Publications
of
Prof. Rama Kant
Theoretical Electrochemistry
Semi-Quantum Mechanical Models
Work Function,
Potential of Zero Charge, Electron Transfer Model at Nanostructured Electrode,
Jellium Model for Curved Nanostructures, Electronic Capacitance & Work
function, Wetting through Quantum Fluids
1. Theory
for Outer Sphere Electron Transfer Coupled with Ion Transfer Kinetics on
Atomically Stepped Metal, Neha and R. Kant, 2024, J.
Phys. Chem. C, in press.
2. Theory
for Heterogeneous Electron Transfer Kinetics on Nanocorrugated
Atomic Stepped Metal Electrodes, R. Kant and G. K. Mishra,
J. Phys. Chem. C, 127, 2023, 6884-6899. (+Supporting Information)
3.
Semi-microscopic Theory for Current Rectification
Phenomenon in Nanogap Molecular Devices, G. K. Mishra and
R. Kant, J. Phys. Chem. A, 127, 2023, 3048.
4. Theory
for nanoscale curvature induced enhanced inactivation kinetics of SARS-CoV-2,
R. Kant, G. K. Mishra and Neha, Nanoscale, 2022
5. Theory
for Potential of Zero Charge and Capacitance on Metal with Nanocorrugated
Steps, G. K. Mishra and R. Kant , J. Physical Chemistry C, 2021, 125, 25774−25783
(+Supporting Information) https://doi.org/10.1021/acs.jpcc.1c05941
6.
Theory for Influence of Metal Electrolyte Interface on
Heterogeneous Electron Transfer Rate Constant: Fractional Electron Transferred
Transition State Approach, R. Kant , J. Kaur and G.
Mishra, J. Physical Chemistry C, 2020,
124, 2273-2288. (+Supporting Information)
7. Model
of Local Work Function and PZC for Molecular Self Assembly over
Nanostructured Metal Electrode. J. Kaur and R. Kant, J. Physical
Chemistry C, 2018, 122, 911-918. DOI: 10.1021/acs.jpcc.7b10696.
8.
Theory
of Work Function and Potential of Zero Charge for Metal Nanostructured and
Rough Electrodes J.
Kaur and R. Kant, J. Phys.
Chem. C., 2017,121,
13059-13069. DOI:
10.1021/acs.jpcc.7b03595.
9. Curvature-Induced Anomalous
Enhancement in the Work Function of Nanostructures, J.
Kaur and R. Kant, J. Phys. Chem. Lett., 2015, 6, 2870-2874.
10.
Shape and Size Dependent Electronic Capacitance
in Nanostructured Materials, M. Birla Singh and R. Kant, Proc. R. Soc. A, 2013, 469, 20130163; doi:10.1098/rspa.2013.0163.
11.
Josephson
Droplets, C. Gay, P.
-G. de Gennes and R. Kant, Euro. Phys.
Lett., 1996, 34, 581-586.
Phenomenological and Statistical Approach
Fundamental Electrochemistry for
Transient Response of Heterogeneous, Randomly Disordered and Fractal Systems:
Diffusion, Migration, Adsorption and Kinetics
12. Editorial
overview: Fundamental and theoretical electrochemistry (2022) as a tool for
developing electrochemical science and technology. R. Kant and M.
V. Sangaranarayanan, 2022, Curr.
Opin. Electrochem. 36,
101162.
https://doi.org/10.1016/j.coelec.2022.101162
13. Theory
for Diffusion: Migration Coupling-Induced Cathodic and Anodic Current Anomaly, R.
Kant and Prerna, 2022, J. Phys. Chem. C. 126, 19035–19046.
https://doi.org/10.1021/acs.jpcc.2c04796
14. R. Kumar, H. Goel, S. K. Jha and R.
Kant, 2022, Single potential step
chronoamperometry for EC' reaction at rough electrodes: Theory and experiment,
J. Electroanalytical Chemistry, 905, 115899. (+Supporting Information) https://doi.org/10.1016/j.jelechem.2021.115899
15. Semi-Microscopic
Theory for Underscreening induced Anomalous Migration-Diffusion Coupling, R. Kant and N. Goswami, 2021, J. Phys. Chem. C, 125, 13677-13687. https://doi.org/10.1021/acs.jpcc.1c03316
16. Theory for influence of ohmic resistance and electrode
roughness on admittance voltammetry of reversible E and EE reactions, M. Kumar and R.
