Publications

of

Prof. Rama Kant

 

 

 

 

 

 

 

 

 

 

Theoretical Electrochemistry

Semi-Quantum Mechanical Models

 

Work Function, Potential of Zero Charge, Electron Transfer Model at Nanostructured Electrode, Jellium Model for Curved Nanostructures, Electronic Capacitance & Work function, Wetting through Quantum Fluids

 

1.    Theory for Outer Sphere Electron Transfer Coupled with Ion Transfer Kinetics on Atomically Stepped Metal, Neha and R. Kant, 2024, J. Phys. Chem. C, in press.

 

2.    Theory for Heterogeneous Electron Transfer Kinetics on Nanocorrugated Atomic Stepped Metal Electrodes, R. Kant and G. K. Mishra, J. Phys. Chem. C, 127, 2023, 6884-6899. (+Supporting Information)

 

3.    Semi-microscopic Theory for Current Rectification Phenomenon in Nanogap Molecular Devices, G. K. Mishra and R. Kant, J. Phys. Chem. A, 127, 2023, 3048.

 

4. Theory for nanoscale curvature induced enhanced inactivation kinetics of SARS-CoV-2, R. Kant, G. K. Mishra and Neha, Nanoscale, 2022

 

5. Theory for Potential of Zero Charge and Capacitance on Metal with Nanocorrugated Steps, G. K. Mishra and R. Kant , J. Physical Chemistry C, 2021, 125, 25774−25783 (+Supporting Information) https://doi.org/10.1021/acs.jpcc.1c05941

 

6.    Theory for Influence of Metal Electrolyte Interface on Heterogeneous Electron Transfer Rate Constant: Fractional Electron Transferred Transition State Approach, R. Kant , J. Kaur and G. Mishra, J. Physical Chemistry C, 2020, 124, 2273-2288. (+Supporting Information)

 

7.    Model of Local Work Function and PZC for Molecular Self Assembly over Nanostructured Metal Electrode. J. Kaur and R. Kant, J. Physical Chemistry C, 2018, 122, 911-918. DOI: 10.1021/acs.jpcc.7b10696.

 

8.   Theory of Work Function and Potential of Zero Charge for Metal Nanostructured and Rough Electrodes J. Kaur and R. Kant, J. Phys. Chem. C., 2017,121, 13059-13069. DOI: 10.1021/acs.jpcc.7b03595.

 

9.   Curvature-Induced Anomalous Enhancement in the Work Function of Nanostructures, J. Kaur and R. Kant, J. Phys. Chem. Lett., 2015, 6, 2870-2874.

 

10.                Shape and Size Dependent Electronic Capacitance in Nanostructured Materials, M. Birla Singh and R. Kant, Proc. R. Soc. A, 2013, 469, 20130163; doi:10.1098/rspa.2013.0163.

 

11.                Josephson Droplets, C. Gay, P. -G. de Gennes and R. Kant, Euro. Phys. Lett., 1996, 34, 581-586.

 

Phenomenological and Statistical Approach

 

Fundamental Electrochemistry for Transient Response of Heterogeneous, Randomly Disordered and Fractal Systems: Diffusion, Migration, Adsorption and Kinetics

 

 

12. Editorial overview: Fundamental and theoretical electrochemistry (2022) as a tool for developing electrochemical science and technology. R. Kant and M. V. Sangaranarayanan, 2022, Curr. Opin. Electrochem. 36, 101162.

https://doi.org/10.1016/j.coelec.2022.101162

 

13. Theory for Diffusion: Migration Coupling-Induced Cathodic and Anodic Current Anomaly, R. Kant and Prerna, 2022, J. Phys. Chem. C. 126, 19035–19046.

https://doi.org/10.1021/acs.jpcc.2c04796

 

14. R. Kumar, H. Goel, S. K. Jha and R. Kant, 2022, Single potential step chronoamperometry for EC' reaction at rough electrodes: Theory and experiment, J. Electroanalytical Chemistry, 905, 115899. (+Supporting Information) https://doi.org/10.1016/j.jelechem.2021.115899

 

15. Semi-Microscopic Theory for Underscreening induced Anomalous Migration-Diffusion Coupling, R. Kant and N. Goswami, 2021, J. Phys. Chem. C, 125, 13677-13687. https://doi.org/10.1021/acs.jpcc.1c03316

