Neutrino Detectors of the Future: A comparison table

Raj Gandhi 1 and Poonam Mehta 2

Harish - Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad - 211 019, India.

S Uma Sankar³

Department of Physics, Indian Institute of Technology, Powai, Mumbai - 400 076, India.

[Prepared for the INO Collaboration]

³email: uma@phy.iitb.ac.in

¹email: raj@mri.ernet.in

²email: mpoonam@mri.ernet.in

1 Introduction

This report summarizes the relevant information about neutrino detectors being constructed or being planned for the future, including their physics potential and timescale over which they aim to achieve their physics goals.

The solar and atmospheric neutrino anomalies can be elegantly explained in terms of oscillations among the three active neutrino flavours. The neutrino oscillation hypothesis received further boost from the results of the long baseline experiments KamLAND, with reactor $\bar{\nu}_e$ s as the source, and K2K, which used accelerator ν_{μ} s as the source.

The three neutrino flavours ν_e , ν_μ and ν_τ mix to form three mass eigenstates ν_i with masses m_i (i = 1, 2, 3). The mixing matrix, called the PMNS matrix, can be parametrised in terms of three mixing angles, $\theta_{12}, \theta_{13}, \theta_{23}$ and a CP violating phase $\delta_{\rm CP}$, as in the case of the CKM matrix of the quark sector. Neutrino oscillations depend only on mass-squared differences and hence it is not possible to measure the scale of neutrino masses in neutrino oscillation experiments. Tritium beta decay and neutrinoless double beta decay experiments can provide information on the neutrino mass scale. However the mass-squared differences $\Delta m_{32}^2 = m_3^2 - m_2^2$ and $\Delta m_{21}^2 = m_2^2 - m_1^2$, along with the mixing angles and the CP violating phase $\delta_{\rm CP}$, can be measured in long baseline neutrino oscillation experiments.

A physically well motivated form of PMNS matrix is [1]

$$U = U_{23}(\theta_{23})U_{\rm CP}(\delta_{\rm CP})U_{13}(\theta_{13})U_{12}(\theta_{12}),\tag{1}$$

where

$$U_{23}(\theta_{23}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$$
(2)

and

$$U_{\rm CP}(\delta_{\rm CP}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\delta_{\rm CP}} & 0 \\ 0 & 0 & e^{-i\delta_{\rm CP}} \end{pmatrix}.$$
 (3)

The matrices U_{13} and U_{12} can be written in analogy to U_{23} . The results of the CHOOZ experiment, in combination with the analysis of atmospheric neutrino anomaly, place a stringent bound [2, 3]

$$\sin^2 2\theta_{13} \le 0.2. \tag{4}$$

In the limit of small θ_{13} , it can be shown that

$$\Delta m_{32}^2 \simeq \Delta_{\rm atm} \quad \text{and} \quad \theta_{23} \simeq \theta_{\rm atm}$$
 (5)

$$\Delta m_{21}^2 \simeq \Delta_{\rm sol} \quad \text{and} \quad \theta_{12} \simeq \theta_{\rm sol},$$
 (6)

where Δ_{atm} and θ_{atm} are the mass-squared difference and mixing angle needed to resolve the atmospheric neutrino anomaly, under the assumption that only two flavours are involved in the oscillations. Δ_{sol} and θ_{sol} are also defined in a similar manner.

Presently Δ_{21} has been measured to significant precision by the KamLAND experiment but the accuracy on θ_{12} , from both KamLAND and solar neutrino experiments, is limited [4]

$$\Delta m_{21}^2 = (8.3 \pm 0.5) \times 10^{-5} \text{ eV}^2, \ 27^\circ \le \theta_{12} \le 41^\circ.$$
(7)

Furthur improvement in our knowledge of θ_{12} will require precision solar neutrino experiments. Analysis of atmospheric neutrino anomaly gives the bounds [5]

$$\Delta m_{32}^2 = (1.5 - 3.4) \times 10^{-3} \text{ eV}^2, \ 36^\circ \le \theta_{12} \le 54^\circ.$$
(8)

The goals of long baseline experiments are

- 1. Verifying the oscillation hypothesis directly by observing the energy dependence of the neutrino survival probability,
- 2. Improving the precision of Δm_{32}^2 and θ_{23} and
- 3. Obtaining, if possible, proof for non-zero values of θ_{13} and δ_{CP} . If not, then seek to improve the bounds on them.