Kant, 2021, 898, 115601. https://doi.org/10.1016/j.jelechem.2021.115601
17. Theory for Influence of Uncompensated
Solution Resistance on EIS of Diffusion Limited Adsorption at Rough
Electrode, S. Srivastav, M.
Kumar and R. Kant, 2021, Journal of Chemical Sciences, 133 (2), 1-13. (+Supporting Information)
https://doi.org/10.1007/s12039-021-01901-w
18. Influence of Electrode Roughness on DC Biased Admittance of
Quasi-reversible Charge Transfer with Uncompensated Solution Resistance, M. Kumar, S. Srivastav and R. Kant,
2020, J. Electroanalytical
Chemistry, 877, 114609 (+Supporting
Information) https://doi.org/10.1016/j.jelechem.2020.114609
19. Theory
for Admittance Voltammetry of Reversible Two Step Electron Transfer Process
with DC Bias at Rough and Fractal Electrode, M. Kumar, G. K. Mishra and R. Kant,
2019, Electrochimica Acta, 327, 135024.
20. Theory
for local EIS at rough electrode under diffusion controlled charge transfer:
Onset of whiskers and dendrites, S. Dhillon, N. Goswami and R. Kant, 2019, J. Electroanalytical Chemistry, 840, 193-207.
21. Theory
of Generalized Gerischer Impedance for Quasi-reversible
Charge Transfer at Rough and Finite Fractal Electrodes, N. R.
Chowdhury and R. Kant, 2018, Electrochimica Acta, 2018, 281, 445-458.
22. Theory
of Electrochemical Chronocoulometry of a Pseudo First
Order Catalytic Process at a Rough Electrode, Md. Merajul Islam and R.
Kant, J. Indian Chem. Soc., 2017, 94, 1279-1290 (Acharya J. C. Ghosh Memorial Lecture -2016, Convention Special
Issue-2017).
23. Theory for the Chronopotentiometry on Rough and Finite
Fractal Electrode: Generalized Sand Equation, N. R. Chowdhury, R. Kumar, R. Kant, J.
Electroanalytical Chemistry, 2017, 802, 64-77.
24. Theory for Electrochemical Impedance Spectroscopy of Heterogeneous
Electrode with Distributed Capacitance and Charge Transfer Resistance, S. Dhillon and R. Kant, J. Chem. Sci., 2017, 129, 1277-1292.
25. Theory of
the Electrochemical Impedance of Mesostructured Electrodes Embedded with
Heterogeneous Micropores, R. Kant and M. B. Singh, 2017, J. Phys. Chem. C, 2017, 121, 7164-7174.
26. General Theory for Pulse Voltammetric
Techniques at Rough Electrodes: Multistep Reversible Charge Transfer Mechanism,
Parveen
and R. Kant, 2016, Electrochimica Acta,
220, 475-485.
27. Electrode Disorder, Electrochemical Processes and Governing Length
Scales (Invited
Review), R. Kant, S. Dhillon and
J. Kaur, 2016, Journal of the Indian Institute of Science, 96:4, 365-382. (Special issue on Materials Electrochemistry, Electrochemical Processes
and Systems)
28. General Theory for Pulse Voltammetric Techniques on Rough and Finite Fractal
Electrodes for Reversible Redox System with Unequal Diffusivities, Parveen and R. Kant, 2016, Electrochimica Acta, 194, 283-291.
29. Theory for Cyclic Staircase
Voltammetry of Two Step Charge Transfer Mechanism at Rough Electrodes, Parveen and R. Kant, 2016, J. Phys. Chem. C, 120, 4306-4321.