 

16. Theory for influence of ohmic resistance and electrode roughness on admittance voltammetry of reversible E and EE reactions, M. Kumar and R. Kant, 2021, 898, 115601. https://doi.org/10.1016/j.jelechem.2021.115601

 

17. Theory for Influence of Uncompensated Solution Resistance on EIS of Diffusion Limited Adsorption at Rough Electrode, S. Srivastav, M. Kumar and R. Kant, 2021, Journal of Chemical Sciences, 133 (2), 1-13. (+Supporting Information) https://doi.org/10.1007/s12039-021-01901-w

 

18. Influence of Electrode Roughness on DC Biased Admittance of Quasi-reversible Charge Transfer with Uncompensated Solution Resistance, M. Kumar, S. Srivastav and R. Kant, 2020, J. Electroanalytical Chemistry, 877, 114609 (+Supporting Information) https://doi.org/10.1016/j.jelechem.2020.114609

 

19. Theory for Admittance Voltammetry of Reversible Two Step Electron Transfer Process with DC Bias at Rough and Fractal Electrode, M. Kumar, G. K. Mishra and R. Kant, 2019, Electrochimica Acta, 327, 135024.

 

20. Theory for local EIS at rough electrode under diffusion controlled charge transfer: Onset of whiskers and dendrites, S. Dhillon, N. Goswami and R. Kant, 2019, J. Electroanalytical Chemistry, 840, 193-207.

 

21. Theory of Generalized Gerischer Impedance for Quasi-reversible Charge Transfer at Rough and Finite Fractal Electrodes, N. R. Chowdhury and R. Kant, 2018, Electrochimica Acta, 2018, 281, 445-458.

 

22. Theory of Electrochemical Chronocoulometry of a Pseudo First Order Catalytic Process at a Rough Electrode, Md. Merajul Islam and R. Kant, J. Indian Chem. Soc., 2017, 94, 1279-1290 (Acharya J. C. Ghosh Memorial Lecture -2016, Convention Special Issue-2017).

 

23. Theory for the Chronopotentiometry on Rough and Finite Fractal Electrode: Generalized Sand Equation, N. R. Chowdhury, R. Kumar, R. Kant, J. Electroanalytical Chemistry, 2017, 802, 64-77.

 

24. Theory for Electrochemical Impedance Spectroscopy of Heterogeneous Electrode with Distributed Capacitance and Charge Transfer Resistance, S. Dhillon and R. Kant, J. Chem. Sci., 2017, 129, 1277-1292.

 

25. Theory of the Electrochemical Impedance of Mesostructured Electrodes Embedded with Heterogeneous Micropores, R. Kant and M. B. Singh, 2017, J. Phys. Chem. C, 2017, 121, 7164-7174.

 

26. General Theory for Pulse Voltammetric Techniques at Rough Electrodes: Multistep Reversible Charge Transfer Mechanism, Parveen and R. Kant, 2016Electrochimica Acta, 220, 475-485.

 

27. Electrode Disorder, Electrochemical Processes and Governing Length Scales (Invited Review), R. Kant, S. Dhillon and J. Kaur, 2016, Journal of the Indian Institute of Science, 96:4, 365-382. (Special issue on Materials Electrochemistry, Electrochemical Processes and Systems)

 

28. General Theory for Pulse Voltammetric Techniques on Rough and Finite Fractal Electrodes for Reversible Redox System with Unequal Diffusivities, Parveen and R. Kant, 2016Electrochimica Acta, 194, 283-291.

 

29. Theory for Cyclic Staircase Voltammetry of Two Step Charge Transfer Mechanism at Rough Electrodes Parveen and R. Kant, 2016J. Phys. Chem. C, 120, 4306-4321.

 

30. Influence of Uncompensated Solution Resistance on Diffusion Limited Chronocoulometric Response at Rough ElectrodeS. Srivastav and R. Kant, 2015Electrochimica Acta, 180, 208-217.

