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Abstract

We propose a polarised intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a

pair of Hanbury Brown-Twiss (HB-T ) photons. The setup involves two polarised thermal sources illuminating two polarised de-

tectors. Varying the relative polarisation angle of the detectors introduces a two photon geometric phase. Local measurements

at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect.

The geometric phase sheds light on the three slit experiment and suggests ways of tuning entanglement.

Historic and Conceptual Background

◮ While Quantum Mechanics was born in the nineteen twenties, many significant conceptual and foundational developments
which stem from Quantum Mechanics emerged much later. The multiparticle effects in intensity interferometry were only
understood in the nineteen fifties, the Aharonov-Bohm effect in the sixties, entanglement, nonlocal correlations and Bell’s
inequalities were appreciated in the seventies and developments related to the geometric phase emerged in the eighties.

◮ The present poster weaves together these several conceptual strands into a single experimental proposal. It is an optical
analogue of the multiparticle nonlocal Aharonov-Bohm experiment which was reported by Neder et al., Nature, 448, 333,
2007 in the context of the Quantum Hall effect.

◮ In our proposed optics experiment, the arrival times of photons at two detectors show correlations (coincidence rates) which
are sensitive to a nonlocal, multiparticle geometric phase.

◮ It leads to the possibility of tuning the orbital entanglement of photons using this geometric phase. Interest in intensity
interferometry spans over different branches of physics ranging across nuclear and particle physics, astrophysics, optics
and condensed matter physics.

◮ It was only with the HB-T interferometer that the possibility of multiparticle correlations was appreciated. Similarly Berry’s
discovery of the geometric phase led to deeper understanding of wide range of phenomena in different areas of physics
starting from molecular physics to Quantum Field Theory.

◮ In the present work, we combine our understanding of the Pancharatnam’s geometric phase with that of intensity
interferometry to obtain a conceptually new result in optics.

Proposed Experiment

Slight modification of the HB-T Experiment
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◮ The experiment consists of having two thermal sources S1 and S2 illuminate two detectors D3 and D4. This setup is very
similar to the HB-T experiment. The only difference is in the use of analysers, which select a particular state of polarisation.

◮ The source S1 is covered by an analyser PR, which only permits Right Hand Circular light to pass through it, while the
source S2 is covered by an analyser PL, which only permits Left Hand Circular light to pass through.

◮ The light is incident on detectors D3 and D4 after passing through polaroids P3 and P4 respectively that only permit linearly
polarised light to pass through (linear analysers).

◮ The angle ϕ34 between the axes of P3 and P4 and the detector separation dD can be continuously varied in the experiment.

◮ The measured quantity is the coincidence count C of photons received at detectors D3 and D4,

C = G2 =
〈 N3N4 〉

〈 N3 〉〈 N4 〉
, (1)

where N3 and N4 are the photon numbers detected at D3 and D4 per unit time (per unit bandwidth).

◮ As in the HB-T interferometer, we would expect the coincidence counts to vary with the propagation phases and so the
counts would depend on the detector separation dD and the wavelength λ of the light. The new effect that is present in the
polarised version is that we expect the coincidence counts to also depend on φ34 and to be modulated by a geometric
phase of half the solid angle on the Poincaré sphere. The geometric phase is achromatic, unlike the propagation phases
mentioned above.

◮ Note that the path traversed on the Poincaré sphere is not traced by a single photon, but by a pair of HB-T photons. Thus
the experiment explores a new avatar of the geometric phase in the context of intensity interferometry.

Theory - Coincidence Counts and the Geometric Phase

Notation and simplifying assumptions
◮ quasi-monochromatic beam.

◮ l >> dS, dD.

◮ aα1 and aα2 : the destruction operators of the photon modes at the sources
S1 and S2 where α runs over the two polarisation states.
aα3 and aα4 : the destruction operators of the photon modes at detectors

◮ Modes just after the analysers : aαR = Pαβ
R aβ1 and aαL = Pαβ

L aβ2 where a sum
over repeated Greek indices is understood and the projection matrices PR and
PL onto the right and left circular states represent the action of the analysers.

◮ Propagation phases

uij =
1

l
exp

{

i[k(|~ri −~rj|) − ωt]
}

,

where ω is the frequency of the light, k is the wave vector and~ri and~rj the
locations of the detector and source.

◮ aαb (b = 3, 4) and its Hermitean conjugate a†α
b are then

aαb = Pαβ
b [ Pβγ

L aγ2 ub2 + Pβγ
R aγ1 ub1 ]

a†α
b = [ ūb2 a†γ

2 Pγβ
L + ūb1 a†γ

1 Pγβ
R ] Pβα

b ,

where the overbar stands for complex conjugation and we use the fact that the
2 × 2 Hermitean projection matrices P satisfy P2 = P and P̄αβ = Pβα.