2 Sources

Below we give brief descriptions of the types of neutrino sources already available and/or being considered.

- 1. <u>Atmospheric</u>: Atmospheric neutrinos consist of ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} and $\bar{\nu}_{e}$ with fairly well understood fluxes. These neutrinos are produced in the decays of muon, pions and kaons produced in the interactions of cosmic rays with atmospheric nuclei. We expect the total number of muon-type neutrinos to be twice as large as the total number of electron-type neutrinos. The energies of these neutrinos can range from 100 MeV to 100 GeV, though the flux falls steeply as $E^{-2.7}$ for energies above 1 GeV.
- 2. <u>Conventional Beams</u>: Conventional beams are essentially beams of ν_{μ} with small (less than 1 %) contamination of other flavours. The ν_e contamination of the beam limits the experiment's ability to observe ν_e appearance and hence to measure θ_{13} . To produce conventional neutrino beams, a beam of high energy protons is directed to a target, the resulting positively charged pions are collected, focussed and allowed to decay in a long decay pipe. After this decay, a reasonably collimated muon neutrino beam is obtained. A muon anti-neutrino beam can be obtained by collecting negatively charged mesons rather than positively charged mesons. Fluxes of neutrino beams are parametrized in terms of number of protons on target (POT) per year. Conventional beams have POT of about 10²⁰ per year.
- 3. <u>Superbeam</u>: Superbeams are technology upgraded versions of conventional beams. Neutrinos in superbeams are generated by the using the "off-axis technology" to produce a narrow band beam, *i.e.*, the energy spectrum has a sharp peak. However, the proton fluxes are expected to higher by a factor of 10 to 50. The source power for superbeams is $\simeq 10^{21}$ POT per year.

4. <u>Neutrino Factories</u>: These are based on muon storage rings where it will be possible to capture roughly 10^{20} muons (of either sign) per year. A muon storage ring has a racing track design with long, parallel, straight sections connected at the end by semi-circular sections. Beams of high energy accelerated muons (E ~ 20 to 50 GeV) circulate in the storage ring and can be made to decay in the straight sections. These decays produce a well collimated and intense neutrino beam. The composition and spectra of intense neutrino beams will be determined by the charge, momentum and polarization of the stored muons. The beam consists of ν_{μ} and $\bar{\nu}_{e}$ if the ring contains μ^{-} , and it consists of $\bar{\nu}_{\mu}$ and ν_{e} if the ring contains μ^{+} .

3 Detector types

Below we give a brief description of the types of detectors and their main properties.

- 1. <u>Water Cerenkov Detector</u>: Highly purified water is used as the detecting element. High energy charged particles passing through the water produce Cerenkov light which is detected by Photo Multiplier Tubes (PMTs) surrounding the water. Based on the patter of Cerenkov light emission, these detectors can identify both electrons/positrons and muons/antimuons. Energy reconstruction of very high energy ($E_{\nu} \geq 5 \text{ GeV}$) is difficult because of a large number of particles in the hadron shower produced in the deep inelastic scattering, many of which will be below their Cerenkov threshold. There is no magnetic field with these detectors and hence the charge of a particle can not be identified.
- 2. <u>Liquid Argon Detector</u>: Liquid Argon is used as the detecting medium. The tracks produced by charged particles are identified in the liquid and based on the pattern of tracks the particle is identified. The detector has good calorimetry along with excellent particle identification capability. There is no magnetic field hence it is not possible to distinguish between particles and corresponding anti-particles.
- 3. <u>Iron Calorimeter</u>: Iron Calorimeters consist of iron (steel) modules interspersed with sensitive elements in which charged particles deposit energy. These detectors can not be used to detect electron-type neutrinos and hence are capable of observing only ν_{μ} and $\bar{\nu}_{\mu}$. A magnetic field, however, can be added, in which case distinction between the produced $\mu^$ and μ^+ is possible.
- 4. <u>Emulsion Detector</u>: In this detector emulsion films (50 μ m thick) are employed to observe the trajectories of τ and its decay products. These films are interleavened with 1 mm thick lead plates to provide a large (1.8 ktons) target mass. In addition to the emulsion films, the detector also contains a magnetic spectrometer which measures the charge and the momentum of muons going through it.