 

31. Anomalous Localization of Electrochemical Activity in Reversible Charge Transfer at Weierstrass Fractal Electrode: Local Electrochemical Impedance Spectroscopy, R. Kant, S. Dhillon and R. Kumar, 2015, J. Phys. Chem. B, 119,10876-10887, DOI:10.1021/jp512297f. (*Biman Bagchi Festschrift*)

 

32. Generalization of Randles - Ershler Admittance for Arbitrary Topography Electrode: Application to Random Finite Fractal Roughness, R. Kant and M. B. Singh, Electrochimica Acta, 2015, 163, 310-322, DOI: 10.1016/j.electacta.2015.02.107.

 

33. Theory for Anomalous Response in Cyclic Staircase Voltammetry : Electrode Roughness and Unequal Diffusivities, Parveen and R. Kant, 2014, J. Phys. Chem. C, 2014, 118, 26599-26612.

 

34. Theory of Anomalous Electric Double Layer Dynamics in Ionic Liquids, M. Birla Singh and R. Kant, J. Phys. Chem. C2014, 118, 8766-8774, DOI: 10.1021/jp500383p.

 

35. Theory of Anomalous Dynamics of Electric Double Layer at Heterogeneous and Rough Electrodes, M. Birla Singh and R. Kant, J. Phys. Chem. C2014, 118, 5122-5133.

 

36. Theory of Double Potential Step Chronoamperometry at Rough Electrodes: Reversible Redox Reaction and Ohmic Effects, S. Dhillon and R. Kant, Electrochimica Acta, 2014, 129, 245-258.

 

37. Theory of single potential step absorbance transient at an optically transparent rough and finite fractal electrode: EC' mechanism, R. Kant and Md. M. Islam, J. Electroanal. Chem., 2014, 713, 82-90. (downloaded or viewed 133 times since publication till Sept 2014)

 

38. Anomalous response of nanostructured electrochemical capacitors: Theoretical aspects, R. Kant and M. B. Singh, 2014, in conference proceeding of Eleventh ISEAC International Discussion Meet on Electrochemistry and its Applications, Eds. S.K.Aggarwal et al; ISEAC-2014, pp 3-6.

 

 

39. Influence of electrode roughness on electroanalysis with single current step chronopotentiometry, N. R. Chowdhury, S. Dhillon and R. Kant, 2014, in conference proceeding of Eleventh ISEAC International Discussion Meet on Electrochemistry and its Applications, Eds. S.K.Aggarwal et al; ISEAC-2014, pp 117-118.

 

40. Generalization of Gouy-Chapman-Stern model of electric double layer for a morphologically complex electrode: Deterministic and stochastic morphology, R. Kant and M. Birla Singh, Phys. Rev. E, 2013, 88, 052303 (16 pages).

 

41. Theory for Staircase Voltammetry and Linear Scan Voltammetry on Fractal Electrodes: Emergence of Anomalous Randles- Sevcik Behavior, Parveen and R. Kant, Electrochimica Acta, 2013, 111, 223-233. DOI: 10.1016/j.electacta.2013.07.163 (downloaded or viewed 433 times since publication)

 

42. Debye-Falkenhagen Dynamics of Electric Double Layer in Presence of Electrode Heterogeneities, M. Birla Singh and R. Kant, J. Electroanal. Chem., 2013, 704, 197-207.

 

43. Admittance of Diffusion Limited Adsorption Coupled to Reversible Charge Transfer on Rough and Finite Fractal Electrodes, Rajesh Kumar and R. Kant, Electrochimica Acta, 2013, 95, 275-287. DOI: 10.1016/j.electacta.2013.02.021

 

44. Effect of Uncompensated Solution Resistance on Quasireversible Charge Transfer at Rough and Finite Fractal Electrode, R. Kant, M. Sarathbabu and S. Srivastav, Electrochimica Acta, 2013, 95, 237-245. DOI: 10.1016/j.electacta.2013.02.010

 

45. EIS of Disordered Electrodes: Theoretical Aspects, R. Kant and Rajesh Kumar, in Proceeding of Fifth ISEAC Triennial International Conference an Advances and Recent Trends in Electrochemistry, 2013, Eds. S.K. Aggarwal et al; ELAC-2013, pp 118-123.

 

46. Theory of double potential step chronoamperometry at rough and finite fractal electrode, Shweta Dhillon and R. Kant, in Proceeding of Fifth ISEAC Triennial International Conference an Advances and Recent Trends in Electrochemistry, 2013, Eds. S.K. Aggarwal et al; ELAC-2013, pp 321-324.

