
Modelling and Verification
of
Security Requirements
and Stealthiness
in Security Protocols

By

Rajiv Ranjan Singh

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Centre for Cyber Security and Privacy
School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

March 2022

ABSTRACT

Traditionally, formal methods are used to verify security guarantees of a system by

proving that the system meets its desired specifications. These guarantees are achieved

by verifying the system’s security properties, in a formal setting, against its formal

specifications. This includes, for example, proving the security properties of confidentiality

and authentication, in an adversarial setting, by constructing a complete formal model of

the protocol. Any counterexample to this proof implies an attack on the security property.

All such proofs are usually based on an ordered set of actions, generated by the protocol

execution, called a trace. Both the proofs and their counterexamples can be investigated

further by analysing the behaviour of these protocol traces. The attack trace might either

follow the standard behaviour as per protocol semantics or show deviation from it. In

the latter case, however, it should be easy for an analyst to spot any attack based on its

comparison from standard traces.

This thesis makes two key contributions: a novel methodology for verifying the

security requirements of security protocols by only modelling the attacks against a protocol

specification, and, secondly, a formal definition of ‘stealthiness’ in a protocol trace which

is used to classify attacks on security protocols as either ‘stealthy’ or ‘non-stealthy’.

Our first novel proposal tests security properties and then verifies the security

requirements of a protocol by modelling only a subset of interactions that constitute

the attacks. Using this both time and effort saving methodology, without modelling the

complete protocol specifications, we demonstrate the efficacy of our technique using real

attacks on one of the world’s most used protocols—WPA2. We show that the process

of modelling the complete protocol specifications, for verifying security properties, can

be simplified by modelling only a subset of protocol specifications needed to model a

given attack. We establish the merit of our novel simplified approach by identifying the

inadequacy of security properties apart from augmenting and verifying the new security

properties, by modelling only the attacks versus the current practice of modelling the

complete protocol which is a time and effort intensive process. We find that the current

security requirements for WPA2, as stated in its specification, are insufficient to ensure

security. We then propose a set of security properties to be augmented to the specification

to stop these attacks. Further, our method also allows us to verify if the proposed additional

security requirements, if enforced correctly, would be enough to stop attacks.

Second, we seek to verify the ‘stealthiness’ of protocol attacks by introducing a

novel formal definition of a ‘stealthy’ trace. ‘Stealthy’ actions by a participating entity

or an adversary in a protocol interaction are about camouflaging fraudulent actions as

genuine ones by fine-tuning their actions to make it look like honest ones. In our model,

protocols are annotated to indicate what each party will log about each communication.

Given a particular logging strategy, our framework determines whether it is possible to find

an attack that produces log entries indistinguishable from normal runs of the protocol, or if

any attack can be detected from the log entries alone. We present an intuitive definition of

when an attack is ‘stealthy’, which cannot be automatically checked directly, with regard

to some logging strategy. Next, we introduce session IDs to identify unique sessions. We

show that our initial intuitive definition is equivalent to a second definition using these

session IDs, which can also be tested automatically in Tamarin. We analyse various

attacks on known vulnerable protocols to see, for a range of logging strategies, which can

be made into stealth attacks and which cannot. This approach compares the stealthiness

of various known attacks against a range of logging strategies.

iii

DEDICATION

Dedicated to Barka Babu (my eldest uncle)

iv

ACKNOWLEDGMENTS

My Ph.D. journey has been replete with sweet and sour experiences all along. I got

to learn a lot of things; some about the subject and research, some of them about life, and

made many friends. I could not have wished for a better person than my supervisor, Dr

Tom Chothia, to guide me through the whole process. Tom, my supervisor in both M.Sc.

and PhD, always led me in the right direction whenever I went astray, made sure I stayed

focused at the right places, and criticised constructively when needed.

I owe my gratitude to my thesis group members Professor Dave Parker and my

co-supervisor Dr Ian Batten. My thesis group made sure that I was on track and helped

by constantly asking uncomfortable questions. Thanks, Ian, for sharing your experiences

and all the pep talks. I am also thankful to Professor Mark Ryan and Dr. José Moreira for

their support and fruitful discussions. Special thanks to our co-author, Dominic Duggan,

for his contribution to our paper, and useful comments apart from hosting me at Stevens

Institute of Technology, NJ during my visit. I would also like to thank Ralf Sasse from

ETH Zurich, and Professor Cas Cremers from CISPA, for their help on Tamarin through

emails and personal discussion.

There is a long list of people I owe my gratitude to; for they believed in me and

helped me to stay motivated. Special thanks to School of Computer Science, UoB for its

studentship offer. I was lucky to meet Richard Thomas, Kris Hicks, Abdullah, Ming, and

all my friends from CS 117 at SoCS. Chris McMahon Stone deserves a special mention for

endless talks and good times together. A big thanks to Dr. Sujoy Sinha Roy, Dr. Rajesh

Chitnis, and Brian Mitchell for their help with the proofreading and suggestions. I was

indeed lucky to be around a joyful bunch of people, Dr.Satish Kumar, Dr. Aditya Acharya,

v

Dr. Harish Madabushi, Er. Kumar Rahul, and Dr. Jyotsna Talreja Wassan, who always

kept me motivated.

I would like to thank the Chairperson, GB, and Principals Dr Pravin Kumar and

Dr. Ramesh Kumar of Shyam Lal College (Evening), (D.U.), for granting study leave and

support. Special thanks to my colleagues from Computer Science, especially to (Late) Ms.

Bharti Kumar for supporting me in more than one way, who unfortunately, succumbed to

Covid-19 just months before thesis submission. Ma’m, you will be dearly missed.

From my home institution, University of Delhi, Professor Naveen Kumar has been

a pillar of support and always motivated me to go for further studies and attain the

global experience. Dr. Manoj Agarwal has been a dear friend and support throughout

this journey. Special mention to my friend Dr. Vishal Chauhan and family for being the

constant companion and if I may add, motivator, in Birmingham for a good part of this

journey. Dr. Chandrachur Singh and Dr. Hena Singh, a big thank you for your welcome

and hospitality during the short time we were together at Birmingham.

My family has been my strength, I cannot thank them enough for everything they

have done. My parents, who supported me beyond their means, did everything they could,

and gave me all the freedom to make my choices in life. My brothers, Sanjiv, Ravi, Priya

Ranjan, and sister, Priyanka, have been pillar of support and constants.

My wife, Seema, ‘the wind beneath my wings’, kept me motivated and been a

true companion. If there is one person who deserves most credit for this thesis, it is her.

Thanks to my boys, Sarthak and Hardik, for being so supportive throughout, for being

understanding at the age that you are. While we may have lost some expected fun due to

my schedule, let us promise each other to more than make up for them going forward. I

promise to keep my end of the bargain.

I would not be honest if I do not acknowledge the role of friends from Birmingham,

who made my life much more entertaining and comfortable than I expected. Thanks to

vi

Dr Shishank and family, and Mr Manohar and family, for great family times together and

always being there when needed.

My cricket team, Bharat Parivar Cricket Club (BPCC), made sure that I got a

beautiful bunch of people to interact, and an extended sporting family in UK. I along with

my boys, Sarthak and Hardik, are proud to be part of this group. Special thanks to each

and every team-mate of mine for all the memories and beautiful time together.

My life is incomplete without the presence and support of all my college time friends,

especially Shiv, Kapil, Raju, Sonu, Ashish, Manoj, Shrikant, Gaurav, Vikas, Bhuwan and

the list is endless. Guys, thank you for all your support, critiques, and banters that helped

me sail through and maintain my sanity. Special thanks to Shiv for regular interaction

and support during my research.

I am unable to fathom of any other generation that had to face such conditions as

perpetuated by COVID-19, at least in the living memory. The final stages of research, and

especially writing up period, was challenging due to isolation and perpetual lock-downs.

With the arrival of vaccines, we have started seeing the light at the end of the tunnel.

I wish the world gets back to normal at the earliest, and we do not ever have to face

anything like this ever again. I would like to thank all the front line workers along with

the scientific community who, despite challenging situations, made sure of keeping us safe.

vii

Contents

Page

I Introduction and Background 1

1 Introduction 3

1.1 Overview . 3

1.2 Research Objective and Questions . 7

1.3 Thesis Overview & Structure . 10

1.4 Publications . 13

2 Background & Related Work 15

2.1 Overview . 15

2.2 Introduction . 16

2.3 Security Properties . 17

2.4 Attacks on Security Protocols . 18

2.4.1 Replay/Pre-play Attack . 18

2.4.2 Type Flaw Attack . 19

2.4.3 Man-in-the-Middle Attack . 20

2.4.4 Reflection Attack . 21

2.4.5 Attacks on Authentication . 21

2.5 Formal Protocol Verification . 22

2.5.1 Security Protocol Verification Models 23

2.5.2 Formal Protocol Verification Tools 25

viii

CONTENTS

2.5.3 Protocols and Trace Properties . 26

2.6 Formal Verification of Security Properties 26

2.6.1 TAMARIN PROVER Use Cases . 27

2.7 Stealth Attacks in Various Context . 28

2.7.1 Stealth Attacks on Cyber-physical Systems 29

2.7.2 Stealth Attacks on Operating Systems 30

2.7.3 Stealthy Denial of Service (DoS) attacks 30

2.7.4 Miscellaneous Stealth Attacks Scenarios 31

2.7.5 Detecting Stealth Attacks . 32

2.8 Notational Preliminaries . 33

2.8.1 Term Rewriting . 33

2.8.2 Labelled Multiset Rewriting . 34

2.9 Summary . 35

II Modelling Attacks in a Formal Universe 37

3 Modelling of Attacks on 802.11 4-Way Handshake 39

3.1 Motivation . 39

3.2 Contribution . 40

3.3 Overview . 41

3.4 Preliminaries . 42

3.5 Fundamentals of TAMARIN PROVER . 45

3.5.1 The SAPiC Front End. 48

3.6 Formal Models of the 802.11 4-Way Handshake Attacks 50

3.6.1 KRACK Attacks . 50

3.6.2 Cipher Suite Downgrade . 57

3.7 Modelling Issues . 58

3.8 Chapter Summary . 60

ix

CONTENTS

4 Analysis of 802.11 4-Way Handshake Attacks and Security Properties 61

4.1 Motivation . 61

4.2 Contribution . 62

4.3 Overview . 63

4.4 Related Work . 63

4.5 Methodology for Analysing Security Properties 64

4.6 Analysis of IEEE 802.11 Security Properties 65

4.7 Proposing New Security Properties . 70

4.8 Verifying the Mitigations to the Models . 73

4.9 Chapter Summary . 76

III Defining Stealthiness in a Trace Model 77

5 Formal Model of Stealthiness 79

5.1 Motivation . 79

5.2 Contribution . 80

5.3 Overview . 81

5.4 Modelling Protocols in our Framework . 82

5.4.1 Labelled Transition relation . 86

5.4.2 Protocol Run and Trace . 87

5.5 Extensions to Labelled MSR in our Framework 88

5.5.1 Restrictions on Setup and Protocol Rules 91

5.6 Running Example . 92

5.6.1 Protocol and Logged Traces . 94

5.7 Allowed Sequences of Protocol Rules . 94

5.8 Defining ‘Standard Trace’ . 97

5.9 ‘Standard Looking Trace’ and ‘Stealth Attack’ 99

5.10 Chapter Summary . 101

x

CONTENTS

6 TAMARIN Model of Stealthiness 103

6.1 Motivation . 103

6.2 Contributions . 104

6.3 Overview . 104

6.4 Well-formedness of Rules and Rule Lists 106

6.5 Validity of Facts, Variables, and Rules . 108

6.5.1 Valid and Well-Formed Rule List 114

6.6 Introducing Session Identifier . 115

6.6.1 Applying Formal Stealth Model to Running Example 116

6.7 Adding Sessions to Running Example: . 121

6.8 Substitutions on Templates and Standard Traces 121

6.8.1 Substitutions Properties on Variables and Rule lists 123

6.8.2 Analysing Templates and Traces . 127

6.9 Rewriting Templates using Equivalence of Names 128

6.9.1 Classification of Equivalence Class 132

6.9.2 Template Rewriting . 134

6.10 Enforcing Stealthiness in TAMARIN . 139

6.11 Chapter Summary . 145

7 Modelling TAMARIN Semantics and Stealthiness using Coq 147

7.1 Motivation . 147

7.2 Contributions . 148

7.3 Introduction to Coq . 148

7.4 Modelling of TAMARIN Semantics using Coq 149

7.4.1 Basic Syntax Definitions . 150

7.4.2 Equality and Membership Functions 151

7.4.3 Defining Substitutions and Ground terms 152

7.4.4 TAMARIN Reduction . 152

7.4.5 TAMARIN Example . 153

xi

CONTENTS

7.5 Modelling of Stealthiness in Coq . 154

7.5.1 New TAMARIN Reduction . 154

7.5.2 Well-formedness and Validity Definitions 155

7.5.3 TAMARIN definitions of Stealthiness 157

7.5.4 Correctness Lemmas and Axioms on System Behaviour 159

7.5.5 Correctness Lemmas and Propositions 160

7.6 Equivalence of Two Models . 161

7.7 Importance of Coq Encoding and Learnings 161

7.8 Chapter Summary . 163

8 Case Studies: Testing for Stealthiness in TAMARIN 165

8.1 Motivation . 165

8.2 Contributions . 166

8.3 Overview . 167

8.4 Algorithm used by StealthCheck . 168

8.4.1 Applying TAMARIN Stealth Model to Example 5.1 171

8.5 Testing Stealthiness of Attacks . 175

8.5.1 Stealthiness of Public TAMARIN models 175

8.5.2 Stealthiness of KRACK attack . 180

8.6 Chapter Summary . 181

IV Closing Statements 183

9 Conclusions and Future Directions 185

9.1 Contributions and Reflections . 187

9.2 Future Scope and Directions . 190

Appendices 213

A Functions used in Def. 5.7 215

xii

B SAPiC Code for Attacks on 802.11 4-way handshake 217

B.1 Code for KRACK Attack of Figure 3.3 . 217

C StealthCheck user manual 223

D TAMARIN code for the case studies 225

D.1 TAMARIN Codes of NSPK protocol [55] 225

D.2 TAMARIN Code of NSPK modified by StealthCheck 227

xiii

Part I

Introduction and Background

1

Chapter One

Introduction

“Security protocols are three line programs that people still manage to get wrong”

Needham Schroeder

1.1 Overview

Security protocols can be regarded as an exchange of groups of messages in a specified

sequence among two or more parties, e. g., Alice and Bob, using cryptography to provide

various security guarantees including confidentiality, integrity, authentication [68]. These

protocols are designed to provide trust, using security guarantees, to the end users while

communicating online on an adversary controlled unsecured network. Over time and with

advancements in technology, attempts have been made continuously to replace vulnerable

security protocols with more robust versions. However, attackers have also devised newer

techniques to attack the security protocols, exploit the newer vulnerabilities, and expose

the security protocols to new challenges that require new notions of security guarantees.

Such situations present multiple obstacles for protocol designers to design robust and

more secure protocols, historically an arduous task. In 1996, after 17 years of use, the

famous Needham-Schroeder public key protocol was found to be broken and fixed [92, 93].

Recently, in 2017, the latest draft of Transport Layer Security (TLS) [114], TLS1.3 was

found to be vulnerable [135]. 3

Introduction

The security protocols base their security guarantees on their design and use of

cryptographic primitives in an adversarial setting. Protocol designers employ multiple

approaches for modelling and verification of security protocols for their security proper-

ties [30]. They perform various tests, such as conformance of implementation, to make

sure that the protocol implementations adhere to specifications making it less prone to

be attacked [125, 130]. Any attack on a security protocol implies that at least one of

its security guarantees has been compromised. For many years since 1993 [97], formal

analysis and verification of protocols has been used to encode the protocols and their

security properties to verify if the security guarantees claimed by the protocol are satisfied

or not. These claims about the security guarantees are usually placed in the formal model

as an assertion. The idea is that all such assertions, i. e., lemmas, must be verified in the

mathematical model even in the presence of an all-powerful network controlling attacker.

In case they are not, i. e., there exists a counterexample, we conclude that an attack exists

violating a security guarantee.

In the formal verification universe, it is standard practice to model the complete

specification of a protocol and its security properties in order to verify their security

properties. However, in this thesis, we develop and present a novel methodology of

modelling only the attacks on the protocols to check if the given set of security properties

is sufficient to capture the attacks. To the best of our knowledge, we are the first to

establish that there is merit in modelling only the attacks and not the whole protocol.

We also show that the results from such modelling can be highly effective to improve the

protocol by verifying security requirements.

In late 2018, the University of Toronto and Citizen Lab published a report on

suspected infections caused by Pegasus, a spyware developed by Israel-based NSO Group, in

almost 45 countries around the world [98, 99]. In most of these cases, Zero-day exploits [9]

were installed to take over the control on the victim’s cell phone. However, in July 2021,

the news of spyware Pegasus having been used against journalists, civil society members,

4

Introduction

and politicians was all over the media spectrum. What left the citizens and researchers

astonished was the mention and use of zero-click exploits [107] that did not require active

participation of users, and still are successful in taking over complete control of the devices,

mainly mobile phones. These hacking attacks work by gaining admin privileges and hence

making it difficult to be detected, leaving no trace.

Cyber attackers wish to carry out their attacks, and get away with it. Therefore,

the attacks which cannot be detected are both much more powerful and useful than attacks

that easily show up in system logs. This is particularly true for new zero-day attacks,for

which using the attack may alert system owners to the existence of the newly discovered

attack, thus leading to system to being patched [24, 145].

If protocol steps are followed exactly as per the protocol specification, its execution

will produce a non-attack trace. Stealth attacks are where the attacker looks like following

the steps in the expected order specified by the standard protocol behaviour, and are thus

difficult to detect. These attacks have been studied in diverse contexts such as attacks on

Operating Systems using Malware and Intrusion-detection Systems (IDS), Supervisory

Control and Data Acquisition (SCADA) systems and Critical Infrastructures (CIs). To

analyse the stealth attacks, many studies have focused on monitoring the difference between

a benign and malicious behaviour of the systems [38, 112, 116]. While Carzola et al. [38]

have compiled a list of stealth attacks against Critical infrastructures (CIs) and classifying

the attacks based on objectives of an adversary, Rudd et al. [116] have analysed and shown

flaws with the assumptions used by machine learning algorithms in identifying the stealth

malware intrusive behaviour. Some studies have also focused on developing a platform

to detect memory-based attacks using attack signatures, such as HexPADS [112], that

are likely to be missed not only by memory defence mechanisms such as Data Execution

Prevention (DEP), Address Space Layout Randomization (ASLR), but also by systems

such as IDS.

5

Introduction

There are a variety of possible attacks that exploit vulnerabilities of security

protocols. Some of these attacks could be stopped by modifying the protocols making

them more stringent. The rest of the successful attacks can be detected during post-attack

analysis of the system logs that shows an altered behaviour such as incomplete run, replay

or not adhering to the usual sequence of steps. There would, however, possibly be some

attacks which exploit the weakness of the protocols yet remain undetected through their

stealthy actions. We classify such attacks as Stealth Attacks that do not look like altering

the normal or standard run of the protocols producing a trace which is indistinguishable

from the standard run. It may also be possible that these stealth attacks might not be

detected even during post-attack analysis of the protocol run logs.

Analysis of security protocols is usually performed either to uncover the flaws in

protocols or to prove the correctness of security properties [68]. This thesis adopts a

novel approach of studying known attacks, and analysing them to strengthen the protocol

specifications, rather than trying to uncover new ones. We use several known attacks on

security protocols as case studies to investigate their conformity against our framework and

label them as either stealth attacks or non-stealth attacks based on the attacker following

the normal protocol behaviour or deviating from it respectively.

The study of stealth attacks has seen active research since 2003 with Jakobsson et

al. [81] describing the stealth attacks as one minimising the cost to, and visibility of, the

attacker. However, to the best of our knowledge, there has been no published attempt

to formalise the notion of stealth attacks on security protocols, making our contribution

novel. Selection of log parameters plays an important role in detecting a stealth attack. To

the best of our knowledge, we are the first to investigate the stealth attacks in the context

of security protocols and analyse the stealthiness of protocol traces containing logs.

6

Introduction

1.2 Research Objective and Questions

Expressing the security protocols on paper is not a difficult task. However, manual

verification of their claimed security guarantees can be a challenging task due to inherent

high degree of concurrency involved [15]. This challenge has motivated researchers to

develop formal methods, models, and automatic verification tools to model the protocols

and verify their security properties [138].

Usually, the formal analysis of a security protocols performed in anticipation of

finding out a new bug or to establish the correctness of their security properties [68]. Most

of the studies and analysis using formal methods revolve around modelling of complete

specification of protocols and encoding their security properties to see if there exists a

violation of any security property, implying that an attack exists. This process involves

modelling of the complete protocol specifications, and is a time-consuming process. In

contrast to this, we set out to answer whether there is any merit in modelling just the

attacks over modelling the complete protocol specifications. If so, is it possible to test all

the security properties mandated by the protocol standard in the attack environment? If

yes, what can we learn from them and if not, why not?

The work presented in this thesis can be broadly divided in two sections. The first

section, i. e., Modelling of Attacks on Security Protocols, consists of two units. The first unit

presents a methodology of modelling only attacks on security protocols using attacks such

as KRACK [137] and Downgrade attacks [131] on the 802.11 4-way handshake. The second

unit focuses on analysing the security properties of 802.11 4-way handshake under attack

scenario. The results of this analysis is then extended to present a novel methodology

demonstrating the improved protocol specification by augmenting and verifying new

security properties.

Stealthy attacks attempt to camouflage the network activities of an attacker with

message traffic that appears to be standard, as defined by the protocols for standard

7

Introduction

messaging not leading to an attack scenario. Such an attack is potentially indistinguishable

from a standard run of a protocol. Much previous research has investigated attempting to

discover from system logs that a stealthy attack is in progress.

This thesis examines this issue from another perspective: Given the protocols that

message traffic should be following, do these protocols admit stealthy attacks by allowing

an attacker to “hide” an attack in the underlying message traffic? Our approach is to

use well-known techniques for specifying security protocols, the framework of multiset-

rewriting, to provide the specification of the protocols of interest. The underlying idea is

to augment the protocol specifications with the logging specifications that will be used in

detection of attacks. This process is followed by the application of formal protocol analysis

under the stealthiness restrictions.

Based on the above perspective, the second section of this thesis defines Stealthiness

in a Trace Model. The first unit defines a formal model of stealthy run, starting by

tagging a protocol model with what would be logged on each step. The protocol execution

is modelled using the labelled transition rules, and the traces generated therefore will

contain our logs. Subsequently, formal definitions of standard looking run, attack run,

and stealth attack are proposed using the traces generated by the executions. The next

unit of this section implements formal definition of stealth attack, developed earlier, using

Tamarin [103]. In this model, we add a session ID to each protocol run instance, to

identify a specific run instance from interleaving of multiple runs, while restricting each run

to follow the stealthiness properties, the attacker is challenged to have an attack (stealth

attack) on the protocol. A summary of testing the stealthiness of various known attacks

on security protocols for their stealthiness is presented along with a discussion. Finally, we

use the formal proof management system Coq [17, 110] to model Tamarin semantics along

with many lemmas and propositions regarding the system behaviour. Using these tools,

we provide a manual proof that checking this restriction-based definition of a standard

looking run, with a protocol with session identifiers using Tamarin, is equivalent to our

intuitive definition of a standard looking run of a protocol without session IDs.

8

Introduction

This thesis makes use of term algebra and labelled multiset rewriting in order

to abstract from implementation details and provide a high level description of the

interaction, communication, and synchronization among the protocol participants including

the adversary. We use Tamarin to specify protocols and semantics extended by us to model

the single protocol run, interaction among various protocol runs, verification of security

properties using trace properties etc. These semantics allow modelling of cryptographic

primitives, and also provide an equational theory to model powers of an attacker, and

active substitutions to model an attacker’s actual knowledge.

Our modelling is quite abstract yet powerful, considering only the values placed in

the logs, typically excluding features such as packet timing and size, usually used to detect

an anomaly. We also do not consider likelihood of a particular action. However, if our

method marks an attack as stealthy, then we can be sure that there is some innocent mix

of runs of the protocol that would produce exactly the same logged actions that the attack

produces. Alternatively, if our framework shows absence of stealth attack, then the attack

will also be detectable from the logged values for a correct implementation of the protocol.

We summarise our research objective in the form of the following research questions:

Formal methods have been successful in modelling various protocols, uncovering vulnera-

bilities, and help fix many attacks. This thesis, however, tries to answer the question:

RQ1: Can the modelling of attacks on protocols be used to test the security require-

ments to improve the protocol specification?

There have been many studies related to stealth attacks in various contexts and various

detection mechanisms. However, to the best of our knowledge, there does not exist any

formal definition of stealth attack presenting a research gap and opportunity. Based on

such scenarios, we are interested in answering the question:

9

Introduction

RQ2: Is it possible to formally define attacks on protocols in two broad categories:

first, where the attacker is able to hide the attack in the message traffic by fine-

tuning the attack steps following the protocol sequence to camouflage the attacks,

i. e., stealth attack, and second, where the protocol sequences are violated making it

easy to capture, i. e., non-stealth attack?

Given a mechanism to compare various logging strategies, it would be easier to analyse

various attacks and see for what set of logging parameters, the attacks remain undetected

or vice-versa. With this objective, we would like to answer the question:

RQ3: Given a protocol and attacks thereon, can we apply formal methods to come

up with a minimal set of logging parameters, required to be logged, in order to capture

the stealth attacks thereby converting stealthy attacks to non-stealthy attacks?

1.3 Thesis Overview & Structure

The structure of this thesis, also shown is Figure 1.1, is as follows:

Chapter 2 provides the preliminaries and background information used in our work.

It talks about security properties, and attacks on them. A literature review of various

tools used in the formal verification universe, including Tamarin use cases, is followed

by a detailed survey of stealth attacks used in various contexts. This chapter sets the

foundation for verifying the security requirements and stealthiness of protocol traces in

the subsequent chapters.

Chapter 3 presents a detailed introduction to the automatic protocol verification tool

Tamarin and its front-end tool SAPiC. Using KRACK [137] and Downgrade [131] attacks

as case studies, the process of developing a novel formal model of these attacks using

Tamarin and its front-end tool SAPiC, is demonstrated here.

10

Introduction

Chapter 4 presents a novel methodology of improving the protocols using modelling of

attacks. On modelling KRACK [137] and Downgrade [131] attacks, it was discovered

that the security properties present in the 802.11 standard document are insufficient to

capture these attacks. Subsequently, using our methodology, we propose additional security

properties to be added to the standard and successfully demonstrate that the additional

properties are not only able to capture these attacks but also verify that the attacks do

not exist in the improved protocol augmented with our additional security properties.

Work presented in chapters 3 and 4 align with our research question RQ1 from Section 1.2.

Chapter 5 presents the process of developing a ‘Formal Stealth Model’ explaining

how to use formal methods to define stealthiness in a protocol trace. It explains the steps

and process of extending the semantics of a ‘Labelled Multiset Rewriting (MSR)’ system

used in Tamarin. The model supports the addition of a custom log and allows the user

to choose the parameters to be logged. We then define a standard trace based on actions,

containing the custom logs, generated during the standard execution of the protocol, i. e.,

a standard run, where the attacker simply passes outputs to inputs. A stealth attack is

considered as a successful attack yet producing a standard looking trace.

Chapter 6 explains the process of implementing the definitions proposed by the ‘Formal

Stealth Model’, presented in the previous chapter, using the protocol verification tool

Tamarin. We start by arguing that it is difficult to implement the formal definitions of

stealthiness directly in any protocol tool, as there is always a possibility of exponential

blow-up due to the concurrent execution nature of the protocol steps. Since it is impossible

to distinguish between the actions of various instances, we introduce session identifiers to

be included as part of actions to uniquely identify each log entry and run of the protocol

they correspond to. Based on the new definitions, we propose two restrictions, namely

Uniqueness and Correspondence, to be added to the Tamarin model of the protocol in

order to generate only stealthy traces. At the end, we provide a proof sketch of our central

theoretical result, i. e., “An attack is present in a trace with session IDs, under certain

restrictions, if and only if a stealth attack is present in a trace without session IDs”.
11

Introduction

Chapter 1:Introduction
and Research Questions
RQ1, RQ2, and RQ3

Chapter 2:Background
and Related work

Chapter 3: Modelling of Attacks
on 802.11 4-way handshake

Chapter 4: Analysing
Security Properties of

802.11 4-way handshake

Chapter 5: Formal
Model for Stealthiness

Chapter 6: Tamarin
model for Stealthiness

Chapter 7: Modelling
TAMARIN Semantics and

Stealthiness using Coq

Chapter 8: Case Studies: Test-
ing for Stealthiness in Tamarin

Chapter 9:Conclusion
and Future Directions

Introduction and Background

RQ1

RQ2/RQ3

Closing Statements

Figure 1.1: Thesis Structure and Outline

Chapter 7 presents use of interactive theorem prover Coq in modelling the semantics of

Tamarin. We start by presenting modelling of standard Tamarin semantics that can

also be reused by anyone interested in modelling another Tamarin case study using Coq.

