e

iD−Uµ−(θ2)U⋆
µ+(θ2)e−iD+Ue+(θ1) + c.c.]

For the 2 × 2 case, U(θ) is a real orthogonal rotation matrix given by,

U(θ) =

(

cos θ sin θ
− sin θ cos θ

)

P(νe → νµ) = cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2
+ [2 cos(D+ −D−)](− sin θ1) cos θ2 sin θ2 cos θ1
topological phase = π
P(νe → νe) = cos2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2
+ [2 cos(D+ −D−)] sin θ1 cos θ2 sin θ2 cos θ1
topological phase = 0, in accord with Unitarity, P(νe → νµ) + P(νe → νe) = 1

�
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Standard expressions : vacuum and constant

density matter

In vacuum for θ1 = θ2 = θ

P(νe → νµ) = sin2 2θ sin2 δm
2l

4E
and

P(νe → νe) = 1 − sin2 2θ sin2 δm
2l

4E
,

where in the ultra-relativistic limit, we can use t ≃ l and p ≃ E leading to
D± = ±δm2l/2E for the vacuum case (VC = VN = 0).

In matter of constant density

replace θ and δm2 by θm and (δm2)m

Hence our result is consistent with the standard neutrino oscillation formulation and it
provides a clear geometric interpretation of the phenomenon of neutrino oscillations.
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Sources of the CPV phase
Neglecting absorption

H =

[

z x− iy
x+ iy −z

]

+ r0I2 = e−i
∫

r0dt

[

− cosϑ sinϑ e−iϕ

sinϑ eiϕ cosϑ

]

Medium x y z

Vacuum ( ω
2

) sin ϑ 0 -( ω
2

) cos ϑ

�

Ordinary

medium+SI ( ω
2

) sin ϑ 0 -( ω
2

) cos ϑ +
VC
2

�

Ordinary

medium+NSI Re
(

( ω
2

) sin ϑ +
ǫey
2

)

Im
(

( ω
2

) sin ϑ +
ǫey
2

)

-( ω
2

) cos ϑ +
VC
2

+
(ǫee−ǫyy )

2

�

Neutrino

backgrounds+SI Re
(

( ω
2

) sin ϑ +
Bey
2

)

Im
(

( ω
2

) sin ϑ +
Bey
2

)

-( ω
2

) cos ϑ +
VC
2

+ B
2

�

Table: The three independent elements of H in different kinds of media.
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Pictorial depiction of the cross terms

〈 ψ |ϑ1,− 〉〈 ϑ2,−|χ 〉〈 χ |ϑ2,+ 〉〈 ϑ1,+ |ψ 〉 ≡ reiß

x

y

z

|ϑ,+ 〉

|χ 〉

|ϑ,−〉

|ψ 〉

(a)

ßapp = π

x

y

z

|ϑ,+ 〉

|χ 〉

|ϑ,−〉

|ψ 〉

(b)

ßsurv = 0

x

y

z

|ϑ1,+ 〉

|χ 〉

|ϑ2,+ 〉

|ϑ1,−〉

|ϑ2,−〉

|ψ 〉

(c)

ßapp = π

x

y

z

|ϑ1,+ 〉

|χ 〉

|ϑ2,+ 〉

|ϑ1,−〉

|ϑ2,−〉

|ψ 〉

(d)

ßsurv = 0

Figure: CPC situation
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Pictorial depiction of the cross terms

〈 ψ |ϑ1, ϕ1,− 〉〈 ϑ2, ϕ2,− |χ 〉〈 χ |ϑ2, ϕ2,+ 〉〈 ϑ1, ϕ1,+ |ψ 〉 ≡ reiß

x

y

z

|χ 〉

|ϑ, ϕ,+ 〉

|ϑ, ϕ,−〉

|ψ 〉

(a)

ßapp = π

x

y

z

|χ 〉

|ϑ, ϕ,+ 〉

|ϑ, ϕ,−〉

|ψ 〉

(b)

ßsurv = 0

x

y

z

|ϑ1, ϕ1,+ 〉

|χ 〉

|ϑ2, ϕ2,+ 〉

|ϑ1, ϕ1,−〉

|ϑ2, ϕ2,−〉

|ψ 〉

(c)

ßapp = π − α + β

x

y

z

|ϑ1, ϕ1,+ 〉

|χ 〉

|ϑ2, ϕ2,+ 〉

|ϑ1, ϕ1,−〉

|ϑ2, ϕ2,−〉

|ψ 〉

(d)

ßsurv = α − β

Figure: CPV situation
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oscillations, we show that there exists a topological phase at
the probability level. The standard formalism is in fact a
realization of the Pancharatnam phase.
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• This phase remains irrespective of adiabatic evolution or
propagation of neutrinos in vacuum and is a robust quantity.
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Summary

• Using Pancharatnam’s ideas in the two flavor neutrino
oscillations, we show that there exists a topological phase at
the probability level. The standard formalism is in fact a
realization of the Pancharatnam phase.

