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Abstract

We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological

phase appearing in the two flavor neutrino oscillation formula using Pancharatnam’s prescription of quantum collapses between nonorthogonal

states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to

neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that

there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species. We also show that there is a

non-trivial geometrical aspect associated with matter induced extrinsic CP violating phases when neutrinos propagate adiabatically through varying

density matter. This distinction between the two cases can lead to visible consequences at the level of probability.

The Pancharatnam geometric phase

Pancharatnam (1956), Berry, (1987), Samuel and Bhandari (1988)
◮ Notion of geometric parallelism from inner product of two states
◮ Reference condition is the Pancharatnam’s connection 〈 A | B 〉 is real and positive, in phase or parallel

||| A 〉 + | B 〉||2 = 〈 A | A 〉 + 〈 B | B 〉 + 2|〈 A | B 〉| cos {ph〈 A | B 〉}
◮ Geometrically, norm of the resultant vector is maximum
◮ Physically, interference of superposed beams gives maximum intensity/probability
◮ The connection is both symmetric and reflexive but not transitive and this fact leads to
◮ Pancharatnam’s phase given by phase of the complex number 〈 A | C 〉〈 C | B 〉〈 B | A 〉 ≡ reiß

A

BC

◮ ß reflects curvature of the projective Hilbert space. ß = Ω
2 (Ω is solid angle subtended by geodesic triangle ABC at origin)

◮ Essential requirements - minimum 3 states for non-transitivity and exploring the curvature of the ray space and cyclic
projections, the state need not be an eigenstate of H.

◮ Schrödinger evolution possibly interrupted by measurements can lead to Pancharatnam’s phase. If we take any state and
subject it to multiple quantum collapses and bring it back to itself, the resulting state is

| A 〉〈 A | C 〉〈 C | B 〉〈 B | A 〉
where the phase of the complex number is half the solid angle Ω subtended by the geodesic polygon at the center of the
sphere.

◮ In order to detect geometric phases, the key ingredient is a SPLIT BEAM EXPERIMENT

|||ψ1 〉 + eiß|ψ2 〉||2 = 〈ψ1 |ψ1 〉 + 〈ψ2 |ψ2 〉 + eiß〈ψ1 |ψ2 〉 + e−iß〈ψ2 |ψ1 〉

Neutrinos and some subtle points

Designing a split-beam experiment ?
◮ Incoherent scatterings are small in most practical situations (oscillation length being much smaller than mean free path in

medium).
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Coherence maintained over astrophysical scales.
◮ At zero temperature, total refractive index is
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Mostly ℜe[nrefr] >> ℑm[nrefr]. Its potentially observable effect occurs in neutrino oscillations which probes effects due to
small mass-splittings.

◮With neutrinos it is not possible to design a split beam interference experiment owing to their weakly interacting nature.
◮ MAIN OBSTACLE : One needs a source and detector of neutrinos and the beam has to take two paths between them.
◮We can not do what is done in optics : use mirrors and lenses to separate and recombine a beam
◮ But, we can think of oscillations as doing a split beam experiment in energy space

|να 〉 |νβ 〉

|ϑ1, + 〉 |ϑ2, + 〉

|ϑ1,−〉 |ϑ2,−〉
Split beam two path interferometer

The π anholonomy and the form of CP-even neutrino Hamiltonian

Hν =
ω

2
[− cos ϑσz + sin ϑσx] |ϑ,+ 〉 =

(

cos ϑ/2
sin ϑ/2

)

and |ϑ,− 〉 =

(

− sin ϑ/2
cos ϑ/2

)

◮ CP conserved (coeff. of σy = 0), Eigenstates lie on a great circle (intersection of x − z plane with Poincaré sphere)

◮ Eigenstates change sign as ϑ changes from 0 → 2π,

|ϑ,± 〉 = ∓|ϑ + π,∓ 〉 = −|ϑ+ 2π,± 〉
= ±|ϑ + 3π,∓ 〉 = |ϑ + 4π,± 〉

Global structure Möbius band

◮ Expect a phase of ±1 (molecular physics) to appear in the CP-even neutrino system. Longuet-Higgins et. al. (1958)

Neutrinos and Polarisation optics

2 level system and the effect of an arbitrary medium
H = tI + xσx + yσy + zσz

t just gives an overall phase, while x, y, z generate non-trivial optical effects.
◮ t and z non-zero : Circular birefringence (Optical activity)
◮ t and x non-zero : Linear birefringence (Wave plate)
◮ t and x, y, z non-zero : Elliptic birefringence (Quartz plate)
◮ Finite y =⇒ CP Violation
◮ Absorptive effects like Dichroism : H need not be Hermitian

Two flavor case

Medium x y z

Vacuum (ω/2) sin 2θ 0 -(ω/2) cos 2θ
Normal
matter+SI (ω/2) sin 2θ 0 -(ω/2) cos 2θ + VC/2
Normal
matter+NSI (ω/2) sin 2θ + ℜe{VCǫeµ} ℑm{VCǫeµ} -(ω/2) cos 2θ + VC/2 + VC(ǫee − ǫµµ)/2
Neutrino
backgrounds+SI (ω/2) sin 2θ + ℜe{Beµ} ℑm{Beµ} -(ω/2) cos 2θ + VC/2 + B/2

Visualization tool -
The Poincaré sphere

|ψ 〉 = eiη
(

cos (ϑ/2) e−iφ/2

sin (ϑ/2) eiφ/2

)