30. Influence
of Uncompensated Solution Resistance on Diffusion Limited
Chronocoulometric Response at Rough Electrode, S. Srivastav and
R. Kant, 2015, Electrochimica Acta, 180, 208-217.
31. Anomalous
Localization of Electrochemical Activity in Reversible Charge Transfer at
Weierstrass Fractal Electrode: Local Electrochemical Impedance Spectroscopy, R. Kant, S. Dhillon and R. Kumar, 2015, J. Phys. Chem. B, 119,10876-10887,
DOI:10.1021/jp512297f. (*Biman Bagchi
Festschrift*)
32. Generalization
of Randles - Ershler Admittance
for Arbitrary Topography Electrode: Application to Random Finite Fractal
Roughness, R. Kant and
M. B. Singh, Electrochimica Acta, 2015, 163, 310-322, DOI: 10.1016/j.electacta.2015.02.107.
33. Theory for
Anomalous Response in Cyclic Staircase Voltammetry :
Electrode Roughness and Unequal Diffusivities, Parveen and R. Kant, 2014,
J. Phys. Chem. C, 2014,
118, 26599-26612.
34. Theory of Anomalous Electric
Double Layer Dynamics in Ionic Liquids, M. Birla Singh and R.
Kant, J. Phys.
Chem. C, 2014, 118, 8766-8774, DOI: 10.1021/jp500383p.
35. Theory of Anomalous Dynamics of Electric Double
Layer at Heterogeneous and Rough Electrodes, M. Birla Singh and R. Kant, J. Phys. Chem. C, 2014, 118, 5122-5133.
36. Theory of
Double Potential Step Chronoamperometry at Rough Electrodes: Reversible Redox
Reaction and Ohmic Effects, S. Dhillon and R. Kant, Electrochimica
Acta, 2014, 129,
245-258.
37. Theory of single
potential step absorbance transient at an optically transparent rough and
finite fractal electrode: EC' mechanism, R. Kant and Md. M.
Islam, J. Electroanal. Chem., 2014, 713, 82-90. (downloaded or viewed 133 times since
publication till Sept 2014)
38. Anomalous response of nanostructured electrochemical capacitors:
Theoretical aspects, R. Kant and M. B. Singh, 2014, in conference proceeding of Eleventh ISEAC International Discussion Meet on
Electrochemistry and its Applications, Eds. S.K.Aggarwal et
al; ISEAC-2014, pp 3-6.
39. Influence
of electrode roughness on electroanalysis with single current step
chronopotentiometry, N. R.
Chowdhury, S. Dhillon and R. Kant, 2014,
in conference proceeding of Eleventh ISEAC International Discussion Meet
on Electrochemistry and its Applications, Eds. S.K.Aggarwal
et al; ISEAC-2014, pp 117-118.
40. Generalization of Gouy-Chapman-Stern model of
electric double layer for a morphologically complex electrode: Deterministic
and stochastic morphology, R. Kant and M. Birla Singh, Phys. Rev. E, 2013, 88, 052303 (16 pages).
41. Theory for Staircase Voltammetry and Linear Scan Voltammetry on Fractal
Electrodes: Emergence of Anomalous Randles- Sevcik Behavior, Parveen and R. Kant, Electrochimica
Acta, 2013, 111, 223-233. DOI: 10.1016/j.electacta.2013.07.163 (downloaded or
viewed 433 times since publication)
42. Debye-Falkenhagen
Dynamics of Electric Double Layer in Presence of Electrode Heterogeneities, M. Birla Singh and R. Kant, J. Electroanal. Chem.,
2013, 704, 197-207.
43. Admittance
of Diffusion Limited Adsorption Coupled to Reversible Charge Transfer on Rough
and Finite Fractal Electrodes, Rajesh Kumar and R. Kant, Electrochimica
Acta, 2013, 95, 275-287. DOI: 10.1016/j.electacta.2013.02.021
44. Effect of
Uncompensated Solution Resistance on Quasireversible
Charge Transfer at Rough and Finite Fractal Electrode, R. Kant,
M. Sarathbabu and S. Srivastav, Electrochimica
Acta, 2013, 95, 237-245. DOI:
10.1016/j.electacta.2013.02.010
45.