 

  1. Theory of potential dependant EIS in moderately supported medium at rough and finite fractal electrode, S. Srivastav, R. Kant, in Proceeding of Fifth ISEAC Triennial International Conference an Advances and Recent Trends in Electrochemistry, 2013, Eds. S.K. Aggarwal et al; ELAC-2013, pp 325-328.

 

48. Theory of Quasi-Reversible Charge Transfer Admittance on Finite Self-Affine Fractal Electrode, R. Kumar, R. Kant, 2011, Electrochimica Acta, 56, 7112-7123. DOI: 10.1016/j.electacta.2011.05.092

 

49. Anomalous Warburg Impedance: Influence of Uncompensated Solution Resistance, S. Srivastav, R. Kant, J. Phys. Chem. C, 2011, 115, 12232-12242.

 

50. Generalization of the Anson Equation for Fractal and Nonfractal Rough Electrodes, Md. M. Islam, R. Kant, Electrochimica Acta, 2011, 56, 4467- 4474.

 

51. Theory of Absorbance Transients of an Optically Transparent Rough Electrode, R. Kant, Md. M. Islam, J. Phys. Chem. C, 2010, 114, 19357-19364.

 

  1. Theory of Potentiostatic Current Transients for Coupled Catalytic Reaction at Random Corrugated Fractal Electrode, S. K. Jha, R. Kant, Electrochimica Acta, 2010, 56, 7266-7275.

 

  1. General Theory of Arbitrary Potential Sweep Methods on an Arbitrary Topography Electrode and Its Application to Random Surface Roughness, R. Kant, J. Phys. Chem. C, 2010, 114, 10894.

 

  1. Theory of Generalized Cottrellian Current at Rough Electrode with Solution Resistance Effects, S. Srivastav and R. Kant, J. Phys. Chem. C, 2010, 114, 10066.

 

  1. Theory of partial diffusion-limited interfacial transfer/reaction on realistic fractals, S. K. Jha, and R. Kant, J. Electroanal. Chem., 2010, 641, 78.

 

  1. Theory of Generalized Gerischer Admittance of Realistic Fractal Electrode, R. Kumar and R. Kant, J. Phys. Chem. C, 2009, 113, 19558.

 

  1. Generalized Warburg impedance on realistic self-affine fractals: Comparative study of statistically corrugated and isotropic roughness, R. Kumar and R. Kant, J. Chem. Sci., 2009, 121, 579 (Issue dedicated in memory of Late Professor S K Rangarajan).

 

  1. Theory of Anomalous Diffusion Impedance on Realistic Fractal Electrodes, R. Kant, R. Kumar and V. K. Yadav, J. Phys. Chem. C (Lett.), 2008, 112, 4019.

 

  1. Diffusion Controlled Potentiostatic Current Transients on Realistic Fractal Electrodes, S. K. Jha, A. Sangal and R. Kant, J. Electroanal. Chem., 2008, 615, 180.

 

60. Analysis of Potentiostatic Current Transients Responses for Nano and Micro Scale Rough Electrode, S. K. Jha and R. Kant, in conference proceeding of International Conference on ElectroAnalytical Chemistry and Allied Topics, Eds. S.K.Aggarwal et al; ISEAC-2007, pp 262-266.

 

  1. Theory of Anomalous Diffusive Reaction Rates on Realistic Self-Affine Fractals, R. Kant and S. K. Jha, J. Phys. Chem. C (Lett.), 2007, 111, 14040.

 

  1. Effect of Surface Roughness on Interfacial Reaction-Diffusion Admittance. R. Kant and S. K. Rangarajan, J. Electroanal. Chem., 2003, 552, 141.

 

  1. Diffusion-Limited Reaction Rates on Self-Affine Fractals, R. Kant, J. Phys. Chem. B, 1997, 101, 3781.

 

  1. Diffusion to Rough Interfaces: Finite Charge Transfer Rates, R. Kant and S. K. Rangarajan, J. Electroanal. Chem., 1995, 396, 285.

 

  1. Effect of Surface Roughness on the Admittance Analysis, R. Kant, S. K. Rangarajan, Trans. SAEST, 1994, 29, 216.

 

  1. Can One Electrochemically Measure the Statistical Morphology of a Rough Electrode? , R. Kant, J. Phys. Chem., 1994, 98, 1663.