12

Introduction

Subsequently, we also present modelling of Tamarin extensions developed by us. Finally,

we augment Coq model with useful lemmas and theorems to enforce correctness conditions

in the model.

Work presented in chapters 5, 6 and 7 align with our research question RQ2 from

Section 1.2.

Chapter 8 discusses the algorithm used by of the automated python based tool ‘StealthCheck’

developed by us. StealthCheck automatically adds session identifiers and stealthiness re-

strictions to a Tamarin model of a protocol. We use StealthCheck to test the stealthiness

of various attacks from both the publicly available Tamarin models, and of KRACK [137]

attack model developed by us. Our results show, for various common logging strategies,

which attacks can be made into stealth attacks and which cannot.

Work presented in chapter 8 align with our research question RQ3 from Section 1.2.

Chapter 9 presents a discussion on our research presented in the thesis, followed by

possible future directions.

1.4 Publications

During work of this thesis, the following work was published. The ideas and results

presented in this thesis are also derived from the following publications.

• Rajiv Ranjan Singh, José Moreira, Tom Chothia, and Mark D Ryan, “Modelling

of 802.11 4-Way Handshake Attacks and Analysis of Security Properties” In the

Proceedings of the 16th International Workshop on Security and Trust Management

Co-located with ESORICS 2020, 17–18 September 2020. Guildford, UK, pages 3-21.

Springer, 2020.

• Rajiv Ranjan Singh, Tom Chothia, and Dominic Duggan, “Defining Stealthiness in

a Trace Model” In preparation for submission.
13

Chapter Two

Background & Related Work

If I have seen further, it is by standing on the shoulders of Giants.

Sir Isaac Newton

2.1 Overview

This chapter introduces background concepts such as security protocols, their security

properties, and attacks on them. We also cover topics such as background for understanding

the formal protocol verification universe, preliminary concepts related to term rewriting

and labelled multiset rewriting to develop our model. Further, this chapter presents a

short summary of various studies conducted related to formal modelling of protocols and

their security properties. We also provide a summary of stealth attacks discovered, in

various contexts, so far. We show that, based on our analysis, stealth attacks do not find

mention either in context of security protocols or being analysed in a trace model.

15

Background & Related Work

2.2 Introduction

A security protocol can be regarded as an ordered set of messages between two or more

agents to facilitate a secure two-way message exchange. It uses cryptography to either

authenticate the communicating parties or provide key distribution for new sessions [68].

The area of security protocol verification has seen a lot of research since 1990s [28].

Most of the recent attacks on the security protocols have been successful either because

of cryptographic weaknesses (BEAST, CRIME [120]), protocol logic flaws (HeartBleed,

3Shake [66]), implementation bugs (LOGJAM [7], SLOTH [22]) or a combination of them.

Accordingly, in line with the identified factors responsible for the attacks, these attacks

can be identified and prevented in two ways. First, the cryptographic scheme used in the

protocol can be analysed and proven secure. Second, we can analyse the full specification of

the protocol and verifying the implementations. All such analysis can be performed either

manually or by using automated analysis tools. Some of these techniques posses a few

advantages over the other, although there always remains some gaps between theoretical

assumptions of the schemes and their implementations [20].

The security community has long been debating over preferring one class of tools

over the other. However, it has been accepted that the formal analysis of security protocols

is certainly the most economical process, at least in terms of the time and effort, compared

to the actual implementation followed by testing. It has become a popular research area

during the last three decades. Formal security analysis has been put to use in successfully

analysing many protocols [19, 44, 51, 65] and uncovering flaws.

The field of formal verification has been strengthened with the development and

support of many advanced tools such as ProVerif [29], Avispa [10, 138], Scyther [58], and

Tamarin Prover[103]. All these tools can be used to verify whether a security protocol

successfully preserves the security goals or not.

16

Background & Related Work

In the next sections, we will provide an overview of security properties, and some

attacks on them. This is followed by an introduction to formal protocol verification

tools, their use cases, and a literature review of stealth attacks. Finally, we introduce

term rewriting and labeled multiset rewriting ruleswhich we would be using in our formal

analysis, to be used in subsequent chapters.

2.3 Security Properties

A security protocol is designed with focus on providing some form of assurance against

unauthorised access and usage, to both the data being processed and the parties processing

them, in an environment controlled by an adversary. A security guarantee is an assurance

provided by a security protocol which, if used according to the designer’s specifications,

provides provable specified security goals. However, not all security protocols are designed

to protect every security goal. As discussed earlier, we have presented a novel methodology

of not modelling the whole protocol but only the part of it enough to model an attack, it

is imperative that we discuss some common security guarantees that the protocols usually

claim. The list is not an exhaustive one, as the idea is to make the reader aware of the

methodology adopted in encoding these security properties.

Secrecy: The concept of secrecy, the most basic and important security notion, requires

that the attacker is unable to access the protected sensitive information, even if the

communication uses an unsecured network. The formal models of cryptography assumes

perfect cryptographic primitives and consider terms built using these primitives. Secrecy is

sometimes classified in two categories; namely standard secrecy and strong secrecy. While

the standard secrecy requires that the attacker must not be successful into obtaining the

value of secret, the notion of strong secrecy mandates that the attacker must not be able

to differentiate between the events that lead to change in the secret values [27].

17

Background & Related Work

Authentication: Authentication is one of the most studied property by researchers in

security protocol analysis. Though the notion of ‘secrecy’ is quite clear in every context,

‘authentication’ as a property is still evolving [57]. Authentication is defined as a party being

sure of the identity of the other. Lowe [95] has proposed a hierarchy of authentication

starting from aliveness to agreement. While the weakest form of authentication, i. e.,

aliveness may not guarantee both the agents about guaranteed participation of the other

in the protocol run, the agreement or injective agreement seeks to enforce one-to-one

relationship among the agents over the variable values used upon successful completion of

the protocol. Between aliveness and agreement, two more forms namely weak agreement

and non-injective agreement have also been placed in the hierarchy.

Cremers et al [56] have extended Lowe’s hierarchy of authentication with the notion

of synchronisation. In their other work [57], they have argued that the synchronisation

property implies agreement and is strictly stronger than agreement. The need for stronger

property is justified given that certain classes of attacks such as replay attacks may be

successful even on a security protocol satisfying agreement.

2.4 Attacks on Security Protocols

There is rich availability of literature related to the study of protocols, attacks, vulnerabil-

ities, and fixes proposed on them. We list a few attack examples, and their categories, in

this section. For more information on security protocols and attacks on them, we refer the

readers to study the authentication and key establishment protocols [34] in detail.

2.4.1 Replay/Pre-play Attack

In this attack, the intruder replays a message from previous run or other protocol in a

different context order to trick an honest agent in believing the completion of successful run

18

Background & Related Work

of the protocol [96]. These attacks can be prevented by making use of session ID attached

with every message to make them unique. Implementing synchronisation using one time

passwords (OTPs), timestamps etc. can also be helpful. Lowe’s man-in-the-middle attack

on Needham-Schroeder Public key protocol [46, 93], presented in Sec. 2.4.3, is a famous

example of replay attack.

2.4.2 Type Flaw Attack

The type flaw attack on a security protocol works by interpreting a term, originally

intended to be of one type, as being of another type [140]. The Otway-Rees protocol [108]

is expected to provide symmetric assurance of key freshness using a trusted server, and is

prone to type-flaw attack explained in [42]. In this attack, the responder is fooled into

interpreting combination of message and participants name as session key [140].

1: A→ B:M,A,B, {NA,M,A,B}KAS

2: B → S:M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

3: S → B:M, {NA, KAB}KAS
, {NB, KAB}KBS

4: B → A : M, {NA, KAB}KAS

Figure 2.1: Otway-Rees protocol [108]

Fig. 2.2 describes a type-flaw attack on Otway-Rees protocol [108]. This attack

considers an intruder I who has obtained the encrypted message {M,C,B}KBS
by engaging

in a previous run of the protocol with B. The attack is successful as it successfully tricks A

1: :A→ IB:M,A,B, {NA,M,A,B}KAS

2: :B → S:M,A,B, {NA,M,A,B}KAS
, {NB,M,A,B}KBS

3: :S → B:M, {NA, KAB}KAS
, {NB, KAB}KBS

4: IB → A:M, {NA,M,A,B}KAS

Figure 2.2: Otway-Rees Protocol and type-flaw attack [34]

19

Background & Related Work

into believing that it is talking to B. As a result, A ends up accepting the triple (M,A,B)

as a fresh key KAB in the last message 4.

2.4.3 Man-in-the-Middle Attack

In Man-in-the-middle (MITM) attack, an adversary sitting between the two communicating

parties, is able to modify as well as control the sequence of the messages without any

of the parties detecting its presence. It is one of the oldest known forms of attack and

has been known to be successful against various entity authentication protocols including

HTTPS [37] and very recently on TLS 1.3 specifications [53].

1:A→ B : {NA, A}pubKB

2:B → A : {NA, NB}pubKA

3:A→ B : {NB}pubKB

Figure 2.3: Needham-Schroeder Public Key Protocol [93]

1: A→ C : {NA, A}pubKC

1’ :CA → B : {NA, A}pubKB

2’: B → CA : {NA, NB}pubKA

2: C → A : {NA, NB}pubKA

3: A→ C : {NB}pubKC

3’: CA → B : {NB}pubKB

Figure 2.4: NSPK Protocol and Lowe’s attack [34, 92]

In an MITM attack, the attacker uses some form of replay trick to authenticate

itself with the victim. The classic Needham-Schroeder Public Key Protocol [92, 93] is

vulnerable to this attack as shown in Fig. 2.4.

20

Background & Related Work

2.4.4 Reflection Attack

A reflection attack is a special form of replay attack where the attacker, rather than

replying to the query, sends it back to the originator itself and waits for the originator to

send back the response. This response can then be sent back to the originator to complete

the protocol run thereby breaking the challenge-response authentication [34, 117].

A reflection attack on NSPK [93] is shown in Fig. 2.5. Here, A and B wish to

authenticate each other by sending nonces across encrypted with a pre-shared key. Attacker

C, masquerading as A, can easily suppress the real message 3, and instead use message

3’ to complete the protocol run with A leading to an attack. The attacker can start a

parallel run and gets authenticated using reflection attack as described below:

1 :A→ B : {NA}K
2 :B → A : {NB}K , NA

1’:CB → A : {NB}K
2’:B → CA : {NX}K , NB

3’:CA → B : NB

Figure 2.5: Reflection attack on NSPK Protocol [34]

2.4.5 Attacks on Authentication

Any attack on authentication attempts to exploit the weakness in an authentication process

used to verify the identity of a protocol participant. Most of the above-mentioned type of

attacks can be launched on security protocol to break the authentication in a protocol

run. The Station-To-Station Protocol, or STS protocol [26], seeks to provide mutual key

authentication and confirmation along with forward secrecy [63]. The protocol version

suffers from unknown key share attacks against both the Initiator and Responder, with

the adversary able to register their public keys as its own and successfully intercept the

message intended for honest parties, violating the perfect forward secrecy.

21

Background & Related Work

1: A→ B : A,B, gx

2: B → A : B,A, gy, sigB(gy, gx),macK(sigB(gy, gx))
3: A→ B : A,B, sigA(gx, gy),macK(sigA(gx, gy))
4: A→ B : A,B, gx

5: B → A : B,A, gy, {SigB(gy, gx)}KAB

6: A→ B : A,B, {SigA(gx, gy)}KAB

Figure 2.6: Modified STS Protocol [34]

1 :A→ CB : A,B, gx

1’:C → B : C,B, gx

2’:B → C : B,C, gy, {SigB(gy, gx)}KAB

2:CB → A : B,A, gy, {SigB(gy, gx)}KAB

3:A→ CB : A,B, {SigA(gx, gy)}KAB

Figure 2.7: Attack on Modified STS Protocol [34]

The attack example shown in Fig. 2.7 is a combination of replay attack (message 2’

used in 2) along with modified message. C has successfully convinced A that he is talking

to B by starting a parallel run of the protocol and mixing messages from these runs.

Defence mechanisms against these attacks exist in the form of newer versions of

protocols and guidelines. In their landmark paper, Abadi and Needham [5] have outlined

some principles for implementations of cryptographic protocols that would make the

attacks on protocol more difficult, if not impossible. Adoption of these principles can help

protocol designers in strengthening their protocols against some known attacks.

2.5 Formal Protocol Verification

Developing a security protocol as well as the methods to analyse them is a rigorous

mathematical exercise. To prove the reasoning about their correctness is also a complex

task due to the inherent complexity of the protocols [12]. The discovery of a flaw affecting

22

Background & Related Work

the Needham-Schroeder public-key protocol using formal methods was an important

milestone in the development and acceptance of formal methods.

Formal verification of protocols is fast becoming one of the popular research topics

in recent years [60, 86, 93]. Various approaches, e. g., logic-based, process calculus base

and symbolic approaches have been proposed to model the protocols and verify their

security properties [100]. A logic based approach is based on representing protocols in

terms of logic formulae combined with inference rules, whereas a process calculus based

approach models the protocol participants as processed executing in parallel that interact

via exchanging messages.

The model checking approach models the protocol by defining a set of states

and transitions along with an intruder. The knowledge of an intruder along with the

information known to each principal is taken into account while searching the state space

to check the reachability of some particular state. Such models can also verify or falsify

the possibility of generating specific traces [100].

2.5.1 Security Protocol Verification Models

Presently, two models of verification are popular in the security protocol verification

landscape : computational and symbolic models [28]. While the computational methods

concerns about the verification of the cryptographic functions used in security protocols,

symbolic methods model security protocols as sequences of interactions among the protocol

participants while assuming perfect cryptography.

Computational Model: The computational model is built on following the ideas

forwarded by Goldwasser and Micali [72] involving complexity and probability theories.

The computational (or cryptographic) model represents the messages using bit-strings

and cryptographic primitives using functions that map bit-strings to bit-strings, with

23

Background & Related Work

the adversary modelled as a probabilistic Turing machine. The security of a protocol is

measured by the probability of a security property holding true or otherwise [28].

Symbolic Model: The symbolic model is built around abstract, symbolic modelling

and has its origin in the pioneering work by Dolev and Yao [64]. The messages here are

modelled using terms in a term algebra and various operations on messages by message

deduction rules. A term such as enc(Msg,K) represents the encryption of the message,

i. e., term Msg with the key, i. e., term K. The terms known in the system can be paired,

encrypted, and decrypted to form newer terms. However, the decryption can only be

performed when the key is known assuming perfect cryptography [28]. First such formalism

was proposed by Dolev-Yao that came to be known by a powerful Dolev-Yao adversary [64]

controlling the network. It can read, intercept and send all the messages on the network

and is limited in its capability only by cryptographic constraints.

Some researchers, such as Creese et al. [115], have argued that Dolev-Yao model

presents a worst-case scenario which is very difficult if not impossible in real world

assumptions. We agree with their assertion that it is always better for a protocol analysis

to be failing in a strict environment compared to satisfying the security goals in a restricted

threat model [115].

Both the approaches have witnessed huge progress especially in the last decade

as researchers started looking at formal verification of protocols before their implemen-

tation [53]. The symbolic approach is an abstract model and allows for better proof

automation, but its results are not easy to relate to real world security goals. In contrast,

the computational approach provides more realistic security assurance while sacrificing

the ease of proof automation [12]. In a significant seminal paper [6], Abadi and Rogaway

tried to bridge the gap by proposing a computational justification for treating encryption

formally. Subsequently, there have been multiple attempts to establish a relation between

the two approaches. Some of these approaches focused on proving computational soundness

24

Background & Related Work

for the symbolic model, whereas others applied reasoning techniques from the symbolic

model to the computational model [12].

Applications of formal research outcome have demonstrated the usefulness of

formal verification tools in detecting and correcting the protocol flaws even after their

standardisation [93]. However, all generic protocol verification tools may not necessarily

support the verification of the security properties of a cryptographic protocol.

2.5.2 Formal Protocol Verification Tools

The research community, working on formal verification, has developed various security

protocol verification tools over the years. Most popular of them include, but not limited

to, Tamarin[103] (Meier, Cremers, Basin, 2013-), Scyther [58] (Cremers etc 2006-),

AVISPA [10, 138] (Large EU project and team, 2005-), Pro-Verif [29] (B. Blanchet,

and others, 2001-), Athena [129] (D. Song, 1999-), Casper/FDR [94] (G. Lowe, 1997-),

NRL [101] (C. Meadows, 1994-), etc. to name a few.

The approach used by these tools are similar in the sense that the security properties

of protocols are specified either as trace-based or equivalence properties. Trace-based

reachability property seeks to establish the presence of a given security property, such

as secrecy and authentication, in all possible generated traces. The security properties

such as anonymity, unlinkability, and vote secrecy are collectively known as privacy

properties. The equivalence properties can express privacy properties by establishing

the inability of an adversary in differentiating among two scenarios [41]. As stated

earlier, this thesis makes use of symbolic model for formal verification using mathematical

framework defined in Tamarin. Other verification tools, such as ProVerif [29] support

unbounded verification, but are not guaranteed to terminate. Although Tamarin is also

not guaranteed to terminate, it does have an interactive mode that provides for manual

guided proof mechanism. An introduction to fundamentals of Tamarin is presented in

Sec. 3.5. 25

Background & Related Work

2.5.3 Protocols and Trace Properties

A run of a security protocol involves execution of roles by participant(s) or agent(s)

performing some actions. A trace can be generated by compiling these sequence of actions

performed by these agents. A security protocol can then be inductively defined as a set

of traces, with each trace resulting from multiple interleaved runs. An agent is capable

of executing multiple interleaved runs, with each run as an instantiation of a role, in the

protocol definition [56]. In the presence of an attacker, trace of a process may be defined

as any possible interleaving of transitions with an attacker able to intercept, modify, and

forward the messages. The trace can be analysed for verifying conformance to various

security properties by the protocol. The manual proof of these security properties are

very long and time-consuming [111]. However, many automatic tools, such as Pro-Verif,

Scyther, Tamarin etc., present in Section 2.5.2 provide a push-button approach for such

analysis by modelling the security properties as trace properties [48, 123].

Security properties such as secrecy, authentication, observational equivalence etc.

have been defined on traces. The reachability property in a trace is used to check if some

security property holds for any execution trace or not, and is used for properties such

as secrecy and authentication. The equivalence property expresses the inability of an

adversary to distinguish between the traces generated by two different scenarios [41], and is

commonly used to express privacy-related properties such as anonymity and unlinkability

etc. [61, 77]. However, some properties, such as information flow properties, can not be

verified through trace properties [35].

2.6 Formal Verification of Security Properties

The formal methods have been studied and applied extensively in recent decades to

analyse the specifications of the system and proving their security properties. A complete

26

Background & Related Work

formal model of a system encompasses an abstract view of the system, its desired security

properties along with the powers of adversary. The formal protocol verification process

must start with a complete specification of the protocol and make explicit assumption

about the capability of the adversary. It must be proved that the specified protocol

achieved the target security guarantee given the adversary assumptions hold [122]. These

assumptions help the protocol designers to claim if the protocol behaves in an intended

fashion in an adversary controlled environment.

Formal verification has been helpful in finding many bugs and prove security guar-

antees during both the pre- and post-deployment phases of various protocols. Automated

analysis of the security protocol has been successful in uncovering many flaws in the

security protocols starting from the famous Lowe’s attack [93] on the Needham-Schroeder

public key protocol after 17 years of its publication. This beginning was followed by several

famous cases such as flaws discovered in Google Single Sign on protocol [11] and PKCS#11

standard implementations [33], HeartBleed bug [66] in OpenSSL etc. All these attacks

might have been known to attackers prior to their discovery by researchers.

2.6.1 TAMARIN PROVER Use Cases

Tamarin has emerged as a popular symbolic modelling and formal protocol analysis tool. It

has been used to analyse a variety of protocols and schemes. It was the Tamarin modelling

of TLS 1.3 [51], which made it possible to uncover a potential attack, with the adversary

masquerading as a client, without being detected. This analysis helped improve the protocol

by including additional safeguards which satisfied all the desired security guarantees [51].

Analysis of many other security protocols such as 5G authentication [13], secure Internet

of Things (IoT) [88], and PKCS# 11 [90] have also been successfully performed using

Tamarin. Other case studies include analysing the EMV(EuropayMasterCard-Visa)

complaint payment protocol for mobile devices [47] and vehicular networking (V2X)

27

Background & Related Work

security protocols [142]. Both the Direct Anonymous Attestation Schemes, i. e., TPM

2.0-based [141] and ECC-based [143] have also been analysed using the Tamarin.

The credentials above are enough to prove the versatility and efficacy of Tamarin

for modelling and analysis across wide range of security protocols and schemes. All these

studies mentioned above have modelled complete specifications of the protocols, or systems

under study, to perform security analysis. They have used these comprehensive models

to uncover new flaws and/or suggest fixes to the design. However, development of such

models can be a time-consuming process taking many months, even for a large team [52].

2.7 Stealth Attacks in Various Context

Remaining undetected during attacks is one of the primary aim of an attacker. It empowers

them to relaunch the attacks multiple times and is a serious risk for an information system.

The concept of stealth attack was introduced by Jakobsson et al.. in 2003 as the class of

attacks having minimised cost and less visibility [81]. The stealth attack described by them

had mainly three phases viz. stealthiness of communication, execution, and propagation

to remain stealthy throughout the life cycle. A stealthy attacker has also been defined

as a special class of adversary who fine-tunes his actions to avoid being detected [38].

Similarly, every defence mechanism or countermeasure being designed against stealth

attack must also study the environment of every system to be protected. An example of a

perfect stealth attack could be Zero-click exploits [9, 107], developed by Pegasus, that are

successful in taking full control of user’s devices without their active participation.

Stealth attacks and their detection mechanisms have been studied mainly against

Cyber-Physical system backdrops, e. g., SCADA, Smart Grids and similarly networked

control systems. Some studies have analysed stealth attack on operating Systems using

stealthy malware, rootkit etc. We, however, found no evidence of any attempt to analyse

the stealthiness of security protocol traces, either using experimental or formal methods.28

Background & Related Work

2.7.1 Stealth Attacks on Cyber-physical Systems

Many researchers have analysed the stealth attack scenario in industrial control systems

(ICS) and cyber-physical systems [32, 38, 74]. A powerful attacker may mount a stealthy

attack by driving the system to an arbitrary state while keeping the detection parameters

under threshold. Such situations can be catastrophic and difficult to detect, as the

attacker makes the detection difficult by keeping the parameters unchanged. Stealth

attacks, analysed in the cyber physical system scenarios, have proposed hard to detect

attacks against industrial control systems [32, 38]. Possibility of cyber stealth attack

have been explored against critical information (CI) infrastructure [38], in which the

powerful attackers launch very dangerous attacks with the objective of capturing sensitive

information by remaining stealthy throughout their operation. Any remotely controlled

cyberattacks on the critical infrastructures can prove disastrous, more so when the attack

remains undetected or stealthy. When the attackers are primarily interested in remaining

unnoticed, the system may remain exposed for longer duration without protection. This

allows the attacker to train their attack vectors to other connected components of the CIs.

Cazorla et al. [38] conclude that stealth attack are very dangerous and extremely

difficult to fully secure networks against them. After studying various mechanisms to

prevent and thwart stealth attack they propose a combination of active and passive

security mechanism. Cyber stealth attack in critical infrastructures [38] usually comprises

stealthiness of communication, execution and propagation in that order. Every single

attack, however, can be unique and may involve one or more phases out of three mentioned,

but always in the same order.

Bopardikar et al. [32] has discussed the challenges of securing existing legacy cyber-

physical control systems from stealth attack on the system components interaction. The

proposed solutions focus mainly on the system reconfiguration to modify the attack effect,

or by deploying additional virtual but secure measurements.

29

Background & Related Work

2.7.2 Stealth Attacks on Operating Systems

Stealth attacks on operating systems using Malware and Ad-hoc networks have been

discussed in various research such as [73, 116, 139] etc. Mathias has proposed a platform

HexPADS [112] to detect stealth attack based on the principle that the OS provides

very limited software metric and is not suited to capture various memory based stealth

attack. Attacks such as side channel and covert channel attacks are difficult to observe

using conventional metrics. While analysing the attacks, it must be understood that the

software attacks tend to modify the process environment or behaviour. Such changes can

be captured at either ends, be it on the attacker’s process or on the victim’s process, and

can be mapped to an attack. In memory based attacks, its detection is highly dependent

on the precision of the measured runtime characteristics, along with the monitor’s ability

to distinguish between benign behaviour and attacks. So, the efficiency and success of

any tool that detects a stealth attack would depend on its effectiveness in monitoring

difference between a benign behaviour and a malicious behaviour [112].

2.7.3 Stealthy Denial of Service (DoS) attacks

There is a long history of Denial of Service (DoS) attacks on web services such as Amazon,

MasterCard and PayPal, leading to heavy economic losses. Ficco et al. [69] have defined a

low-rate DoS attack as a form of stealth attack. This low-rate DoS attack is carried out by

directing packets flow at a rate low enough to avoid DoS detection. Its primary objective

is to avoid detection mechanism by exploiting application level vulnerabilities. As most of

the systems are designed to protect against normal high-rate DoS attacks, the attackers

may choose to employ the low-rate DoS attacks repeatedly to avoid detection as well as

cause enough damage similar to normal DoS attacks.

The use of Intrusion Detection or Prevention System (IDS or IPS) is ineffective

to handle such attacks. To handle such attacks, an intrusion tolerant approach has been

30

Background & Related Work

proposed by [69], designed to mitigate any service level unavailability resulting out of

low-level DoS attack. Some of these stealth attacks may be launched by “querying a

service using a very large request message resulting in high memory consumption” or

”starting decryption of many encrypted messages resulting in high CPU load” [69].

Jakobsson [81] has, however, shown that when an adversary wants to disconnect

the network, it can do so by launching a stealth version of the common DoS attack that

modifies the behaviour of some nodes by fooling them into making illegal entries in their

respective routing tables.

2.7.4 Miscellaneous Stealth Attacks Scenarios

BGP hijacking takes place when the Internet service providers (ISPs) forwards the IP

prefixes without filtering them, leading to illegitimate takeover of some IP addresses. It

has been demonstrated that HTTPS can be broken by BGP hijacking [70]. Birge-Lee

et al. [25] further elaborated that the adversaries can use BGP to more stealthily hijack

only part of the internet [70], but these attacks are also limited in that they require the

adversary to have a specific location in the internet topology. Research [25] shows how

an adversary in any location can perform a similarly stealthy attack. The authors have

concluded that it is much easier to perform a stealthy attack against a certificate authority

(CA) than previously anticipated.

Gruss et al. [73] have developed Flush+Flush attack on cache without making any

memory access, contrary to any other cache attack. These attacks are claimed to be

stealthy in nature as it cannot be detected via cache hits and misses. Similarly, Wagner

and Soto [139] have presented a technique to bypass the detection from IDS by studying

the pattern of IDS detection mechanism. They have come up with mimicry attacks that is

able to evade detection by intrusion detection systems (IDS). These mimicry attacks can

also be classified as a stealthy attack since the attack goes undetected.

31

Background & Related Work

Many researchers have extensively worked on stealth attack on security protocols

on mobile ad hoc networks [81, 118]. The stealth attack have also been classified in two

classes, first performing traffic analysis and second partitioning the network to reduce

network throughput [118].