◮ Hν(θ) is real (x − z plane)
◮ Half angles used : ϑ = 2θ
◮ Orthogonal states - antipodal points

| να 〉 and | νβ 〉 ⇔ RCP and LCP states
◮ |ϑ,+ 〉 and |ϑ,− 〉 ⇔ EP states
◮ Oscillation phenomena can be viewed as

precession,
unitary rotations

◮ MSW effect ⇒ θ = π/4 complete swapping
of flavors

◮ NP rotated into SP (about equator with LP
states at
anti-podal points)

◮ y 6= 0 means Hν is complex (full Poincaré
sphere)

Polarised states in optics have isomorphic connection with

the neutrino states
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ϑ
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Transition Probability

for the CP conserving case (real states)
Start with flavor states |να >, |να >= να+|ϑ1,+ > +να−|ϑ1,− > where, |ϑ1,± > are
the eigenstates of Hν(ϑ1) = [(sin ϑ1)σx + (− cos ϑ1)σz].
Adiabatic evolution of mass states from |ϑ1,± > to |ϑ2,± >

|ϑ1,± > → e−iD±|ϑ2,± > with

D± ≃ ±1

2

∫
√

(ω sin ϑ)2 + (VC − ω cos ϑ)2dt

Amplitude : A(να → νβ) = 〈 νβ | U | να 〉 where

U = e−iD+|ϑ2,+ > 〈ϑ1,+ | + e−iD−|ϑ2,− 〉〈ϑ1,− | .

Probability :

P(να → νβ) = 〈 να |ϑ1,+ 〉〈ϑ2,+ | νβ 〉〈 νβ |ϑ2,+ 〉〈ϑ1,+ | να 〉
+ 〈 να |ϑ1,− 〉〈ϑ2,− | νβ 〉〈 νβ |ϑ2,− 〉〈ϑ1,− | να 〉
+ [〈 να |ϑ1,− 〉eiD−〈ϑ2,− | νβ 〉〈 νβ |ϑ2,+ 〉e−iD+〈ϑ1,+ | να 〉 + c.c.]

◮ cross-terms (upon removing the dynamical phase) are connected to the two path
interferometer in energy space

◮ can be viewed as closed loop quantum collapses with intermediate adiabatic evolutions
◮ great circle in x − z plane.

Standard expression for probability

P(νe → νµ) = U
⋆
e+(θ1)Uµ+(θ2)U

⋆
µ+(θ2)Ue+(θ1)

+ U
⋆
e−(θ1)Uµ−(θ2)U

⋆
µ−(θ2)Ue−(θ1)

+ [U⋆e−(θ1)eiD−Uµ−(θ2)U
⋆
µ+(θ2)e−iD+Ue+(θ1) + c.c.]

Can CP Violation destroy the topological robustness of the π phase ?

CP conserving case + adiabatic evolution
Cross-term (upon removing dynamical phase)

〈 να |ϑ1,− 〉〈ϑ2,− | νβ 〉〈 νβ |ϑ2,+ 〉〈ϑ1,+ | να 〉 ≡ reiß

Appearance terms (να → νβ) Disappearance terms (να → να)

ß = π ß = 0
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P(νe → νµ) =

cos 2 θ1 sin 2 θ2 + sin 2 θ1 cos 2 θ2 + [2 cos (D+ − D−)](− sin θ1) cos θ2 sin θ2 cos θ1

topological phase = 2π/2 = π

P(νe → νe) = cos 2 θ1 cos 2 θ2 + sin 2 θ1 sin 2 θ2 + [2 cos (D+ − D−)] sin θ1 cos θ2 sin θ2 cos θ1

topological phase = 0, in accord with Unitarity

This is related to the PMNS mixing matrix being orthogonal in the 2 × 2 case.

CP Violating case + adiabatic evolution
Total Cross-term in the transition probability
T = 2r cos [ß + (D− − D+)]

CP Conserved (y = 0) CP Violated (y 6= 0)
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Appearance probability picks a phase Φapp = (π − ∆ϕ) + (D− − D+)

geometric phase = Ω/2 = (π − ∆ϕ)

Survival probability picks a phase Φsurv = ∆ϕ+ (D− − D+)

geometric phase = π − Ω/2 = ∆ϕ

Essential condition to destroy topological character of the geometric phase is that

∆ϕ should be non-zero, which is realizable only in a varying density situation. It

is related to lifting of states from the reference plane containing the two flavor

states and the initial mass states.

Conclusions and Outlook
◮We show that there exists a topological phase in the two flavor neutrino

oscillation formulae by using Pancharatnam’s ideas. Our study leads to first
pure geometric interpretation of the phenomenon of oscillations for the specific
case of two flavors and CP conserving case.

[Phys. Rev. D79, 096013 (2009)]

◮ The non-trivial phase of π and the anholonomy is linked to encircling of a
singular point in ray space.

◮We made a direct connection to the π phase anholonomy first found in the
context of molecular physics by Longuet-Higgins et. al. in 1958.

◮ The phase remains irrespective of adiabatic evolution or propagation of
neutrinos in vacuum and is a robust quantity.

◮ It is in-built into the structure of the leptonic mixing matrix. For the 2 × 2 case
and CP conservation, U(θ) is a real orthogonal rotation matrix given by,

U(θ) =

(

cos θ sin θ
− sin θ cos θ

)

Therefore the standard formalism of oscillation is in fact a realization of the
Pancharatnam phase.

◮ The topological robustness can be destroyed once we invoke CP violation.
Thus our studies with geometric phases lead to a novel quantification of effects
due to CP violating phase present in the Hamiltonian which are very hard to
visualize otherwise.

0907.0562 [hep-ph]

◮ In presence of CP violation, the mixing matrix can be made orthogonal initially
but the final mixing matrix takes the following form

U(θ2) =

(

cos θ2 sin θ2

− sin θ2 cos θ2

) (

1 0
0 ei∆ϕ

)
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