 

  1. Effect of Surface Roughness on Diffusion-Limited Charge Transfer, R. Kant and S. K. Rangarajan, J. Electroanal. Chem., 1994, 368, 1.

 

  1. Can Current Transients be affected by the Morphology of the Nonfractal Electrode? , R. Kant, Phys. Rev. Lett., 1993, 70, 4094.

 

  1. Pade Approach to Potential Transients: Part I. Electron Transfer Without and With Coupling to First-Order Homogeneous Reactions at Planar Electrodes, R. Kant and S. K. Rangarajan, J. Electroanal. Chem., 1990, 277, 19.

 

  1. Chronopotentiometry with Power-Law Perturbation Functions at an Expanding Plane Electrode with and without a Preceding Blank Period For Systems with a Coupled First-Order Homogeneous Chemical Reaction., R. Kant and S. K. Rangarajan, J. Electroanal. Chem., 1989, 265, 39.

 

Random Fractals

 

71.   Statistics of Approximately Self-Affine Fractals: Random Corrugated Surface and Time Series, R. Kant, Phys. Rev. E., 1996, 53, 5749.

 

 

Electrochemical Energy Devices: Semiconductor, Solid State Electrolytes

 

72. Enhanced photoelectrochemical response of reduced graphene oxide covered inexpensive TiO2-BiFeO3 composite photoanodes. D. Sharma and R. Kant, Materials Research Bulletin, 162, 2023, 112183.

 

73. Chapter 3 - Carbon nitrides as catalyst support in fuel cells: Current scenario and future recommendation, C. Gupta, A. Bhardwaj, R. Kant, S. Patnaik, Micro and Nano Technologies, 2022, Pages 39-62.

https://doi.org/10.1016/B978-0-12-823961-2.00004-5

 

74. Experimental corroboration of theory for impedance response of solid electrolytes: Doped cubic garnet LLZO, N. Goswami; M. S. Indu; R. Murugan and R. Kant, 2021, J. Electroanalytical Chemistry, 897,  115611 (10 page). https://doi.org/10.1016/j.jelechem.2021.115611

 

75. Effect of 100 KeV Ar+ ion beam irradiation on ZnO thin films-Influence of morphology vis-a-vis electrode/electrolyte interface and its impact on photoelectrochemical water, K Asha, NK Biswas, S Saxena, VR Satsangi, R Shrivastav, R Kant, S Dass, 2021, International Journal of Hydrogen Energy,  46(40):20858-20870. DOI: 10.1016/j.ijhydene.2021.03.216

 

76. Modular Theory for DC-biased Electrochemical Impedance Response of Supercapacitor, G. K. Mishra and R. Kant, J. Power Sources, 2020, 473, 228467 (1-15) (+supporting infomation).

 

77. Modular Theory for impedance response of grain and grain boundary in solid state electrolyte, N. Goswami and R. Kant, J. Electroanalytical Chemistry, 2019, 835, 227-238.

 

78. Theory for IMPS on Rough and Finite Fractal Dye Sensitized Solar Cell, R. Kant, N. R. Chowdhury and S. Srivastav, 2018, J. Electrochem. Soc., 2019, 5, H3047-H3064.

(JES Focus Issue on Semiconductor Electrochemistry and Photoelectrochemistry in Honor of Krishnan Rajeshwar)

 

79. Morphological influence of electrode/electrolyte interface towards augmenting the efficiency of photoelectrochemical water splitting - A case study on ZnO, A. Kumari, A. Banerjee, S. Saxena, S. A. Khan, I. Sulaniya, V. R. Satsangi, R. Shrivastava, R. Kant and S. Dass, J. Power Sources, 2019, 432, 38-47

 

80. Influence of 50 kev Ar+ ion beam irradiation on the morphology of ZnO thin films - a study on the semiconductor/electrolyte interface for improved photoelectrochemical splitting of water, International Journal of A. Kumari, V. R. Satsangi, R. Shrivastava, R. Kant and S. Dass, Advances in Science Engineering and Technology, 2019, 7, 30-34.

