Abstract

We show that the phase appearing in neutrino flavor oscillation formulae has a geometric and topological contribution. We identify a topological phase appearing in the two flavor neutrino oscillation formula using Pancharatnam's prescription of quantum collapses between nonorthogonal states. Such quantum collapses appear naturally in the expression for appearance and survival probabilities of neutrinos. Our analysis applies to neutrinos propagating in vacuum or through matter. For the minimal case of two flavors with CP conservation, our study shows for the first time that there is a geometric interpretation of the neutrino oscillation formulae for the detection probability of neutrino species.

Introduction

Neutrino oscillations

- Pontecorvo proposed $\bar{\nu} \rightarrow \nu$ (similar to $K_{0} \rightarrow \bar{K}_{0}$) oscillations in 1957 to explain the rumors that neutrinos were observed in β-decay experiment of Davis (only one neutrino known at that time !).
- The rumors turned out to be just so but the remarkable insight remained, and today Neutrino flavor oscillations among the three flavors of light active neutrinos (conserving L) is the preferred solution to the anomalies in the neutrino sector in a wide variety of systems (sun, atmospheric, reactor, accelerator).
- In Standard Model, neutrinos are strictly massless \rightsquigarrow can not oscillate and therefore neutrino flavor oscillations provide the only firm evidence in favor of physics beyond the Standard Model of particle physics, even though there are other strong indications (Baryon Asymmetry of the Universe, Dark Matter, Dark Energy, etc.)

Why do neutrinos oscillate ?

- Neutrinos are produced and detected via weak interaction : Weak (flavor) eigenstates differ from the stationary (mass) states of the Hamiltonian, infact they are linear superpositions of the stationary mass states.
This leads to oscillation phenomena which is very similar to birefringence in optics - depends on properties of the medium. Oscillations of neutrinos takes place even in vacuum. This is driven by non-zero mass-squared splitings and non-zero Oscillations of
mixing angles.
In matter, oscillations are still driven by the non-zero mass-squared splitings and non-zero mixing angles which get modified due to charged current potential for $\nu_{e}-e$ coherent forward scattering.
modified due to charged current potential for $\nu_{e}-\boldsymbol{e}$ conerent forward scattering.
Incoherent scattering cross-section is usually negligible and this leads to sustained coherence over astrophysical length Incoher
scales.

Dispersion relation for two flavor neutrinos

The Pancharatnam phase

in quantum mechanical language

- Notion of geometric parallelism from inner product of two states

Reference condition is the Pancharatnam's connection $\langle\boldsymbol{A} \mid \boldsymbol{B}\rangle$ is real and positive, in phase or parallel

Geometrically, norm of the resultant vector is maximum
Physically, interference of superposed beams gives maximum intensity/probability
The connection is both symmetric and reflexive but not transitive and this fact leads to

- The connection is both symmetric and reflexive but not ransitive and this fact leads to

Breflects curvature of the projective Hilbert space. $\boldsymbol{B}=\frac{\Omega}{2}$ (Ω is solid angle subtended by geodesic triangle $\mathcal{A B C}$ at origin - Essential requirements - minimum 3 states for non-transitivity and exploring the curvature of the ray space and cyclic projections, the state need not be an eigenstate of \mathbb{H}.
Collapse process

- Schrödinger evolution possibly interrupted by measurements can lead to Pancharatnam's phase. If we take any state and subject it to multiple quantum collapses and bring it back to itself, the resulting state is
$|A\rangle\langle A \mid C\rangle\langle C \mid B\rangle\langle B \mid A\rangle$
where the phase of the complex number is half the solid angle Ω subtended by the geodesic polygon at the center of the sphere.
In order to detect geometric phases, the key ingredient is a SPLIT BEAM EXPERIMENT

Split beam experiment with neutrinos?

