Topological phase in two flavor neutrino oscillations \& imprint票的

Abstract

Neutrinos and some subtle points

Designing a split-beam experiment?

Incoherent scatterings are small in most practical situations (oscillation length being much smaller than mean free path in medium).

$$
\left.I_{o s c}=\frac{\pi}{1.27} 10^{2} \mathrm{~cm} \frac{E}{[M e V]} \frac{\left[e V^{2}\right]}{\delta m^{2}} \quad \ll \quad I_{m f p}=10^{19} \mathrm{~cm} \frac{[\mathrm{~g} \mathrm{~cm}}{}{ }^{-3}\right] \frac{[\mathrm{MeV}]}{\rho}=10 \text { light years }
$$

Coherence maintained over astrophysical scales.

- At zero temperature, total refractive index is

$$
n_{\text {refr }}-1=-\frac{\left(\sqrt{2} G_{F} n_{e}\right)}{E}+i \frac{1}{2 E} n_{e} \sigma_{T} \simeq-10^{-19} \frac{\rho}{\left[g \mathrm{~cm}^{-3}\right]} \frac{[\mathrm{MeV}]}{E}+
$$

Mostly $\Re e\left[n_{\text {refr }}\right] \gg \Im m\left[n_{\text {refr }}\right]$. Its potentially observable effect occurs in neutrino oscillations which probes effects due small mass-splittings.
With neutrinos it is not possible to design a split beam interference experiment owing to their weakly interacting nature. - MAIN OBSTACLE : One needs a source and detector of neutrinos and the beam has to take two paths between them. - We can not do what is done in optics : use mirrors and lenses to separate and recombine a beam

But, we can think of oscillations as doing a split beam experiment in energy space

Split beam two path interferomete
The π anholonomy and the form of CP-even neutrino Hamiltonian

$$
\mathbb{H}_{\nu}=\frac{\omega}{2}\left[-\cos \vartheta \sigma_{z}+\sin \vartheta \sigma_{x}\right] \quad|\vartheta,+\rangle=\binom{\cos \vartheta / 2}{\sin \vartheta / \mathbf{2}} \quad \text { and } \quad|\vartheta,-\rangle=\binom{-\sin \vartheta / \mathbf{2}}{\cos \vartheta / \mathbf{2}}
$$

CP conserved (coeff. of $\sigma_{y}=0$), Eigenstates lie on a great circle (intersection of $\boldsymbol{x}-\boldsymbol{z}$ plane with Poincaré sphere) - Eigenstates change sign as ϑ changes from $\mathbf{0} \rightarrow \mathbf{2 \pi}$,
$|\vartheta, \pm\rangle=\mp|\vartheta+\pi, \mp\rangle=-|\vartheta+2 \pi, \pm\rangle$
Global structure \rightsquigarrow Möbius band

- Expect a phase of $\pm \mathbf{1}$ (molecular physics) to appear in the $\boldsymbol{C P}$-even neutrino system.

Transition Probability

for the CP conserving case (real states)
Start with flavor states $\left|\nu_{\alpha}>\right| \nu_{\alpha}>=\nu_{\alpha}+\vartheta_{1}$,
he eigenstates of $\mathbb{T}\left(\nu_{\alpha}\right\rangle\left|\left|\nu_{\alpha}>=\nu_{\alpha+\mid}\right| \vartheta_{1},+>+\nu_{\alpha-}\right| \vartheta_{1},->$ where, $\mid \vartheta_{1}, \pm>$ are Aligenstates of $H_{\nu}\left(\vartheta_{1}\right)=\left[\left(\sin \vartheta_{1}\right) \sigma_{x}+\left(-\cos \vartheta_{1}\right) \sigma_{2}\right]$.
Adiabatic evolution of mass states from $\mid \vartheta_{1}, \pm>$ to $\mid \vartheta_{2}, \pm$
$\begin{aligned} \mid \vartheta_{1}, \pm> & \rightarrow e^{-i D_{ \pm} \mid \vartheta_{2}}, \pm>\text { with } \\ \mathcal{D}_{ \pm} & \simeq \pm \frac{1}{2} \int \sqrt{(\omega \sin \vartheta)^{2}+\left(V_{C}-\omega \cos \vartheta\right)^{2}} d t\end{aligned}$

- $\mathbb{H}_{\nu}(\theta)$ is real $(\boldsymbol{x}-\boldsymbol{z}$ plane)
- Half angles used : $\vartheta=2 \theta$
- Orthogonal states - antipodal points
$\left|\nu_{\alpha}\right\rangle$ and $\left|\nu_{\beta}\right\rangle \Leftrightarrow$ RCP and LCP states
$-|\vartheta,+\rangle$ and $|\vartheta,-\rangle \Leftrightarrow$ EP states
- Oscillation phenomena can be viewed as precession,
unitary rotations
MSW effect $\Rightarrow \theta=\pi / 4$ complete swapping
of flavors
- NP rotated into SP (about equator with LP
states at
anti-podal points)
- $\boldsymbol{y} \neq \mathbf{0}$ means \mathbb{H}_{ν} is complex (full Poincaré
sphere)
Polarised states in
the neutrino states

Amplitude : $\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left\langle\nu_{\beta}\right| \mathcal{U}\left|\nu_{\alpha}\right\rangle$ where

Probability :

