Neutrino flavour parameters and low energy data

This work is an effort to

explain the origin of large/maximal mixing in the neutrino sector by exploiting the fact that in most grand unified models, usually there are more than one seesaw mechanisms at work or there are more than one independent sources of neutrino mass. With only one seesaw mechanism, it is possible to explain the smallness of neutrino masses, but there are some problems viz., the mixing angles are small and CKM like. Here we consider more than one seesaws which is a natural feature of most grand unified models and show that we can get rid of this problem. We show that the small mixing can get enhanced to large or maximal by adding the two seesaws in an appropriate way. This is intimately connected with near degenerate neutrino mass pattern. Alternately, we can decompose the quasi-degenerate mass pattern in to sum of hierarchial and inverse hierarchial patterns with small mixings. The left-right symmetric model where the type I and the type II seesaw mechanisms are related by the same Yukawa provides a framework where small mixings can be converted to large mixing angles, for degenerate neutrinos. With three generations, we show that either one or all three mixing angles can become large, which is not desired. We propose a way to obtain two large and one small mixing angle if either one or both the sub matrices contain large mixing.
Oscillation data3 mixing angles: $\theta_{12} \approx 32^{0}, \theta_{23} \approx 45^{\circ}, \theta_{13} \leq 10^{\circ}$ (upeer bound)
Non-oscillation data$-\beta$-decay experiments, $m_{\beta}=\sqrt{\sum_{i}\left|U_{e}\right|^{2} m_{i}^{2}}=\sqrt{c_{13}^{2} c_{12}^{2} m_{1}^{2}+c_{13}^{2} s_{12}^{2} m_{2}^{2}+s_{13}^{2} m_{3}^{2}}, m_{\beta}<1.8 \mathrm{eV}$ (Mainz+Troitsk)ou- Cosmology, $\Omega_{\nu} \propto \sum=\sum_{i} m_{i}, \sum<1.3 \mathrm{eV}$ (WMAP5) hierarchial and inverse hierarchial patterns with small mixings. The left-right symmetric model where the type I and the

Fermion mass puzzle : several facets

Unresolved issues at the present epoch

Mass pattern - Nomma hiearachy $\Delta \Delta_{n}^{m}>0$ \checkmark Ouas:-Degeneate: $m_{1} \sim m_{2} \simeq m_{3}$ Mixing and CP violation
 \Rightarrow Why wo lagge and onesma

Absolute mass and its origin
 Nituaiorana, sesesaw meonanisis man enexplain nininess Dirac vs Majorana
2 Majorana phases

Illustration of degeneracy induced large mixing in the two generation case

Case (A) : $\boldsymbol{m}_{\mu \mu}^{(2)}$ and $\boldsymbol{m}_{\mu \mu}^{(1)}$ are large
$M_{\nu}=m_{1}\left(\begin{array}{cc}z & x \\ x & \left(1+z^{\prime}\right)\end{array}\right)+m_{2}\left(\begin{array}{cc}0 & y \\ y & -1\end{array}\right)$
Large mixing condition: $m_{1} \simeq m_{2} \simeq m$

$$
\mathbb{M}_{\nu}=m\left(\begin{array}{cc}
z & x+y \\
x+y & z^{\prime}
\end{array}\right)
$$

Note $\mathcal{O}(m)$ element vanishes and small entries appear in the
total mass matrix. $d=-1 \Rightarrow z=z^{\prime}$ whie (A) total mass matrix. $d=-1 \Rightarrow z=z^{\prime}$ while $(A) \Rightarrow z^{\prime}=0$.

$$
\Delta m^{2}=m^{2}\left(z+z^{\prime}\right) \sqrt{4(x+y)^{2}+\left(z-z^{\prime}\right)^{2}}
$$

$\tan 2 \theta=\frac{2(x+y)}{z-z^{\prime}}$ large mixing possible when $x+y \gg z$ for $z^{\prime} \rightarrow 0 \quad z-z^{\prime}$
$z^{\prime} \rightarrow 0$
or $x, y \sim z, z^{\prime}$ when $z \simeq z^{\prime} \&$ hierarchial pattern emerges
Oor $x, y \sim z, z^{\prime}$ when $z \simeq z^{\prime}$ h hierarchial pattern emerges
Case (B): $\boldsymbol{m}_{e}^{(2)}$ and $\boldsymbol{m}_{e}^{(1)}$ are large similar to case (A); need
strong (Cancellotions strong cancellations of dominant elements. Case (C) : For example, let $\boldsymbol{m}_{\mu \mu}^{(2)}=\boldsymbol{m}_{\text {ee }}^{(1)}$