2.7.5 Detecting Stealth Attacks

Many studies have been undertaken to find out ways of detecting stealth attacks [4, 32]. In

their work on log correlation for intrusion detection, Abad et al. [4] have shown structure

of different attacks as reflected in various logs, based on data mining techniques. A wide

range of Intrusion Detection or Prevention Systems (IDS or IPS) [87, 121] can detect

attacks, and a lot of work has looked at ways to avoid these [105, 139]. Since a single log

analysis is insufficient, as some attacks are likely to go unnoticed, it has been recommended

that both the network and system logs act as the primary source of data for forensic

analysis apart from intrusion detection and response [4].

The behaviour of any system can be analysed based on various metrics. With so

many metrics, finding out a common reference behaviour may be a difficult task. This

leads us to believe that rather than analysing the system behaviour, comparing the actual

logs in traces generated by the protocols against the expected standard logs may be a

better strategy for analysing the logs. While the efficiency of machine learning algorithm

is dependent largely on the quality of model and training set data, it is not the case with

automated analysis of logs in traces.

A stealthy attack may not necessarily belong to the class of severe attack, as the

attacker may combine small unnoticed attacks multiple times to cause enough or even

more damage than a single severe attack. Two interesting cases supporting this notion

have been discussed by [69] and [146]. Analysis of data collected at US National Lab, the

study found a recurring pattern of distributed brute-forcing attempts. These attacks were

32

Background & Related Work

found to be targeting a wide range of machines, and it would have been easier to detect

them using a detector with a universal view. At the same time, only aggregate view would

be helpful in detecting some instances of stealthy attacks [82].

Bian et al. [23] have demonstrated a novel approach using machine learning to detect

hosts in a network, also referred as target assets (TAs), that is victim of advanced persistent

threats by analysing graph-based features such as network flows and host authentication

logs among others. While their approach outperforms some other approaches, it is also

limited by poor quality of the dataset. Such a limitation can be alleviated by using

a framework independent of the dataset or a solution dealing with specific classes of

interactions such as network security protocols and attacks thereon.

2.8 Notational Preliminaries

This section introduces various notations to be used throughout this thesis and provides

background on term rewriting and labeled multiset rewriting rules used in Tamarin.

2.8.1 Term Rewriting

Rewrite systems perform a very simple task : perform computation by replacing equal

terms in a given formula, and keep repeating till there are no terms left to be replaced in

the set of directed equations. One of the most important properties for rewrite systems

is that every term can be rewritten to a unique normal form. A rewrite rule provides a

generic framework for basic actions executing parallel to each other in a concurrent system.

Just like equational simplification, which can be performed in parallel independent of each

other, rewriting can also be termed as concurrent rewriting [104]

33

Background & Related Work

In short, “Term Rewriting” provides a useful and powerful formalism tool that can

be used in developing programming languages, automated deduction ad rewriting logic etc.

Though equational deduction by undirected replacement of equals by equals can be very

efficient, direct replacement (i. e., term rewriting) can be much easier and much faster [71].

Various standard notions related to “Term Rewriting” presented in this section follows

from previous work presented in [62, 104, 122].More details on term rewriting is placed in

section 5.4.

2.8.2 Labelled Multiset Rewriting

The equational theory E, used in a system, specifies all the cryptographic operations,

protocol, and adversary capabilities in terms of what it can learn from the messages. Our

system is a labelled multiset rewriting system S that supports generation of fresh names

and persistent facts similar to one used in [122]. The verification tool Tamarin used in

our work derives its input from the syntax and semantics of labelled multiset rewriting

rules.

State and Facts The states of a transition system can be modelled as finite multisets

of facts. Facts are constructed using terms over a fact signature. An unsorted signature

ΣF is categorised into linear and persistent fact symbols. The set of fact F consisting of

all facts F (t1, ..., tk) such ti ∈ T and F ∈ Σk
F . The set of ground facts, i. e., the set of facts

not containing any variables, are denoted by G. A fact F (t1, ..., tk) is defined as linear or

persistent, depending upon F either being linear or persistent, respectively. While the

linear facts model resources that are consumable only once, persistent facts are used to

model resources that can be consumed multiples times, still remaining in state.

Trace In our model, the traces (sequence of sets of facts) are defined by labelled multiset

rewriting modulo E with S. The security properties are verified by presence or absence of

34

Background & Related Work

fact in traces at a certain time point. First-order formulas using predicate symbols are

used to specify various security properties such as :

• f@i means that the fact f is present in the trace at position i,f ∈E tr[i] where i is a

temporal variable and tr[i] is the ith element of the trace tr.

• i ≺ j denotes that the time point i precedes the time point j.

• i = j denotes that the time points i and j are equal.

• Similarly, t ≈ s denotes equality for terms t and s in equational theory E., i. e.,

t =E s.

Multiset Rewrite Rule A labelled multiset rewriting rule is denoted by l − [a]→ r.

It consists of a triple (l, a, r) with l, a, r,∈ F∗. Every rule of type rule = l − [a]→ r has

premises, actions, and conclusions with premises defined as prems(rule) = l, actions as

acts(rule) = a and conclusions as concs(rule) = r. A rule can be fired only when all the

facts present in the premise of a rule are available in the system state. Upon firing of

a rule, the facts present in the premise, i. e., l are consumed and replaced by those in

conclusion, i. e., r. In the process, execution of a rule adds action a to the trace, which is

an ordered list of acts(rule) The set of such multiset label rewriting rules form a multiset

rewriting system discussed in section 5.4.

2.9 Summary

In this chapter, we have introduced the notions of security properties along with attacks

and their examples. This is followed by introducing the two models of formal protocol

verification; computational and symbolic followed by a summary of automatic verification

tool Tamarin use cases. We found that, in most of the cases, a complete model of the

35

Background & Related Work

protocol has been developed for security analysis. These analyses have uncovered many

flaws and been helpful in improving the protocol design, however, the process has been

time-consuming and complex. Hence, it begs the question whether it is possible to achieve

a similar result by just modelling the attacks, and not the complete protocol? We would

attempt to undertake such an experiment, of modelling just the attacks, and not the

complete protocol specifications, and study its result in subsequent chapters.

Further, based on the overview of various scenarios presented in Section 2.7 explain-

ing stealth attack and their detection mechanisms, we are now in position to summarise

them and identify the research gaps. The stealth attack have mostly been defined as one

which is difficult to detect and where the attacker focuses on avoidance of detection.

Our study found that most of the stealth attack studies have remained focused

on industrial control system or cyber-physical systems, where the system states usually

follow laws of Physics. Additionally, there are a variety of documented attacks on security

protocols. Some studies have focused on man-in-the-middle attacks by proposing stealth

attack on WPA2 encrypted Wi-Fi networks [8] and preventing such attacks [119].

As described in Section 2.7, many researchers have looked at attempting to discover

from system logs that a stealthy attack is in progress, such as, using logs correlation in

machine learning techniques. In our review of stealth attacks, we do not find any mention

of the protocol trace analysis being used as a detection mechanism for the stealth attack.

Further, here was no evidence of any formal modelling and analysis of the stealth attack,

based on the protocol traces.

Since there has been no attempt on analysing the attacks on security protocols as

stealth attack, we can consider the absence of any formal definition of stealthiness of traces

as a research gap. Accordingly, in subsequent chapter, we propose to analyse the stealth

attacks on security protocols based on the protocol trace analysis.

36

Part II

Modelling Attacks in a Formal

Universe

37

Chapter Three

Modelling of Attacks on 802.11

4-Way Handshake

The usual approach of science of constructing a mathematical model cannot

answer the questions of why there should be a universe for the model to describe.

Why does the universe go to all the bother of existing?

Stephen Hawking

3.1 Motivation

There is an abundance of research related to formal analysis of protocols using automated

protocol analysis tools such as Pro-Verif [29], Tamarin[103] etc. Such studies start by

modelling a complete model of the protocol as per the standard specifications provided

by the original authors or, in some cases, agencies such as IEEE etc. A comprehensive

analysis of such protocols usually requires major effort and is a complex task [52, 53]

considering all the possible combinations the model must be able to exhibit, in order to

simulate a real-world execution. The security properties mandated by the protocols are

then analysed in the presence of an attacker to see if the properties are satisfied or not.

39

Modelling of Attacks on 802.11 4-Way Handshake

We, however, rather than modelling the complete state machine, want to model

only those actions sufficient to demonstrate an attack and analyse if such models can

be used to analyse the security properties listed out in the protocol standard. We seek

to test if there is merit in this technique, i.e., modelling of subset of actions enough to

demonstrate an attack and analysis of security properties under the attack scenario. This

chapter presents modelling of various attacks, such as KRACK [137] and Downgrade [131],

on IEEE 802.11 4-way handshake as examples.

3.2 Contribution

The IEEE 802.11 standard defines a 4-way handshake between a supplicant and authenti-

cator for secure communication. Many attacks such as KRACK [137], cipher downgrades,

and key recovery attacks have been recently discovered against it. These attacks raise

the question whether the implementation violates one of the required security properties,

or whether the security properties are insufficient. To the best of our knowledge, this is

the first work that shows how to answer this question using formal methods by modelling

only the attacks and not the complete protocol specification. We present in this chapter,

modelling process for variety of these attacks and issues faced, using the Tamarin against

the security properties mandated by the standard for the 4-way handshake.

In this chapter, we present a novel methodology for modelling of attacks on 802.11 4-

way handshake in order to verify its security properties as mandated in the standard. Our

modelling approach is different from the normal use of formal methods for checking security

protocols, which consists in defining a model of a protocol with its security properties to

check for the existence of attacks. Instead, we use known attacks to model only a subset of

protocol interactions which are sufficient to demonstrate such attacks. Such attack models

will serve as foundation, to check if the security properties proposed in the standard are

enough to ensure the security of the protocol, in the subsequent chapters.

40

Modelling of Attacks on 802.11 4-Way Handshake

3.3 Overview

Wireless networks are ubiquitous in domestic and corporate environments because they

provide a convenient way to connect portable devices. However, security is a major

concern, since a cybercriminal may not need physical access to eavesdrop or tamper with

the communications between honest devices.

The original IEEE 802.11 standard [78], adopted in 1997, defined the Wired

Equivalent Privacy (WEP) security algorithm, aimed at providing data confidentiality

comparable to that of a traditional wired network. WEP was found vulnerable due to

the use of a weak cipher, namely RC4, and the small size of its initialisation vector.

Many attacks on WEP, such as key recovery attacks, have been published [132, 133].

Subsequently, WEP was replaced by Wi-Fi Protected Access (WPA) as an intermediate

measure, before the final IEEE 802.11i amendment [79], commonly known as WPA2, was

finalised in 2004.

The 802.11 standard [80] defines a 4-way handshake as the key management protocol.

It involves exchanging four messages between an access point (AP) and a client, or

equivalently in 802.11 terminology, an authenticator and a supplicant. These messages

enable parties to compute and share session/group keys for future unicast/multicast secure

communication over the wireless medium. It also provides mutual authentication and

session-key agreement.

This 4-way handshake was proven formally secure [75, 76], and had no attacks

published on it, until recently when the so-called Key Reinstallation Attack (KRACK)

was uncovered by Vanhoef and Piessens in 2017 [137]. This attack exploits design and/or

implementation flaws in the 4-way handshake by reinstalling already in-use session or

group keys. As a consequence, the adversary can break the security guarantees, even with

a secure protocol for data confidentiality, such as the AES-based Counter Cipher Mode

with Block Chaining Message Authentication Code Protocol (AES-CCMP), and decrypt

or replay messages [137]. 41

Modelling of Attacks on 802.11 4-Way Handshake

Moreover, various 4-way handshake implementations have been found to be vul-

nerable to downgrade attacks in widely used routers [131], including models of Cisco and

TP-Link. These attacks mostly affect the AP, when both the AP and the client support

AES-CCMP and Temporal Key Integrity Protocol (TKIP) cipher suites. Although the

client is always likely to choose the stronger AES-CCMP cipher suite over TKIP, an

adversary can trick the AP into using TKIP.

We demonstrate the development models of 4-way handshake using the security

protocol verification tool Tamarin. Our modelling focuses on the subset of functionalities

and messages for successful execution of the attacks on 4-way handshake and not building

a complete model of the 802.11 state machines, thus enabling a Dolev-Yao adversary [64]

to exploit the vulnerabilities. We show that Tamarin can find the attacks mentioned

above, and our models can formally verify that the suggested fixes to the vulnerabilities

work as intended. The main contribution of this chapter is to present Tamarin models

of the 802.11 4-way handshake that exhibit several attacks [131, 137], that will be used

later to suggest possible fixes, and demonstrate correctness of suggested fixes. We also

show here how to use Tamarin to encode the security property corresponding to a given

attack. At the end, we also discuss some modelling issues that we have encountered.

3.4 Preliminaries

The IEEE 802.11 Standard.

This standard defines protocols for data confidentiality, mutual authentication, and key

management, providing enhanced security at the medium access control (MAC) layer in

wireless networks [80].

The original version of the standard [78] appeared in 1997, and defined the Wired

Equivalent Privacy (WEP) security algorithm, based on the weak RC4 cipher. The

42

Modelling of Attacks on 802.11 4-Way Handshake

Supplicant Authenticator

Generate PTK

Install PTK and GTK Install PTK

Install GTKInstall GTK

Beacon/Probing (Supported RSNEs)

802.11 Authentication + Association (Chosen RSNE)

Encrypted data
Refresh GTK

Generate PTK

Figure 3.1: IEEE 802.11 standard 4-way handshake and group key handshake

vulnerable WEP was replaced with Wi-Fi Protected Access (WPA), as an intermediate

measure, before the IEEE 802.11i amendment (WPA2) [79] was released in 2004. WPA

includes the use of a message authentication code algorithm, coined as Message Integrity

Check (MIC), as well as the TKIP cipher suite, which allows a more secure per-packet

key system compared to the fixed key system used by WEP. The Message Integrity Check

(MIC) helps protect the authenticity of the EAP over LAN key frames (EAPOL-Key) [80].

The 802.11i amendment [79] and the current version of the standard [80] requires support

of even more secure algorithm suites, discussed below. We summarise here the four stages

of the 802.11 key generation process. We refer the reader to [80] for the full details.

• Network Discovery. In this stage, the clients search for available networks along

with their parameters. Clients can either actively send and receive probes, or just

observe the broadcast beacons passively to learn the supported cipher suites (e.g.,

TKIP and/or AES-CCMP), and version of WPA. This set of parameters is called a

Robust Security Network Element (RSNE).

• Authentication and Association. In this step, the Pairwise Master Key (PMK)

is derived at both ends. In WPA2-Personal mode, the PMK is derived using a

Pre-Shared Key (PSK) with a length of 8 to 63 characters, the Service Set Identifier

43

Modelling of Attacks on 802.11 4-Way Handshake

(SSID), and the SSID length, while in WPA2-Enterprise mode, it is derived from a

key generated by an Extensible Authentication Protocol (EAP), e.g., using 802.1X

authentication [3]. The PMK is used later in the temporal keys generation. However,

the real authentication is carried out during the 4-way handshake. The client and

the AP accept or reject the association request based on the AP agreeing to the

client’s choice of RSNE.

• 4-Way Handshake. The 4-way handshake takes place to agree on a fresh session

key, namely the Pairwise Transient Key (PTK), and optionally the Group Temporal

Key (GTK); see Fig. 3.1. PTK derivation [80, Sec. 12.7.1.7.5] uses the shared

PMK, a supplicant nonce SNonce, an authenticator nonce ANonce, and both MAC

addresses. The PTK can be refreshed after a fixed time interval, or at request from

either party, by executing another 4-way handshake. The PTK is split into a Key

Confirmation Key (KCK), Key Encryption Key (KEK), and Temporal Key (TK).

The KCK and KEK protect handshake messages, while the TK protects data frames

through the data confidentiality protocol. The 4-way handshake also transports the

current GTK to the supplicant. The group key GTK is placed in the Key Data field

encrypted with KEK. The frame is kept protected, using KCK and MIC, to preserve

its authenticity [137]. Every message in the 4-way handshake follows the layout of

EAPOL-Key [80], and we use Msgn to denote the nth message in the handshake.

The authenticator starts the handshake and increments the replay counter on every

message sent. The supplicant replies to messages using the received replay counter.

• Group Key Handshake. The standard allows for refreshing the GTK regularly,

using a group key handshake, to ensure that only active clients are in possession of

it. This process is initiated by the authenticator sending group message 1, denoted

GrMsg1, to all clients. The clients reply, in turn, with group message 2, GrMsg2,

with the received replay counter; see Fig. 3.1.

• Data Confidentiality and Integrity Support. The standard defines several

44

Modelling of Attacks on 802.11 4-Way Handshake

data confidentiality suites such as AES-CCMP and AES-GCMP as mandatory, but

also TKIP for backwards interoperability with WPA [80]. All suites include message

integrity of the data frames. For brevity, we use the same notation as in [137] to

denote an encrypted frame Encnk(), being n the nonce (replay counter) in use, and k

the key, i.e., PTK for unicast and GTK for broadcast messages.

We note that our focus is mainly on the attacks to the 4-way handshake. Therefore, the

authentication and association stages are out of the scope of our work, and we will assume

that the PMK is already available at both ends.

3.5 Fundamentals of TAMARIN PROVER

Tamarin is a state-of-the-art tool for symbolic verification and automated analysis of

security properties in protocols, under the Dolev-Yao model [64], with respect to an

unbounded number of sessions. In addition to the security protocol model specifying the

actions taken by various agents participating in the protocol in various roles, Tamarin

also expects specifications of adversary as well as protocol’s security guarantees in the form

of properties. It then tries to construct a proof demonstrating that the protocol meets the

desired security properties, even in the presence of an adversary and, even when multiple

arbitrary instances of the protocol runs are interleaved in parallel. The cryptographic

messages in Tamarin are modelled as order-sorted term algebra.

To analyse a protocol using Tamarin, one has to start by using its specification

language to build an abstract model of the protocol, honest participants and adversary who

controls the network. Further, desired protocol security properties are encoded using the

same specification language followed by constructing the proofs for the specified properties.

Tamarin employs multiset rewriting system to represent the protocol executions where a

security protocol is defined by a set of roles with each defined as a set of multiset rules.

45

Modelling of Attacks on 802.11 4-Way Handshake

Each rule represents an event in the protocol, such as sending or receiving of the message.

Tamarin can handle protocols with unrestricted global states and unbounded

sessions. Sometimes, however, the user may have to provide auxiliary lemmas for complex

protocols in order to help the tool terminate. It provides a specification language for the

symbolic modelling and analysis of security protocols by facilitating the building of highly

detailed models of security protocols, the security guarantees offered by the protocols, and

all powerful Dolev-Yao adversary.

Though Tamarin is proven sound and complete, as the protocol security problem

is undecidable [67], Tamarin may not terminate every time owing to the possible infinite

number of messages, sessions, and nonces, and may require human interventions. To

support such interventions, Tamarin offers a GUI based interactive mode for the users to

guide the tool manually in its proof [89]. We provide a brief overview of Tamarin in this

subsection, however we refer the reader to the Tamarin manual [55] for additional details.

Adversary Knowledge:

We consider an all powerful adversary called Dolev-Yao adversary [64] that controls the

network. It can read, intercept and send all the messages on the network and is limited in

its capability only by cryptographic constraints. Some researchers like Creese et al. [115]

have argued that Dolev-Yao model presents a worst-case scenario which is very difficult

if not impossible in real world assumptions. At the same time, they also agree that it is

better for a protocol analysis to show failure in a strict environment rather than achieve

their security goals in a restricted threat model [115].

Tamarin models the knowledge of an adversary (Dolev-Yao [64]) denoted by the

persistent fact !K(t) specifying t is known to the adversary. A linear fact Out(t) specifies

message output by the protocol t to the public channel and adversary can read as well

retain t in its knowledge with persistent fact !K(t) added to the trace. Another linear fact

46

Modelling of Attacks on 802.11 4-Way Handshake

In(t) specifies sending of a message. All messages received by the protocol are assumed to

be sent by the adversary, i.e., the adversary will change an Out from one protocol rule to

an In to be consumed by another protocol rule using its knowledge !K. All the message

deduction (MD) rules available to adversary are presented below [123]:


Receive Out(t)

!K(t)
Send !K(t)

In(t)
[!K(t)]

Fr(n:fresh)
K(n:fresh)

Public
K(t:pub)

Fresh
Fr(n:fresh)

Derive K(t1)...K(tk)
K(c(t1,...,tk))

for all (c : k) ∈ Σ

Tamarin allows expressing security properties as temporal, guarded first-order

formulas, modelled as trace properties. The construct F@i states the presence of the fact

F at a time point i. A property can be specified as a lemma to be tested if it holds or not,

and enforced as a restriction, while testing other lemmas in presence of this property [103].

a special feature of Tamarin is its ability to exclude some traces from consideration using

the restriction feature. The security properties, lemmas, and restrictions are expressed

using first order logic formula and modelled as trace properties. The security claims are

verified against the transition system traces result in proof constructed by Tamarin either

verifying or falsifying the same using the Lemma feature.

Security Lemma :

Security properties are described in Tamarin using first-order logic and consist of ob-

servable actions present in the trace. To argue that the shared secret is not available to

the attacker, the Tamarin manual [55] suggests the following lemma verifying that it is

not possible for somebody to claiming that they have set up a shared secret and for the

adversary to know the key. Here, ‘#i’ and ‘#j’ refer to time-points ‘i’ and ‘j’ of the event.

lemma nonce_secrecy:

"not(Ex A B s #i. Secret(A, B, s) @ i & (Ex #j. K(s) @ j))"

47

Modelling of Attacks on 802.11 4-Way Handshake

Restrictions on Traces :

Tamarin has the restriction feature, which allows a property to be enforced on the traces.

This feature is essential for formal analysis of a protocol, to verify if enforcing particular

security properties would stop an attack. To the best of our knowledge, other tools such

as ProVerif do not offer this feature and hence are not suitable to our approach. The

‘restriction’ feature in Tamarin can restrict the set of traces to be considered in the

protocol analysis, e.g. the restriction below will only allow action labels ‘Eq(x,y)’ satisfying

the condition ‘x=y’, i. e., ‘Eq(5,5)’ can appear in the trace while ‘Eq(5,6)’ cannot.

restriction Equality: "All x y #i. Eq(x,y) @i ==> x = y"

From now on, we will be using the first-order logic notations to describe our lemmas and

restrictions. E.g., the lemma nonce secrecy will be written as:

¬(∃ A,B, s, i. Secret(A,B, s)@i ∧ (∃ j. K(s)@j)). (nonce secrecy)

Similarly, the restriction equality will be written as:

∀ x, y, i. Eq(x, y)@i ⇒ x = y. (equality)

3.5.1 The SAPiC Front End.

Tamarin provides a SAPiC front-end, which allows specifying Tamarin models using

processes. We provide a brief overview of SAPiC here, but we refer the reader to [89, 103]

for further reference. SAPiC parses descriptions of protocols in an extension of the applied

pi-calculus [30], called stateful applied pi-calculus, and converts them into (labelled) multiset

rewriting rules (MSRs) to be analysed by Tamarin.

48

Modelling of Attacks on 802.11 4-Way Handshake

〈P ,Q〉 ::= processes
| 0 terminal (null) process
| P | Q parallel composition of P and Q
| !P replication of P
| ν a; P binds a to a new fresh value in P
| out(m, t); P outputs message t on channel m
| in(m, t); P inputs of message t on channel m
| if Pred then P [else Q] P if predicate Pred holds; otherwise Q
| event F ; P executes event (action fact) F
| P + Q non-deterministic choice
| insert m, t; P inserts t at memory cell m
| delete m; P deletes the content m
| lookup m as x in P [else Q] if m exists, bind it to x in P ; otw. Q
| lock m; P gain exclusive access to cell m
| unlock m; P waive exclusive access to m
| [L] −[A]→ [R]; P (L,R,A ∈ F∗) provides access to Tamarin MSRs

Figure 3.2: SAPiC syntax (a ∈ FN , x ∈ V, m, t ∈ T , F ∈ F)

Fig. 3.2 describes the SAPiC syntax. The calculus comprises an order-sorted term

algebra with infinite sets of publicly known names PN , freshly generated names FN , and

variables V. It also comprises a signature Σ, i.e., a set of function symbols, each with

an arity. The messages are elements of a set of terms T over PN , FN , and V, built by

applying the function symbols in Σ.

The set of facts is defined as F = {F (t1, . . . , tn) | ti ∈ T , F ∈ Σ of arity k}. The

special fact K(m) states that the term m is known to the adversary. For a set of roles,

the Tamarin MSRs define how the system, i.e., protocol, can make a transition to a new

state. An MSR is a triple of the form [L] −[A]→ [R], where L and R are the premise and

conclusion of the rule, respectively, and A is a set of action facts, modelled by SAPiC

events. For a process P , its trace Tr(P) = [F1, . . . , Fn] is an ordered sequence of action

facts generated by firing the rules in order.

49

Modelling of Attacks on 802.11 4-Way Handshake

3.6 Formal Models of the 802.11 4-Way Handshake

Attacks

We present some variants of the KRACK attacks, exploiting nonce reuse [137], and a

downgrade attack from [131]. Along with the attack steps, we also highlight some relevant

details of our SAPiC models for the attacks and for the security lemmas corresponding

to each one. Some details, e.g., MIC and the usage of cipher suites in encryption are not

relevant in the attack modelled by us and hence have been abstracted. The complete

source for the models and mechanised proofs are available at [127]. For the sake of brevity,

we have also placed the complete SAPiC code of KRACK attack discussed in Figure 3.3

in Appendix B.1.

3.6.1 KRACK Attacks

The KRACK attacks exploit vulnerabilities in the 802.11 key management protocols [137].

An adversary tricks a victim into reinstalling an already used key by dropping, delaying or

altering the order of the 4-way handshake messages between two honest principals. On

every key installation, the standard mandates that the replay counter (nonce) of the data

confidentiality protocol be reset. The adversary can collect different encrypted messages

using the same key and nonce: messages sent after the initial key installation, and messages

sent after the key reinstallation. The adversary can then use this information to attack

the data confidentiality protocol. The practical implications of the attack may enable the

adversary to replay, decrypt or even forge the data packets, depending on the choice of

the cipher suite (e.g., TKIP, AES-CCMP,AES-GCMP). We refer the reader to [85, 137]

for the detailed consequences of the attack.

The underlying causes of the attacks are the unclear standard specifications, such

as the authenticator accepting any replay counter previously used in the 4-way handshake,

50

Modelling of Attacks on 802.11 4-Way Handshake

Supplicant AuthenticatorAdversary

Reinstall PTK and GTK

Install PTK and GTK

Install PTK ?
Nonce 1 reuse starts

Figure 3.3: KRACK - plaintext retransmission of message 3 after PTK install

not only the latest one [80, Sec. 12.7.6.5]. However, in practice, many APs fail to validate

it, and imprudently accept an older replay counter. Subsequently, after discovery of

vulnerabilities leading to KRACK attacks, the vendors were notified who have released

patches to secure their older devices against these vulnerabilities. It may, however, be

noted that the patches may themselves be flawed, or the attack can still succeed if the

patched AP is connected to an unpatched vulnerable client [137].

We have successfully modelled several KRACK attacks exploiting the retransmission

of message 3 and forcing nonce reuse [137]. We remark that the goal of our models is not

to verify the compromise of the data confidentiality protocol. Instead, we aim at detecting

the sufficient conditions that allow an adversary to exploit it, i.e., reinstallations of the

same key.

Retransmission of Message 3 after PTK Install.