EIS of
Disordered Electrodes: Theoretical Aspects, R. Kant and Rajesh Kumar, in Proceeding of Fifth ISEAC
Triennial International Conference an Advances and Recent Trends in
Electrochemistry, 2013, Eds. S.K. Aggarwal et al; ELAC-2013,
pp 118-123.
46. Theory of double potential step chronoamperometry
at rough and finite fractal electrode, Shweta Dhillon and R. Kant, in Proceeding of Fifth ISEAC
Triennial International Conference an Advances and Recent Trends in
Electrochemistry, 2013, Eds. S.K. Aggarwal et al; ELAC-2013,
pp 321-324.
48. Theory of Quasi-Reversible Charge Transfer
Admittance on Finite Self-Affine Fractal Electrode, R. Kumar, R. Kant, 2011, Electrochimica Acta, 56, 7112-7123. DOI: 10.1016/j.electacta.2011.05.092
49.
Anomalous
Warburg Impedance: Influence of Uncompensated Solution Resistance, S.
Srivastav, R. Kant, J. Phys. Chem. C, 2011, 115, 12232-12242.
50.
Generalization
of the Anson Equation for Fractal and Nonfractal Rough Electrodes, Md. M. Islam, R. Kant, Electrochimica Acta, 2011, 56, 4467- 4474.
51.
Theory of
Absorbance Transients of an Optically Transparent Rough Electrode, R. Kant, Md. M.
Islam, J. Phys.
Chem. C, 2010, 114, 19357-19364.
60. Analysis of Potentiostatic Current Transients
Responses for Nano and Micro Scale Rough Electrode, S. K. Jha and R. Kant, in conference proceeding of International Conference on ElectroAnalytical
Chemistry and Allied Topics, Eds. S.K.Aggarwal et al;
ISEAC-2007, pp 262-266.
Random Fractals
71.
Statistics
of Approximately Self-Affine Fractals: Random Corrugated Surface and Time
Series, R. Kant, Phys.
Rev. E., 1996, 53, 5749.
Electrochemical Energy
Devices: Semiconductor, Solid State Electrolytes
72.
Enhanced photoelectrochemical response of
reduced graphene oxide covered inexpensive TiO2-BiFeO3 composite photoanodes. D.
Sharma and R. Kant, Materials Research Bulletin, 162, 2023, 112183.
73.
Chapter 3 - Carbon nitrides as catalyst
support in fuel cells: Current scenario and future recommendation, C.
Gupta, A. Bhardwaj, R. Kant, S. Patnaik, Micro and Nano Technologies,
2022, Pages 39-62.
https://doi.org/10.1016/B978-0-12-823961-2.00004-5
74. Experimental
corroboration of theory for impedance response of solid electrolytes: Doped
cubic garnet LLZO, N.
Goswami; M. S. Indu; R. Murugan and R. Kant, 2021, J. Electroanalytical Chemistry, 897,
115611 (10 page). https://doi.org/10.1016/j.jelechem.2021.115611
75. Effect of 100 KeV Ar+ ion
beam irradiation on ZnO thin films-Influence of
morphology vis-a-vis electrode/electrolyte interface and its impact on
photoelectrochemical water, K Asha, NK Biswas, S
Saxena, VR Satsangi, R Shrivastav, R Kant, S Dass, 2021, International
Journal of Hydrogen Energy, 46(40):20858-20870. DOI: 10.1016/j.ijhydene.2021.03.216
76. Modular Theory for DC-biased Electrochemical Impedance
Response of Supercapacitor, G. K. Mishra and R.
Kant, J. Power Sources, 2020, 473,
228467 (1-15) (+supporting infomation).
77. Modular Theory for impedance response of grain and
grain boundary in solid state electrolyte, N.
Goswami and R. Kant, J. Electroanalytical Chemistry, 2019, 835, 227-238.