References

- [1] T. K. Kuo and J. Pantaleone, Rev. Mod. Phys. **61** 937 (1989).
- [2] CHOOZ Collaboration: M. Appolonio *et al*, Phys. Lett. **420B**, 397 (1998), Phys. Lett. **466B**, 415 (1999).
- [3] M. Narayan, G. Rajasekaran and S. Uma Sankar, Phys. Rev. D58, 031301 (1998).
- [4] J. N. Bahcall, M. C. Gonzalez-Garcia and C. Pena-Garay, Solar Neutrinos Before and After Neutrino-2004, [hep-ph/0406294].
- [5] SUPER-KAMIOKANDE collaboration, Y. Ashie *et. al*, A measurement of Atmospheric Neutrino Oscillation Parameters by Super-Kamiokande, [hep-ex/0501064].
- [6] P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Prospects of accelerator and reactor neutrino oscillation experiments for the coming ten years, [hep-ph/0403068];
 P. Huber, M. Lindner, M. Rolinec, T. Schwetz and W. Winter, Combined potential of future long-baseline and reactor experiments, [hep-ph/0412133];
 A. Rubbia, Neutrino detectors for future experiments, [hep-ph/0412230].
- [7] M. Thomson, Status of NuMI/MINOS, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/;
 P. Shanahan, Status and prospects of the MINOS experiment, Eur. Phys. J. C 33, s834 (2004).
- [8] A. Bueno, The ICARUS Project, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/; J. Lagoda, ICARUS and its applications for studies of neutrino interactions and proton decay, talk at The 4th International Conference on non-accelerator new physics (NANP 2003), see http://nanp.dubna.ru/2003/; D. Duchesneau, [hep-ex/0209082].
- [9] D. Autiero, OPERA, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/;
 M. Dracos, Status of OPERA experiment, talk at The 4th International Conference on nonaccelerator new physics (NANP 2003), see http://nanp.dubna.ru/2003/;
 D. Duchesneau, [hep-ex/0209082].
- [10] Y. Hayato, T2K (Tokai to Kamioka) long baseline neutrino experiment at JPARC, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/;
 Y. Itow et al., The JHF-Kamioka neutrino project, [hep-ex/0106019]; Letter of Intent : Neutrino Oscillation Experiment at JHF (2003), see http://neutrino.kek.jp/jhfnu/

[11] NOVA collaboration, I. Ambats et al., NOvA: Proposal to Build an Off-Axis Detector to Study muon-netrino → electron-neutrino Oscillations in the NuMI Beamline, FERMILAB-PROPOSAL-0929, see http://library.fnal.gov/archive/test-proposal/0000/fermilab-proposal-0929.shtml/; NOVA collaboration, D. Ayres et al., Letter of intent to build an off-axis detector to study

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillations with the NuMI neutrino beam, [hep-ex/0210005], see http://www-off-axis.fnal.gov/;

A. Weber, The NuMI off-axis long baseline experiment, Eur. Phys. J C 33, s843-s845 (2004);
M. Messier, NuMI - Off axis, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/

[12] L. Oberauer, θ_{13} measurements with reactors, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/;

T. Lasserre, θ_{13} measurement with the Double-Chooz experiment, talk at The 5th workshop on Neutrino Oscillations and their Origin, see http://www-sk.icrr.u-tokyo.ac.jp/noon2004/; K. Anderson *et al.*, White paper report on using nuclear reactors to search for a value of theta(13), [hep-ex/0402041].

Kam-Biu Luk, Determining θ_{13} using Nuclear Reactors, talk at International Conference on High Energy Physics, (ICHEP-05), Paris, August 16-23, 2004, see http://ichep04.ihep.ac.cn/. This review discusses all the present proposals for measuring θ_{13} using reactor $\bar{\nu}_e$ s.

[13] H. Gallagher, Other atmospheric Neutrino Experiments : (past) - present - and future, talk at XXIst International Conference on Neutrino Physics and Astrophysics (Neutrino-2004), Paris, June 14-19, 2004, see http://neutrino2004.in2p3.fr/;

T. Kajita, Future Atmospheric neutrino oscillation experiments, talk at The 5th workshop on Neutrino Oscillations and their Origin (NOON-2004), see http://www-sk.icrr.utokyo.ac.jp/noon2004/;

H. Back *et al.*, Report of the solar and atmospheric neutrino experiments working group of the APS multidivisional neutrino study, [hep-ph/0412016].