This variant of KRACK [137, Sec. 3.3] occurs when the supplicant accepts plaintext

retransmission of message 3, even after a PTK has been installed. The message flow

of the attack is shown in Fig. 3.3, and the outline of our model of the supplicant and

51

Modelling of Attacks on 802.11 4-Way Handshake

Supplicant :=
ν Sid; out(Sid);
! (in(Aid);
in(Msg1(r, ANonce));
ν SNonce;
let ptk = CalcPtk(pmk,ANonce, . . .) in
out(Msg2(r, SNonce));
in(Msg3(r + 1, ANonce,Enckek(gtk)));
event Running(Sid, Aid, pars);
out(Msg4(r + 1));
event S InstallsPtk(Sid, ptk);
event S InstallsGtk(Sid, gtk);
((event Commit(Sid, Aid, pars)
) +
(in(Msg3(r + 2, ANonce,Enckek(gtk)));
event Running(Sid, Aid, pars);
out(Encptk(Msg4(r + 2)));
event S InstallsPtk(Sid, ptk);
event S InstallsGtk(Sid, gtk);
event Commit(Sid, Aid, pars)
)))

Authenticator :=
ν Aid; out(Aid);
! (in(Sid);
ν r;
ν ANonce;
out(Msg1(r, ANonce));
let ptk = CalcPtk(pmk, . . .) in
in(Msg2(r, SNonce));
ν gtk;
event Running(Aid, Sid, pars);
event A InstallsGtk(gtk);
out(Msg3(r + 1, ANonce,Enckek(gtk)));
((in(Msg4(r + 1));
event A InstallsPtk(ptk);
event Commit(Aid, Sid, pars)
) +
(out(Msg3(r + 2, ANonce, . . .));
in(Encptk(Msg4(r + 2)));
event A InstallsPtk(ptk);
event Commit(Aid, Sid, pars)
)))

Figure 3.4: Model outline for supplicant and authenticator vulnerable to KRACK attack
based on plaintext retransmission of message 3

authenticator are in Fig. 3.4. Note that we prepend ‘S ’ and ‘A ’ to the events executed

at the supplicant and authenticator, respectively. The main process is defined as ν pmk; (

!Supplicant | Authenticator), instantiating an arbitrary number of supplicant processes.

Our model computes the PTK [80, Sec. 12.7.1.7.5] with the identifiers Aid, Sid acting as

the MAC addresses as follows:

ptk = CalcPtk(pmk,ANonce, SNonce, Aid, Sid).

The adversary sits between the supplicant and the authenticator to perform a

man-in-the-middle (MITM) attack, and forwards messages 1-3 normally. Initial PTK

install is captured by the event S InstallsPtk(Sid, ptk), after which the supplicant can

send encrypted frames using the encryption key TK associated to PTK. Message 4 is

blocked from reaching the authenticator by the adversary. The model uses the non-

52

Modelling of Attacks on 802.11 4-Way Handshake

deterministic choice in the authenticator process via the + operator from the SAPiC

calculus. Therefore, it captures either the reception of message 4, and installs the PTK,

or timeouts and retransmits message 3 with an updated replay counter, and waits again

for the confirmation.

Similarly, in order to capture the fact that the state machine of the supplicant

accepts plaintext retransmission of message 3, we also branch the supplicant process,

in order to capture traces completing a normal run of the protocol, and traces with an

adversary blocking message 4. This latter case matches the attack scenario, with the

supplicant reinstalling an already in-use PTK (and GTK). It follows that the next data

frames sent by the supplicant will be encrypted with a reused nonce. Our model, therefore,

is aimed at capturing the traces with key reinstallations on the supplicant side using the

same PTK already installed.

Retransmission of Message 3 before PTK Install.

This KRACK attack has two variants with the supplicant accepting either a plaintext or

encrypted retransmission of message 3 with the PTK yet to be installed [137, Sec. 3.4].

The first case is shown in Fig. 3.5. This attack assumes that the authenticator

performs its actions as expected. The first two messages are transmitted normally. However,

the original message 3 is blocked by the adversary while he waits for the retransmission

of message 3. Both messages are then forwarded to the supplicant. This triggers a race

condition between the CPU and the network interface controller (NIC), which causes

that the same key be reinstalled. In our model for this attack, Fig. 3.5b, the supplicant

comprises both the NIC and the CPU, and it considers two branches in order to capture

an implementation vulnerable to the attack: one where the 4-way handshake follows the

normal course, and another where the attacker is able to cause key reinstallation.

The second case of this attack is presented in Fig. 3.6. The main difference is

53

Modelling of Attacks on 802.11 4-Way Handshake

Client CPU AdversaryWireless NIC

Reinstall PTK and GTK

Install PTK and GTK
Install-keys

Install-keys

Nonce 1 reuse starts

(a) Message sequence diagram

Supplicant =
!(
// Messages 1-3 processed normally
((
// No other msg. recv. in between
out(Msg4(r + 1));
event S InstallsPtk(Sid, ptk)
) + (
// Retransm. message 3 recv.
in(Msg3(r + 2, ANonce,Enc(gtk)));
out(Msg4(r + 1));
event S InstallsPtk(Sid, ptk);
out(Encptk(Msg4(r + 2)));
event S InstallsPtk(Sid, ptk)
)))

(b) Model outline

Figure 3.5: KRACK - plaintext retransmission of message 3 before PTK install

Client CPU AdversaryWireless NIC

Reinstall PTK' and GTK

Install PTK' and GTK
Install-keys

Install-keys

Nonce 1 reuse starts

Initial 4-way handshake

Install PTK and GTK

Pairwise rekey in progress

(a) Message sequence diagram

Supplicant =
!(// Initial 4-way handshake
event S InstallsPtk(Sid, ptk);
! (// PTK rekey
// Messages 1-3 processed normally
((// No other msg. received
out(Encptk(Msg4(r + 1)));
event S InstallsPtk(Sid, ptk

′)
) + (// Retransmitted msg. 3 recv.
in(Encptk(Msg3(r + 2, . . .)));
out(Encptk(Msg4(r + 1)));
event S InstallsPtk(Sid, ptk

′);
out(Encptk′(Msg4(r + 2)));
event S InstallsPtk(Sid, ptk

′)
))))

(b) Model outline

Figure 3.6: KRACK - encrypted retransmission of message 3 before PTK install

that it can only be executed during the PTK rekey phase. After an initial successful

handshake, both principals install a PTK. During the PTK rekey process, the adversary

54

Modelling of Attacks on 802.11 4-Way Handshake

follows the same strategy as above: it waits for a retransmission of message 3. This

time, the messages are encrypted under the installed PTK, but the adversary is able to

identify what particular message is being sent (e.g., by timeouts or message lengths). By

appropriately delaying and forwarding the messages, the adversary causes a reinstall of the

PTK being refreshed, ptk′. Our model (Fig. 3.6b) captures an arbitrary number of PTK

rekey negotiations, and, again, it branches non-deterministically to capture the transitions

of a supplicant state machine vulnerable to the attack.

For all three cases above (Figs. 3.3, 3.5 and 3.6), we query for the absence of

KRACK attacks with lemma: “given an installation of PTK by the supplicant, it is not

the case that there exists an earlier installation with the same PTK,”

∀id, ptk, t1. S InstallsPtk(id, ptk)@t1 ⇒

¬(∃t2. S InstallsPtk(id, ptk)@t2 ∧ (t2 < t1)). (NoKrackPtk)

The events S InstallsPtk are placed in the parts of the model where the primitive MLME-

SETKEYS.request [80] is called, which causes nonce reset.

As expected, our Tamarin models [127] falsify Lemma (NoKrackPtk), proving the

existence of KRACK, allowing an adversary to cause key reinstall, nonce reuse and break

the security guarantees of the data confidentiality protocol.

Attack Against the Group Key Handshake.

This variant of the KRACK attack targets the group key handshake, and tricks the

supplicant into reinstalling a GTK, rather than a PTK [137, Sec. 4.1]. The attack is

shown in Fig. 3.7. Note that the group key handshake runs encrypted by the already

installed PTK. The standard requires that the supplicant install the GTK upon receipt

of group message 1, regardless of whether it is a retransmission or not, and reply with

55

Modelling of Attacks on 802.11 4-Way Handshake

Supplicant AuthenticatorAdversary

Initial 4-way handshake

Install GTK'

Reinstall GTK'

Install GTK'

Refresh GTK'

(a) Message sequence diagram

Supplicant =
!(
// Initial 4-way handshake
! (
// Group key handshake
in(Encptk(GrMsg1(r′,
Enckek(gtk

′))));
// If r′ already used, finish thread
event S InstallsGtk(Sid, gtk

′);
out(Encptk(GrMsg2(r′)))
))

(b) Model outline

Figure 3.7: KRACK against group key handshake

group message 2. The adversary delays group message 2 from reaching the authenticator,

triggering retransmission of group message 1. Now, the adversary forwards both versions

of group message 1 to the supplicant, which causes a GTK install and subsequent reinstall.

This will allow the attacker to replay group data frames to the supplicant [137].

To capture the reinstall of the GTK, Tamarin falsifies the following lemma stating

that “given an installation of GTK by the supplicant, it is not the case that there exists

an earlier installation with the same GTK,”

∀id, gtk, t1. S InstallsGtk(id, gtk)@t1 ⇒

¬(∃t2. S InstallsGtk(id, gtk)@t2 ∧ (t2 < t1)). (NoKrackGtk)

Our model (Fig. 3.7b) captures a scenario with a supplicant accepting arbitrary

number of executions of the group key handshake, as long as the group message 1 has an

increased replay counter. We note that for this model we assume an initial valid 4-way

handshake without exhibiting PTK reinstall. This modelling issue is discussed in Sec. 3.7.

56

Modelling of Attacks on 802.11 4-Way Handshake

Supplicant AuthenticatorAdversary

Beacon/Probe response
CCMP

Receive
RC4-encrypted GTK

Beacon/Probe response
TKIP

802.11 Authentication

Association w/CCMPAssociation w/TKIP

TKIP TKIP

TKIP TKIP CCMP

TKIP CCMP

(a) Message sequence diagram

Authenticator =
!(ν tid; // Thread ID
in(〈 ‘AuthReq’, Sid〉);
out(〈 ‘AuthResp’, Sid, ‘CCMP’〉);
in(〈 ‘AssocReq’, Sid, ‘CCMP’〉);
out(〈 ‘AssocResp’, Sid, ‘CCMP’〉);
// 4-way handshake
event A Starts(tid, ‘CCMP’);
out(Msg1(r, ANonce, ‘CCMP’));
in(Msg2(r, SNonce, cs));
out(Msg3(r + 1, ANonce,
Enc〈cs,kek〉(gtk)));
event A SentMsg3(tid, cs);
// (. . .)
)

(b) Model outline

Figure 3.8: Downgrade Attack on 802.11 (TP-Link WP841P)

3.6.2 Cipher Suite Downgrade

The downgrade attack we consider [131] is limited to the authenticator-side only. In a

correct implementation, a client should be able to detect this attack easily by observing

inconsistencies in the RSNE information. Recall from Sec. 3.4 that the RSNE information is

selected in the association stage in plaintext, and subsequently encrypted and transmitted

as part of message 3, as shown in Fig. 3.1. The supplicant must verify that the RSNE

information observed in the association stage matches with the authenticated contents of

message 3, and it should terminate the handshake otherwise.

In a downgrade attack, depicted in Fig. 3.8, the adversary forces GTK encryption

with a weak cipher suite (RC4), rather than the intended strong cipher suite (AES-CCMP).

The attack was discovered on the access point TP-Link WP841P [131, Sec. 5.2]. The

authenticator advertises support for AES-CCMP during the association stage. However, it

will follow the supplicant in switching the cipher suite in mid-handshake process, accepting

the TKIP-based message 2.

An adversary acts as a MITM by negotiating the AES-CCMP suite with the

57

Modelling of Attacks on 802.11 4-Way Handshake

authenticator, and TKIP with the supplicant, as message 1 is in plain. The supplicant

calculates the PTK and replies with message 2 using the TKIP suite. The authenticator

accepts the message, overrides its initial AES-CCMP selection, and responds with a

well-formed TKIP message 3 containing the GTK encrypted with RC4. The adversary can

now exploit the weakness of this cipher to recover the GTK [136]. The RSNE mismatch

can be easily detected on forwarding of message 3 to the supplicant, which can drop the

connection. Unfortunately, by this time, the adversary is already in possession of the

RC4-encrypted GTK.

Encryption with different cipher suites can be modelled, e.g., with a signature Enc′,

Dec′ indicating the cipher suite cs as an additional parameter. Then,

∀m, k, cs. Dec′k(Enc′k(m, cs), cs) = m.

Note, that this theory is semantically equivalent to the usual symmetric encryption using

as key the tuple k′ = 〈cs, k〉, because Dec〈cs,k〉(Enc〈cs,k〉(m)) = m.

Our Tamarin model queries that “for each run of the protocol, the cipher suites

used by them is the same,” implying that a change of the cipher suite in between a run is

impossible. As expected, the lemma below is falsified:

∀tid, cs1, cs2, t1, t2. A SentMsg3(tid, cs1)@t1∧

A Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (NoDowngrade)

3.7 Modelling Issues

This section presents some modelling issues encountered and their handling in our models.

Data Confidentiality Protocol: Once a PTK has been agreed and installed, all traffic

58

Modelling of Attacks on 802.11 4-Way Handshake

is symmetrically encrypted at the link-layer using the data confidentiality protocol [79].

This also applies to messages sent during PTK or GTK rekeying through the 4-way

handshake or the group key handshake. This can be easily modelled in Tamarin with

the symmetric encryption built-in theory. However, this has the undesired side effect

that Tamarin tries to derive arbitrary terms from the outputs of the protocol once

the first encryption is sent to a process. That is, Tamarin believes that it can use

the honest processes as oracles for arbitrary encrypted terms using a key that the tool

tries to derive unsuccessfully. Technically speaking, this causes that the tool has partial

deconstructions left, complicating the proof of a lemma by either taking a very long time,

or not terminating [102].

A sources lemma is one of the possibilities to guide the proof and help Tamarin

terminate. We define the following templates for inputs and outputs associated to the

data confidentiality protocol:

// Template for outputs

event DcpSend(id,m, k);

out(Enck(m));

// Template for inputs

in(Enck(m));

event DcpReceive(id,m, k);

These events allow us to define the following sources lemma that eliminates the

partial deconstructions left:

∀id1,m, k, t1. DcpReceive(id1,m, k)@t1 ⇒

(∃t2. K(m)@t2 ∧ (t2 < t1)) ∨ (∃id2, t2. DcpSend(id2,m, k)@t2).

Indeed, the lemma states the obvious fact that whenever a party receives a message m

encrypted with key k, then m was either known by adversary, or it was encrypted by

an honest party. As honest parties do not leak secrets in our model, the lemma helps

Tamarin ‘realising’ that the outputs of the data confidentiality protocol can not be used

by the adversary to gain any extra information.

59

Modelling of Attacks on 802.11 4-Way Handshake

Replay Counters: An important part to model in the 802.11 key management protocols

is the use of replay counters. We model this feature for the attacks covering PTK and

GTK rekeying (Fig. 3.6 and 3.7). The event ReplayCtr is placed at the locations where

the supplicant should check the counter, e.g.,

in(Enctk(Msg1(r, ANonce)));

event ReplayCtr(r);

Then, the restriction below models a supplicant that accepts a message only if its

replay counter is larger than the last one received.

∀r1, r2, t1, t2. ReplayCtr(r1)@t1 ∧ ReplayCtr(r2)@t2 ∧ (t1 < t2)⇒ (∃x. r1 + x = r2).

We find that the restriction works as intended using the following sanity-check lemma.

∀ id,m, t1, t2. S AcceptsMessage(id,m)@t1 ∧ S AcceptsMessage(id,m)@t2 ⇒ (t1 = t2)).

(CorrectnessNoReplay)

3.8 Chapter Summary

In this chapter, we have introduced the automatic protocol verification tool Tamarin and

its front-end SAPiC that allows modelling of processes. Subsequently, we have presented

formal models of various KRACK attacks, using Tamarin, on the IEEE 802.11 4-way

handshake and group key handshake, and downgrade attacks on implementations of the

4-way handshake.The process of translating the security properties into lemmas has also

been discussed in detail. Apart from modelling steps, we have also outlined modelling

issues encountered by us during the process. The approach presented in this chapter can

be helpful to model many new attacks and compare them with the complete protocol

model. In the next chapter, we will present the analysis of security properties of 802.11

4-way handshake in our models that we have developed in this chapter.
60

Chapter Four

Analysis of 802.11 4-Way Handshake

Attacks and Security Properties

Science cannot solve the ultimate mystery of nature. And that is because, in the

last analysis, we ourselves are a part of the mystery that we are trying to solve.

Max Planck

4.1 Motivation

In chapter 3, we have argued that modelling of complete protocol specification using

formal verification tools is a complex and time-intensive process. We have presented the

Tamarin models of KRACK and Downgrade attacks on IEEE 802.11 4-way handshake

for the purpose of testing the efficacy of modelling only the attacks, to test the security

guarantees and their efficacy in capturing the attacks.

In this chapter, we proceed to check if the security properties proposed in the

standard are enough to ensure the security of the protocol. we use our novel methodology

for analysing the security properties as mandated in the standard using models of attacks

on 802.11 4-way handshake developed in the previous chapter. As already explained, our

61

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

modelling approach is different from the normal use of formal methods for checking security

protocols, which consists in defining a model of a protocol with its security properties to

check for the existence of attacks. Instead, we use our models and known attacks from

previous works to check if the security properties proposed in the standard are enough

to ensure the security of the protocol. Where they are not, we propose a new security

property that could be added to the standard, encode it in Tamarin, and use the tool to

automatically show that it would be enough to stop a class of attacks, such as KRACK

and Downgrade.

4.2 Contribution

This chapter, rather than modelling the complete state machine, presents the analysis of

security properties based on the modelling of only those actions sufficient to demonstrate

an attack. We have analysed if such models can be used to analyse the security properties

listed out in the protocol standard. We also prove that there is merit in this technique, i. e.,

modelling of subset of actions is enough to demonstrate an attack and analysis of security

properties under the attack scenario. This chapter presents one such case study using

IEEE 802.11 4-way handshake as an example. Using our analysis, we have been able to

prove that the security properties mandated in IEEE 802.11 are insufficient to capture the

modelled attacks. Additionally, we have been able to come up with the security properties

to be augmented to capture such attacks and verify them by proving that enforcing our new

security properties is successful in stopping such attacks. In summary, we have successfully

modelled and verified the process of our novel methodology of analysing security properties

and testing their sufficiency by modelling just the attacks on any given protocol. Compared

to use of traditional formal methods for the purpose, our method is much economical and

easy to verify.

62

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

4.3 Overview

The IEEE 802.11 standard defines a list of security properties suggesting that it will lead

to a secure 4-way handshake (e. g., freshness of session keys, secrecy of session/group keys,

authentication). The existence of the attacks described above raises serious questions

about these security properties: Does the IEEE 802.11 specification or some implementa-

tions violate these properties, leading to these attacks? Or are these security properties

insufficient to guarantee security? If so, what security properties would be sufficient to

stop the attacks? In this chapter, we show how these questions can be formally answered

using Tamarin.

We encode the security properties from the standard using Tamarin, and use the

tool to see if any of these security properties are violated in the presence of the attacks.

We find that the weaknesses that lead to the KRACK attacks [137] do not violate any

of the required properties. This suggests that the security properties, as defined in the

standard, are insufficient. We then propose new security properties, and by imposing

them as restrictions in Tamarin, we show that ensuring these new suggested properties is

enough to stop these attacks.

4.4 Related Work

The IEEE 802.11 standard lists five properties, labelled from a) to e), for the 4-way

handshake [80, Sec. 12.6.14]. He et al. [76] aggregate four out of five of these security

properties into session authentication, which can only be asserted when key secrecy is

guaranteed. They formalise authentication in the cryptographic model using the notion of

matching conversations [16], guaranteeing that the two entities have consistent views of

the protocol runs. Using Protocol Composition Logic (PCL) [59], they verify that such

properties hold. However, PCL has been subject of criticism by some authors such as [50],

63

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

as it allows one to verify authentication protocols that rely on signing, but not those

relying on decryption. More disconcertingly, there are no means to establish preceding

actions in a thread. In contrast to matching conversations used in [76], we use standard

notions of authentication from Lowe [95], e. g., mutual, injective agreement, to verify the

security properties. Moreover, in their approach using PCL [76], the authors confirm that

all their proofs were constructed manually. On the other hand, our verification using

Tamarin is among the first attempts to verify security properties of 802.11 automatically.

Concurrent to our work, Cremers et al. [54] also developed a detailed Tamarin

model of the WPA2 protocol capable of detecting KRACK attacks, among others. Their

work, as ours, verifies the effectiveness of the patched protocol, post-discovery of the

KRACK attacks, in stopping all the attacks, including the KRACK attacks. However,

our goals are different; our focus is on developing a framework to test the adequacy of

the required security properties in spotting the attacks. Therefore, we only model the

functionalities required to demonstrate the attacks (KRACK and downgrade), rather than

the whole protocol.

4.5 Methodology for Analysing Security Properties

Fig. 4.1 summarises our process of analysing the security properties, and augmenting

additional security properties if needed. We start by building a model of a protocol with

known attacks in Sec. 3.6. Subsequently, we verify all the security properties listed in the

standard to see if they are satisfied or violated in Sec. 4.6. A violated security property

will signify relation of the attack with the property. However, to establish that the security

property and attack has a two-way relationship, the violated security property should then

be enforced as a restriction to check if it would stop the attacks. If it does, it will indicate

an implementation issue. Alternatively, if all the security properties are verified, but the

attack still exists, we can conclude that the security properties required by the standard

64

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

All required
security properties

verified and
no attack

Security properties
required by the
protocol

Custom property to
identify attack

Model of protocol
vulnerable to

an attack

Verify:

+

All required security
properties verified,
but attack exists

Any required security
property falsified

Attack persists:
Insufficient security

properties

No Attack:
Security properties

sufficient.
Fix implementation

Enforce security
properties as
restrictions

Identify implementation bugs and perform model fixes

Identify and add additional required security properties

Figure 4.1: Flow diagram for verifying security properties, identifying new ones, and fixing
the model against an attack

are insufficient and need to be augmented. After analysing the attacks, we propose a

security property corresponding to the attack, shown below in Sec. 4.7. To test that the

new property is successful in stopping the attack, we first place it as a lemma in the model

and expect it to be falsified. Then, we enforce this property as a restriction in the model,

expecting that it stops the attack. This helps us to verify if the attack corresponds to the

new proposed security property. Finally, we execute the protocol model after fixing the

vulnerability, to verify the absence of the attack. The verification of our newly proposed

security properties and the fixes proves both the adequacy of the final set of properties,

and correctness of the fixes in the protocol. We discuss this in Secs. 4.7 and 4.8.

4.6 Analysis of IEEE 802.11 Security Properties

In this section, we list the five properties a)-e) specified for the 4-way handshake in the

802.11 standard [80, Sec. 12.6.14]. These properties overlap with each other and cannot

be easily encoded into conventional queries, e. g., secrecy or authentication. Therefore, we

sometimes define multiple security lemmas that jointly satisfy a given property. Moreover,

the standard is unclear about what properties are satisfied by the group key handshake.

In that case, we consider an extension of property c) below for GTK. We recall that we

prepend ‘S ’ and ‘A ’ to the supplicant and authenticator events, respectively.

65

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

a) Confirm the existence of the PMK at the peer. As stated in Sec. 3.4, our

model treats this property as a premise. However, to confirm this property, we use

the following lemma:

∀id1, id2, pmk1, pmk2, t1, t2. A HasPmk(id1, pmk1)@t1∧

S HasPmk(id2, pmk2)@t2 ⇒ (pmk1 = pmk2). (ConfPmk)

b) Ensure that the security association keys (PTK/GTK) are fresh. This

security property states that at every run (thread tid) of the protocol it must

generate a fresh PTK/GTK. We verify this property at the supplicant side through

lemma

∀id1, id2, ptk, t1,t2. S ComputesPtk(id1, ptk)@t1∧

S ComputesPtk(id2, ptk)@t2 ⇒ (id1 = id2). (FreshPtk)

Similarly, we define the following Lemma FreshGtk for the case of GTK.

∀id1, id2, gtk, t1,t2. S ComputesGtk(id1, gtk)@t1∧

S ComputesGtk(id2, gtk)@t2 ⇒ (id1 = id2). (FreshGtk)

c) Synchronise the installation of temporal keys into the MAC. We consider

the strongest authentication property from Lowe’s hierarchy [95], namely, injective

agreement. For the case of PTK, we verify that: “for each S CommitPtk event

executed by the supplicant Sid, the associated authenticator Aid executed the corre-

sponding A RunningPtk earlier, and for each run of the protocol there is a unique

S CommitPtk for each A RunningPtk,”

66

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

(∀Sid, Aid, pars, t1. A CommitPtk(Sid, Aid, pars)@t1 ⇒

((∃t2. S RunningPtk(Aid, Sid, pars)@t2 ∧ (t2 < t1))

∧ ¬(∃S ′id, A′id, t3. A CommitPtk(S ′id, A
′
id, pars)@t3 ∧ ¬(t3 = t1)))

∧

∀Sid, Aid, pars, t1. S CommitPtk(Sid, Aid, pars)@t1 ⇒

((∃t2. A RunningPtk(Aid, Sid, pars)@t2 ∧ (t2 < t1))

∧ ¬(∃S ′id, A′id, t3. S CommitPtk(S ′id, A
′
id, pars)@t3 ∧ ¬(t3 = t1)))).

(AgreePtk)

Obviously, the set of parameters pars must contain the value of the PTK. The

commit events (e. g., S CommitPtk) are placed as late as possible on the supplicant

side. Accordingly, the running events (e. g., A RunningPtk) are executed as early

as possible, when all the parameters to agree are available to the authenticator. In

order to capture mutual agreement, as shown above, the lemma also includes the

case when the roles of the authenticator and supplicant are reversed.

As customary, authentication requires key secrecy to be asserted. We verify this

using the following lemma for PTK:

∀id, ptk, t1. S InstallsPtk(id, ptk)@t1 ⇒ ¬(∃t2. K(ptk)@t2). (SecretPtk)

Again, S InstallsPtk models the primitive MLME-SETKEYS.request [80], and we

require that any installed PTK is unknown to the adversary.

For GTK, we define the Lemmas (AgreeGtk) and (SecretGtk) equivalently. Moreover,

we also need to capture weak agreement [95] of GTK in the group key handshake,

67

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

through the lemma

∀Sid, Aid, pars, t1. S WCommitGtk(Sid, Aid, pars)@t1 ⇒

((∃t2. A WRunningGtk(Aid, Sid, pars)@t2 ∧ (t2 < t1)), (WeakAgreeGtk)

which includes the GTK in pars. As opposed to (AgreeGtk) in the 4-way hand-

shake, the agreement in the group key handshake is not injective, because multiple

retransmissions of the same GTK are allowed.

d) Transfer the GTK from the Authenticator to the Supplicant. We verify if

the GTK received by the supplicant is the same GTK calculated and forwarded by

the authenticator using lemma

∀id, gtk, t1. S InstallsGtk(id, gtk)@t1 ⇒

(∃t2. A GeneratesGtk(gtk)@t2 ∧ (t2 < t1)). (SameGtk)

This property provides assurance to the supplicant that the GTK received by it is

the same which was generated by the authenticator in the current handshake cycle.

e) Confirm the selection of cipher suites. We capture injective agreement of the

cipher suite with Lemma (AgreeCs), similar to (AgreePtk) above, by using the cipher

suite within the parameters pars.

We queried the lemmas defined for the above five properties in the Tamarin models

presented in Sec. 3.6, in order to verify them in presence of KRACK and downgrade attacks.

Unexpectedly, all the lemmas were reported as verified when KRACK attacks were present,

as shown in Table 4.1. In the case of the downgrade attack, however, Tamarin reported

expected violation of Lemma (AgreeCs) only.

68

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

T
ab

le
4.

1:
T

a
m

a
r
in

re
su

lt
s

of
te

st
in

g
p
ro

p
er

ti
es

a)
-e

)
fr

om
th

e
80

2.
11

st
an

d
ar

d
in

S
ec

.
4.

6.
N

o
[A

tt
a

ck
]

re
fe

rs
to

(N
oK

ra
ck

P
tk

),
(N

oK
ra

ck
G

tk
)

or
(N

oD
ow

n
gr

ad
e)

ac
co

rd
in

gl
y.

(3
ve

ri
fi
ed

;
7

fa
ls

ifi
ed

;
–

n
/a

)

S
ec

u
ri

ty
P

ro
p

er
ti

es
:

a)
C

on
fP

m
k

b
)

F
re

sh
K

ey
s

c)
S
y
n
ch

ro
n
is

ed
K

ey
s

d
)

S
am

eG
T

K
e)

C
on

fC
ip

h
er

s
Lemmas

No[Attack]

(ConfPmk)

(FreshPtk)

(FreshGtk)

(AgreePtk)

(AgreeGtk)

(WeakAgreeGtk)

(SecretPtk)

(SecretGtk)

(SameGtk)

(AgreeCs)

C
a
se

S
tu

d
y
:

P
T

K
re

in
st

.
F

ig
s.

3.
3,

3.
4

7
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
5

7
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
6

7
3

3
3

3
3

–
3

3
3

3

G
T

K
re

in
st

.
F

ig
.