$\mathcal{P}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left\langle\nu_{\alpha} \mid \vartheta_{1},+\right\rangle\left\langle\vartheta_{2},+\mid \nu_{\beta}\right\rangle\left\langle\nu_{\beta} \mid \vartheta_{2},+\right\rangle\left\langle\vartheta_{1},+\mid \nu_{\alpha}\right\rangle$
$\quad+\left\langle\nu_{\alpha} \mid \vartheta_{1},-\right\rangle\left\langle\vartheta_{2},-\mid \nu_{\beta_{2}}\right\rangle\left\langle\nu_{\beta}\right| \vartheta_{2},-\left\langle\vartheta_{1},-\mid \nu_{\alpha}\right\rangle$
$\quad+\left\lfloor\left\langle\nu_{\alpha} \mid \vartheta_{1},-\right\rangle \mathbf{e}^{\left.i D_{-}-\left\langle\vartheta_{2},-\mid \nu_{\beta}\right\rangle\left\langle\nu_{\beta} \mid \vartheta_{2},+\right\rangle e^{-i D_{+}}\left\langle\vartheta_{1},+\mid \nu_{\alpha}\right\rangle+\text { c.c. }\right]}\right.$
cross-terms (upon removing the dynamical phase) are connected to the two path interferometer in energy space - can be viewed as closed 100
great circle in $\boldsymbol{x}-\boldsymbol{z}$ plane. Standard expression for probability
$\mathcal{P}\left(\nu_{e} \rightarrow \nu_{\mu}\right)=\mathbb{U}_{e_{+}^{*}}^{*}\left(\theta_{1}\right) \mathbb{U}_{\mu+}\left(\theta_{2}\right) \mathbb{U}_{\mu+}^{\star}\left(\theta_{2}\right) \mathbb{U}_{++}\left(\theta_{1}\right)$

Can CP Violation destroy the topological robustness of the π phase ?

$\mathcal{P}\left(\nu_{e} \rightarrow \nu_{\mu}\right)=$
$\cos ^{2} \theta_{1} \sin ^{2} \theta_{2}+\sin ^{2} \theta_{1} \cos ^{2} \theta_{2}+\left[2 \cos \left(\mathcal{D}_{+}-\mathcal{D}_{-}\right)\right]\left(-\sin \theta_{1}\right) \cos \theta_{2} \sin \theta_{2} \cos \theta_{1}$
topological phase $=2 \pi / 2=\pi$
$\mathcal{P}\left(\nu_{e} \rightarrow \nu_{e}\right)=\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+\left[2 \cos \left(\mathcal{D}_{+}-\mathcal{D}_{-}\right)\right] \sin \theta_{1} \cos \theta_{2} \sin \theta_{2} \cos \theta_{1}$
topological phase $=0$, in accord with Unitarity
This is related to the PMNS mixing matrix being orthogonal in the 2×2 case.

CP Violating case + adiabatic evolution Toal Crossterm In he transtion probability

$$
\text { CP Conserved }(\boldsymbol{y}=0) \quad \text { CP Violated }(\boldsymbol{y} \neq 0)
$$

geometric phase $=\Omega / 2=(\pi-\Delta \varphi)$
Survival probability picks a phase $\Phi^{s u r v}=\Delta \varphi+\left(\mathcal{D}_{-}-\mathcal{D}_{+}\right)$
geometric phase $=\pi-\Omega / 2=\Delta \varphi$
Essential condition to destroy topological character of the geometric phase is that $\Delta \varphi$ should be non-zero, which is realizable only in a varying density situation. It is related to lifting of states from the reference plane containing the two flavor states and the initial mass states.

Conclusions and Outlook

- We show that there exists a topological phase in the two flavor neutrino oscillation formulae by using Pancharatnam's ideas. Our study leads to first pure geometric interpretation of the phenomenon of oscillations for the specific case of two flavors and CP conserving case.
[Phys. Rev. D79, 096013 (2009)]
- The non-trivial phase of π and the anholonomy is linked to encircling of a singular point in ray space.
- We made a direct connection to the π phase anholonomy first found in the context of molecular physics by Longuet-Higgins et. al. in 1958.
- The phase remains irrespective of adiabatic evolution or propagation of neutrinos in vacuum and is a robust quantity.
- It is in-built into the structure of the leptonic mixing matrix. For the $\mathbf{2 \times 2}$ case and $C P$ conservation, $\mathbb{U}(\theta)$ is a real orthogonal rotation matrix given by,

$$
\mathbb{U}(\theta)=\left(\begin{array}{cc}
\cos \theta & \boldsymbol{\operatorname { s i n }} \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

Therefore the standard formalism of oscillation is in fact a realization of the Pancharatnam phase.

- The topological robustness can be destroyed once we invoke CP violation Thus our studies with geometric phases lead to a novel quantification of effect due to CP violating phase present in the Hamiltonian which are very hard to visualize otherwise.
0907.0562 [hep-ph]

In presence of CP violation, the mixing matrix can be made orthogonal initially but the final mixing matrix takes the following form

$$
\mathbb{U}\left(\theta_{2}\right)=\left(\begin{array}{cc}
\cos \theta_{2} & \sin \theta_{2} \\
-\sin \theta_{2} & \cos \theta_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \Delta \varphi}
\end{array}\right)
$$

The author is deeply indebted to Joseph Samuel \& Supurna Sinha for numerous useful discussions leading to the present work.