[14] Expression of Interest for the Study of Nucleon Decay and Neutrino Physics Using a Large Underground Water Cherenkov Detector, see

http://ale.physics.sunysb.edu/uno/publications.shtml/;

Physics potential and feasibility of UNO (The UNO whitepaper), SBHEP01-3 (June 2001), edited by D. Casper, C. K. Jung, C. McGrew, C. Yanagisawa, see http://ale.physics.sunysb.edu/uno/publications.shtml/;

C. K. Jung, Feasibility of a next generation underground Water Cherenkov detector: UNO [hep-ex/0005046];

Next Generation Nucleon Decay and Neutrino Detector, AIP Conf. Proc. **533** (2000), edited by M. V. Diwan and C. K. Jung.

[15] K. Nakamura, Next-Generation Water Cerenkov detectors (I) : Hyper-Kamiokande, talk at Conference on Neutrinos and Implications for Physics Beyond the Standard Model, C. N. Yang Institute for theoretical physics, SUNY, Stony Brook, Oct 11-13, 2002, see http://insti.physics.sunysb.edu/itp/conf/neutrino/talks/nakamura.pdf

[16] See http://www.imsc.res.in/~ino and working reports and talks therein.

[17] Tests of CPT using atmospheric neutrinos in an iron calorimeter detector have been discussed in A. Datta, R. Gandhi, P. Mehta and S. Uma Sankar, Atmospheric Neutrinos as a probe of CPT and Lorentz Violation, Phys. Lett. B 597, 356-361 (2004) [hep-ph/0312027];

D. Indumathi and M. V. N. Murthy, A question of hierarchy: Matter effects with atmospheric neutrinos and anti-neutrinos, Phys. Rev. D **71**, 013001 (2005) [hep-ph/0407336];

R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S. Uma Sankar, Large matter effects in $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations, Phys. Rev. Lett. **94**, 051801 (2005) [hep-ph/0408361];

R. Gandhi, P. Mehta and S. Uma Sankar, *Matter effects in atmospheric* μ^-/μ^+ events, A note prepared for solar and atmospheric working group of American Physical Society, HRI-P-04-10-001;

R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta and S. Uma Sankar, *Earth matter effects at very long baselines and the neutrino mass hierarchy*, [hep-ph/0411252].

General features of future detectors

Expt.	Detector	Source	L	$< E_{\nu} >$	Location
	(mass)		(Km)	(GeV)	
MINOS [6, 7]	Iron Calorimeter (5.4 Kt)	Atmospheric Conventional Beam	15-13000 735	$ \begin{array}{c} 1-100 \\ 3, \sim 8, \sim 11 \end{array} $	Soudan, US
ICARUS [6, 8]	Liquid Argon TPC (2.35 Kt)	Conventional Beam	732	17	LNGS, Europe
OPERA [6, 9]	Emulsion Cloud Chamber (1.65 Kt)	Conventional Beam	732	17	LNGS, Europe
T2K [10]	Water Cerenkov (50 Kt)	Superbeam (Off-axis)	295	0.76	Kamioka, Japan
ΝΟ ν Α [11]	Liquid Scintillator (50 Kt)	Superbeam (Off-axis)	812	2.22	US
D-CHOOZ [12]	Liquid Scintillator (11.3 t)	Reactor	1.05	0.004	France
SK-III [13]	Water Cerenkov (50 Kt)	Atmospheric Superbeam	15-13000 295	1-100 0.76	Japan
UNO [14]	Water Cerenkov (1 Mt)	Atmospheric Superbeam	$15-13000 \\ \sim 2500$	$1-100 \\ \sim 0.5-7$	US
Hyper-K [15]	Water Cerenkov (1 Mt)	Atmospheric Superbeam	15-13000 295	1-100 4.0	Japan
INO [16, 17]	Iron Calorimeter (50 - 100 Kt)	Atmospheric Superbeam/NF	15-13000 TBD	1-100 TBD	India

$\ensuremath{\text{TBD}}\xspace \to \ensuremath{\text{To}}\xspace$ be decided.

Table 1: Detector type, neutrino source, baseline (L), average energy ($\langle E_{\nu} \rangle$) and location of the future experiments planned in next 10-15 years.