78. Theory
for IMPS on Rough and Finite Fractal Dye Sensitized Solar Cell, R. Kant, N. R. Chowdhury and S.
Srivastav, 2018, J. Electrochem. Soc., 2019,
5, H3047-H3064.
(JES Focus Issue on Semiconductor Electrochemistry
and Photoelectrochemistry in Honor
of Krishnan Rajeshwar)
79. Morphological
influence of electrode/electrolyte interface towards augmenting the efficiency
of photoelectrochemical water splitting - A case study on ZnO, A. Kumari, A. Banerjee, S. Saxena, S. A. Khan, I. Sulaniya, V. R. Satsangi, R. Shrivastava, R. Kant
and S. Dass, J. Power Sources, 2019, 432,
38-47
80. Influence of 50 kev Ar+ ion beam irradiation on the morphology of ZnO thin films - a study on the semiconductor/electrolyte
interface for improved photoelectrochemical splitting of water,
International Journal of A. Kumari, V. R. Satsangi, R. Shrivastava, R. Kant
and S. Dass, Advances in Science Engineering and Technology, 2019, 7, 30-34.
Experimental Electrochemistry,
Nanoelectrochemistry & Novel Materials Characterization Methods
81. R. Kant and H. Goel, 2021, In Situ
Electrochemical Impedance Spectroscopic Method for Determination of Surface
Roughness and Morphological Convexity, J. Phys. Chem. Lett. 12, 10025-10033. (+Supporting Information) https://doi.org/10.1021/acs.jpclett.1c02935
82. Experimental
corroboration of general phenomenological theory for dynamics of EDL in viscous
medium on rough heterogeneous electrode, R. Kumar and R. Kant, 2017, Electrochimica Acta, 257, 473-482.
83. Chiral
Analysis of Ascorbic Acid in Bovine Serum using Ultrathin Molecular Imprinted
Polyaniline/Graphite Electrode, K. Saksena, A. Shrivastava and R. Kant, 2017, J. Electroanalytical
Chemistry, 795, 103-109.
84.
Experimental
Corroboration of the Theory of Chronoamperometry at High Roughness Electrode
for Reversible Charge Transfer, N. Sharma, N.
Goswami, R. Kant, 2017, J. Electroanal. Chem., 788, 83-90.
85. Influence of viscosity on chronoamperometry of reversible redox system
on rough and nanoparticles deposited Pt electrode: Aqueous/glycerol and RTIL
medium, R. Kumar, S. Dhillon and R. Kant, 2016, J. Electroanal. Chem., 780, 337-354, DOI: 10.1016/j.jelechem.2016.09.036
86. Electrochemical
impedance based chiral analysis of anti-ascorbutic
drug: L-ascorbic acid and D-ascorbic acid using C-dots decorated conductive
polymer nano-composite electrode, I. Pandey and R. Kant, 2015,
Biosensors and Bioelectronics, 77, 715-724.
87. Experimental
Validation of Theory of Chronoamperometry on Nanoparticles Deposited Gold
Electrodes: Topography Characterization through Hybrid CV and SEM Method, S. Dhillon and Rama Kant, Electroanalysis,
(invited article in special issue on "Electroanalysis in India"), 2014, 26, 2350-2357. DOI: 0.1002/elan.201400255
88. Experimental
validation of theory of chronoamperometry on rough gold electrodes: Topography
characterization through hybrid electrochemical and SEM methods, S. Dhillon and R. Kant, 2014 in conference proceeding
of Eleventh ISEAC International
Discussion Meet on Electrochemistry and its Applications, Eds. S.K.Aggarwal et
al; ISEAC-2014, pp 91-92.(Extended abstract)
89. Nanoelectrochemistry in India, Rama Kant, Jasmin Kaur and M. Birla Singh,
Specialist Periodical Reports: Electrochemistry Vol. 12: Nanosystems Electrochemistry, Royal Society of Chemistry, 2013, 12, 236-278. DOI:
10.1039/9781849737333-00336 (Invited Review Article/Chapter)
90. Quantitative roughness characterization and 3D reconstruction of
electrode surface using Cyclic Voltammetry and SEM image, S. Dhillon and Rama Kant, Applied Surface
Science, 2013, 282, 105-114.