$$
\begin{aligned}
& \mathbb{M}_{\nu}=m_{1}\left(\begin{array}{cc}
0 & x \\
x & 1
\end{array}\right)+m_{2}\left(\begin{array}{cc}
1 & -y \\
-y & 0
\end{array}\right) \\
& \mathbb{M}_{\nu}=\left(\begin{array}{cc}
m_{2} & m_{1} x-m_{2} y \\
m_{1} x-m_{2} y & m_{1}
\end{array}\right)
\end{aligned}
$$

Individual mixings are small. But, $\tan 2 \theta=\frac{2\left(m_{1} x-m_{2} y\right)}{m_{1}-m_{2}}$
can be enhanced if m_{1} and m_{2} both have same sign. ${ }^{m_{1}-m_{2}}$ $\left|m_{1}-m_{2}\right|<2\left(m_{1} x-m_{2} y\right)$ for large mixing.
Spectrum hints towards a quasi-degenerate pattern.
$\Delta m^{2}=4 m \epsilon$ in limit $m_{1} \sim m_{2} \sim m$ and $\epsilon=m(x-y)$

Finally, if two diagonal entries are large in individual matrices, we can have a new class of solutions Case (C1):

$$
\mathbb{M}_{\nu}=m_{1}\left(\begin{array}{ccc}
1+\rho & x \\
x & 1
\end{array}\right)+m_{2}\left(\begin{array}{cc}
1 & x^{\prime} \\
x^{\prime} & 1+\rho^{\prime}
\end{array}\right)
$$

$$
M_{\nu}=\left(\begin{array}{cc}
m_{2}+m_{1}(1+\rho) & m_{1} x+m_{2} x^{\prime} \\
m_{1} x+m_{2} x^{\prime} & m_{1}+m_{2}\left(1+\rho^{\prime}\right)
\end{array}\right)
$$

where $\boldsymbol{x}, x^{\prime}$ are small and ρ, ρ^{\prime} are such that $2 x / \rho \ll 1$ and $2 x^{\prime} / \rho^{\prime} \ll 1$ to keep mixing small in \mathbb{M}_{i}^{i}. This would mean hierarchy between the elements in \mathbb{M}_{ν}^{i}. Qualitatively this could form a new class of solutions with each sub-matrices forming a quasi-degenerate pair with small mixing. However mixing $\tan 2 \theta \simeq\left(x+x^{\prime}\right) /\left(\rho^{\prime}-\rho\right)$ would remain small as $x, x^{\prime} \ll \rho, \rho^{\prime}$ unless $\rho=\rho^{\prime}$. But, then this will fall in class (C) Where buth hee conditions on diagonal elements are satisfied. To sum up, the sum of 2 matrices with small mixing angles would naturally lead to a degenerate spectrum with maximallarge
mixing provided there are no cancellations of large eigenvalues mixing provided there are no cancellations of large eigenvalues form (a) NH + IH (Case C) or (b) quasi-degenerate themselve but with small mixing (Case C1). Thus to convert small mixing into maximallarge, we need a pair of (quasi-) degenerate eigenvalues with same CP parity, ordered oppositely in the sub matrices. This is "degeneracy induced large mixing".

Decomposition of degenerate spectrum Degenerate spectrum with large mixing can be decomposed into two matrices with small mixings This decomposition is more general irrespective of mixing.
Zeroth order textures

$\begin{aligned} & \text { Mixing } \Rightarrow \\ & \mathbb{M}_{\text {diag }} \end{aligned}$	Small x_{e}	Maximal \mathbb{X}_{M}
$\begin{aligned} & \mathrm{NH} \\ & \mathrm{~A}: \operatorname{Diag}[0,1] \end{aligned}$	$\left(\begin{array}{ll}0 & \epsilon \\ \epsilon & 1\end{array}\right)$	$\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$
$\underset{\mathbb{B}: \text { Diag[} 1 \text {, } 0 \text {] }}{ }$	$\left(\begin{array}{cc}1 & -\epsilon \\ -\epsilon & 0\end{array}\right)$	$\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right)$
Degenerate $\mathbb{C}_{0}: \operatorname{Diag}[1,1]$ $\mathbb{C}_{1}: \operatorname{Diag}[-1,1]$ $\mathbb{C}_{2}: \operatorname{Diag}[1,-1]$	$\begin{gathered} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \\ \left(\begin{array}{cc} -1 & 2 \epsilon \\ 2 \epsilon & 1 \end{array}\right) \\ \left.1 \begin{array}{cc} 1 & -2 \epsilon \\ -2 \epsilon & -1 \end{array}\right) \end{gathered}$	$\left.\begin{array}{c} \left(\begin{array}{c} 1 \\ 0 \end{array} 0\right. \\ 0 \\ 0 \end{array}\right)$

Can be incorporated easily in models of neutrino masses.