Incoherent scatterings are small in most practical situations (oscillation length being much smaller than mean free path in medium).

$$
I_{o s c}=\frac{\pi}{1.27} 10^{2} \mathrm{~cm} \frac{E}{[\mathrm{MeV}]} \frac{\left[\mathrm{eV}^{2}\right]}{\delta m^{2}} \quad \ll \quad I_{m f p}=10^{19} \mathrm{~cm} \frac{\left[g \mathrm{~cm}^{-3}\right]}{\rho} \frac{[\mathrm{MeV}]}{E}=10 \text { light years }
$$

Coherence maintained over astrophysical scales.
Coherence maintained over astrophysical scale

$$
n_{\text {refr }}-1=-\frac{\left(\sqrt{2} G_{F} n_{e}\right)}{E}+i \frac{1}{2 E} n_{e} \sigma_{T} \simeq-10^{-19} \frac{\rho}{\left[g^{-3}\right]} \frac{[M e V]}{E}+
$$

Mostly $\Re e\left[n_{\text {refr }}\right] \gg$
small mass-splittings.
With neutrinos it is not possible to design a split beam interference experiment owing to their weakly interacting nature MAIN OBSTACLE : One needs a source and detector of neutrinos and the beam has to take two paths between them. We can not do what is done in optics : use mirrors and lenses to separate and recombine a beam
But, we can think of oscillations as doing a split beam experiment in energy space by doing collapses and intermediate adiabatic evolutions.

Split beam two path interferometer

Neutrinos and Polarisation optics

Effect of an arbitrary medium

$$
\mathbb{H}=D \mathbb{I}+A \sigma_{x}+B \sigma_{y}+C \sigma_{z}
$$

\boldsymbol{D} just gives an overall phase, while $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ generate non-trivial optical effects.

- Dand C non-zero : Circular birefringence (Optical activity)
- \boldsymbol{D} and \boldsymbol{A} non-zero : Linear birefringence (Wave plate)
- \boldsymbol{D} and $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ non-zero : Elliptic birefringence (Quartz plate) - Absorptive effects like Dichroism : \mathbb{H} need not be Hermitian Neutrino oscillations
- Vacuum oscillations : Elliptic birefringence
$A=\frac{\omega}{2} \sin 2 \theta, B=0, C=-\frac{\omega}{2} \cos 2 \theta$ - Oscillations in matter : Elliptic birefringence $A=\frac{\omega}{2} \sin 2 \theta, B=0, C=-\frac{\omega}{2} \cos 2 \theta+\frac{1}{2} \sqrt{2} G_{F} n_{e}$
- Absorption negligible since neutrinos interact via weak interactions.

Visualization tool - The Poincaré sphere

$$
|\psi\rangle=e^{i \eta}\left(\begin{array}{c}
\cos (\vartheta / 2) e^{-i \phi / 2} \\
\sin (\vartheta / 2)
\end{array} e^{i \phi / 2}\right)
$$

$\rightarrow \mathbb{H}_{\nu}(\theta)$ is real ($\boldsymbol{x}-\boldsymbol{z}$ plane)
Half angles used : $\vartheta=2 \theta$

- Orthogonal states - antipodal points
$\left|\nu_{\alpha}\right\rangle$ and $\left|\nu_{\beta}\right\rangle \Leftrightarrow \mathrm{RCP}$ and LCP states
$-|\vartheta,+\rangle$ and $|\vartheta,-\rangle \Leftrightarrow$ EP states
- Oscillation phenomena can be viewed as precession
unitary rotations
- MSW effect $\Rightarrow \theta=\pi / 4$ complete swapping of flavors
- NP rotated into SP (about equator with LP states at
anti-podal points)

The π phase in the transition probability

Transition probability
Tarart with flavor states $\left|\nu_{\alpha}\right\rangle,\left|\nu_{\alpha}\right\rangle=\nu_{\alpha+}\left|\vartheta_{1},+>+\nu_{\alpha-}\right| \vartheta_{1},->$ wher
$\mid \vartheta_{1}, \pm>$

$\begin{aligned} & \mid \vartheta_{1}, \pm> \rightarrow e^{-i \mathcal{D}_{ \pm} \mid \vartheta_{2}, \pm>} \text { with } \\ & \mathcal{D}_{ \pm} \simeq \pm \frac{1}{2} \int \sqrt{(\omega \sin \vartheta)^{2}+\left(V_{c}-\omega \cos \vartheta\right)^{2}} d t\end{aligned}$
Amplitude : $\mathcal{A}\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left\langle\nu_{\beta}\right| \mathcal{U}\left|\nu_{\alpha}\right\rangle$ where
$\mathcal{U}=\mathrm{e}^{-i \mathcal{D}_{+}\left|\vartheta_{2},+\right\rangle\left\langle\vartheta_{1},+\right|+\mathrm{e}^{-i \mathcal{D}_{-} \mid}\left|\vartheta_{2},-\right\rangle\left\langle\vartheta_{1},-\right|}$
Probability