*downloaded
or viewed 563 times since publication*
91. Experimental Validation of Roughness Power Spectrum Based Theory of
Anomalous Cottrell Response, S. Srivastav, S. Dhillon, R. Kumar, R. Kant, J. Phys. Chem. C, 2013, 117, 8594-8603.
92. Poly(3-hexylthiophene): Functionalized single walled carbon nanotubes:
(6,6)-phenyl-C61-butyric acid methyl ester composites for
photovoltaic cell at ambient condition, R. K. Singh, J. Kumar, A. Kumar, V.
Kumar, R. Kant, R. Singh, Sol. Energy
Mater. Sol. Cells, 2010, 94, 2386-2394.
doi:10.1016/j.solmat.2010.08.023
Statistical Models for Polymer Dynamics: Langevin Approach
106.
Static Structure Factor
and Viscoelastic Properties of Dendrimer Grafted Nanoparticles in Solution, Neha and R. Kant, 2021, J. Phys. Chem. B, 125, 1951-1959. https://doi.org/10.1021/acs.jpcb.0c10458
107.
Dynamics of Dendrimer
and Star Polymers in Layered Random Flow: Influence of Excluded Volume
Interactions, Neha, D. Katyal and R. Kant, Pramana - Journal of Physics, 2020,
94,149 (10 pages).
108.
Theory
for the Dynamics of Polymer Grafted Nanoparticle in Solution,
Neha, P. Biswas and R. Kant, J. Phys. Chem. C, 2019,123, 30657-30665
109.
Anomalous Stretching
Dynamics of Tagged Monomer of Branched Polymer in Layered Random Flows, Neha, D. Katyal and R. Kant, J. Stat. Phys., 2019, 177, 936-959.
110.
Dynamics of Branched
Polymers in Random Layered Flows with Intramolecular Hydrodynamic Coupling:
Star and Dendrimer, D. Katyal and R. Kant, Macromolecular Theory and
Simulations, 2017, 1700009(1-15).
111.
Dynamics of Comb-of-Comb Network Polymers in
Random Layered Flows, D. Katyal and R. Kant, Phys. Rev. E., 2016, 94, 062503 (13 pages).
112.
Dynamics of Generalized Gaussian Polymeric
Structures in Random Layered Flows, D. Katyal and R. Kant, Phys. Rev. E.,
2015, 91, 042602 (13 pages).
117.
Linear
Rheology of Dilute Linear, Star and Model Long Chain Branched Polymer Melts, D.R. Daniels, T.C.B. McLeish, R. Kant,
B.J. Crosby, R.N. Young, A. Pryke, J. Allgaier, R.J. Hawkins, Rheol. Acta, 2001, 40, 403.
118.
Hydrodynamic
Effects on the Extension of Stars and Dendrimers in External Fields, R. Kant, P. Biswas and A. Blumen,
Macromol. Theo. and Simul., 2000,
9, 608.
e-Print Archive
123.
Generalization
of linearized Gouy-
By: Kant, Rama; Maibam, Birla S.
From arXiv.org, e-Print Archive, Condensed Matter
(2012), 1-36, arXiv:1202.5827v1 [cond-mat.mtrl-sci].
124.
Theory of
electric double layer dynamics at blocking electrode
By: Singh, Maibam Birla; Kant, Rama
From arXiv.org, e-Print Archive, Condensed Matter
(2011), 1-6, arXiv:1103.0681v1 [cond-mat.mtrl-sci].
125.
Theory of anomalous diffusive reaction rates on realistic
self-
By: Kant, Rama
Los Alamos National Laboratory, Preprint
Archive, Physics (2007), 1-10, arXiv:0705.2813v1 [physics.chem-ph]. | Language: English, Database:
CAPLUS