3.
7

7
3

3
3

3
3

3
3

3
3

3

D
ow

n
gr

ad
e

F
ig

.
3.

8
7

3
3

3
3

3
–

3
3

3
7

69

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

4.7 Proposing New Security Properties

Security Property for KRACK Attack: Table 4.1 from Section 4.6 clearly establishes

the inadequacy of set of security properties mandated by the IEEE 802.11 standard to

capture security violation by KRACK attacks reviewed in Sec. 3.6. Though IEEE has

since addressed the issue of nonce reuse in 802.11 implementations [1], and the Wi-Fi

Alliance tests the devices before certifying them for WPA2/3 [2], there is no mention

of security properties being added to the standard that could capture various KRACK

variants such as the ones presented by Lemmas (NoKrackPtk) and (NoKrackGtk). What

it means that if someone were to formally verify these standards against attacks such as

KRACK and Downgrade, then the documented security properties present in the standard

specifications will still be unable to capture these attacks. To bridge the gap between the

802.11 standard and its implementation, we propose an additional security property to

capture such vulnerabilities:

f) Ensure that the security association keys are not used more than once.

The security property f) is encoded, using the following lemma, in Tamarin.

∀id, ptk, t1, t2. S InstallsPtk(id, ptk)@t1∧

S InstallsPtk(id, ptk)@t2 ⇒ (t1 = t2). (NoPtkReuse)

Equivalently, we define the following Lemma using GTK in place of PTK.

∀id, gtk, t1, t2. S InstallsGtk(id, gtk)@t1∧

S InstallsGtk(id, gtk)@t2 ⇒ (t1 = t2). (NoGtkReuse)

We expect this security property to capture the KRACK attack, i. e., this security property

should be falsified by the KRACK attack. Table 4.2 shows that all the KRACK attack

70

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

models from Sec. 3.6 violate either one or both properties, i. e., the KRACK attacks are

now captured by our new security property f).

Security Property for Downgrade Attack: The downgrade attack from Fig. 3.8

violates property e) through the Lemma (AgreeCs). Surprisingly, the attack continue

to exist even after enforcing this property as restriction. Since enforcing the agreement

property on the cipher suite does not stop the attack, it is violating a property not present

in the standard. A detailed analysis of property e) along with the downgrade attack

suggests that though the standard guarantees authentication w.r.t. other party, it does not

perform agreement with itself. Accordingly, we suggest the following additional security

property g), as Lemma (ValidCipherSuite), to the model of Fig. 3.8b that captures this

attack (See Table 4.2).

g) The cipher suite that the authenticator started with is the cipher suite that the

authenticator finishes with, and is the strongest one from the available choices.

As expected, the downgrade attack from Sec. 3.6 is captured by property g), which is

encoded in Tamarin using lemma

∀tid, cs1, cs2, t1,t2. A SentMsg3(tid, cs1)@t1∧

A Starts(tid, cs2)@t2 ⇒ (cs1 = cs2). (ValidCipherSuite)

Verification of New Security Properties: To verify that our proposed security

properties f) and g) correspond to respective attacks, we fix the respective Tamarin

models of Sec. 3.6 by enforcing (NoPtkReuse), (NoGtkReuse) and (ValidCipherSuite) as

restrictions. On testing the Lemmas (NoKrackPtk), (NoKrackGtk), and (NoDowngrade),

i. e., security properties from Sec. 3.6, Tamarin verifies them in the fixed model, proving

that the proposed security properties are successful in stopping these attacks.

71

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

T
ab

le
4.

2:
T

a
m

a
r
in

re
su

lt
s

of
te

st
in

g
p
ro

p
er

ti
es

a)
-e

)
fr

om
th

e
80

2.
11

st
an

d
ar

d
an

d
p
ro

p
os

ed
p
ro

p
er

ti
es

f)
an

d
g)

in
S
ec

.
4.

6.
N

o
[A

tt
ac

k
]

re
fe

rs
to

(N
oK

ra
ck

P
tk

),
(N

oK
ra

ck
G

tk
)

or
(N

oD
ow

n
gr

ad
e)

ac
co

rd
in

gl
y.

(3
ve

ri
fi
ed

;
7

fa
ls

ifi
ed

;
–

n
/a

)

S
ec

u
ri

ty
P

ro
p

er
ti

es
:

a
)

C
o
n

fP
m

k
b

)
F

re
sh

K
ey

s
c)

S
y
n

ch
ro

n
is

ed
K

ey
s

d
)

S
a
m

eG
T

K
e)

C
o
n

fC
ip

h
er

s
f)

N
o
K

ey
R

eu
se

g
)

V
a
li
d

C
ip

h
er

Lemmas

No[Attack]

(ConfPmk)

(FreshPtk)

(FreshGtk)

(AgreePtk)

(AgreeGtk)

(WeakAgreeGtk)

(SecretPtk)

(SecretGtk)

(SameGtk)

(AgreeCs)

(NoPtkReuse)

(NoGtkReuse)

(ValidCipherSuite)

C
a
se

S
tu

d
y
:

P
T

K
re

in
st

.
F

ig
s.

3
.3

,
3
.4

7
3

3
3

3
3

–
3

3
3

3
7

7
3

P
T

K
re

in
st

.
F

ig
.

3
.5

7
3

3
3

3
3

–
3

3
3

3
7

7
3

P
T

K
re

in
st

.
F

ig
.

3
.6

7
3

3
3

3
3

–
3

3
3

3
7

7
3

G
T

K
re

in
st

.
F

ig
.

3
.7

7
3

3
3

3
3

3
3

3
3

3
–

7
3

D
o
w

n
g
ra

d
e

F
ig

.
3
.8

7
3

3
3

3
3

–
3

3
3

7
3

3
7

72

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

Table 4.3 shows the results of testing the original security properties mandated in

the IEEE 802.11 standard while enforcing the new security properties (f) and g)) proposed

in the Section 4.7. We find that, on enforcing the lemmas NoPtkReuse,NoGtkReuse and

ValidCipherSuite as restrictions, the all the attacks under analysis, KRACK described

by lemmas (NoKrackPtk,NoKrackGtk) and the Downgrade attack described by the

lemma NoDowngrade, are stopped while satisfying all the security properties. This

proves a two-way correspondence between the lemmas and attacks.

It is, therefore, strongly recommended that our novel security properties f) and g)

should be added to the 802.11 standard to be able to capture not only the known attacks

such as KRACK and Downgrade, but possibly also other attacks belonging to a similar

class.

4.8 Verifying the Mitigations to the Models

Finally, we fix the KRACK models, from Sec. 3.6, making sure that they follow the

newly proposed security property f), i. e., disconnect if there is an attempt to install with

the same PTK or GTK, and then execute the model again. After the fix, both of the

attack lemmas, i. e., Lemmas (NoKrackPtk) and (NoKrackGtk), along with the security

properties (NoPtkReuse) and (NoGtkReuse) are verified. The absence of the attack, with

the new security properties verified, shows the validity of the proposed fix. This result is

also a verification of the proposed countermeasure for KRACK by [137].

Similarly, the downgrade attack from Fig. 3.8 can be easily detected at the supplicant

side [131], and can be stopped if the authenticator implementation disallows the change of

cipher suites mid-handshake.

73

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

T
ab

le
4.

3:
T

a
m

a
r
in

re
su

lt
s

of
te

st
in

g
or

ig
in

al
se

cu
ri

ty
p

ro
p

er
ti

es
a)

-e
)

fr
om

th
e

80
2.

11
st

an
d

ar
d

an
d

p
ro

p
os

ed
p

ro
p

er
ty

f)
an

d
g)

en
fo

rc
ed

as
re

st
ri

ct
io

n
s

in
S
ec

.
4.

6.
N

o
[A

tt
ac

k
]

re
fe

rs
to

(N
oK

ra
ck

P
tk

),
(N

oK
ra

ck
G

tk
)

or
(N

oD
ow

n
gr

ad
e)

ac
co

rd
in

gl
y.

(3
ve

ri
fi
ed

;
7

fa
ls

ifi
ed

;
–

n
/a

)

S
ec

u
ri

ty
P

ro
p

er
ti

es
:

a)
C

on
fP

m
k

b
)

F
re

sh
K

ey
s

c)
S
y
n
ch

ro
n
is

ed
K

ey
s

d
)

S
am

eG
T

K
e)

C
on

fC
ip

h
er

s

Lemmas

No[Attack]

(ConfPmk)

(FreshPtk)

(FreshGtk)

(AgreePtk)

(AgreeGtk)

(WeakAgreeGtk)

(SecretPtk)

(SecretGtk)

(SameGtk)

(AgreeCs)

C
a
se

S
tu

d
y
:

P
T

K
re

in
st

.
F

ig
s.

3.
3,

3.
4

3
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
5

3
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
6

3
3

3
3

3
3

–
3

3
3

3

G
T

K
re

in
st

.
F

ig
.

3.
7

3
3

3
3

3
3

3
3

3
3

3

D
ow

n
gr

ad
e

F
ig

.
3.

8
3

3
3

3
3

3
–

3
3

3
3

74

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

T
ab

le
4.

4:
T

a
m

a
r
in

re
su

lt
s

of
an

al
y
si

n
g

or
ig

in
al

se
cu

ri
ty

p
ro

p
er

ti
es

a)
-e

)
fr

om
th

e
80

2.
11

st
an

d
ar

d
in

S
ec

.
4.

6
in

th
e

fi
x
ed

m
o
d

el
d
es

cr
ib

ed
in

S
ec

.
4.

8.
N

o
[A

tt
a

ck
]

re
fe

rs
to

(N
oK

ra
ck

P
tk

),
(N

oK
ra

ck
G

tk
)

or
(N

oD
ow

n
gr

ad
e)

ac
co

rd
in

gl
y.

(3
ve

ri
fi
ed

;
7

fa
ls

ifi
ed

;
–

n
/a

)

S
ec

u
ri

ty
P

ro
p

er
ti

es
:

a)
C

on
fP

m
k

b
)

F
re

sh
K

ey
s

c)
S
y
n
ch

ro
n
is

ed
K

ey
s

d
)

S
am

eG
T

K
e)

C
on

fC
ip

h
er

s
Lemmas

No[Attack]

(ConfPmk)

(FreshPtk)

(FreshGtk)

(AgreePtk)

(AgreeGtk)

(WeakAgreeGtk)

(SecretPtk)

(SecretGtk)

(SameGtk)

(AgreeCs)

C
a
se

S
tu

d
y
:

P
T

K
re

in
st

.
F

ig
s.

3.
3,

3.
4

3
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
5

3
3

3
3

3
3

–
3

3
3

3

P
T

K
re

in
st

.
F

ig
.

3.
6

3
3

3
3

3
3

–
3

3
3

3

G
T

K
re

in
st

.
F

ig
.

3.
7

3
3

3
3

3
3

3
3

3
3

3

D
ow

n
gr

ad
e

F
ig

.
3.

8
3

3
3

3
3

3
–

3
3

3
3

75

Analysis of 802.11 4-Way Handshake Attacks and Security Properties

Accordingly, we fix the model ensuring that it rejects a connection where the

authenticator does not start and finish with the same cipher suite. After fixing it,

Tamarin reports the attack Lemma (NoDowngrade) as verified, i. e., the Downgrade

attack no longer exists, and that the mitigation is valid. Both the fixed Tamarin models,

of KRACK and downgrade attacks, are publicly available at [127]. The results of our

analysis, in the fixed model as per Section 4.5, are available in the Table 4.4.

4.9 Chapter Summary

In Chapter 3, we presented modelling of various KRACK attacks on the IEEE 802.11

4-way handshake and group key handshake, and Downgrade attacks on implementations of

the 4-way handshake. Using the tool Tamarin in this chapter, we verified all the security

properties of the 4-way handshake mandated by the 802.11 standard, in the presence of

KRACK and Downgrade vulnerabilities. We found that KRACK attacks did not violate

any of the required security properties. We concluded that the set of properties, mandated

in the standard, was inadequate to capture these attacks.

Using a novel approach, we have proposed additional security properties to be added

to the 802.11 standard, enabling it to capture them. We also demonstrate that enforcing

these security properties in our model successfully stops these attacks. Accordingly, we

fix the models with countermeasures to mitigate the attacks and verify all the security

properties, providing a formal proof of correctness of the recommended countermeasures.

We have demonstrated use of our novel technique in strengthening the 802.11 4-way

handshake protocol specifications, by testing the adequacy of the set of required security

properties against many known attacks, and by augmenting them with new properties, as

required. This approach is useful to strengthen other protocol specifications in a similar

fashion by testing the adequacy of the set of required security properties against known or

newly discovered attacks, and by augmenting them with new properties, if required.

76

Part III

Defining Stealthiness in a Trace

Model

77

Chapter Five

Formal Model of Stealthiness

“The greatest pleasure I know, is to do a good action by stealth, and to have it

found out by accident.”

Charles Lamb

5.1 Motivation

In Chapter 3, we have already established that there is merit in modelling just the attacks

and not the complete protocol. Our objective now is to establish a set of properties, an

attack must satisfy, in order to be classified as a stealth attack. As introduced earlier,

‘Stealth Attacks’ are those where an attacker is successful in camouflaging its network

activities with message traffic appearing as standard, as defined by the protocols for

non-attack messaging. As the message traffic appears to be indistinguishable from a

standard run of a protocol, such attacks are difficult to capture.

There have been many studies attempting to analyse the system logs to find out

if a stealthy attack is in progress, mainly using data mining techniques [4, 106, 124].

The formal analysis of security protocols has mostly remained focused on proving the

security properties mandated by the standard, or finding an attack in the case of any

79

Formal Model of Stealthiness

security property being falsified. Study and classification of various attacks on security

protocols have not attracted much attention, especially in terms of their equivalence to the

expected behaviour. Our primary motivation to study the attacks that follow the expected

behaviour emanates from the fact that such attacks may be harder to capture, and a

standard framework may help identify such attacks. Subsequently, by logging suitable

parameters, we aim to convert the highly potent stealth attacks to non-stealth attacks,

which we can capture using our framework.

5.2 Contribution

This chapter presents modelling of protocols using a labelled multiset rewriting (MSR)

system, similar to one used by Tamarin. We extend the labelled MSR to allow for required

functionalities in modelling the protocol run in our framework. In order to develop a

framework to formalise the detection of such attacks on security protocols, we propose

analysing logs present in the traces generated by the protocol execution and their order

using formal methods. This can be achieved by analysing the logs from the actual protocol

traces and comparing them to the expected protocol traces based on standard protocol

behaviour. To verify the results, automated protocol verification tools can be used.

We present a trace based definition of what is a stealth attack and show how stealth

attacks can be detected, or their absence proved, using formal notions developed by us

such as standard trace, standard looking trace and attack run. We attempt to capture

such stealth attacks by defining stealthiness in a trace generated by the actions of the

protocol. We examine if, given the protocols that the message interaction should be

following, can the attacker successfully hide its attack in the underlying network traffic?

Using the standard framework of multiset-rewriting, we have developed a formal notion of

protocol specification and traces generated thereof.

80

Formal Model of Stealthiness

5.3 Overview

We give an intuitive definition of a “standard looking run”, i. e., a trace in which the logged

actions could have been produced by some interleaving of some number of correct runs of

the protocol. A stealth attack is then defined as an attack that breaches some security

condition and produces a standard looking run. We model the protocol execution using

labelled transition rules with one rule for every action and each rule logging action labels in

the trace with some parameters. Our proposal is to use well-known techniques for specifying

security protocols, the framework of multiset-rewriting, to provide the specification of

the protocols of interest. Finally, we have introduced parlance and notations related to

term rewriting and labelled multiset rewriting, forming the basis of our formal analysis in

subsequent chapters. We do not consider aspects of network traffic, such as timing and

packet size, or the probability of a particular message, which could be used to indicate

attacks, we leave such an extension as a future work.

Using the above principles, we develop the notion of stealthiness and define it

in a trace model. We use well-known techniques for specifying security protocols, the

framework of multiset-rewriting, to provide the specification of the protocols of interest.

We then systematically augment these protocol specifications with logging specifications,

recording what parts of those protocols are logged with an objective of detecting stealthy

attacks. We then apply protocol analysis to determine when such a protocol admits

stealthy attacks.

In order to capture the inherent complexity of security protocols, mathematical

notions based formal methods are employed to reason their correctness and verify the

security guarantees provided by the protocols [12]. The formal verification can detect

issues leading to protocol failure, e. g., design flaws and other weaknesses due to poor

implementation [43]. By addressing design issues and exploiting weaknesses of the proposed

protocols, these methods can provide high-level definitions of security properties and their

81

Formal Model of Stealthiness

proofs. The formal methods provide a framework for modelling messages, transition rules

etc. for the protocol. Certain assumptions about cryptographic primitives and the power

of the adversary have to be made right at the initial phase of modelling. It also accounts

for the fact that the network is under control of an all powerful adversary.

We analyse execution patterns of protocols in order to ascertain if the execution

corresponds to the expected standard execution of a given protocol. We call all such

executions stealthy executions and traces generated thereof, a stealthy trace. Further,

we pass the attack traces under stealthy conditions, resulting in either the attack or the

non-attack situation. If an attack is able to execute itself while generating only stealthy

traces, we label it as a stealth attack, otherwise as a non-stealth attack. It is important to

mention here that we are not interested in finding new attacks on protocols. We are more

interested in verifying whether the attacks given by protocol verification tools confirm our

assumptions regarding stealthiness of an attack.

5.4 Modelling Protocols in our Framework

We use term rewriting along with a labelled multiset rewriting (MSR) system to model

security protocols, similar to that used by the Tamarin tool [103, 123], which is already

described briefly in Section 2.8.

Terms and equational theories: We consider a signature, i. e., a set of function

symbols Σ = {(ci, ki) | i = 1, . . . ,m} that defines a set of constructors ci each with an arity

ki. A signature, written as f/n, represents a function f of arity n. Assume a countable

set of variables x ∈ V and a set of names n ∈ N , divided further in sets of public and

fresh names PN and FN . TΣ denotes the set of valid terms built over Σ, PN , FN ,

and V. The set of (finite) trees or terms t ∈ TΣ(V ,N) is the smallest set satisfying the

following: (1) Any x ∈ V or n ∈ N is an element of TΣ(V ,N); and (2) If (c, k) ∈ Σ then

82

Formal Model of Stealthiness

c(t1, . . . , tk) ∈ TΣ(V ,N) for any t1, . . . , tk ∈ TΣ(V ,N). An annotated term s ∈ SΣ(V ,N)

is of the form ◦t (a linear term) or !t (a persistent term). A ground term is an element of

TΣ({},N), i. e., constructed without any variables.

We will omit explicit mention of Σ, V and N in what follows, just denoting the

set of terms and annotated terms as T and S, respectively. A ground term is constructed

without any variables. In our modelling, we use terms to represent messages and log

entries, while names are used to represent keys and nonces.

The term algebra is supported by a fixed equational theory E, where the sig-

nature and equational theory supports equations for both pairing and projection, i. e.,

{〈., .〉, fst, snd} ⊆ Σ and equations fst(〈x, y〉) = x and snd(〈x, y〉) = y are in E.

Sets, Sequences, and Multisets The symbol Nn represents the set {1, . . . , n}. The

domain and range of a binary relation R are denoted by domain(R) and range(R)

respectively. A set of sequences over S is denoted by S∗. The i-th element of the sequence

s is represented by si, |s| stands for the length of s, and idx(s) = {1, 2, ..., |s|} for a set of

indices of s. The empty sequence is denoted by [], [s1, s2...., sk] denoted the sequence s

with |s| = k. The concatenation of sequences s and s′ is denoted by s.s′. For a sequence s,

mset(s) and set(s) represent their corresponding multiset and set respectively, where a

multiset is a generalised version of a set that allows multiple instances of the multisets

elements. We denote multiset using symbol S] for set S. The operations on multisets

also contain the symbol] as superscript, e. g., m1 ∪] m2 is used to describe union of two

multisets m1 and m2. Finally, set(m) represents a set of all the elements of a multiset

m [89].

Substitution A substitution θ ∈ Θ is a finite mapping from variables to terms. We

sometimes denote this as {t1/x1, . . . , tk/xk} for a mapping where θ(xi) = ti for i = 1, . . . , k

and θ(x) = x if x /∈ {x1, . . . , xn}. We define the domain of a substitution as dom(θ) = {x |

83

Formal Model of Stealthiness

θ(x) 6= x}. Substitutions can be applied on terms as f(t1,, tn)θ = f(t1θ,, tnθ). For

example, a substitution θ : X → TΣ(X) can be applied as θ = {X 7→ senc(Msg,Key)}

can be applied to a term t = sdec(X,Key) resulting in tθ = sdec(senc(Msg,Key), Key.

We can also perform composition θτ over substitutions θ and τ denoted as θ ◦ τ . For

substitutions θ = [x 7→ f(y), y 7→ f(z)] and τ = [y 7→ g(a), z 7→ g(b)], the composition will

produce θ ◦ τ = [x 7→ f(g(a)), y 7→ f(g(b)), z 7→ g(b)] [89].

We extend the notion of substitutions to terms and annotated terms in the natural

way. We also assume the metafunctions fn() and fv() for the free names and free

variables respectively in an (annotated) term. A ground substitution maps any variables

in its domain to a ground term; we denote the set of ground substitutions as ΘGnd.

A renaming substitution ϕ ∈ Φ is an injective finite mapping from names to names,

and we denote this as {n′1/n1, . . . , n
′
k/nk}. For brevity, we will sometimes denote the

sequence n1, . . . , nk by
→
nk. We denote the domain and range by dom(ϕ) and ran(ϕ),

respectively. The substitution ϕ is a renaming away from {→nk} if ran(ϕ) ∩ {→nk} = {}.

Let T] and S] denote the set of multisets of terms and annotated terms, respectively.

Each transition rule rule is provided as a 4-tuple

rn : l − [a]→ r

where rn is the unique name to identify the rule and the multiset of annotated

terms l ∈ S] denotes the premises of the rule whereas the multisets of annotated terms

a, r ∈ S] denote the actions and conclusions of the rule, respectively.

We use sequences as a meta-notation in several places. We denote a list of

k items (rules, rule lists etc) as [X1, . . . , Xk]. We denote sequence concatenation by

[X1, . . . , Xj] @ [Y1, . . . , Yk] = [X1, . . . , Xj, Y1, . . . , Yk]. We denote addition to the left of a

sequence by X :: [X1, . . . , Xk] = [X] @ [X1, . . . , Xk].

84

Formal Model of Stealthiness

We refer to the terms in a rewrite rule as facts. The premises contain both

linear facts and persistent facts. Let lfacts(l) = {t | ◦t ∈ l} denote the former and

pfacts(l) = {t |!t ∈ l} denote the latter. A rule list RuleList = [rule1, . . . , rulen] denotes a

sequence of such rules. We extend the application of substitutions to rules and rule lists

in the obvious way.

The cryptographic messages are modelled using the sort msg and two incomparable

subsorts: pub and fresh for public and fresh names. We assume two countably infinite sets

PN and FN of public names pub and fresh names fresh. The rules can either use public

names directly or variables with substitutions mapping some of these variables to public

names, such as a participant name, and others to fresh names, such as nonces, freshly

generated keys etc. For the application of a substitution to a rule, the main complication

is to rename apart the “fresh” names in the rule so that they do not appear in the premises

after the instantiation of the rule. The fresh names can only be generated by instances

of the Fresh rule, and it guarantees that the same fresh name is never generated twice.

We generate all such names by applying the special ‘fresh’ rule for generating instances of

Fr(x) facts:

Fresh : [] − []→ [Fr(x : fresh)] | ∀i, j ∈ {1, . . . , k} and n ∈ FN where

rn i : li − [ai]→ ri = rnj : lj − [aj]→ rj = Fresh : [] − []→ [Fr(n)], and

it holds that i = j.

Rules may contain free variables, and we denote the set of all ground instantiations

of the rules in a rule list by ginst(RuleList):

85

Formal Model of Stealthiness

ginst([rule1, . . . , rulen]) =

{[θ(rule1), . . . , θ(rulen)] |

θ ∈ ΘGnd ∧ dom(θ) ⊇
⋃
i

fv(rule i)}.

A linear fact models a resource that is available for consumption at most once. A

persistent fact, on the other hand, is checked without consuming it in the firing of a rule

and is never removed from the state. For a rule to be fired, all the facts contained in its

premise must be present in the current global state. The execution of the rule consumes

linear facts from the state and produces the corresponding facts present on the conclusions

of the rule that are added to the global state.

5.4.1 Labelled Transition relation

The global system state is denoted by State ⊆] (T] ∪] S]), a multiset containing the

state information. The state of labelled transition system consists of protocol state,

fresh generated names FN , the messages on the network, and attacker’s knowledge MD

specified in Sec. 3.5. The transition relation [123] below models runs of the system by

rewriting the state with a ground instance of a rule list RuleList :

(rn : l − [a]→ r) ∈ ginst(RuleList ∪MD ∪ {FN})

lfacts(l) ⊆] State pfacts(l) ⊆ State

State
θ1(a)−−−→ (((State \] lfacts(l)) ∪] θ(r))

where⊆], \] and ∪] denote operations for multisets. The renaming away substitution

ensures that there is no confusion between “fresh” names introduced in the actions and

86

Formal Model of Stealthiness

conclusions, and the names that already exist in the state. The action label on the

transition rule records the actions θ(a) generated by the firing of the rule.

5.4.2 Protocol Run and Trace

A run of a protocol is specified as a sequence of some ground instantiated rule (setup and

protocol) applications:

State i, (rn i : li − [ai]→ ri), State ′i

with State0 = {} and each subsequent state is the result of the application of the

corresponding rule:

State i −→ (ai)State ′i

where State ′i is related to State i+1 in some systematic way, State i+1 is derived from

State ′i by replacing every output term Out(t1, . . . , tk) with the input term In(t1, . . . , tk).

Since these are special terms representing interaction with an adversary in reasoning about

the protocol, this corresponds to the case where there is no interference from an adversary.

A trace consists of the sequence of ordered ground actions resulting from a run,

denoted as a trace as tr .

tr = [(a1), . . . , (ak)]

Similarly, a template consists of the sequence of ordered actions containing variables,

extracted from rules in their order present in the rule list, denoted as template. We discuss

templates, and their applications, in detail in the next chapter.

87

Formal Model of Stealthiness

5.5 Extensions to Labelled MSR in our Framework

To analyse the stealthiness of protocol traces, we extend the notions of Fresh Names,

Labels, Rules and Traces in the Labelled Multiset Rewriting (MSR) System :

Fresh Names - Setup and Protocol: We divide the set of fresh ∈ FN into two

namespaces : freshsetup ∈ FN setup such that FN setup ⊂ FN for fresh names generated

by the setup rules and freshproto ∈ FN proto for fresh names generated by the protocol

rules such that FN proto ⊂ FN . The setup generated fresh names and protocol generated

fresh names must be disjoint, i. e., FN proto ∩ FN setup = {}. The function FrNames(tr)

is used to extract all the fresh names present in the trace tr .

Labels - Basic and Logged: Various logging schemes may differ in what they log for

a protocol. Net flow logs record the sender, receiver and time for each message. More

in-depth logs will also include message types and values. Logs will usually never include

key values or other security-sensitive information. Additionally, in some cases, it is not

possible to log all the protocol steps. To allow flexibility and modelling of all such logging

schemes, we extend the notion of labels in our model.

As stated earlier, the actions a are the labels in a labelled transition system defined

using the rules rn : l − [a]→ r. These labels in turn are used to construct the trace of an

execution. In our framework, the analysis of trace is based on the analysis of logs present

in these labels. We assume that actions of all the rules by default contain basic labels that

may or may not contain enough logging information.

We assume an auxiliary signature Σlog that specifies, for each rule named rn, a con-

structor1 crn for the log entry for the firing of that rule. The arity of that constructor is the

number of parameters specified by LogParams(rule). The custom log crnLogParams(rule)

is then added to the action of each rule, where rn is the rule name for the rule.

1In the examples, for a rule named XXX , we name the log constructor LogXXX .

88

Formal Model of Stealthiness

To analyse the protocols based on the logging information, the logs must contain the

same set of parameters, wherever possible, in order to derive the meaningful conclusion. To

facilitate such logging, we allow the users to add logs Log ∈ L] to the front of actions(labels)

of protocol rules (defined in section 5.5). This enables the extension of labels by dividing

them in two categories namely; basic labels aBasic ∈ T] and logged labels aLogged ∈ T]L and

TL = T ∪] L.