 

 

 

Experimental Electrochemistry, Nanoelectrochemistry & Novel Materials Characterization Methods

 

 

81. R. Kant and H. Goel, 2021, In Situ Electrochemical Impedance Spectroscopic Method for Determination of Surface Roughness and Morphological Convexity, J. Phys. Chem. Lett. 12, 10025-10033. (+Supporting Information) https://doi.org/10.1021/acs.jpclett.1c02935

 

82. Experimental corroboration of general phenomenological theory for dynamics of EDL in viscous medium on rough heterogeneous electrode, R. Kumar and R. Kant, 2017, Electrochimica Acta, 257, 473-482.

 

83. Chiral Analysis of Ascorbic Acid in Bovine Serum using Ultrathin Molecular Imprinted Polyaniline/Graphite Electrode, K. Saksena, A. Shrivastava and R. Kant, 2017, J. Electroanalytical Chemistry, 795, 103-109.

 

84. Experimental Corroboration of the Theory of Chronoamperometry at High Roughness Electrode for Reversible Charge Transfer, N. Sharma, N. Goswami, R. Kant, 2017, J. Electroanal. Chem., 788, 83-90.

 

85. Influence of viscosity on chronoamperometry of reversible redox system on rough and nanoparticles deposited Pt electrode: Aqueous/glycerol and RTIL medium, R. Kumar, S. Dhillon and R. Kant, 2016, J. Electroanal. Chem., 780, 337-354, DOI: 10.1016/j.jelechem.2016.09.036

 

86. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: L-ascorbic acid and D-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode, I. Pandey and R. Kant, 2015, Biosensors and Bioelectronics, 77, 715-724.

 

87. Experimental Validation of Theory of Chronoamperometry on Nanoparticles Deposited Gold Electrodes: Topography Characterization through Hybrid CV and SEM Method, S. Dhillon and Rama Kant, Electroanalysis, (invited article in special issue on "Electroanalysis in India"), 2014, 26, 2350-2357. DOI: 0.1002/elan.201400255

 

88. Experimental validation of theory of chronoamperometry on rough gold electrodes: Topography characterization through hybrid electrochemical and SEM methods, S. Dhillon and R. Kant, 2014 in conference proceeding of Eleventh ISEAC International Discussion Meet on Electrochemistry and its Applications, Eds. S.K.Aggarwal et al; ISEAC-2014, pp 91-92.(Extended abstract)

 

89. Nanoelectrochemistry in India, Rama Kant, Jasmin Kaur and M. Birla Singh, Specialist Periodical Reports: Electrochemistry Vol. 12: Nanosystems Electrochemistry, Royal Society of Chemistry, 2013, 12, 236-278. DOI: 10.1039/9781849737333-00336 (Invited Review Article/Chapter)

 

90. Quantitative roughness characterization and 3D reconstruction of electrode surface using Cyclic Voltammetry and SEM image, S. Dhillon and Rama Kant, Applied Surface Science, 2013, 282, 105-114.

*Advances in Engineering identified this article as Key Scientific Article contributing to excellence in engineering scientific and industrial research*;

*downloaded or viewed 563 times since publication*

 

91. Experimental Validation of Roughness Power Spectrum Based Theory of Anomalous Cottrell Response, S. Srivastav, S. Dhillon, R. Kumar, R. Kant, J. Phys. Chem. C, 2013, 117, 8594-8603.

 

92. Poly(3-hexylthiophene): Functionalized single walled carbon nanotubes: (6,6)-phenyl-C61-butyric acid methyl ester composites for photovoltaic cell at ambient condition, R. K. Singh, J. Kumar, A. Kumar, V. Kumar, R. Kant, R. Singh, Sol. Energy Mater. Sol. Cells, 2010, 94, 2386-clear2394. doi:10.1016/j.solmat.2010.08.023

 

  1. Charge Transport and Electrochromism in Novel Nanocomposite Films of Poly(3,4-Ethylenedioxythiophene)-Au Nanoparticles-Cd-Se Quantum Dots, S. Bhandari, M. Deepa, S. N. Sharma, A. G. Joshi, A. K. Srivastava, R. Kant, J. Phys. Chem. C, 2010, 114, 14606-14613.

 

  1. The Origin of DC Electrical Conduction and Dielectric Relaxation in Pristine and Doped Poly(3-hexylthiophene) Films, R. Singh, R. K. Singh, J. Kumar, R. Kant, and V. Kumar, Journal of Polymer Science Part B: Polymer Physics, 2010,48,1047.