• The non-trivial phase of π and anholonomy is linked to
encircling of a singular point in the ray space.

• We also made a connection to the π phase obtained first in
the context of molecular physics in 1958.

• This phase remains irrespective of adiabatic evolution or
propagation of neutrinos in vacuum and is a robust quantity.

• The topological robustness can be destroyed once we invoke
CP violation under suitable conditions.
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Characteristic scales and sensitivity to δm2

Experiment L(km) E( GeV) δm2( eV2)

Solar 107 10−3 10−10

Atmospheric 101 − 104 10−1 − 102 10−1 − 10−4

Supernova 107 10−2 10−9

Reactor 10−1 − 101 10−3 10−2 − 10−3

Accelerator 10−1 10−1 − 101 ≥ 0.1
LBL Accelerator 102 − 103 101 10−2 − 10−3

Table: Characteristic values of L and E for various neutrino experiments and
sources. Note that if E is in units of MeV and L in units of m, we will obtain
the same value for δm2 that can be probed. Thus the pair (L, E) can be in the
units ( km, GeV) or (m, MeV) and both sets will give the same sensitivity to
the value of δm2 in eV2.

�
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What about incoherent scattering effects ?

In most practical situations, the incoherent scattering cross-section
of neutrinos with matter is very small ⇒ Sustained coherence seen
even over astrophysical length scales !

Medium ρ (g/cm3) lmfp = 1038/(NAvoρYfME) (cm)

Earth core ∼ 10 ∼ 1013-1019

Solar core ∼ 100 ∼ 1012-1018

Supernova core ∼ 1014 ∼ 1-106

Table: Examples of different density regions that are accessible to observations
and the value of mean free path taking the target mass to be M = 1 GeV (1
MeV) and neutrino energy to be E = 1 GeV (1 MeV).

�
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Neutrino refraction - Imaginary part �

• For νe − e CC scattering (E′s << MW ), upto G2
F , using

optical thm.,

ℜef(0) + iℑmf(0) = − E

2πne
(VC) + iℑmf(0)

= − E

2πne
(VC) + i

E

4π
σT

= − E

2πne
(VC) + i

E

4π

1

nelmfp

• At zero temperature, total refractive index is

nrefr − 1 ≃ − (
√

2GFne)

E
+ i

1

2E
neσT

• Real part ℜe[nrefr] ∝ GF describes coherent interference of
propagating neutrinos

• Imaginary part ℑm[nrefr] ∝ G2
F q

2 is responsible for
incoherent depletion of neutrinos from original coherent state

• In most situations, absorption is negligible,
ℜe[nrefr] >> ℑm[nrefr] since neutrinos interact via weak
interactions.
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The π anholonomy

Non-integrable phases of ±1 can arise in BO approximation in
molecular physics (e− spin neglected and H real)

Longuet-Higgins et al., Proc. Roy. Soc. Lond. A244,1 (1958), Herzberg and Longuet-Higgins, Disc. Faraday Soc.

35, 77 (1963)

Consider a real 2 × 2 Hamiltonian

H =

(

h11 h12

h12 h22

)

Degenerate eigenvalues ⇒ 2 conditions

h11 − h22 = 0 and h12 = 0 must be satisfied
if x = (h11 − h22)/2 and y = h12 then E± = E0 ±

√

x2 + y2 (double cone) where
E0 = (h11 + h22)/2 (crossing energy)

• Encircling the degeneracy ⇒ eigenstate picks up a minus sign
as we vary θ from 0 → 2π continuously.

• n-times ⇒ phase is (−1)n

• Degeneracy can be accidental or generic (need not be
connected to symmetry)

�
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The Aharonov-Bohm phase

� Aharonov and Bohm, Phys. Rev. 115, 485 (1959)

B 6= 0

B = 0

C1

C2

• Importance of vector potential

• Even if the magnetic field B = 0 in a certain region, the vector
potential A is non-zero and that causes a non-trivial phase.