PR

PL

P4 P3

Quantities of interest : 〈 N3 〉, 〈 N4 〉 and 〈 : N3N4 : 〉
◮ Nb = a†α

b aαb =
[

ūb2 a†α
2 (PLPb)

αβ + ūb1 a†α
1 (PRPb)

αβ
][

Pβγ
L aγ2 ub2 + Pβγ

R aγ1 ub1
]

= ūb1 ub1 (PRPbPR)αβ 〈 a†α
1 aβ1 〉 + ūb2 ub2 (PLPbPL)

αβ 〈 a†α
2 aβ2 〉 From the

thermal nature of the sources, 〈 a†α
1 aβ1 〉 = 〈 a†α

2 aβ2 〉 = δαβ nB where nB is the Bose function (exp{β~ω} − 1)−1 and β the inverse temperature. We obtain

〈 N3 〉 = 〈 N4 〉 =
nB

l2
(2)

.
◮ The computation of 〈 : N3N4 : 〉 is slightly more involved but straightforward. The product N3N4 is a product of four brackets each of which has two terms. When

the four brackets are expanded, there are sixteen terms, of which ten vanish. The six nonzero terms combine to give

〈 : N3N4 : 〉 = n2
B

[

3

2 l4
+ ū32 u31 ū41 u42 Tr [PLP3PRP4PL] + ū31 u32 ū42 u41 Tr [PRP3PLP4PR]

]

. (3)
Only the second and third terms in Eq. (3) contain the propagation and geometric phases.

◮ The sequence of projections can be viewed as a series of closed loop quantum collapses given by 〈 R | 3 〉〈 3 | L 〉〈 L | 4 〉〈 4 | R 〉

Tr [PRP3PLP4PR] =
1

4
exp

{

i
Ω

2

}

, (4)
where Ω is the solid angle subtended by the geodesic path | R 〉 → | 3 〉 → | L 〉 → | 4 〉 → | R 〉 at the center of the Poincaré sphere. Apart from the phase, the
projections also result in an amplitude factor of 1/4 since projections are non-unitary operations leading to a loss in intensity.

◮ The final theoretical expression for C in the limit l >> dS, dD is

C =
3

2
+

1

2
cos

[

~dD · (~k2 − ~k1) +
Ω

2

]

, (5)

where ~ki = k r̂i is the wavevector of light seen in the i th detector. (The propagation phases in Eq. (5) can also be written in an equivalent form with the sources
and detectors exchanged.).

◮ It is also easily seen that the self correlation 〈 : N3N3 : 〉 (〈 : N4N4 : 〉) can be obtained by replacing 4 by 3 (3 by 4) in Eq. (3) above. In this case, the sequence of
projections Tr [PRP3PLP3PR] (Tr [PRP4PLP4PR]) subtends a zero solid angle and the geometric contribution to the phase vanishes. Thus neither the photon
counts 〈 N3 〉, 〈 N4 〉 in individual detectors nor the self correlations 〈 : N3N3 : 〉, 〈 : N4N4 : 〉 reveal the geometric phase. This supports our claim that the effect
described here is only present in the cross-correlations and not in the self correlations.

◮ C depends on the experimentally tunable parameters dD and ϕ34. The geometric part is achromatic and depends only on ϕ34. The propagation part in the
phase carries the dependence on dD as well as on the wavelength. By changing the angle ϕ34 between the axes of the two polaroids, we can conveniently
modulate the geometric component Ω. If the propagation and geometric phases are set to zero, we find that the correlation C takes the value 2, just as in
original HB-T interferometry.

Conclusion and Further Implications

Final Remarks
◮ We have proposed a simple generalisation of the HB-T experiment

[Hanbury-Brown and Twiss, Nature 177, 27 (1956)] which uses the vector
nature of light to produce a geometric phase.

◮ The only difference between the proposed experiment and the
HB-T experiment is the presence of polarisers at the sources and detectors.
These polarisers cause a geometric phase to appear in the coincidence counts
of two detectors which receive linearly polarised light.

◮ Neither the count rates nor the self correlations of individual detectors show
any geometric phase effects. These appear solely in the cross correlations in
the count rates of the detectors.

◮ The appearance of the geometric phase cannot be attributed or localised to
any single segment joining a source (S1,S2) to a detector (D3,D4). It appears
only when one considers the two photon path on the Poincaré sphere in its
entirety.

◮ Our experiment brings out a new result of a conceptual nature, which may not
have been guessed without our present understanding of the Pancharatnam
phase. The experiment proposed here would be a good demonstration of a
purely multiparticle and nonlocal geometric phase in optics. We hope to
interest experimentalists in this endeavour.