Model considerations and extension to the three generation case

Single (Type I) Seesaw

Minkowski (197), Gell-Mann, Glashow, Mohapalla
Senjanovic, Slanski, Yanagida (1979/1980), Valle

Parameter region for quasi-degeneracy and large mixin : If $M_{R 1}=M_{R 2}$ the Yukawa parameters can be
$h_{\text {eu }}^{D} \sim \mathcal{O}(1), h_{\text {ee }}^{D} \sim x, h_{\mu \mu}^{D} \sim-y, h_{\mu e}^{D} \sim \mathcal{O}(1)$ or $\boldsymbol{h}_{\text {ee }}^{D} \sim \mathcal{O}(1), \boldsymbol{h}_{e \mu}^{D} \sim-\boldsymbol{x}, \boldsymbol{h}_{\mu e}^{D} \sim \boldsymbol{y}, \boldsymbol{h}_{\mu \mu}^{D} \sim \mathcal{O}(\mathbf{1})$
Thus each RH neutrino couples with LH neutrinos with Thus each RH neutrino couples with LH neutrinos with mixing.

Two Seesaws (Type I+II)

 Left-Right symmetric modelLett-Right symmetric model
Joshipura (1994,1995), Akhmedov and Frigerio (2006),
$\mathcal{L}_{M}=-\frac{f}{2}\left(\overline{\nu_{L}^{c}} \nu_{L} \Delta_{L}^{0}+\bar{\nu}_{B}^{c} \nu_{R} \Delta_{R}^{0}\right)+$ h.c.
where $\Delta_{L(R)}$ is the triplet Higgs field
$\mathcal{L}_{D}=-\boldsymbol{Y}_{\bar{\nu}_{L} \nu_{R} \phi^{0}}+$ h.c.
In the limit where $V_{R} \gg v$, total mass matrix is
$\mathbb{M}_{\nu}=f v_{L}-\frac{v^{2}}{V_{\mathbb{R}}} \boldsymbol{\gamma f} \boldsymbol{f}^{-1} \boldsymbol{Y}^{\top}$
\rightarrow Type $I I(N H)+$ Type IIIH)

Can choose the Yukawa textures as

$$
f=\left(\begin{array}{ll}
0 & x \\
x & 1
\end{array}\right), \quad Y=\left(\begin{array}{ll}
1 & y \\
y & 0
\end{array}\right)
$$

leading to

$\mathbb{M}_{\nu}=\left(\begin{array}{cc}0 & m_{1} x \\ m_{1} x & m_{1}\end{array}\right)+\frac{m_{2}}{x^{2}}\left(\begin{array}{cc}1-2 x y & y(1-x y) \\ y(1-x y) & y^{2}\end{array}\right)$
$=\frac{1}{x^{2}}\left(\begin{array}{c}m_{2}(1-2 x y) \\ m_{1} x^{3}+m_{2} y(1-x y)\end{array} m_{1} x^{3}+m_{2} y(1-x y)\right.$
where $m_{1}=v_{L}$ and $m_{2}=v^{2} / v_{R}$.
Mixing angle,
$\tan 2 \theta=\frac{2\left(m_{1} x^{3}+m_{2} y(1-x y)\right)}{m_{1} x^{2}+m_{2} y^{2}-m_{2}(1-2 x y)}$
Degeneracy requirement $m_{1} x^{2} \simeq m_{2} \rightarrow$ large mixing Effect of radiative corrections,
$\tan 2 \theta=\frac{2\left(\left(m_{1} x^{3}+m_{2} y(1-x y)\right)(1+\delta)\right.}{(1+\delta)^{2} m_{1} x^{2}+m_{2} y^{2}-m_{2}(1-2 x y)}$
Now, $m_{1} x^{2}(1+\delta)^{2} \approx m_{2}$ for large mixing and keeping
degeneracy stable. Of course, the splitting of the
degeneracy can come from the radiative effects.