• Encircling the infinite flux tube leads to anholonomy and the
phase is always quantized to π.
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An example : no varied parameters in H

Consider a constant Hamiltonian and a general state

H = 1
2

(

1 0
0 −1

)

and | ψ(0) 〉 =

(

cos θ/2
sin θ/2

)

upon evolving | ψ(t) 〉 =

(

cos θ/2e−it/2

sin θ/2eit/2

)

Dynamical phase

δ =
∫ T
0 〈 ψ | H |ψ 〉dt = T/2(cos2 θ/2 − sin2 θ/2) = T/2 cos θ

Exact solution gives net phase of π for t = 2π

because | ψ(2π) 〉 = −| ψ(0) 〉 = ei2π/2| ψ(0) 〉

Missing piece is the geometric phase

π(1 − cos θ) = Ω/2 where Ω is the solid angle subtended by a loop of fixed θ when
t = 2π i.e. Ω = 2π(1 − cos θ)

Thus, a geometric phase appears irrespective of presence of any variable parameters in

Hamiltonian. �
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Lens Maker’s formula (tiny nrefr limit)

• For 10 MeV neutrinos passing through Sun with density ρ = 150 g cm−3, one

gets the focal length to be around 1018R⊙ ∼ 105 size of our Galaxy.
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Sun as a lens ? �

• Can we make devices similar to the optical devices using reflective and refractive

property of neutrinos ?

• If we take Sun as a lens, then the focal length is given by

f =
1

2

R⊙
(nrefr − 1)

Lens Maker’s formula (tiny nrefr limit)

• For 10 MeV neutrinos passing through Sun with density ρ = 150 g cm−3, one

gets the focal length to be around 1018R⊙ ∼ 105 size of our Galaxy.

• Potentially observable effect of small refractive index is via
neutrino oscillations.
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Extrinsic CPV phases �

Nonstandard Interactions and their impact on coherent forward scattering

L =
∑

f;α,β

4
GF√

2
ν̄αLγ

µ
νβL(ǫ

fL
αβ

f̄LγµfL + ǫ
fR
αβ

f̄RγµfR)

ǫαβ =
∑

f=e,u,d

nf

ne
ǫ
f
αβ

where f = e, p, n and α, β = e, µ, τ . ΛL >> Λnp > Λew = G
−1/2
F

. ǫf = ǫfL + ǫfR .

Neutrino backgrounds in dense Supernovae, | νb 〉 = γe| νe 〉 + γy| νy 〉

̺p = | νb 〉〈 νb | =

[

|γe|2 γeγ⋆
y

γ⋆
e γy |γy|2

]

B =
√

2GF

∫

d
3
q(1 − cos θp q)

[(̺q − ¯̺q)ee − (̺q − ¯̺q)yy ]

Bey =
√

2GF

∫

d
3
q(1 − cos θp q)[(̺q − ¯̺q)ey ]

Bye =
√

2GF

∫

d
3
q(1 − cos θp q)[(̺q − ¯̺q)ye]


	
	Introduction
	Neutrino oscillations
	Experiments
	Data from oscillation and other experiments
	Oscillations as birefringence

	Two flavor case
	Why two flavors ? 
	Dispersion relation in vacuum and media
	Neutrino refraction in vacuum and media

	Neutrinos and analogous two state systems
	Effects in optics and their counterparts in the neutrino system
	Visualization tool - The Poincaré sphere

	A short primer on geometric phases 
	Why study geometric phases ?
	Geometric phases - the two avatars
	Berry's phase
	Pancharatnam's phase

	Geometric phases and neutrinos
	Historical account


	2 flavor oscillations and the topological phase
	Detection : Split beam experiment
	Direct detection of the geometric phases

	Two flavor oscillation formulae
	Two flavor neutrino oscillation probability
	Two flavor neutrino oscillation probability
	Interference terms as collapses + adiabatic evolution
	Compare with the standard expressions
	Compare with the standard expressions


	Imprint of the CPV phase 
	Sources of CPV phase
	Sources of CPV phase

	Can CPV phases make the Pancharatnam phase geometric ?
	Can CPV phases make the Pancharatnam phase geometric ?
	Can CPV phases make the Pancharatnam phase geometric ?

	Summary
	Summary


	Extras 
	Extra slides
	charlengthextra
	Motivation4extra
	refractionimg
	pianholonomy
	exconsth
	sun
	Extrinsic CPV phases