 

  1. A Dual Electrochrome of Poly-(3,4-Ethylenedioxythiophene) Doped by N,N'-Bis(3-sulfonatopropyl)-4-4'-bipyridinium-Redox Chemistry and Electrochromism in Flexible Devices, S. Bhandari, M. Deepa, S. Pahal, A. G. Joshi, A. K. Srivastava, R. Kant, ChemSusChem. 2010, 3, 97.

 

  1. Post-polymerization functionalization of poly(3,4-ethylenedioxythiophene) films by 1-fluoro-2-nitro-4-azidobenzene: electrochromism and redox behavior, S. Bhandari, M. Deepa, A. K. Srivastava and R. Kant, J. Material Chem. 2009, 19, 2336.

 

  1. Poly(3,4-ethylenedioxythiophene)-Multiwalled Carbon Nanotube Composite Films: Structure-Directed Amplified Electrochromic Response and Improved Redox Activity, S. Bhandari, M. Deepa, A. K. Srivastava, A. G. Joshi and R. Kant, J. Phys. Chem. B, 2009, 113, 9416.

 

  1. A comparison of charge transport behavior in functionalized and non-functionalized poly 3,4-(ethylenedioxythiophene) films, M. Deepa, S. Bhandari, R.Kant, Electrochimica Acta, 2009, 54, 1292.

 

  1. Electrochromic response, structure optimization and ion transfer behavior in viologen adsorbed titanium oxide films, S. Bhandari, M. Deepa, A.K. Srivastava, S.T. Lakshmikumar, R. Kant, Solid State Ionics, 2009, 180, 41.

 

  1. Redox Behavior and Optical Response of Nanostructured Poly(3,4-ethylenedioxythiophene) Films Grown in a Camphorsulfonic Acid Based Micellar Solution, S. Bhandari, M. Deepa, S. Singh, G. Gupta and R. Kant, Electrochimica Acta, 2008, 53, 3189.

 

  1. Poly(3,4-ethylenedioxythiophene) (PEDOT)- Coated MWCNTs Tethered to Conducting Substrates: Facile Electrochemistry and Enhanced Coloring Efficiency, S. Bhandari, M. Deepa, A. K.Srivastava, C. Lal, R. Kant, Macromol. Rapid Commun. 2008, 29,1959.

 

  1. Electrochromic Response of Nanostructured Poly(3,4-ethylenedioxythiophene) Films Grown in an Aqueous Micellar Solution, M. Deepa, S. Bhandari, M. Arora and R. Kant, Macromol. Chem. & Phys., 2008, 209, 137.

 

  1. Electrochromic Contrast  Enhancement of Nanostructured Poly(3,4-ethylenedioxythiophene)-Polystyrene Sulfonate Films by Composition/Morphology Control, S. Bhandari, M. Deepa, A.K. Srivastava, S.T. Lakshmikumar and R. Kant, J. NanoSci. Nanotech. 2009, 9, 3052-61.

 

  1. Micromorphology, Photophysical and Electrical Properties of Pristine and Ferric Chloride Doped Poly(3- hexylthiophene) Films, R. K. Singh, J. Kumar, R. Singh, R. Kant, S. Chanda and V. Kumar, Mater. Chem. and Phys., 2007, 104, 390.

 

  1. Structure-Conductivity Correlation in Ferric Chloride-Doped Poly(3-hexylthiophene), R. K. Singh, J. Kumar, R. Singh, R. Kant, R. C. Rastogi, S. Chand and V. Kumar, New J. Phys., 2006, 8, 112.

 

Statistical Models for Polymer Dynamics: Langevin Approach

 

 

106.              Static Structure Factor and Viscoelastic Properties of Dendrimer Grafted Nanoparticles in Solution, Neha and R. Kant, 2021, J. Phys. Chem. B, 125, 1951-1959. https://doi.org/10.1021/acs.jpcb.0c10458

 

107.              Dynamics of Dendrimer and Star Polymers in Layered Random Flow: Influence of Excluded Volume Interactions, Neha, D. Katyal and R. Kant, Pramana - Journal of Physics, 2020, 94,149 (10 pages).