For the Log, any user-defined name along with any set of chosen parameters is

permissible. Also, it is straight forward to extract a Log from logged label, i. e., extracting

the first element from the action a, wherever a ∈ L.

getLog(a) = getLog(ah :: as) =


ah if a ∈ L

{} if a ∈ T

In the tool based on our framework for detecting stealth attacks, presented in section 8.5,

the process of adding the logs is undertaken by the user prior to stealthiness analysis.

Rules - Setup and Protocol: Some protocols require mandatory information such as

details about public key infrastructure, fixed domain names etc. during their initial phase,

in absence of which the protocol execution cannot be started. To facilitate such scenarios,

we classify the labelled multiset rewriting rules in two categories, namely Setup Rules and

Protocol Rules.

In our model, we allow modelling of processes such as distribution of public/private

key pair to the agents, setting up symmetric key or session key etc. by the setup rules,

while the actual protocol steps are executed using the protocol rules. The actions of these

rules are defined using the basic and logged labels from 5.5. Since we need only protocol

steps to generate and analyse its trace for stealthiness, we allow annotation of logs only

on the protocol rules. So, while the actions of Setup Rules consists only of basic labels, the

89

Formal Model of Stealthiness

Protocol Rules are allowed to have both basic labels and logged labels.

Our model expects a rule list consisting of both setup and protocol rules for any

protocol with basic labels. Thereafter, based on analysis of the rules and parameters to be

logged, our system mandates adding logs to the actions of all the protocol rules making

them rules with logged labels. Our transition rules can now be partitioned in two sets of

rules : RuleSetup and RuleProto for setup and protocol rules respectively with:

Setup Rule defined as : RuleSetup = {rn : l − [aBasic]→ r | aBasic ∈ T]}

Protocol Rule defined as : RuleProto = {rn : l − [aLogged]→ r | aLogged ∈ T]L}

Traces - Protocol, Setup and Logged: When the trace is generated using the

ProtoRules , we call such a trace a Protocol Trace, denoted by trProto, containing both the

basic and logged actions. Additionally, the Logged Traces tr log are generated by extracting

only the logs from the protocol traces generated earlier:

tr log = getLogs(tr proto)

= getLogs([(a1), . . . , (ak)])

= [getLog((a1), . . . , getLog(ak)]

While the notation tr is used to denote the trace generated by a given rule list,

we use trSetup and trProto to denote the traces generated by only the SetupRules and,

ProtoRules respectively.

90

Formal Model of Stealthiness

5.5.1 Restrictions on Setup and Protocol Rules

We now define the restrictions that every rule and rule list must follow. These restrictions

ensure that the rule list is one that can be reduced using labelled transition relation defined

in Sec. 5.4.1, and produce a run.

Definition 5.1 (Setup/Protocol Rule Restriction). Both the Setup Rule and Protocol

Rule must adhere to the following restrictions:

1. Apart from the user-defined STATE facts, the premise can use only the input In

fact and fresh Fr fact to generate only setup fresh names or protocol fresh names

depending on it being either the setup rule or protocol rule respectively.

2. Apart from the user-defined STATE facts, the conclusion can use only the output

Out fact.

On the lines of RuleList = [rule1, . . . , rulen] denoting a sequence of rules, from now

on, we will use the notations SetupRules = [Srule1, . . . , Srulen] to denote a sequence of

setup rules, and ProtoRules = [Prule1, . . . ,Prulen] to denote a sequence of protocol rules.

Based on the restrictions on rules as defined in Def. 5.1, we are now in position to list out

the restrictions for the rule list.

Definition 5.2 (Setup/Protocol Rule List Restriction). Both the sequence of setup rules

SetupRules and sequence of protocol rules ProtoRules must satisfy, in addition to following

the definition 5.1, all the following restrictions:

1. All the STATE facts sharing same name will always have the same arity.

2. All STATE facts must be unique, i. e., the same STATE must not appear in more

than once in the same premise or conclusion.

3. All the FRESH facts in the rule list must have different parameters.

91

Formal Model of Stealthiness

We assume that the setup rules e. g., generation of public keys etc. can be executed

in any order as long as they are executed before protocol rules dependent on them. This

does not lead to loss of any generality as we expect all the required keys by the protocol

rules to be already present in the state. This would be made possible by executing the

setup rules enough number of times in advance.

The intuition behind these restrictions is drawn from Tamarin semantics. These

restrictions assure that the Tamarin model written following them will always be parsed

without errors and accepted for verification.

5.6 Running Example

Consider a simple protocol (A → B : A, {nA}pkB) where A sends to B its name with

a secret nA encrypted with the public key of B , pkB . All the rules presented here are

protocol rules. As discussed, we assume that the setup rules, for generation of public keys,

are executed before protocol execution starts. This assumption has no side effect on the

trace generated by the protocol, as the setup rules do not appear in the trace as they do

not contain any logging information. This protocol can be modelled using a setup rule list

SetupRulesstealth comprising one rule RegisterPK

RegisterPK : [Fr(ltkB)]− []→ [!Ltk(B, ltkB), !Pk(B, pk(ltkB)), Out(pk(ltkB))]

and a protocol rule list ProtoRulesstealth consisting of the following three rules.

92

Formal Model of Stealthiness

Example 5.1.

A1 : [Fr(nA), !Pk(B, pkB)]− [LogA1 (A,nA),OutA1 (A,nA)]

→ [Out(A, aenc{nA}pkB)]

B2 : [In(A, aenc{nA}pkB), !Ltk(B, ltkB)]−

[LogB2 (A,B,nA), InB2 (A,B,nA)]→ [MSec(A,B,nA)]

X3 : [MSec(A,B,nA)]− [LogX3 (A,B,nA),Secret(A,B,nA)]→ []

The first rule A1 creates a fresh name (nonce) nA and sends it encrypted with

the known public key pkB of B, along with the sender’s identity on the public channel.

The constructor Out denotes an output of a tuple of values (the identity of A and the

encryption of the nonce nA under the public key of B). The label OutA1 (A, nA) records

or logs the output from A.

The second rule B2 models the receiver B receiving the message (using the con-

structor In to receive a tuple of values), and decrypting it using its private key ltkB . The

Out and In constructors play a special role in protocol modelling, the former denoting a

new fact that is known to the “adversary,” who is then responsible for converting that to

an input fact that is received later in the protocol2.

The final rule X3 models the value nA as shared secret between A and B. This

rule is helpful for writing a secrecy lemma, using action label Secret(A,B , nA), to verify

the security guarantee enforced by the protocol.

All the three rules in rule list ProtoRulesstealth contain logged labels as some custom

logs (highlighted with red) have been added to the basic labels making them logged labels.

In this example, for a rule named XXX , we have named the log constructor LogXXX .

E. g., for the PruleA1 , the chosen log name is LogA1 with LogParams(PruleA1) chosen

from parameters used in the rule such as nA, B, pkB etc. In our example, the logged labels

2We assume one of these constructors for each arity, but leave the arity implicit.

93

Formal Model of Stealthiness

contain the logs store the principal names and nonces being used in the protocol run.

5.6.1 Protocol and Logged Traces

For the protocol presented in Example 5.1, if the rules A1 , B2 and X3 are executed in

given order, the protocol and logged traces thus formed will be :

trproto = [(LogA1 (A, nA),OutA1 (A, nA)), (LogB2 (A,B,nA),

InB2 (A,B,nA)), (LogX3 (A,B,nA),Secret(A,B,nA))]

tr log = [(LogA1 (A, nA)), (LogB2 (A,B,nA)), (LogX3 (A,B,nA))]

5.7 Allowed Sequences of Protocol Rules

To say what the log of standard runs of the protocol should look like, we need to specify

what is logged and the order in which we would expect the protocol steps to occur. An

important novelty of our work is adding this to the standard labelled multiset rewriting

system described above. Some protocols may allow more than one execution sequence,

e. g., by skipping some protocol rules. For such cases, simply placing the protocol rules in

order may not be sufficient, as there would be no way of knowing the correct sequence.

At the same time, such restrictions are not required for the SetupRules and they can be

executed in any order as long as they are generated before any protocol rules dependent

on them. Therefore, we only define a function AllowedSequences(ProtoRules):

Definition 5.3 (Allowed Sequences). For a rule list of protocol rules

ProtoRules = [Prule1, ...,Prulen], AllowedSequences(ProtoRules) is a function such that

AllowedSequences(ProtoRules) ⊆ P(ProtoRules) and for any [Prule i1 , . . . ,Prule im] ∈

AllowedSequences(ProtoRules), we have :

94

Formal Model of Stealthiness

1. ij < ik for 1 ≤ j < k ≤ m, and

2. [Prule i1 , . . . ,Prule ik] ∈ AllowedSequences(ProtoRules) for all k ≤ m.

We require that all the allowed sequences, present in AllowedSequences(ProtoRules), can

be executed using labelled transition relation defined in Sec. 5.4.1 with every rule in

AllowedSequences(ProtoRules) executed only once for a single execution which is required

to ensure that the logs in generated trace can be identified with their respective rules.

In other words, the allowable sequences are any set of sublists of ProtoRules,

with the restriction that the order of the rules remain unchanged. The restriction on

AllowedSequences that every rule list present must be able to execute ensures that the suc-

cessive rules have a construction such that the conclusion of previous rules allow the premise

of the next rule to execute. It is worth highlighting that the AllowedSequences(ProtoRules)

in our model are prefix-closed only, although in a practical setting, they can be any order

of rules allowed by the protocol specifications. We will write AllowedSequences when the

rule list is clear.

Cases of AllowedSequences: The allowed sequences can generate multiple possible se-

quences of rules supporting various executions. We discuss some of them here.

Complete Execution: A complete run of the protocol is where all the protocol steps

are fired in a pre-specified order as per protocol specification. E. g., for a sample protocol

with rule list ProtoRulessample = [Prule1,Prule2,Prule3,Prule4], the allowed sequence

will have the complete rule list as its member, i. e., [Prule1,Prule2,Prule3,Prule4] ∈

AllowedSequences(ProtoRulessample), and hence will support complete execution.

Partial Execution: Some protocols may allow partial execution where the execution

must start from the first step but may terminate at any stage such as in case of incomplete

termination. Alternatively, the system might record a mix of complete and incomplete

runs of the protocol. Such executions may be modelled by allowing prefix sublists of the

95

Formal Model of Stealthiness

complete run of the protocol. The allowed sequence, in such cases, can be represented by :

AllowedSequences(ProtoRulessample) = {[Prule1], [Prule1,Prule2],

[Prule1,Prule2,Prule3], [Prule1,Prule2,Prule3,Prule4]}

Prohibited Cases: For the above rule list ProtoRulessample, though our model can

generate various AllowedSequences such as Case 1 and Case 2 below. At the same time,

Case 3 can never be generated, as AllowedSequences never places a rule more than once

in any sequence.

Case 1 : [Prule1,Prule2,Prule3,Prule4]

Case 2 : [Prule1,Prule2,Prule4]

Case 3 : [Prule1,Prule2,Prule3,Prule2,Prule4]

We note that these orderings are expected only for the protocol rules modelling the

protocol steps and not on the setup rules, such as those modelling key generations or key

reveal events. It must be noted that any modification or annotations of the rules discussed

from now on refer to only such rules performing protocol steps and not setup rules.

Every rule in an AllowedSequences is allowed to be fired only once. However, some

protocols may allow few rule(s) to be fired more than once in a single run, e. g., in the third

case, i. e., prohibited cases of AllowedSequences above. Such executions will generate traces

with the same logs at different time points. Analysing these traces may be difficult, as the

presence of more than one predecessor to a log is likely to cause conflicts. Additionally,

allowing these prohibited cases of AllowedSequences will also violate the Def. 5.3. To

handle such cases, we tweak the rule list by placing those protocol rules, appearing more

than once in the protocol rule list, as many times as necessary. Each recurrence of any

such rule must, however, is given a distinct rule names and distinct log names.

96

Formal Model of Stealthiness

Original: [Prule1,Prule2,Prule3,Prule2,Prule4]

Modified: [Prule1,Prule2,Prule3,Prule ′2,Prule4]

Such a modification allows us to support protocols firing some rule(s) more than once

in a single run, while still adhering to our restriction of each rule being fired at most

once. Since a Dolev-Yao attacker can execute any protocol rules in any order, the above

modification makes such an execution possible and generate traces with logs appearing

in different order. Furthermore, it is also possible to generate multiple unique traces by

interleaving these traces.

5.8 Defining ‘Standard Trace’

As already explained, our model requires the setup rules to be executed, in any order,

before executing the protocol rules in a specified order. These executions can be used

to construct a SetupState comprising information about public and private keys of the

prospective protocol participants. The protocol rules, executed subsequently, will make

use of this SetupState to generate different traces. However, before proceeding to analyse

these traces, we would like to see what does a trace of the system look like when the

protocol rules are executed in the order of AllowedSequences() after the execution of

setup rules.

Given a trace of a system, and the logs generated from this, there is no evidence of

an attack if the log entries could have been generated by some interleaving of standard

runs of the system. We now define this formally, first for a single run producing a standard

trace, and then for any interleaving of allowed sequences, a standard looking trace produced

by merging of multiple standard traces. For all the definitions in this section, we will also

use the notation ASR to denote AllowedSequences(ProtoRules).

97

Formal Model of Stealthiness

Definition 5.4 (Standard Trace StdTrace(AllowedSequence, SetupState, θ, tr log)). Given

an allowed sequence AllowedSequence, a setup state SetupState, and a substitutions list θ,

tr log is a Standard Trace if it can be generated by executing all the rules AllowedSequence

in the order they appear in the list, from the SetupState, with the substitutions from θ in

the labelled transition relation defined in subsection 5.4.1 where the only attacker rules

allowed is passing the outputs to inputs and no modification.

We will just write this predicate as StdTrace if its arguments are implicit. Addi-

tionally, we will call a run of the system as a ‘Standard Run’ if it produces a standard

trace of the form StdTrace as per Def. 5.4. It is worth re-emphasising that while the run

refers to the firing of rules, a trace refers to the sequence of logged labels.

It is also useful to be able to extract the log entries from a trace:

Logs(a) = {c(t1, . . . , tk) ∈ a | (c : k) ∈ Σlog}

Logs([a1, . . . , ak]) = [Logs(a1), . . . ,Logs(ak)]

Log([a1, . . . , ak], i) = Logs(ai)

In what follows, we will write tr log for a trace of a system with logs, i. e., a logged

trace. It is pertinent to note that the logged trace tr log is produced using only the logged

labels of protocol rules containing ground instantiations for all the parameters in the logs

generated during the protocol rule(s) execution. We assume a function merge(tr 1, . . . , trk)

that computes the set of all possible traces resulting from interleaving tr 1, . . . , trk and is

available in Appendix A.

In our system, the rules can use public names, fresh names, and variables. While

the public names and variables can take any value, the fresh names must be generated

every time using a new value. In order to test if the system adheres to this specification,

98

Formal Model of Stealthiness

we define the following functions, in order to extract the fresh variables and names used in

the rule list and trace.

Definition 5.5 (freshInRL(RL)). Given a rule list RL, freshInRL(RL) returns all the

arguments used in a fresh fact of the form Fr(), and present in the premise of any rule

in the rule list RL.

Depending on the rule list RL containing either the variables or the names, as

a result of applying substitution to the rule list, the function may either return a set

of variables used in the Fr() fact or all the elements of a fresh name set respectively.

Subsequently, for a rule list RL partitioned into RLSetup and RLProto for setup and protocol

rules respectively, the functions freshInRL(RLSetup) and freshInRL(RLProto) will return

the arguments of facts present in the RLSetup and RLProto respectively.

Definition 5.6 (FrFromRLinTr(θ, RL, tr)). Given a list of substitutions θ = [σ1, . . . , σi],

rule listRL = [R1, . . . , Ri], and a trace tr , FrFromRLinTr(θ, RL, tr) = freshInRL(θ(RL))∩

FrNames(tr) where θ(RL) = [σ1(R1), . . . , σi(Ri)]

5.9 ‘Standard Looking Trace’ and ‘Stealth Attack’

The standard trace from the definition 5.4 produces what looks like a trace, generated

from a single run of the system, based on execution of an allowed sequence of protocol

rules. In a realistic setting, however, the system should be able to not only identify and

analyse the trace produced by a single run, but also all such traces that are the product of

multiple concurrent runs. We define a standard looking trace as a trace which is produced

by execution of interleaving of multiple allowed sequences, i. e., product of merging of

multiple standard traces, each of which is generated using Def. 5.4.

Definition 5.7 (Standard Looking Trace). Given a set of allowed sequences

ASR representing a protocol and a setup rule list SetupRules, the test trace tr test is

99

Formal Model of Stealthiness

a standard looking trace if there exists a SetupState generated by executing the

setup rule list SetupRules in any order and any number of times, allowed sequences

ASR1, . . . , ASRk ∈ ASR, traces tr 1, . . . , trk and lists of substitutions θ1, ..., θk such that

for all tri:

StdTrace(ASRi, SetupState, θi, tr i) holds, and

Logs(tr test) ∈ merge(Logs(tr 1), . . . ,Logs(trk)) and

FrFromRLinTr(θi, ASRi,Logs(tr i)) ∩ FrFromRLinTr(θj, ASRj,Logs(tr j)) = {} for i 6= j

The first condition ensures that every trace, contained in the Standard Looking

Trace, is a Standard Trace. The second condition requires that the logged trace tr log is a

combination of some collection of standard looking single traces containing only the logged

labels, and the third condition ensures that all fresh names used in the traces must be

unique, i. e., they should be generated new and fresh for each trace.

Additionally, the same SetupRules must be used to generate a unique setup state

SetupState to be used by the protocol rules in advance. The ProtoRules may, however,

be allowed to fire in any order, as mandated by AllowedSequences(ProtoRules), during

the protocol execution.

Definition 5.8 (Attack Trace). If a trace generated by a protocol execution demonstrates

successful violation of any pre-defined security properties, with the pre-defined security

properties being the guaranteed security properties by the protocol specification, then we

call it an Attack Trace.

Definition 5.9 (Stealth Attack). If a trace tr attack is an attack trace of a protocol as per

definition 5.8 and a standard looking trace for the protocol as per the definition 5.7, then

the corresponding attack is a Stealth Attack.

We present application of these definitions, on a standard looking trace generated

100

Formal Model of Stealthiness

from Ex. 5.1, in the next chapter in Sec. 6.6.1 along with the challenges encountered in

the manual analysis of such traces.

In the subsequent chapters, the terms “standard looking” and “normal looking” are

sometimes used interchangeably in context of runs and traces.

5.10 Chapter Summary

In this chapter, we have developed a notion of standard trace, standard looking trace, and

attack trace to define a ‘Stealth Attack’ using a formal model using a multiset-rewriting

(MSR) system. We have presented multiple extension to the standard MSR, such as adding

setup and protocol fresh names, basic and logged labels, and setup and protocol rules

and traces etc. Using the definitions of standard trace, we have been able to define a

standard looking trace which can be used to identify any given attack trace as stealthy or

non-stealthy.

The protocol traces may contain any log multiple times. Though our system is

able to verify the stealthiness of a protocol run by analysing traces, yet the challenge

that remains is to map any given log to a particular instance of a protocol execution. We

consider its solution in subsequent chapters. It is worth noting that in all our examples,

the trace containing the logs should not store sensitive parameters as plaintext, instead,

logs should only store hashed values of all such parameters.

101

Chapter Six

TAMARIN Model of Stealthiness

“Everything must be taken into account. If the fact will not fit the theory-let the

theory go.”

Agatha Christie

6.1 Motivation

In Chapter 5, we have presented formalised notions of stealthy attacks in protocols modelled

as MSRs. The goal of this formalisation is to identify, if a protocol is vulnerable to stealthy

attacks, particularly attacks that may be ‘hidden’ in the interleaving of several runs of the

protocol. While using these notions may not be tricky, in a real-world implementation,

exponential blow-up of multiple runs and their possible interleaving may make the analysis

a complex endeavour. The main motivation of this chapter is to be able to test the

stealthiness of attacks based on definitions presented in the previous chapter using the

automatic protocol verification tool Tamarin. To solve the exponential blow-up of multiple

runs, we propose to introduce an identifier, such as session identifier (session ID), to the

logs in order to uniquely identify and map them to their respective runs. Subsequently,

we also need to identify and formalise the restrictions to be placed on the traces generated

by the Tamarin tool in order to make the traces equivalent to standard looking traces

defined using Def. 5.7. 103

TAMARIN Model of Stealthiness

The notion of ‘stealthiness’ presented in Chapter 5, using Def. 5.7, and its im-

plementation using the Tamarin presented in this chapter, using two restrictions of

Correspondence and Uniqueness, differ in one aspect, i. e., the introduction of session

identifiers in each log entry. Intuitively, there is nothing wrong in adding an identifier.

However, it needs to be proved that annotating the protocol rules with session identifiers

does not alter its behaviour. Accordingly, we attempt to provide a proof for Theorem 6.3

which states that there is an attack present in a trace with session identifiers, under two

restrictions of Correspondence and Uniqueness, if and only if a stealth attack is present in

a trace without session identifiers.

6.2 Contributions

This chapter presents our approach of implementing the formal stealthiness framework,

presented in Chapter 5, using the automatic protocol verification tool Tamarin. Based

on our introduction of session ID to logs, we identify equivalent restrictions to be imposed

on protocol traces generated by Tamarin, in order to make Tamarin definitions of

stealthiness equivalent to our formal model presented earlier in the previous chapter.

6.3 Overview

This chapter starts with the definition of well-formedness of rules followed by definition

of validity of facts, variables, and rules. A Tamarin model usually allows any number

of inputs or any number of outputs in the premise and conclusion of the rules. We,

however, require a well-formed rule to have both input and output to a maximum of

one. This well-formedness, along with validity conditions defined further, guarantees that

multiple occurrences of the same variable always takes the same value. In the absence of

well-formedness and validity conditions, we may have a trace with different substitutions

104

TAMARIN Model of Stealthiness

for different occurrences of any variable. This will end up generating multiple possible

traces thereby making analysis of traces almost an impossible task. It is worth mentioning

here that both the well-formedness and validity conditions are already followed by most

Tamarin examples.

Further, we introduce the notion of ‘Standard Templates’ as an ordered list of

parameterised logs to generate multiple valid traces using different substitutions. We also

introduce a unique identifier in the form of a ‘session ID’ to make a distinction among

traces generated by the protocol runs. We add these session IDs to the rules, i. e., in

the premise, conclusion and labels. We remark that the addition of session ID does not

stop any rule from firing, hence the addition of session ID does not, in any way, alter the

generation of any standard traces as per Def. 5.4. The only change would be the presence

of session IDs in the traces.

We remark that the session IDs do not enforce anything on the system and adding

the session IDs to the traces does not, in any way, guarantee that the traces will be

stealthy or otherwise. The standard looking trace using Def. 5.7 is a result of interleaving

many single standard traces. Though this merging is straightforward, extracting the

original standard traces from a standard looking trace is a complex and an error-prone

task. Similarly, if the session IDs are not added carefully to these traces, it may be possible

that the modified traces do not follow stealthiness conditions.

To handle such situations, our system also mandates that if there is a trace generated

using the rules without the session IDs, e. g., AllowedSequences(ProtoRules), and if we add

session IDs to the rules making them, there will exist a trace which we can un-annotate,

and it will be the same. This is in line with our central theoretical result, i. e., an attack

is present in a trace with session identifiers, under certain restrictions, if and only if a

stealth attack is present in a trace without session identifiers. So, if a trace is stealthy

with session ID under two restrictions, namely Correspondence and Uniqueness as per

Def.6.22 and Def. 6.23, it should also be stealthy under Def. 5.7 after removing the session

105

TAMARIN Model of Stealthiness

IDs. This is also demonstrated in the Fig. 6.1 below.

Figure 6.1: Reduction of ProtoRules to Traces with and without session IDs

Using these fundamental tools, this chapter defines two restrictions; namely Corre-

spondence and Uniqueness, to be enforced in a Tamarin model, so that all the traces

generated by the system are always stealthy. If, under these restrictions, an attack is

successful, it is termed as Stealth Attack else non-Stealth Attack.

Finally, using these definitions followed by propositions and theorems on templates

and traces, we have provided proof for our central theorem that an attack is present in a

trace with session identifiers, under certain restrictions, if and only if a stealth attack is

present in a trace without session identifiers.

6.4 Well-formedness of Rules and Rule Lists

In general, Tamarin examples may have more than one input or more than one output in

a rule. Modelling of such rules may result in wrong pair of output-input matching with

each other. It is also possible for a protocol rule to not always produce an output. In

such cases, a following rule with an input will have nothing to receive from a previous

rule and the execution may abruptly come to a halt. Executing such protocol rules could,

however, be made possible if we are able to match two such rules where the first rule does

not produce an output and the second rule does not accept any input.

106

TAMARIN Model of Stealthiness

We define well-formedness of rules and rule lists to ensure that the situations defined

above are handled. We place the restriction to allow every rule with at most one input or

output. We also make matching of two rules possible, using the STATE facts, even when

the first rule does not produce an output and the second rule does not accept any input.

These conditions provide flexibility to our model by ensuring that we are able to match

the input of a rule to the correct previous output from any rule, and not necessary the

output of a previous rule only.

We enlist the above well-formedness conditions, for a rule and rule list in this

section, by allowing possible construction for the rules, as defined below. It may be noted

that these restrictions are in addition to ones already defined earlier in Definitions 5.1

and 5.2. Together, all these restrictions ensure that the rule list can be executed using

the labelled transition relation present in Section 5.4.1. These definitions require all the

Tamarin rules to have at most one output and one input, with no loss of generality.

Definition 6.1 (Well-Formed Rule). Any well-formed setup and protocol rule, while

following all the restrictions as defined in Def. 5.1, can have one of the following construction:

(a) In to Out Rule: A rule with single input in premise and single output in conclusion.

(b) In to STATE Rule: A rule with single input in premise and no output in conclusion.

(c) STATE to Out Rule: A rule with no input in premise and single output in

conclusion.

(d) STATE to STATE Rule: A rule with no input in premise and no output in

conclusion.

Definition 6.2 (Well-Formed Rule List). Any well-formed setup and protocol rule, while

following all the restrictions as defined in Def. 5.2, can have one of the following three

forms:

1. Rule List using no In, i. e., STATE to Out :

107

TAMARIN Model of Stealthiness

• A rule of the form (c) from Def. 6.1 and rule list of the form 2 in this definition.

• A rule of the form (d) from Def. 6.1 and rule list of the form 1 in this definition.

2. Rule List using In and Out :

• A rule of the form (b) from Def. 6.1 and rule list of the form 1 in this definition.

• A rule of the form (c) from Def. 6.1 and rule list of the form 2 in this definition.

• A rule of the form (a) from Def. 6.1 and rule list of the form 2 in this definition.

3. Rule List using STATE :

• A rule with one In or Out in its facts and rule list of the form 2 in this definition.

• A rule with neither In nor Out in its facts and rule list of the form 1 in this

definition.

6.5 Validity of Facts, Variables, and Rules

For our definitions to work, it is essential that all the rules present in the Tamarin model

of a protocol are valid as per definitions presented later in this section. We assume any

construction of a rule and the rule list, which is parsed by Tamarin without any error,

as valid. The validity conditions ensure that all variables in the rule list always map to

the same value. It is to be noted that most of the publicly available Tamarin models

already follow our validity conditions. It may be recalled that a template of a protocol

is thttps://www.overleaf.com/project/5eb5eed7a084e00001ff411dhe sequence of actions

containing variables that appear in the execution. A variable can appear multiple times in

a rule list and hence in a template. However, to generate a valid run from a template, it is

imperative that each variable has at most one value i. e., every valid variable must have

the same value for all its occurrence in a rule list. This is necessary to ensure that any

generated trace after substitution on a template is always a valid one.

108

TAMARIN Model of Stealthiness

We present below the formal treatment of validity of rule lists based on the validity

of facts and variables used by them.

Motivating Example

In order to make it easier to understand our approach, we present the working of our

definitions with the help of the following motivating example, considering the following

rule list:

Example 6.1.