Three generation case: two possibilities
(i) Two Seesaw mechanisms or two sources of neutrino masses: Total mass matrix (with 3 small mixings in the two sub matrices)

$$
\mathbb{M}_{\nu}=\left(\begin{array}{ccc}
m_{1}^{(1)}+m_{1}^{(2)}\left(m_{2}^{(1)}-m_{1}^{(1)}\right) \epsilon_{12}^{(1)}+\left(m_{2}^{(2)}-m_{1}^{(2)}\right) \epsilon_{12}^{(2)} & \left(m_{3}^{(1)}-m_{1}^{(1)}\right) \epsilon_{13}^{(1)}+\left(m_{2}^{(2)}-m_{1}^{(2)}\right) \epsilon_{13}^{(2)} \\
\star & m_{2}^{(1)}+m_{2}^{(2)} & \left(m_{3}^{(1)}-m_{2}^{(1)}\right) \epsilon_{23}^{(1)}+\left(m_{3}^{(2)}-m_{2}^{(2)}\right) \epsilon_{23}^{(2)} \\
\star & \star & \\
& \star & m_{3}^{(1)}+m_{3}^{(2)}
\end{array}\right)
$$

Constraint - θ_{13} must not be large. We can generate only one large mixing angle in this case when there are two sub matrices Assuming that one of the matrices enhances the small mixing via degeneracy condition, while the other generates large mixing, we propose textures for this. Here too we can decomposition degenerate spectrum into 2 sub matrices

Mixing \Rightarrow	Small	Single maximal	Bimaximal	Tribimaximal
A: $\operatorname{Diag}[0,0,1]$	$\left(\begin{array}{ccc}0 & 0 & \epsilon_{13} \\ 0 & 0 & \epsilon_{23} \\ \epsilon_{13} & \epsilon_{23} & 1\end{array}\right)$	$\left(\begin{array}{llll}0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{2}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{llll}0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{2}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{2}{2} & \frac{1}{2}\end{array}\right)$
\mathbb{B}_{1} : $\operatorname{Diag}[1,-1,0]$	$\left(\begin{array}{ccc}1 & -2 \epsilon_{12} & -\epsilon_{13} \\ -2 \epsilon_{12} & -1 & \epsilon_{23} \\ -\epsilon_{13} & \epsilon_{23} & 0\end{array}\right)$	$\left(\begin{array}{cccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cccc}0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{2}} & 0 & 0\end{array}\right)$	
$\mathbb{B}_{2}: \operatorname{Diag}[1,1,0]$	$\left(\begin{array}{ccc}1 & 0 & -\epsilon_{13} \\ 0 & 1 & -\epsilon_{23} \\ -\epsilon_{13} & -\epsilon_{23} & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2}\end{array}\right)$
$\mathbb{C}_{0}: \operatorname{Diag}[1,1,1]$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
\mathbb{C}_{1} : $\operatorname{Diag}[-1,1,1]$	$\left(\begin{array}{ccc}-1 & 2 \epsilon_{12} & 2 \epsilon_{13} \\ 2 \epsilon_{12} & 1 \\ 2 \epsilon_{13} & 0 & 0 \\ 1 & & 1\end{array}\right)$	$\left(\begin{array}{cccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{ccc}-\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{3}{3} & \frac{1}{3} \\ -\frac{3}{3} & \frac{3}{3}\end{array}\right)$
$\mathbb{C}_{2}: \operatorname{Diag}[1,-1,1]$	$\left(\begin{array}{ccc}1 & -2 \epsilon_{12} & 0 \\ -2 \epsilon_{12} & -1 & 2 \epsilon_{23} \\ 0 & 2 \epsilon_{23} & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{cccc}0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cccc}\frac{1}{3} & -\frac{2}{3} & \frac{2}{2} \\ -\frac{1}{3} & \frac{3}{3} \\ \frac{2}{3} & \frac{3}{3} \\ \frac{3}{3} & \frac{1}{3}\end{array}\right)$
$\mathbb{C}_{3}: \operatorname{Diag}[1,1,-1]$	$\left(\begin{array}{ccc}1 & 0 & -2 \epsilon_{13} \\ 0 & 1 & -2 \epsilon_{32} \\ -2 \epsilon_{13} & -2 \epsilon_{23} & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$	$\left(\begin{array}{ccc}\sqrt{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$