- cross-terms (upon removing the dynamical phase) are connected to the
two path interferometer in energy space
- can be viewed as closed loop quantum collapses with intermediate
adiabatic evolutions
great circle in $x-z$ plane.
Standard expression for probability
$\mathcal{P}\left(\nu_{e} \rightarrow \nu_{\mu}\right)=\mathbb{U}_{e+}^{\star}\left(\theta_{1}\right) \mathbb{U}_{\mu+}\left(\theta_{2}\right) \mathbb{U}_{\mu+(}^{\star}\left(\theta_{2}\right) \mathbb{U}_{\theta+}\left(\theta_{1}\right)$

$+\left[U_{e-}^{\star}\left(\theta_{1}\right) e^{i D_{-}} \mathbb{U}_{\mu-}\left(\theta_{2}\right) \mathbb{U}_{\mu+}^{*}\left(\theta_{2}\right) e^{-i D_{+} \mathbb{U}_{e+}(}\left(\theta_{1}\right)+\right.$ c.c. $]$

Interference terms as collapses + adiabatic evolutions cross-term (upon removing dynamical phase) $\left\langle\nu_{\alpha} \mid \vartheta_{1},-\right\rangle\left\langle v_{2},-\mid \nu_{\beta}\right\rangle\left\langle\nu_{\beta} \mid \vartheta_{2},+\right\rangle\left\langle\vartheta_{1},+\mid \nu_{\alpha}\right\rangle \equiv r e^{f B}$
Appearance terms $\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)$
Disappearance terms $\left(\nu_{\alpha} \rightarrow \nu_{\alpha}\right)$
$B=0$
$\mathcal{P}\left(\nu_{e} \rightarrow \nu_{\mu}\right)=\cos ^{2} \theta_{1} \sin ^{2} \theta_{2}+\sin ^{2} \theta_{1} \cos ^{2} \theta_{2}+\left[2 \cos \left(\mathcal{D}_{+}-\mathcal{D}_{-}\right)\right]\left(-\sin \theta_{1}\right) \cos \theta_{2} \sin \theta_{2} \cos \theta_{1}$
topological phase $=\pi$
$\mathcal{P}\left(\nu_{\mathrm{e}} \rightarrow \nu_{\mathrm{e}}\right)=\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+\left[2 \cos \left(\mathcal{D}_{+}-\mathcal{D}-\right)\right] \sin \theta_{1} \cos \theta_{2} \sin \theta_{2} \cos \theta_{1}$
topological phase $=0$, in accord with Unitarity

The form of \mathbb{H}_{ν} and π anholonomy

$$
\begin{aligned}
& \mathbb{H}_{\nu}=\frac{\omega}{2}\left[-\cos \vartheta \sigma_{z}+\sin \vartheta \sigma_{x}\right] \\
& |\vartheta,+\rangle=\binom{\cos \vartheta \vartheta / 2}{\sin \vartheta / 2}|\vartheta,-\rangle=\binom{-\sin \vartheta / 2}{\cos \vartheta / 2}
\end{aligned}
$$

- CP conserved (coeff. of $\sigma_{y}=0$), Eigenstates lie on a great circle (intersection of $\boldsymbol{x}-\boldsymbol{z}$ plane with Poincaré sphere)
- Eigenstates change sign as ϑ changes from $\mathbf{0} \rightarrow \mathbf{2 \pi}$,

$$
|\vartheta, \pm\rangle=\mp|\vartheta+\pi, \mp\rangle=-\mid \vartheta+2 \pi, \pm
$$

$$
\begin{aligned}
& =\mp|\vartheta+\pi, \mp\rangle=-\mid \vartheta+2 \pi, \pm \\
& = \pm|\vartheta+3 \pi, \mp\rangle=|\vartheta+4 \pi, \pm\rangle
\end{aligned}
$$

Global structure \rightsquigarrow Möbius band

- Expect a phase of $\pm \mathbf{1}$ (molecular physics) to appear in the $\mathbf{C P}$-even neutrino system. Longuet-Higgins et. al. (1958)