R1 : [Fr(ltkA)]− []→ [Ltk(′A′, ltkA), Pk(′A′, pk(ltkA))]

R2 : [Fr(ltkB)]− []→ [Ltk(′B′, ltkB), Pk(′B′, pk(ltkB))]

R3 : [Pk(R, pkR)]− [Log3(I,R, pkR)]→ [Out(aenc(< I,R >, pkR), Step(I,R, ‘Init′)]

R4 : [Ltk(S, ltkS), In(aenc(< I, S >, pk(ltkS)), Step(I, S, ‘Init′)]− [Log4(I, S, pk(ltkS))]→ []

Definition 6.3 (PN : Set of Public names). Given a rule list RL, the set of public names

PN consists of all the public names appearing in the rule list RL.

Applying Def. 6.3 on the Ex. 6.1: PN = {′A′,′B′}.

Definition 6.4 (Allowed fact types). All the facts present in the premise and conclusion

of every rule must belong to either of the following types of facts :

• Fresh, Output and Input fact: As already defined earlier, the facts, fresh Fr()

and input In(), are used in premise of a rule for a new variable and receive a message.

The output fact Out() is used in the conclusion of a rule to send the message.

• Unique state fact (USF): A unique state fact is a fact for which the state name

only appears in the conclusion of a single rule. The USFs are used to maintain

109

TAMARIN Model of Stealthiness

temporary protocol state information and can be used to store the system memory

of a transition system at any specific point.

• Unique Argument state fact (UAF) Unique Argument state facts are facts that

appear in the setup rules such that all arguments of the fact are fresh names or

constants, where the state name-constant pair is unique. The fresh and constant

arguments of UAF should always remain fresh and constant respectively across all

their instances. Since a fresh name is never reused whereas a constant value might,

allowing them to mix might violate the correctness conditions A set of all such

generated UAFs is referred to as UAFgen. UAF can also appear in the protocol

rules if they appear in the premise and conclusion with the same state name and

arguments. All such instances form a set of UAFs referred to as UAFused. The UAFs

help in setting up the initial knowledge of a system, such as long term, private, and

public keys etc.

All the occurrences of the UAF must use either fresh names or public names in the

same positions. The following restrictions are, therefore, applied on the UAFs :

– Whenever a UAF uses a public name, this fact name also appears with all the

possible public names in the same position.

– Whenever a UAF uses a function application in a position, then all facts with

the same state name have the same function application or a variable or a

public name in the same position, but never a fresh name.

– Whenever two UAFs with the same state name use a nested function application

in the same position, then these function applications at each nesting level must

also follow the above two restrictions.

Applying Def. 6.4 on the Ex. 6.1 We can classify all the facts as follows:

• Fresh fact: Fr(ltkA), F r(ltkB)

110

TAMARIN Model of Stealthiness

• Output and Input fact:Out(aenc(< I,R >, pkR)), In(aenc(< I, S >, pk(ltkS)))

• USF: Step(I, R, ‘Init′)

• UAF:

Ltk(′A′, ltkA), Ltk(′B′, ltkB), Pk(′A′, pk(ltkA))

, Pk(′B′, pk(ltkB)), Pk(R, pkR), Uaf1(R, z), Ltk(S, ltkS)

As already outlined, the validity of a rule list, composed of valid rules, is defined to

ensure that every valid variable with the same name receive the same value. Additionally,

we also want to make sure that all the variables which are being used for the same purpose

also receive the same value after substitution, even though they may have different names.

It may be recalled that a template of a protocol is the sequence of actions containing

variables that appear in the execution.

Our aim here is to make sure that no two rules should be allowed to use the same

variable for more than one purpose. This is to ensure that they are never substituted with

the same value resulting in an invalid trace. For example, if a variable pkR denotes the

public key of R in one place, everywhere it appears it still denotes the public key of R

and nothing else. This restriction in enforced by making sure that they are “directly” or

“indirectly” linked, as defined below.

Definition 6.5 (Directly Linked Variable). A variable v is directly linked in a rule R

w.r.t. the rule list RL, if either:

• variable v is present in the input fact in the premise of R and it is also present in the

output fact in the conclusion of the most recent rule of RL, containing an output

fact, at the same position.

• Or variable v is present in a USF in the premise of R and there exists a USF with

the same state name present in the conclusion of some earlier rule in RL, with v in

the same position.

111

TAMARIN Model of Stealthiness

Applying Def. 6.5 on the Ex. 6.1: We can extract the sets of directly linked variables

from each rule as follows:

VD1 in R1 w.r.t. RL = [] = {}, VD2 in R2 w.r.t. RL = [R1] = {}, VD3 in R3 w.r.t.

RL = [R1, R2] = {}, and VD4 in R4 w.r.t. RL = [R1, R2, R3] = {I}

While the definition 6.5 helps in establishing links among the variables present in

input/output facts and unique state facts, it does not take into account variables linked

indirectly via Unique Argument state facts (UAFs).

As the UAFs have unique arguments, if one argument for two different UAFs is the

same, then we can conclude that the others are also all the same. E. g., we could consider

the UAF Pkey(X, pkX) that denotes that the public key of principal X is pkX. Given

two occurrences of Pkey(I, pkI) in a rule set, if we can show that both of the variables I

are linked then, due to the uniqueness of the arguments, we can conclude that both of the

pkIs also take the same value. So, following on from our earlier definition, we define:

Definition 6.6 (Indirectly Linked Variable). A variable v is indirectly linked in a rule R

w.r.t. the rule list RL, if there exist UAFs with the same state name in both the premise

of the rule R and in the conclusion of a rule in RL, with variable v at the same position in

both, and there exists a term t that is in the same position in both UAFs and t a variable

directly linked1 in R w.r.t. RL or t is a constant.

We note that these definitions could be extended to capture more complex links between

variables, e. g., strings of indirect and direct links in different combinations. However, the

definitions above are sufficient to capture everything we need for standard protocol models.

Applying Def. 6.6 on the Ex. 6.1: We find that there are no indirectly linked variables

present in the rule list. VID1 in R1 w.r.t. RL = [] = {}, VID2 in R2 w.r.t. RL = [R1] =

{}, VID3 in R3 w.r.t. RL = [R1, R2] = {}, and VID4 in R4 w.r.t. RL = [R1, R2, R3] = {}

1We could extend this definition to also allow t to be an indirectly linked variable, however, this is not
needed for any of the examples we have looked at.

112

TAMARIN Model of Stealthiness

Sets of New Variables from Each Rule in Ex. 6.1: VNew1 in R1 = {ltkA}, VNew2

in R2 = {ltkB}, VNew3 in R3 = {I, R, pkR, s}, and VNew4 in R4 = {S, ltkS}

Based on the definitions 6.5 and 6.6, we are now in the position to define a valid

variable in a rule with respect to the rule list. It is worth reminding that all valid variables

would only take a single value in a normal run.

Definition 6.7 (Valid Variable). A variable v in a rule R is valid w.r.t. a rule list RL if

either:

• v is new, i. e., not used in RL

• or v is directly linked

• or v is indirectly linked

Applying Def. 6.7 on the Ex. 6.1 to test validity of variables: Set of All

Variables in R1 = {ltkA}, Set of All Variables in R2 = {ltkB}, Set of All Variables in R3

= {I, R, pkR}, and Set of All Variables in R4 = {I, S, ltkS}.

• Variable ltkA in R1 is valid w.r.t. RL = [] as ltkA ∈ VNew1

• Variable ltkB in R2 is valid w.r.t. RL = [R1] as ltkB ∈ VNew2

• Variable I in R3 is valid w.r.t. RL = [R1, R2] as I ∈ VNew3

• Variable R in R3 is valid w.r.t. RL = [R1, R2] as R ∈ VNew3

• Variable pkR in R3 is valid w.r.t. RL = [R1, R2] as pkR ∈ VNew3

• Variable I in R4 is valid w.r.t. RL = [R1, R2, R3] as I ∈ VD4

• Variable S in R4 is valid w.r.t. RL = [R1, R2, R3] as S ∈ VNew4

• Variable ltkS in R4 is valid w.r.t. RL = [R1, R2, R3] as ltkS ∈ VNew4

113

TAMARIN Model of Stealthiness

Definition 6.7 defines the validity of one variable in one rule w.r.t. one rule list. We further

define validity of all the variables in a rule by applying this definition on all variables of a

rule. Subsequently, a valid rule list is defined as a rule list with each rule having all its

variables as valid.

Definition 6.8 (Valid Rule). A given rule R is a valid rule w.r.t. a rule list RL if all the

facts in R and RL are allowed facts as per definition 6.4 and all of its variables are valid

variables as per definition 6.7.

Applying Def. 6.8 on the Ex. 6.1 to test validity of rules:

• The rule R4 is valid w.r.t. RL = [R1, R2, R3]

• The rule R3 is valid w.r.t. RL = [R1, R2]

• The rule R2 is valid w.r.t. RL = [R1]

• The rule R1 is valid w.r.t. RL = []

Definition 6.8.1 (Valid Rule List). A rule list RL = [R1, R2....Rn] is a valid rule list if :

• the rule list RL is empty.

• or, rule Rn is a valid rule w.r.t. the rule list [R1, ...Rn−1] with [R1, ...Rn−1] a valid

rule list.

Applying Def. 6.8.1 on the Ex. 6.1 to test validity of rule list: The rule list

RL = [R1, R2, R3, R4] is a valid rule list.

6.5.1 Valid and Well-Formed Rule List

Based on the above definitions, we define a valid and well-formed rule list as below.

114

TAMARIN Model of Stealthiness

Definition 6.9 (WFAndV alidRLSetupProto(SetupRules ,ProtoRules)). Given setup and

protocol rule lists namely SetupRules and ProtoRules,

WFAndV alidRLSetupProto(SetupRules ,ProtoRules)] holds if:

• SetupRules contains only basic logs and no fresh proto names.

• ProtoRules is valid as per Def. 6.8.1.

• SetupRules ProtoRules are both well-formed as per Def. 6.2.

Definition 6.9.1 (WellFormedAndValidRuleList(RL)). A given rule list RL is valid if

there exists two rule lists namely SetupRules and ProtoRules such that RL is a result of con-

catenation of SetupRules with ProtoRules and

WFAndV alidRLSetupProto(SetupRules ,ProtoRules) holds.

From now on, all references to the SetupRules and ProtoRules shall imply well-

formed and valid setup rule list and well-formed and valid protocol rule list, respectively.

Additionally, we assume that the outputs from the setup rules are never received as input

by the protocol rules. The information sharing among the setup rules and protocol rules

always takes place using the persistent facts (modelled as STATE facts in our model).

6.6 Introducing Session Identifier

In order to test our model using Tamarin, we start by defining a Standard Template based

on the definition of template defined in 5.4.2 and subsequently applying our ‘Formal Stealth

Model’, from the previous chapter 5, on the running example presented in 5.6. It may

be recalled that the AllowedSequences in all our examples are prefix-closed, although in a

practical setting, they can be any order of protocol rules as per the protocol specifications.

Definition 6.10 (Standard Template). Given the allowed sequences

AllowedSequences(ProtoRules) for the protocol rule list ProtoRules with logs, a Stan-

115

TAMARIN Model of Stealthiness

dard Template, denoted by StdTemplate(ProtoRules), can be generated by extracting the

logs with variables in the order of any allowed sequences.

The set of all such Templates constitute the set of Standard Templates, denoted

by StdTemplates . A standard template is, therefore, an ordered list of parameterised logs

ordered by the time point of their occurrence. As a protocol may have more than one

allowed execution sequence, and therefore more than one standard template, there may be

multiple templates for a protocol.

As already explained earlier, the logged trace tr log is produced using only the logged

labels of protocol rules containing ground instantiations for all the parameters in the

logs generated during the protocol rule(s) execution, a standard template tr template will

only contain variables. A standard template tr template can be used to generate different

traces by applying different substitutions, with each substitution generating of traces by

substituting the parameters of tr template with correctly typed terms.

A trace, generated by the Tamarin rules execution, is the result of applying a

specific substitution on the action labels. The standard templates are helpful in order to

be able to generate multiple traces from any list of logged labels. We will use standard

templates in subsequent sections to develop our Tamarin model of stealthiness by adding

the session IDs to develop the notion of standard session templates which, as we will see

later, will help us define the two required restrictions for stealthiness.

6.6.1 Applying Formal Stealth Model to Running Example

We will now use our framework to analyse the modified sample protocol presented in the

Ex. 5.1. We assume that the protocol execution is prefix-closed. The set of standard

116

TAMARIN Model of Stealthiness

templates for this protocol, i. e., StdTemplates will then have the following form :

StdTemplates(ProtoRulesstealth) =

{[LogA1 (A, nA)], [LogA1 (A, nA),LogB2 (A,B, nA))],

[LogA1 (A, nA),LogB2 (A,B, nA),LogX3 (A,B, nA)]}

Based on our formal stealth model definitions from Section 5.9, we analyse the following

two test traces for their stealthiness :

tr test1 =[LogA1 (Aly , n1),LogA1 (Aly , n2),LogB2 (Aly ,Rob, n2),

LogA1 (Kim, n3),LogB2 (Kim,Rob, n3)]

It is trivial to prove that tr test1 ∈ merge(tr 1, tr 2, tr 3) with tr i ∈ θi(StdTemplates),

i = 1, 2, 3, with θ1 = {Aly/A,Bob/B, n1/nA}, θ2 = {Aly/A,Rob/B, n2/nA} and θ3 =

{Kim/A,Rob/B, n3/nA}, classifying tr test1 as a standard looking trace. On the other

hand, if we have the following test trace:

tr test2 =[LogA1 (Aly , n1),LogB2 (Aly ,Bob, n1),

LogB2 (Aly ,Rob, n2),

LogA1 (Kim, n3],LogB2 (Kim,Rob, n3)]

We find that this trace cannot be generated by the formal stealth model definitions

for any combination of traces, as [LogB2(Aly,Rob, n2)] can not be generated by from

templates by applying σ(StdTemplates), for any substitution σ = [θ1, . . . , θi], and is

therefore not a standard looking trace.

While this analysis is straight forward, the difficulty arises due to the exponential

blow-up in the complexity of checking interleaving of several runs, and the lack of an

existing support for this in any protocol checking tool. Our approach to managing this

117

TAMARIN Model of Stealthiness

complexity is to introduce the notion of session identifiers to disambiguate, for each log

entry, which run of the protocol that log entry corresponds to. We define a function

AnnotatedRules(ProtoRules) to add session identifiers to the rule list ProtoRules .

Definition 6.11 (Sessions(ProtoRules)). Given the allowed sequences

AllowedSequences(ProtoRules) for the protocol rule list ProtoRules with logs, we define the

augmentation of the allowed sequences annotated with session ID as

Sessions(ProtoRules) = AnnotatedRules(AllowedSequences(ProtoRules)) where

AnnotatedRules([ProtoRules1, . . . ,ProtoRulesk]) =

AnnotatedRules(ProtoRules1)@ · · ·@AnnotatedRules(ProtoRulesk)

AnnotatedRules((rn : l − [a]→ r) :: ProtoRules) =

(rn : l′ − [a′]→ r′) :: AnnotatedRules(sid,ProtoRules)

where l′ = l ∪] Fr(sid) , r′ = r ∪] Out(sid) ,

a = crn(t1, . . . , tk) ∪] a0 , a′ = crn(sid, t1, . . . , tk) ∪] a0 and

AnnotatedRules(sid, [rn : l − [a]→ r]) =

[rn : sid, l′ − [a′]→ r]

AnnotatedRules(sid, (rn : l − [a]→ r) :: ProtoRules) =

(rn : l′ − [a′]→ r′) :: AnnotatedRules(sid,ProtoRules)

where l′ = l ∪] In(sid) and r′ = r ∪] Out(sid).

For each of the possible allowed sequences of protocol rules, the annotation works

by generating a fresh session identifier, firing the fresh rule Fr(sid) with variable name

sid), in the premise of first rule followed by the same being output by every rule except the

last one and accepted as input by every subsequent rule. AnnotateRules() also adds this

session ID to each log entry. Hence, a single correct run of the protocol will be tagged with

118

TAMARIN Model of Stealthiness

a unique session ID. We require that sid is not used, as a variable name, in the original

rules ProtoRules .

In line with the function AnnotatedRules(ProtoRules) used to add session IDs to the

rule list, we also assume a corresponding function UnAnnotateRules(ProtoRules) which

can be used to remove the session IDs such that:

ProtoRules = UnAnnotateRules(AnnotatedRules(ProtoRules))

We will just write UnAnnotateRules when the rule list is implicit.

We note that these annotated rules do not enforce any restrictions on when a rule

can fire, therefore any sequence of possible rules using AllowedSequences(ProtoRules) is

also possible using Sessions(ProtoRules). However, this lack of restriction also means that

when multiple runs of the protocol happen at the same time, it is quite possible for a rule

to pick up the wrong session ID from an environment. It is also possible for the attacker

to interfere with the session IDs, replaying or altering them. In other words, there are no

restrictions enforced by our annotated rules that mean the session IDs are used correctly.

This means that it is not the case that multiple runs of the protocol, with no

interference from the attacker, will necessarily produce a trace in which the session IDs

correctly tag standard looking single runs. However, we will show below that it is possible

to find a protocol attack in which session IDs tag standard looking runs if, and only if,

there is a stealth attack as per Definition 5.9. I. e., the addition of session IDs makes

checking for the existence of stealth attacks for the original protocol rules tractable.

119

TAMARIN Model of Stealthiness

Definition 6.12 (Standard Session Templates). For a given rule list ProtoRules , we define

the standard session templates as

TemplatesSessions(ProtoRules) = {StdTemplate(ProtoRules ′) |

ProtoRules ′ ∈ Sessions(ProtoRules)}

We will write just TemplatesSessions when the rule list is implicit.

Lemma 6.1. Give any protocol rule list ProtoRules, for all traces generated using the

normal rule list AllowedSequences(ProtoRules), there exists a trace with session IDs

generated from the rule list of the form Sessions(ProtoRules) such that if we remove the

session IDs using UnAnnotateRules , the traces generated are equal.

Proof. As can be seen in Fig. 6.1, the labels present in the original trace will be generated

by the firing of rules from ProtoRules in sequence. All the rules, after annotation, can

still fire, in the same sequence, as long as there is no change in the conclusion premise

relationship among the neighbouring rules pair. The firing of the rules is dependent on

the conclusion and premise relation which does not get changed in any way by Def. 6.11

as it only adds session identifiers.

Hence, addition or removal of session identifiers using AnnotatedRules((ProtoRules))

and UnAnnotateRules((ProtoRules)) does nothing to stop any rules from firing, implying

that the Lemma holds.

Lemma 6.2. Give any protocol rule list ProtoRules, for all traces generated using rule

list of the form Sessions(ProtoRules), there exists a matching trace without session IDs.

Proof. Follows directly from Lemma 6.1.

120

TAMARIN Model of Stealthiness

6.7 Adding Sessions to Running Example:

Applying Definition 6.11 to our rule list ProtoRulesstealth from the Ex. 5.1, we get the

following rule list Sessions(ProtoRules) with the changes highlighted in red.

A1 : [Fr(nA), F r(sid), !Pk(B, pkB)]−

[LogA1 (sid , A,nA),OutA1 (A,nA)]

→ [Out(A, aenc{nA}pkB),Out(sid)]

B2 : [In(sid), In(A, aenc{nA}pkB),Ltk(B, ltkB)]−

[LogB2 (sid,A,B,nA), InB2 (A,B,nA)]

→ [MSec(A,B,nA),Out(sid)]

X3 : [In(sid),MSec(A,B,nA)]−

[LogX3 (sid,A,B,nA),Secret(A,B,nA)]→ []

Applying Def. 6.12, we get the standard session templates as:

TemplatesSessions =

{[LogA1 (sid,A,nA)], [LogA1 (sid,A,nA),LogB2 (sid,A,B,nA))],

[LogA1 (sid,A,nA),LogB2 (sid,A,B,nA),LogX3 (sid,A,B,nA)]}

6.8 Substitutions on Templates and Standard Traces

Our model produces a Template from a set of rules that is made up of the logged action

we expect to see. For example, the template might look like the following:

[Msg1(I, R, pkI,Na),Msg2(R, I, pkR,Na,Nb),Msg3(I, R, pkI,Nb)]

121

TAMARIN Model of Stealthiness

where I, R, pkI, pkR,Na and Nb are all variables.

A run of the protocol will produce a trace in which these variables all take values, e. g.:

[Msg1(‘A′, ‘B′, pk(15244), 6385),Msg2(‘B′, ‘A′, pk(9647), 6385, 7421),Msg3(‘A′, ‘B′, pk(15244), 7421)]

We want to be sure that ‘1’) every standard run of a system will match the template for

some substitution and ‘2’) if we substitute values into the template we get a trace that

can be produced by a standard run. However, without additional conditions, these two

requirements will not hold in all cases.

For ‘1’, we must have that every occurrence of a variable anywhere in the template

will take the same value at run time. E. g., in the template above, the Na variable in

Msg1 must always take the same value as the Na variable in Msg3. If a run of the

protocol exists in which these two variables take different values, then there will not exist

a substitution that will make the template match that run.

To ensure that ‘1’ does hold we restricted, in the Sec. 6.5, our valid protocol rules

to ensure that there is a link between all occurrences of variables with the same name

(e. g., the variable is used as an output in one and a matching input in the following rule).

It is worth reminding that all example protocol models already follow these restrictions.

‘2’ is more complex. We may have two variables in the template that represent the

same value, e. g., if one rule calls the two principals A and B and another rule uses I and

R, then we will need to make sure that A and I take the same value, and B and R take the

same value. Also, the protocol rules can enforce different restrictions on different variables.

E. g., in the template above I and R will be public names, Na and Nb fresh names,

whereas pkA must be the function ′Pk′ applied to a fresh name. Therefore, when going

from a template to a trace generated by a run, we need to ensure that any substitution

122

TAMARIN Model of Stealthiness

respects these restrictions. To do this we first build equivalence classes of names that will

take the same value, i. e., those names that are linked by the rules. We then restrict the

possible facts the protocol rules must use, e. g., the facts must always use public names in

the same positions and fresh names in the same positions.

We then look to see if each variable is linked to a public name, a fresh name or a

function application, and we restrict the substitution to only consider those values. We

will then try to prove these restrictions are enough to prove ‘1’ and ‘2’.

6.8.1 Substitutions Properties on Variables and Rule lists

For valid rules, the substitutions used in each step of the reduction of the normal or

standard run must use the same values for variables with the same name. We first prove

this for a single directly linked variable:

Proposition 1. Given a valid rule list RL = [R1, . . . , Rj] and a standard run of the

protocol with rules using σ1, . . . , σj as substitutions for the reductions in each step of the

run. If the variable v is directly linked as per Def 6.5 in the rule Rj w.r.t. [R1, . . . , Rj−1] then

either v does not appear in [R1, . . . , Rj−1] or there exists some σi such that σi(v) = σj(v)

and i 6= j.

Proof. We have to prove Prop 1 that for each directly linked variable as per Def. 6.5, the

substitution being used in the current rule is the one that has already been used earlier

for this variable.

We can use induction on length of rule list with the following two cases:

• Base case: We have RL = [], for a single rule R1, all the variables are new, i. e., do

not appear in RL, hence Prop 1 holds.

123

TAMARIN Model of Stealthiness

• Step case: Assume Prop 1 holds for the valid rule list RL = [R1, . . . , Rj] and the

variable v is directly linked as per Def 6.5 in the rule Rj w.r.t. [R1, . . . , Rj−1] then

we have two cases:

– New Variables: Since a variable does not appear earlier, the substitution used

for this is new and hence Prop 1 holds.

– Directly Linked variables: Use Def. 6.5 which will have further two cases:

Variable in successive Input Output: Using Def.6.4, we can show that an

input fact consumes the output fact of the previous rule and in order to do that,

all of its variables will always need to have same value, should the output fact

need to be consumed during the normal run, hence the current substitution σj

and σi, with i = 1, . . . , (j − 1), must agree on all the variables used at same

positions in successive input output.

Variable in Unique State Fact: Using Def.6.4, we can show that as USF

with a state name is produced only once, all of its variables will always need to

have the same value, should this USF need to be consumed during the normal

run, hence the current substitution σj and σi, with i = 1, . . . , (j − 1), must

agree on all the variables used at same positions in USF.

Next, we show that indirectly linked variables must also take the same value as a previous

variable:

Proposition 2. Given a valid rule list RL = [R1, . . . , Rj] and a normal run of the protocol

with rules using σ1, . . . , σj as substitutions for the reductions in each step of the run. If

the variable v is indirectly linked as per Def 6.6 in the rule Rj w.r.t. [R1, . . . , Rj−1] then

either v does not appear in [R1, . . . , Rj−1] or there exists some σi such that σi(v) = σj(v)

and i 6= j.

124

TAMARIN Model of Stealthiness

Proof. We have to prove Prop 2 that for each indirectly linked variable as per Def. 6.6, the

substitution being used in the current rule is the one that has already been used earlier

for this variable. We can use induction on length of rule list with the following two cases:

• Base case: We have RL = [], for a single rule R1, all the variables are new, i. e., do

not appear in RL, hence Prop 2 holds.

• Step case: Assume Prop 2 holds for the valid rule list RL = [R1, . . . , Rj−1] and the

variable v is indirectly linked as per Def 6.6 in the rule Rj w.r.t. [R1, . . . , Rj−1] then

we have two cases:

– New Variables: It does not appear in the rule list [R1, . . . , Rj−1] so far, therefore

the Prop 2 holds by definition.

– Indirectly Linked variables: Use Def. 6.6 which will have further two cases:

∗ Variable in another UAF that are directly linked: We assume the UAF is

in Ri, Prop 1 tells us that this variable, say vd, takes the same value such

that σj(vd) = σi(vd) for i = 1, . . . , (j − 1). By Def. 6.4, all the arguments

for UAF s with the same name must be unique (because the arguments

are either fresh names, or unique constants). Therefore, the only possible

match for the UAF in Rj is the UAF in Ri. By the definition allow sequence

the rule can fire, therefore we know that the UAFs do match, and σj and

σi agree on all variables in the UAF, i. e., σj(v) = σi(v).

∗ Constant c at the same position: Using Def.6.4, we can show that the

generated UAF in the setup rules UAFgen with a state name has a unique

state name-constant pair. For this UAF to be consumed in the protocol

rules, it will use the same substitution during the normal run, hence the

current substitution σj must have been present earlier, i. e., in σ1, . . . , σj−1.

125

TAMARIN Model of Stealthiness

We now use these two propositions to show that all variables in a template for valid rules

must take the same value:

Proposition 3. Given a valid rule list RL and a normal run of the protocol, let σ1, . . . σn

be the substitutions used for the reductions in each step of the run for the variables being

used in the RL, then there exists a substitution σ such for all σi and v ∈ domain(σi), σ(v) =

σi(v).

Proof. We have to prove Prop 3 for each valid variable, i. e., for all σi and v ∈ domain(σi),

defined by Def. 6.7 in the rule list [R1, . . . , Rj−1], showing that all the individual substitu-

tions σ1, . . . , σn can be replaced by a single σ.

We can use induction on length of rule list with the following two cases:

• Base case (length 1): We have a single rule R1 and a single substitution σ1, hence

σ1 = σ,

• Step case: Assume Prop 3 holds for substitutions σ1, . . . , σn−1 and we have to show it

is true for σn. To prove this, we replace all σ1, . . . , σn−1 with a single substitution σ

and prove that σ is also compatible with σn. This will require proving the following

three cases:

– New Variables: We can assume a new σn and add this to σ as σn has not been

seen before, so does not conflict with existing substitutions.

– Directly Linked variables as per Def. 6.5: Apply Prop 1

– Indirectly Linked variables as per Def. 6.6: Apply Prop 2

126

TAMARIN Model of Stealthiness

6.8.2 Analysing Templates and Traces

Proposition 4. Given a rule R, and a template trtemplate generated from R, there ex-

ists a trace trlog, generated from the normal run of R, and a substitution σ such that

σ(trtemplate) = trlog.

Proof. • Using the rule R and Def. 5.4, we get a trace trlog and a substitution σ.

• Applying σ on the template trtemplate gives us the trace trlog, i. e., σ(trtemplate) = trlog.

We can now use these proposition to show that the following Theorem 6.1, specifying

relationship between standard trace, template and substitutions, holds.

Theorem 6.1. Given a valid rule list RL, for every standard trace with logs trlog, there

exists a template trtemplate of RL and a substitution σ such as σ(trtemplate) = trlog.