Physics Potential and Timescale of future detectors

Expt.	Channel	Physics Potential	Data taking/ Partial results*
MINOS [6, 7]	$ u_{\mu} \rightarrow \nu_{\mu,e} $	Atm: Compare ν_{μ} and $\bar{\nu}_{\mu}$ osc. : CPT test Beam: $ \Delta m_{32}^2 \sim 12\%$, $\sin^2 \theta_{23} \sim 38\%$ precision** Improve $\sin^2 2\theta_{13} \sim$ factor of 2 over CHOOZ	$\frac{\text{Started}/2007}{2005/2007}\\2005/2007$
ICARUS [6, 8]	$ u_{\mu} \rightarrow \nu_{e,\mu,\tau} $	Beam: τ, e appearance, proton decay $ \Delta m_{32}^2 , \sin^2 \theta_{23}, \sin^2 2\theta_{13}$ precision as in MINOS Possible Atmospheric ν , Supernova ν	$\begin{array}{c} 2005/2009 \\ 2005/2009 \\ 2005/? \end{array}$
OPERA [6, 9]	$ u_{\mu} \rightarrow \nu_{e,\mu,\tau} $	Beam: τ, e appearance, proton decay $ \Delta m_{32}^2 , \sin^2 \theta_{23}, \sin^2 2\theta_{13}$ precision as in MINOS	$\frac{2006/2010}{2006/2010}$
T2K [10]	$ u_{\mu} \rightarrow \nu_{e,\mu} $	Beam: <i>e</i> appearance $ \Delta m_{32}^2 \sim 6\%, \sin^2 \theta_{23} \sim 22\%$ precision** Improve $\sin^2 2\theta_{13} \sim$ factor of 6 over CHOOZ CP Violation, Proton decay (phase II)	2009/2014 2009/2014 2009/2014 2017/2018
ΝΟνΑ [11]	$ u_{\mu} \rightarrow \nu_{e,\mu} $	Beam: e appearanceImprove $\sin^2 2\theta_{13} \sim$ factor of 6 over CHOOZSign Δm_{32}^2 , CP Violation $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance : CPT test, θ_{23} Search for sterile ν	$\begin{array}{c} 2011/2012\\ 2011/2012\\ 2011/2017\\ 2011/2012\\ 2011/2012\\ 2011/2012\end{array}$
D-CHOOZ [12]	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	Beam: $\sin^2 2\theta_{13} < 0.03$, at 90% CL Improve $\sin^2 2\theta_{13} \sim$ factor of 4 over CHOOZ	2007/2010 2007/2010
SK-III [13]	$ u_{\mu} \rightarrow \nu_{e,\mu} $	Atm: $ \Delta m_{32}^2 \sim 10\%$, $\sin^2 \theta_{23} \sim 20\%$ precision ^{**} Improve $\sin^2 2\theta_{13} \sim \text{factor of } 2.3 \text{ over CHOOZ}^{**}$	2006/2016 2006/2016
UNO [14]	$ u_{\mu} \rightarrow \nu_{e,\mu,\tau} $	Atm: Possible τ appearance, L/E dip Beam: Sign Δm_{32}^2 , sin ² θ_{13} to below 0.005 $\nu_{\mu} \rightarrow \nu_e$ appearance : Δm_{21}^2 , θ_{12} Proton decay, Supernova ν	2017/2018 2017/2018 2017/2018 2017/?
Нурег-К [15]	$ u_{\mu} \rightarrow \nu_{e,\mu,\tau} $	$\begin{array}{l} {\rm Atm:} \ {\rm Possible} \ \tau \ {\rm appearance,} \ {\rm L/E} \ {\rm dip} \\ {\rm Beam:} \ \sin^2 \theta_{13} \ {\rm sensitivity} \ {\rm below} \ 10^{-3} \\ {\rm Sign} \ \Delta m^2_{32}, \ \delta_{CP} \\ {\rm Proton} \ {\rm decay,} \ {\rm Supernova} \ \nu \end{array}$	2017/2018 2017/2018 2017/2018 2017/?
INO [16, 17]	$ u_{\mu} ightarrow u_{\mu}$	Atm: L/E dip, CPT test Sign Δm_{32}^2 $ \Delta m_{32}^2 $, sin ² θ_{23} precision as in MINOS Beam: $ \Delta m_{32}^2 $, sin ² θ_{23} , sin ² $2\theta_{13}$ precision, δ_{CP}	2008/2011 (50 Kt) 2008/2015 (100 Kt) 2008/2012 (100 Kt) TBD/+1 Year

 $* \rightarrow$ Estimated $** \rightarrow$ Precision at 3σ (total spread around central value) TBD \rightarrow To be decided.

Table 2: Physics potential and timescale estimated for the various neutrino experiments planned in next 10-15 years.