 

108.              Theory for the Dynamics of Polymer Grafted Nanoparticle in Solution, Neha, P. Biswas and R. Kant, J. Phys. Chem. C, 2019,123, 30657-30665

 

109.              Anomalous Stretching Dynamics of Tagged Monomer of Branched Polymer in Layered Random Flows, Neha, D. Katyal and R. Kant, J. Stat. Phys., 2019, 177, 936-959.

 

110.              Dynamics of Branched Polymers in Random Layered Flows with Intramolecular Hydrodynamic Coupling: Star and Dendrimer, D. Katyal and R. Kant, Macromolecular Theory and Simulations, 2017, 1700009(1-15).

 

111.              Dynamics of Comb-of-Comb Network Polymers in Random Layered Flows, D. Katyal and R. Kant, Phys. Rev. E., 2016, 94, 062503 (13 pages).

 

112.              Dynamics of Generalized Gaussian Polymeric Structures in Random Layered Flows, D. Katyal and R. Kant, Phys. Rev. E., 2015, 91, 042602 (13 pages).

 

  1. Dynamics of Miscible Polymer Blends: Predicting the Dielectric Response, S. Shenogin, R. Kant, R. C. Colby and S. K. Kumar, Macromolecules, 2007, 40, 5767.

 

  1. What Length Scales Control the Dynamics of Miscible Polymer Blends?, R. Kant, S. K. Kumar and R. H. Colby, Macromolecules, 2003, 36, 10087

 

  1. Computer Simulations of Local Concentration Variations in Miscible Polymer Blends, S. Salaniwal, R. Kant, R. H. Colby and S. K. Kumar, Macromolecules, 2002, 35, 9211.

 

  1. Stretch Dynamics of Flexible Dendritic Polymers in Solution, P. Biswas, R. Kant and A. Blumen, J. Chem. Phys., 2001, 114, 2430.

 

117.   Linear Rheology of Dilute Linear, Star and Model Long Chain Branched Polymer Melts, D.R. Daniels, T.C.B. McLeish, R. Kant, B.J. Crosby, R.N. Young, A. Pryke, J. Allgaier, R.J. Hawkins, Rheol. Acta, 2001, 40, 403.

 

118.                Hydrodynamic Effects on the Extension of Stars and Dendrimers in External Fields, R. Kant, P. Biswas and A. Blumen, Macromol. Theo. and Simul., 2000, 9, 608.

 

  1. Polymer Dynamics and Topology: Extension of Stars and Dendrimers in External fields, P. Biswas, R. Kant and A. Blumen, Macromol. Theo. and Simul. 2000, 9, 56.

 

  1. Dynamics of Entangled H-Polymers: Theory, Rheology and Neutron Scattering, T. C. B. McLeish, J. Allgaier, D. K. Bick, G. Bishko, P. Biswas, R. Blackwell, B. Blottire, N. Clarke, B. Gibbs, D. J. Groves, A. Hakiki, R. K. Heenan, J. M. Johnson, R. Kant, D. J. Read, and R. N. Young, Macromolecules, 1999, 32, 6734.

 

  1. Dynamics and Thermodynamics of Artificial Muscles Based on Nematic Gels, M.Hebert, R. Kant and P.-G.de Gennes, J. Phys. (I) France, 1997, 7, 909.

 

  1. Artificial Muscles Based on Nematic Gels, P. -G. de Gennes, M. Hebert and R. Kant, Macromol. Symp., 1997, 113, 39;

 

 

 

 

 

e-Print Archive

 

123.              Generalization of linearized Gouy-Chapman-Stern model of electric double layer for nanostructured and porous electrodes: deterministic and stochastic morphology

By: Kant, Rama; Maibam, Birla S.

From arXiv.org, e-Print Archive, Condensed Matter (2012), 1-36, arXiv:1202.5827v1 [cond-mat.mtrl-sci].

 

124.              Theory of electric double layer dynamics at blocking electrode

By: Singh, Maibam Birla; Kant, Rama

From arXiv.org, e-Print Archive, Condensed Matter (2011), 1-6, arXiv:1103.0681v1 [cond-mat.mtrl-sci].

 

125.              Theory of anomalous diffusive reaction rates on realistic self-affine fractals

By: Kant, Rama

 Los Alamos National Laboratory, Preprint Archive, Physics (2007), 1-10, arXiv:0705.2813v1 [physics.chem-ph]. | Language: English, Database: CAPLUS