-
E.L.Allwein, R.E. Schapire and Y. Singer, “Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers”, Journal of Machine Learning Research, 1(2), pp.113-141, 2000.
-
F.R. Bach, G.R.G. Lanckriet and M.I. Jordan, “Multiple Kernel Learning, Conic Duality and the SMO Algorithm”, in 24 th Int. Conf. on Machine Learning, Banff, Canada, 2004.
-
Y.-K. Bao, Z.-T. Liu, L. Guo and W. Wang, “Forecasting Stock Composite Index by Fuzzy Support Vector Machines Regression”, in Proc. of 4 th Int. Conf. on Machine Learning and Cybernetics, Guangzhou, pp.18-21, 2005.
-
P.J.Brockwell and R.A.Davis, “ Introduction to Time Series Forecasting”, 2 nd ed., Springer, Berlin, 2002.
-
L.J. Cao, “Support Vector Machines Experts for Time Series Forecasting”, Neurocomputing, Vol. 51, pp. 321-339, 2003.
-
G.C. Cawley and N.L.C Talbot, “Improved Sparse Least Squares Support Vector Machines”, Neurocomputing, Vol. 48, pp.1025-1031, 2002.
-
K.Y.Chen and C.H.Wang, “A Hybrid SARIMA and Support Vector Machines for Forecasting the Production Values of the Machinery Industry in Taiwan”, Expert Systems with Applications, 2006.
-
Y.Chen, B.Yang and J.Dong, “Time Series Prediction using a Local Linear Wavelet Neural Network”, Neurocomputing, Vol.69, pp.449- 465, 2006.
-
R.Collobert and S. Bengio, “SVM Torch: Support Vector Machines for Large Scale Regression Problems”, Journal of Machine Learning Research, 1, pp.143-160, 2001.
-
R.Debnath, N.Takahide and H.Takahashi, “A Decision Based One-against-One Method for Multiclass Support Vector Machine”, Pattern Analysis & Application, Vol. 7, pp.164-175, 2004.
-
A. Demiriz, K.Bennett, C.Breneman and M. Embrechts, “Support Vector Machine Regression in Chemometrics”, Computing Science and Statistics, 2001.
-
Y.B. Dibike, S.Velickov and D.Solomatine, “Support Vector Machines: Review and Applications in Civil Engineering”, in AI Methods in Civil Engineering Applications, O.Schleider et al (Eds.), Cottbus, pp.45-58, 2000.
-
R.E. Fan, P.H. Chen and C.J. Lin, “Working Set Selection using Second Order Information for Training SVM”, Journal of Machine Learning Research,6, pp.1889-1918, 2005.
-
G.Fung and O.L. Mangasarian, “Finite Newton Method for Lagrangian Support Vector Machine”, Data Mining Institute Technical Report 02-01, 2002, Neurocomputing, Vol. 55, pp.39-55, 2003.
-
D.H. Hong and C.Hwang’ “Support Vector Fuzzy Regression Machines”, Fuzzy Sets Systems, Vol.138, No.2, pp.271-281, 2003.
-
D.H. Hong, C.Hwang and C.Ahn, “Ridge Estimation for Regression Models with Crisp Inputs and Gaussian Fuzzy Output”, Fuzzy Sets and Systems, 142, pp.307-317, 2004.
-
C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines”, IEEE Trans. on Neural Networks, Vol. 13, No. 2, pp.415-425, 2002.
-
G.B.Huang, Q.Y.Zhu and C.K.Siew, “ Extreme Learning Machine: Theory and Applications”, Neurocomputing, Vol. 70, pp.489-501, 2006.
-
Jayadeva, R. Khemchandani and S. Chandra, “Twin Support Vector Machines for Classification Problem”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 29, No. 5, pp. 905-910, 2007.
-
Y.J. Lee and O.L. Mangasarian, “SSVM: A Smooth Support Vector Machine for Classification”, Computational Optimization and Applications, Vol. 20, No.1, pp. 5–22, 2001.
-
Y.J. Lee, W.-F. Hsieh and C.-M. Huang, “
-SSVR: A Smooth Support Vector Machine for
- Insensitive Regression,” IEEE Trans. on Knowledge and Data Engineering, Vol.17, No.5, pp.678-685, 2005.
-
J. M. Leski,
“-Insensitive Fuzzy c-Regression Models: Introduction to
-Insensitive Fuzzy Modeling”, IEEE Trans. on Systems, Man and Cybernetics-Part B: Cybernetics, Vol.34, No.1, pp.4-15, 2004.
-
C. Leslie, E. Eskin, A. Cohen, J.Weston and W.S. Noble, “Mismatch String Kernels for Discriminative Protein Classification”, Bioinformatics, Vol.1, No.1, pp.1-10, 2003.
-
C.-F. Lin and S.-D. Wang, “Fuzzy Support Vector Machines”, IEEE Trans. on Neural Networks, Vol.13, No.2, 2002.
-
H. Lodhi, J. Shawe-Taylor, N. Cristianini and C. Watkins, “Text Classification using String Kernels”, Neural Information Processing Systems, 13, 2000.
-
O.L. Mangasarian and D.R. Musicant, “Lagrangian Support Vector Machines”, Journal of Machine Learning Research Active set, Vol.1, pp.161-77, 2001a.
-
O.L.Mangasarian and D.R. Musicant, “Active Set Support Vector Machine Classification”, in Advances in Neural Information Processing Systems 13, T.K. Leen, T.G. Dietterich, and V.Tesp, Eds. MIT Press, pp.577-586, 2001b.
-
O.L.Mangasarian, “A Finite Newton Method for Classification”, Optimization Methods and Software, 17, pp.913-929, 2002.
-
D.R.Musicant and A.Feinberg, “Active Set Support Vector Regression”, IEEE Trans. on Neural Networks, Vol.15, No.2, pp. 268-275, 2004.
-
E.Osuna, R.Freund and F. Girosi, “ Training Support Vector Machines: An Application to Face Detection”, in Proc. Computer Vision and Pattern Recognition, pp. 130-136, 1997.
-
D. J. Sebald and J. A. Bucklew, “Support Vector Machine Techniques for Nonlinear Equalization”, IEEE Trans. on Signal Processing, Vol.48, No.11, 2000.
-
J.A.K. Suykens J.D.Brabanter, L.Lukas and J.Vandewalla, “Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation”, Neurocomputing, Vol. 48, pp.85-105, 2002.
-
F.E.H. Tay and L.J. Cao, “Application of Support Vector Machines in Financial Time Series with Forecasting”, Omega, Vol.29, No.4, pp.309-317, 2001.
-
T.B.Trafalis and H.Ince, “Support Vector Machine for Regression and Applications to Financial Forecasting”, in Proc. of IEEE INNSENNS Int. Joint Conf., Vol.16, pp. 348-353, 2000.
-
V. N. Vapnik, “An Overview of Statistical Learning Theory”, IEEE Trans. on Neural Networks, Vol. 10, No. 5, pp.988-999, 1999.
-
V.N. Vapnik, “The Nature of Statistical Learning Theory”, Springer, New York, Second Edition, 2000.