◮ The ideas can be extended to other particles than photons such as neutrons,
electrons or neutrinos.

◮ Apart from verifying the theoretical expectation, our proposed experiment
suggests further lines of thought concerning multiparticle and nonlocal effects
which may be stimulating to research in this area. We mention two of these,
the first an application of our ideas to generating controlled entanglement and
the second of a more conceptual nature regarding the role of probabilities in
quantum mechanics.

Controlled entanglement via particle exchange
◮ Like many other elementary particles, the photon has spin (polarisation) as well as orbital

(spacetime) degrees of freedom. Our idea is to use the polarisation degree of freedom to
control the orbital entanglement of photons. Let us replace the two thermal sources by a single
two-photon source producing a pair of oppositely circularly polarised photons.

◮ Each photon is then passed through an interferometric delay line which consists of a short and
a long arm with time delays tS and tL.

◮ The relative amplitudes and phases of the two paths can be chosen to generate any state in
the two dimensional Hilbert space spanned by | S 〉 and | L 〉. By such means we can arrange
for the incident state at PR to be in a spin state of right circular polarisation and in an orbital
state |φ 〉1 = α| S 〉1 + β| L 〉1 and similarly, the incident state at PL to be in a spin state of left
circular polarisation and in an orbital state |ψ 〉2 = α′| S 〉2 + β′| L 〉2, where α, β etc are
complex numbers.

◮ The input state is therefore a direct product of states at PR and PL: |φ 〉1 ⊗ |ψ 〉2. By
combining the amplitudes for the two photons to arrive at the detectors via the paths
1 − 3, 2 − 4 and 1 − 4, 2 − 3 (direct and exchange) we find that the state at the output is of
the form |φ 〉3 ⊗ |ψ 〉4 + exp{iΩ/2} |ψ 〉3 ⊗ |φ 〉4, where the geometric phase factor
exp{iΩ/2} is the relative phase between the direct and exchange processes.

◮ This final two photon state is entangled as it cannot in general be written as a direct product
| Ψ 〉3 ⊗ | Φ 〉4 of photon states at 3 and 4.

◮ The entanglement is generated by particle exchange effects rather than interactions.
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Three slit experiment
◮ Two slit experiment : The outcome of the two-slit experiment is not determined by the outcome

of one-slit experiments in which one or the other of the slits is blocked. This is in sharp
contrast to classical random processes like Brownian motion. Thus classical probabilities are
one slit separable, but quantum probabilities are not !

◮ Three slit experiment : If we consider three slits A,B,C, we find that in quantum mechanics,
the outcome of the three-slit experiment is determined by the outcomes of the one and two slit
experiments i.e.,

PABC = PAB + PBC + PCA − PA − PB − PC ,

which follows easily from writing PABC = |ψA + ψB + ψC|2 and ψA, ψB, ψC are the amplitudes
for passage through the slits. Thus quantum mechanics is two slit separable. This is why we
do not find a discussion of the three slit experiment in elementary Quantum Mechanics books:
it brings in nothing new.

◮ Three slit experiment + multiparticle and nonlocal processes : Consider a three-slit experiment
in which three incoherent beams of light fall upon three slits A,B,C which are covered by
analysers PA,PB,PC each of which allows a single state on the Poincaré sphere to pass. The
light from the analysers is then allowed to fall on three unpolarised detectors labelled 4, 5, 6.
We find that the number correlations 〈 N4N5N6 〉 contain terms involving the geometric phase
(half the solid angle subtended by the three polarisation states A,B,C of the analysers). Such
an effect is not present in any of the two-slit or one-slit experiments, since two (or fewer) points
on the Poincaré sphere do not enclose a solid angle. The effect is a genuinely three slit effect,
not decomposable in terms of two and one slit effects.

◮ Thus quantum theory contains effects which are not two slit separable because of multiparticle
entanglement. Our three slit experiment involving the geometric phase brings out this point
forcefully.

◮ The question of whether a single particle crossing a barrier with slits obeys two slit separability
is ultimately an experimental one. The theoretical possibility of violations of two slit separability
in such experiments was noted by Sorkin [R. Sorkin, Mod. Phys. Lett A 9, 3119 (1994)], who
proposed that there may be theories going beyond quantum mechanics which admit such
effects. There have been attempts [U. Sinha, et al., Science 329, 418 (2009)] to search for
such effects in a three slit experiment using photons. Since these experiments are null
experiments, one has to be careful to rule out all possible three slit effects that are present due
to multiparticle entanglement.

◮ The experiment we propose here is just the simplest of a class of phenomena involving
multiparticle entanglement, nonlocality and the geometric phase.
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