Proof. We can use induction on length of rule list with the following two cases:

• Base case (length 1): For a single rule R1 and a single substitution σ1, using Prop. 4,

we can prove σ1 = σ,

• Step case: Assume Theorem 6.1 holds for the valid rule list RL′ = [R1, . . . , Rn−1]

and a standard trace, say tr log′ , generated by standard run of RL′, then there exists

a template tr template′ and substitution σ′ such that σ′(tr template′) = tr log′ . We then

need to prove that for the valid rule list RL = [R1, . . . , Rn] with corresponding

standard trace, say tr log, there will exist a template tr template and substitution σ

such that σ(tr template) = tr log. We have two cases:

– If Rn has no log, the standard run using the valid rule list RL will also

produce the trace tr log exactly the same as tr log′ . Hence, we can assume an

127

TAMARIN Model of Stealthiness

unchanged template tr template = tr template′ using the same substitution as the

earlier substitution σ = σ′, such that σ(tr template) = tr log.

– If Rn has a log, we can build a substitution, say σ′ = {σ1, . . . , σn−1} generating

a trace tr log′ from a normal run of a valid rule list RL′ = [R1, . . . , Rn−1]. We

know that the rule list RL = [R1, . . . , Rn], will add log with values to the

generated trace tr log. Using Prop. 3, with RL′ using σ′, followed by Rn using

σn, we can prove that, for the trace tr log, there exists a single substitution σ on

RL and hence there exists a template tr template such that σ(trtemplate) = trlog.

6.9 Rewriting Templates using Equivalence of Names

Sec. 6.5 defines the validity of variables and subsequently validity of rule lists based

on them. It is evident from these definitions that the facts can use different names for

identifying the same principal/message/key etc. leading the templates to use different

names for the same value. It is possible for a public key to be referred to by two different

names, e. g., pkS and pk(ltkS). It means that the Template generated from the example

rule list, i. e., [Log3(I, R, pkR), Log4(I, S, pk(ltkS))] can have multiple substitutions to its

terms. To make sure that the substitutions applied to the Template are valid, all such

variables denoting the same principals/messages/keys etc. must be substituted with the

same values. We present the equivalence definition that finds the names in the rule list

that must be the same, e. g., pkS and pk(ltkS). We start by scanning the protocol rule

list, to identify all names that are to be treated as equivalent, in the following relation

Equivalent(n1, n2):

Definition 6.13 (Equivalent(n1, n2)). Given a valid rule list RL, the relation

Equivalent(n1, n2), for two terms (variables, public names and function applications)

128

TAMARIN Model of Stealthiness

n1 and n2, is the smallest symmetric, reflexive, transitive relation such that:

• if n1 and n2 are present in the same position in an output and then the first input

fact appearing in one of the subsequent rules then Equivalent(n1, n2).

• if n1 and n2 are arguments in the same position of unique state facts in RL with the

same state name then Equivalent(n1, n2).

• if n1 and n2 are arguments in the same position of UAFs in RL with the same state

name, and there exists n3 and n4, both in the same positions, and none of them

equal to either n1 or n2,with n3 not in the same position as n1 and n4 not in the

same position as n2, and Equivalent(n3, n4) then Equivalent(n1, n2).

• Equivalent(n1, n2) with n1 = [x1, . . . , xi] and n2 = [y1, . . . , yi] holds if

EquivalentList(n1, n2).

Definition 6.14 (EquivalentList(l1, l2)). Given a valid rule list RL, the relation

EquivalentList(l1, l2), for two lists l1 and l2 with l1 = [x1, . . . , xi] and l2 = [y1, . . . , yi]

holds if Equivalent(x1, y1) and EquivalentList([x2, . . . , xi], [y2, . . . , yi,])

Applying Def. 6.13 to check Equivalence in Ex. 6.1: In the rule list of Ex. 6.1,

we have a set of all the variables in the rule list = {ltkA, ltkB, I, R, S, pkR, ltkS}, a set of

all public names in the rule list = {′A′,′B′}, and a set of all function applications in the

rule list = {aenc(< I,R >, pkR), aenc(< I, S >, pk(ltkS)), pk(ltkS)}

Applying the Def. 6.13, we find all the names equivalent to itself, such as

Equivalent(I, I) etc. Additionally, Equivalent(R, S) and Equivalent(pkR, pk(ltkS)) also

hold.

Definition 6.15 (Equivalence Classes). Given a valid rule list RL, an equivalence class

En for a term n is the set of all the names equivalent to it using Equivalent(n,) as per

Def 6.13, i. e., En = {x | Equivalent(n, x)}.

129

TAMARIN Model of Stealthiness

Applying Def. 6.15 to build Equivalence class from Ex. 6.1: As per Def 6.15,

all the Equivalence classes contain itself such as EltkA = {ltkA},EltkB = {ltkB} etc.

Additionally, we also have ER = {R, S} and EpkR = {pkR, pk(ltkS)}.

Clearly the equivalence class of terms should not contain terms that can never be

equal, such as two different public names, two different function applications, or a public

name and a function application.

Furthermore, we want to be sure that any standard run will always map the variables

in the equivalence class to the same values:

Proposition 5. Given a valid allowed sequence list RL and a standard run of the protocol,

let σ be a substitution that can be used for all reductions, then for all terms n in the rule

list we have that ∀ n1, n2 ∈ En implies σ(n1) = σ(n2).

Proof. From the Def. 6.15, n1, n2 ∈ En implies Equivalent(n1, n2) as per Def. 6.13. To

prove that σ(n1) = σ(n2), we use proof by induction on derivation of equivalence:

• Base Case 1: n1 and n2 are present in the same position in an output and then the

first input fact appearing in one of the subsequent rules. The standard run of the

protocol using valid rule list RL is possible only if previous output with n1 matches

the input with n2 implying σ(n1) = σ(n2).

• Base Case 2: n1 and n2 are arguments in the same position of USF in RL with

the same state name. USFs are generated only in a single place therefore n1 and n2

must take the same value, as they are generated by the standard run hence must

match, implying σ(n1) = σ(n2).

• Base Case 3: Given Equivalent(n1, n2), Equivalent(n1, n2) follows directly from

induction on equivalence being a symmetric relation if n1 = n2, hence σ(n1) = σ(n2)

must be true.

130

TAMARIN Model of Stealthiness

• Step Case 1: Given Equivalent(n2, n1), Equivalent(n1, n2) follows directly from

induction on equivalence being a reflexive relation, therefore σ(n1) = σ(n2) must be

true.

• Step Case 2: Given Equivalent(n1, n3) and Equivalent(n3, n2), Equivalent(n1, n2)

follows directly from induction on equivalence being a transitive relation, therefore

σ(n1) = σ(n2) must be true.

• Step Case 3: n1 and n2 are arguments in the same position of UAFs in RL with

the same state name., and there exists n3 and n4, both in the same positions, and

none of them equal to either n1 or n2, with n3 not in the same position as n1 and n4

not in the same position as n2 and Equivalent(n3, n4). By the induction hypothesis,

we have σ(n3) = σ(n4) and since the UAF, as per Def. 6.4, requires for the state

name-constant pair to be unique, and we know that as ASR, the RL will execute

and σ(n1) = σ(n2) must be true.

• Step Case 4: Equivalent(n1, n2) with n1 = [x1, . . . , xi] and n2 = [y1, . . . , yi] holds, as

the induction hypothesis tells us Equivalent(x1, y1),Equivalent(x2, y2), . . . ,Equivalent(x2, y2)

hold, implying EquivalentList(n1, n2) also holds and therefore σ(n1) = σ(n2) must

be true.

Lemma 6.3. For all valid rule list RL and equivalences classes of term from that rule list

En, for all n1, n2 ∈ En:

• if n1 is a public name then n1 = n2 or n2 is a variable.

• if n1 = f(x1, . . . , xn) then n2 = f(y1, . . . , yn) or is a variable.

Proof. Follows directly from Prop 5 above.

131

TAMARIN Model of Stealthiness

6.9.1 Classification of Equivalence Class

The generation of a trace of a normal or standard run from a template requires that each

member of an equivalence class generated by the application of Def. 6.15 be substituted with

the same value/name. This substitution has to not only make sure that each appearance

of a given term is substituted with the same value, but also make sure that all the terms

appearing in the template are substituted together. In order to achieve this, we need

to determine all such equivalence classes that appear together in any UAF and can be

considered linked to each other. E. g., a principal ‘A′ and its public key pkA must be

linked together. This is followed by computing the minimal equivalent set, providing us

with the smallest possible set of all the linked equivalent classes. The following functions

help us establish such relationships.

Two equivalent classes are said to be linked to each other if at least one member

from both equivalent classes is used in any UAF, present in the rule list, as its arguments.

Definition 6.16 (LinkedEqClassesRL(E1, E2)). Given a valid rule list RL,

LinkedEqClassesRL(E,E ′) is the smallest reflexive, transitive, symmetric relation that in-

cludes: For all E1 and E2 such that there exists arge1 ∈ E1 and arge2 ∈ E2 and there exists

a uaf in RL that includes arge1 and arge2 arguments then LinkedEqClassesRL(E1, E2).

Applying Def. 6.16 in Ex. 6.1: We have LinkedEqClassesRL(ER, EpkR) and

LinkedEqClassesRL(ER, EltkS).

Definition 6.17 (EquivEqClasses(RL)). Given a valid rule list RL, EquivEqClasses(RL)

are the equivalence classes produced by the LinkedEqClassesRL(E,E ′) relation.

It may be recalled that the SetupState is generated by executing the setup rules

in any order any number of times. This SetupState is then used by the protocol rules

to receive the knowledge about long term keys, private and public keys etc. It may also

132

TAMARIN Model of Stealthiness

be recalled that such information is stored in UAF s of the rules, with UAF ∈ UAFgen

generating them in setup rules and UAF ∈ UAFused consuming them in the protocol rules.

E. g., Pk(‘A′, pkA) has the principal name ‘A′ appearing together with its public key pkA.

Therefore, to ensure the validity of substitutions, we need to make sure that ‘A′ and pkA

are always substituted together. We write the following function returning all unique

arguments facts, from the protocol rule list, that use members of an equivalence class.

Definition 6.18 (ProtocolUAFs(RL,Eq)). Given a valid rule list RL and an equivalence

class of names, Eq ∈ EquivEqClasses(RL) then

ProtocolUAFs(RL,Eq) equals a list of all UAFs in protocol rule of RL which contain a

member of Eq as an argument.

Applying Def. 6.18 in Ex. 6.1: We have the list of UAFs in protocol rule list as

[Pk(R, pkR), Ltk(S, ltkS)].

The list of UAFs [Pk(R, pkR), Ltk(S, ltkS)] tells us that R and pkR are the names

that go together and so must be substituted together, and so do S and ltkS. However, we

still need to find out what we can replace these terms with. For this purpose, we write the

function MatchingSetupUAFs(RL,Eq) to extract all the possible substitutions for the

list produced by ProtocolUAFs(RL,Eq).

Definition 6.19 (MatchingSetupUAFs(RL,Eq)). Given a valid rule list RL and an

equivalence class of equivalence classes of names Eq, MatchingSetupUAFs(RL,Eq)

returns a list of UAFs from setup rules matching the list of UAFs returned by

ProtocolUAFs(RL,Eq) as per Def. 6.18 such that

• All members of an equivalence class present as the arguments of the UAFs in

ProtocolUAFs(RL,Eq) must match to the same value present as arguments in the

MatchingSetupUAFs(RL,Eq) while sharing the same UAF names and appearing

in the same position as an argument.

133

TAMARIN Model of Stealthiness

Applying Def. 6.19 in Ex. 6.1: We have the list matching UAFs in setup rule list

extracted as: [[Pk(’A’,pk(ltkA)),Ltk(’A’,ltkA)], [Pk(’B’,pk(ltkB)),Ltk(’B’,ltkB)]]

6.9.2 Template Rewriting

Sec. 6.9 presents the equivalence definition, Equivalent(n1, n2), to finds the names in the

rule list that must be same. While the template generated can use different names for the

same value, e. g., pkS and pk(ltkS), it is important that the both names, such as pkS and

pk(ltkS), must be substituted with same values.

In order to make this process simple, rather than trying to find out how to substitute

multiple names with the same value, we rewrite the template itself to achieve the same

result.The Def. 6.20.3, presented below, makes sure that all terms, marked as equivalent by

the Def. 6.15, are rewritten with a single term. This rewritten template ensures that there

is no ambiguity in applying substitution on templates, and that it will always produce

the same rewritten template. E. g., the names pkS and pk(ltkS), in the template will

always be rewritten as pk(ltkS). The issue is that whenever we have a template such

as Log1(S, pkS), Log2(S, Pk(ltkS)) producing a trace Log1(5, 123), Log2(5, Pk(456)), it

would be left to the trace analysis to establish if the value 123 is same as pk(456). However,

a rewritten template of the form Log1(S, pk(ltkS)), Log2(S, Pk(ltkS)) solves this issue by

generating a trace such as Log1(5, pk(456)), Log2(5, Pk(456)), and removing the ambiguity

altogether.

Definition 6.20 (PreRewriteTemplate(T,RL)). Given a valid rule list RL and a tem-

plate T for this rule list, let Et1, . . . , Etm be the equivalence classes of all terms in T .

PreRewriteTemplate(T,RL) can generate a rewritten template T ′ based on the following

rules until we have a template which satisfies normal form definition as per Def. 6.20.1:

rule A: if there exists f(t1, . . . ti) ∈ Eti then we rewrite all members of Eti with the

function and apply these rewrite rules to each of the arguments, i. e., Rewrite(Eti) =

f(Rewrite(Et1), . . . , Rewrite(Eti)). 134

TAMARIN Model of Stealthiness

rule B: if there exists a public name in Eti, we rewrite all members of Eti in T with this

public name.

rule C: if there are no public names, function applications or UAF variables in Eti, then

we pick one variable from Eti and replace all members of Eti in T with this.

We make Rewrite() and therefore PreRewriteTemplate(,) deterministic such

that; for each equivalence class containing function, public name or variable, only the first

such term is chosen to represent the whole class.

Furthermore, the template rewriting is an iterative process and hence needs

to have a terminating condition. For this purpose, we define the following predicate

TempNormalForm(T,RL) to test if the template T is in its normal form w.r.t. the rule

list RL.

Definition 6.20.1 (TempNormalForm(T,RL)). Given a valid rule list RL and a tem-

plate T for this rule list, TempNormalForm(T,RL) holds if, for every term t1 present in

T , all the following conditions hold:

• There does not exist any other term, e.g., t, such that both t and t1 appear in the

same equivalence class.

• If there exists a function term tf such that t1 and tf are in the same equivalence

class then t1 and tf have the same function name.

• If there exists a public name tp such that t1 and tp are in the same equivalence class

then both the terms t1 and tp are equal to each other.

After rewriting the template as per Def. 6.20 such that it satisfies all the conditions

present in Def. 6.20.1, we need to instantiate the terms used in UAF as per the following

definition.

135

TAMARIN Model of Stealthiness

Definition 6.20.2 (InstantiateTemp(T,RL, T ′)). Given a template T generated from a

valid rule list RL, for all protocol UAFs Uafp appearing in RL, there exists a setup UAF

Uafs such that Uafs = σ(Uafp) and T ′ = σ(T).

Lemma 6.4. Given a valid rule list RL and a template T , there always exists a template

T ′ such that T ′ is a rewritten template using PreRewriteTemplate(T,RL) from Def 6.20,

and T ′ is in normal form as per Def. 6.20.1.

Proof. Follows directly from the Def. 6.20 and Def. 6.20.1.

Definition 6.20.3 (RewriteTemplate(T,RL)). Given a valid rule list RL and a template

T for this rule list, T ′ is the rewritten template of T such that:

• There exists a template Ttmp which is produced using Def. 6.20 on T .

• The template Ttmp is in normal form as per Def. 6.20.1.

• The template T ′ is an instantiated template of Ttmp by applying Def. 6.20.2.

Template Rewriting in Ex. 6.1: Using Def 6.20.3, the equivalence classes used

in the Template generated from the rule list [Log3(I, R, pkR), Log4(I, S, pk(ltkS))] are:

EI , ER, EpkR.

• Using rule A, pk(ltkS) ∈ EpkR, hence Rewrite(pkR) = Rewrite(Epk(ltkS)) =

pk(Rewrite(EltkS)) = pk(ltkS) making the rewritten template T ′ = [Log3(I, R, pk(ltkS))

, Log4(I, S, pk(ltkS)].

• The rule B does not apply.

• As per rule C, variables R and S are ∈ ER, so all their occurrences will be replaced

withR making the rewritten template T ′ = [Log3(I, R, pk(ltkS)), Log4(I, R, pk(ltkS)].

136

TAMARIN Model of Stealthiness

The rewritten template T ′ = [Log3(I, R, pk(ltkS)), Log4(I, R, pk(ltkS)]. satisfies

Def. 6.20.1 and hence in a normal form.

Instantiating Rewritten Template in Ex. 6.1: Using Def 6.20.2, the instantiation

of template T ′ = [Log3(I, R, pk(ltkS)), Log4(I, R, pk(ltkS)] takes the following form.

• Taking into account [Pk(R, pkR), Ltk(R, ltkR)] as ProtocolUAFs(RL,Eq), and

[Pk(′A′, pk(ltkA)), Ltk(′A′, ltkA] as MatchingSetupUAFs(RL,Eq), we have a sub-

stitution σ matching Pk(R, pkR) with Pk(′A′, pk(ltkA)), hence instantiating R with

′A′ and pkR with pk(ltkA) and producing T ′′ = [Log3(I,′A′, pk(ltkA)), Log4(I,′A′, pk(ltkA)]

as a rewritten and instantiated template.

As described at the start of this section, the process of rewriting and instantiating

the template ensures that the system receives a template which is easy to substitute and

therefore comparing traces is easier than before. E. g., bothR and S used in Log3(I, R, pkR)

and Log4(I, S, pk(ltkS)) appear as ′A′ in the rewritten template, thereby removing any

possibility of ambiguity in the generated traces from this rewritten template.

Lemma 6.5. Given a valid rule list RL and a template T , the rewritten template using

RewriteTemplate(T,RL) from Def 6.20.3 does not contain any variable v with a function

equivalent representation present in any equivalence class, i. e., ∀ v @ f,Equivalent(v, f()).

Proof. Follows directly from the rule A of Def. 6.20.

Theorem 6.2. Given a well-formed and valid rule list RL, a template T generated using

RL, the substitution σ applied on all the variables of the rewritten templates tr template

generated using RewriteTemplate(T,RL) from Def 6.20.3, there exists a standard run of

the system using RL which generates the same trace tr log matching this substitution on

tr template.

137

TAMARIN Model of Stealthiness

Proof. We can use induction on length of rule list with the following two cases:

• Base case (length 1): For a single rule R1 and a single substitution σ1, using Prop. 4,

we can prove that σ(trtemplate) = trlog.

• Step case: Assume that for a rewritten template tr template′ generated from a valid

rule list RL′ = [R1, . . . , Rn−1] there exists a standard trace for RL′, say tr log′ , and

substitution σ′ such that σ′(tr template′) = tr log′ , we then need to prove that for all

rules Rn such that RL = [R1, . . . , Rn−1, Rn] is a valid rule list, and for all rewritten

templates tr template generated from RL there exists a standard trace for RL say tr log

and substitution σ such that σ(tr template) = tr log. We have two cases:

– If Rn has no log, the length of rewritten templates tr template′ and tr template will

be same. However, tr template may be a differently rewritten template compared

with tr template′ with only difference between them being variable names (i. e.,

there exists a function (f : var → var) which can rewrite tr template′ to tr template.

Let σ′ and σ be the substitutions used in tr template′ and tr template respectively,

to generate the trace tr log = tr log′ . We can then use the function f to generate

both the new rewritten template tr template and substitution sigma such that

σ = f · σ′ with σ(tr template) = tr log

– If Rn has a log, we can build a substitution, say σ′ = {σ1, . . . , σn−1} generating

a trace tr log′ from a normal run of a valid rule list RL′ = [R1, . . . , Rn−1]. The

traces tr log′ , generated from RL′, and tr log generated from RL will be same

except the last element added by Rn. As we already have a σ′ for the rule

list RL′ = [R1, . . . , Rn−1], following on from the above case, we can use a

substitution σ′′ = f · σ′ on template tr template for variables from [R1, . . . , Rn−1].

Let σn be the substitution applied on the variables used in Rn, then Prop. 3 tells

us that there exists a single substitution σ replacing all individual substitutions

f · σ1, . . . , f · σn−1, σn, for all the variables used in RL, and σ(tr template) = tr log.

138

TAMARIN Model of Stealthiness

6.10 Enforcing Stealthiness in TAMARIN

After ensuring, through Theorem 6.2, that all the runs of the system can be generated by

substituting the rewritten templates, in this section we present two restrictions on traces

of a protocol with session IDs, which together force protocol runs with session IDs to be

‘standard looking’. We show below that this is equivalent to standard looking for protocols

without session IDs (as defined in Definition 5.7). Importantly, the restrictions below can

be automatically checked in Tamarin, whereas Definition 5.7 cannot be directly checked.

From now on, in this chapter, all the reference to the StdTemplates will imply a

template to be of the form of a standard session template TemplatesSessions() rewritten

using Def. 6.20.3.

A trace could be made up of many runs of a protocol, some of which have not yet

finished. To define when the logs in a particular trace appear in the expected order, we

define the following helper function, which tells us when the m-th element of a trace with

session IDs (trlog) could have been generated by a single run of a protocol matching the

template tr template rewritten using Def. 6.20.3:

Definition 6.21 (Correspondence(tr template, tr log,m, σ)). Given a trace tr log, an index m,

a substitution σ, and a rewritten template tr template, Correspondence(tr template, tr log,m, σ)

holds if there exists indexes i1, . . . , il such that ij < ij+1 < m for j ∈ {1, . . . , (l − 1)} and

it holds that

• σ(tr template) is a subsequence of tr log

• last label present in σ(tr template) is equal to the label present in tr log at position m,

i.e., tr logm = Log(σ(tr template), l + 1) with length of tr template being (l+1)

139

TAMARIN Model of Stealthiness

• and Log(tr log, ik) (for all k) and Log(tr log,m) use a single session ID that appears

nowhere else in the trace before m.

This definition means that Correspondence(tr template, tr log,m, σ) is true if m is the

index of the last action of what looks like a correct single run of the protocol following the

template tr template. I.e, the m-th action does not look suspicious. We also note that we are

using a single substitution for all elements of the trace, while the reduction rule for traces

allows different substitutions for each step. We have already shown, using Theorem 6.1 in

Sec. 6.8.2, that given the restrictions on our rules, that such a single substitution exists.

It is worth highlighting that AllowedSequences(ProtoRules) presents protocol rules

and their possible valid ordering of execution. Hence, execution of each allowed sequence

it will generate a valid trace, and hence a valid template. Also, we use rewritten templates,

using RewriteTemplate(T,RL) as per Def. 6.20.3, to generate the following restriction.

Definition 6.22 (Correspondence Restriction). Given a logged template tr log = [a1, . . . , an],

a rule list ProtoRules and TemplatesSessions(ProtoRules) as per Def. 6.12, we say that the

Correspondence Restriction holds if, for i = 1, . . . , n for each log entry ai present in the

logged template, there exists a substitution σ and a rewritten standard session template

tr template′ such that tr template′ = RewriteTemplate(tr template,ProtoRules) as per Def. 6.20.3,

generated from one of the Allowed Sequences, such that all the previous log entries are

present in the same order, i. e., Correspondence(tr template′ , tr log, i, σ) holds for the generated

trace.

We remark that the above restriction can be formulated using any rewritten

templates produced by RewriteTemplate(tr template,ProtoRules), as per Def. 6.20.3, as

they differ only in the variable names, and so they will restrict the traces in same way.

Lemma 6.6. The Correspondence Restriction, as per Def. 6.22, holds for every standard

looking trace as defined in the Def. 5.7.

140

TAMARIN Model of Stealthiness

Proof. Every standard looking trace is a result of merging one or more traces, each of

which is a result of normal run producing a standard trace as per Def. 5.4. Every standard

trace guarantees that the log labels will be present in the trace in the order of rules

provided by AllowedSequences .

However, the major difference in the traces being considered here is that the session

IDs are present in the logs used by Def. 6.22 whereas there is no session IDs in the logs in

Def. 5.7.

In Fig 6.1, for every standard looking trace of the form tr , there exists a trace of the

form tr sid with session IDs, following correspondence restrictions, such that if we remove

the session IDs from tr sid, this trace is same as tr . As the correspondence restriction holds

for tr sid, it will hold for tr also.

Also, the Correspondence Restriction may not hold for any other trace of the

form tr /∈ StdTraces. Since a normal run can never produce any trace of the form

tr /∈ StdTraces, hence by contradiction, the Correspondence restriction must hold for

every standard looking trace.

Lemma 6.7. If the Correspondence Restriction as per Def. 6.22 holds for a trace tr , then

every element of standard looking trace tr will match a standard template as per Def. 6.10.

Proof. Follows from Def. 6.22 and Lemma 6.6.

As the allowed sequences must be prefix-closed, for any element of the trace we wish to test

that happens to be the final element of one of the possible patterns of standard protocol

runs, there is a template for a standard run which ends on this element of the trace and

for which all other required log actions appear in the correct order in the test trace.

We additionally require that, for a run to generate a standard looking trace, fresh

names generated by the protocol rules are different between sessions. Recall that each

141

TAMARIN Model of Stealthiness

run of a protocol involves the introduction of a new session identifier (the same name is

used in the protocol specification, but the semantics of rule application ensures that this is

renamed apart from the rest of the trace) for each run. Similarly, every other fresh name

being used in the trace must have a unique value for each running instance of the protocol.

We define a Uniqueness Restriction implying that any fresh value, generated by a protocol

rule, is never shared across protocol runs.

Definition 6.23 (Uniqueness Restriction). Given a logged template of the form tr log =

[a1, . . . , an] containing all the logs ‘ai’ of the form Logi(sidi, parsi), a generated by the

protocol rule list ProtoRules, the Uniqueness Restriction enforces that a fresh name,

generated by a protocol rule, will be present in any of the two different logs if and only if

they use the same session identifier. Accordingly, we define the following restriction using

tr log and apply it to the trace tr :

∀ Logi, Logj, x ∈ freshInRL(RLproto) as per Def. 5.5, sidi, sidj.

Logi(sidi, parsi) ∧ Logj(sidj, parsj) ∧ (x ∈ (parsi ∩ parsj))⇒ (sid1 = sid2)

Lemma 6.8. The Uniqueness Restriction, as per Def. 6.23, holds for a standard looking

trace as defined in the Def. 5.7.

Proof. Third condition in Def. 5.7 for a standard looking trace tr mandates that ∀ tr i ∈

StdTraces , it must be true that:

∀ i, j. FrFromRLinTr(θi, ASRi,Log(tr log, i))∩

FrFromRLinTr(θj, ASRj,Log(tr log, j)) = {}for i 6= j

Hence, the Uniqueness Restriction defined in Def. 6.23 should hold by Def. 5.7.

However, due to presence of session IDs in the Uniqueness Restriction (Def. 6.23), we can

142

TAMARIN Model of Stealthiness

show that this Lemma follows from Lemma 6.6.

Lemma 6.9. If a trace tr log matches a template from tr template, both the Correspondence

and Uniqueness Restrictions hold.

Proof. The proof follows directly from Def. 6.22 and 6.23.

The standard looking trace from Def. 5.7 works even without the session IDs whereas

the Correspondence and Uniqueness restrictions from Def. 6.22 and 6.23, required for a

stealthy trace in this chapter, works only with the session IDs. To prove that they are

equivalent, we can now state our main theorem which tells us that the correspondence

and uniqueness restrictions together are equivalent to our formal definition of stealth from

Chapter 5.

Theorem 6.3. Given a valid and well-formed SetupRules , and a valid and well-formed pro-

tocol rule set with custom logs ProtoRules as per Def. 6.9, AllowedSequences(ProtoRules),

and a given security property there is a stealth attack against ProtoRules with trace tr if,

and only if, there is an attack trace, exhibiting the same attack, with session ID tr′ using

the rules in Sessions(ProtoRules)) that conforms to the Correspondence and Uniqueness

Restrictions, such that tr equals the trace tr′ with session ID removed.

Proof. In this proof, we only consider the stealth attack traces, i. e., the traces that lead

to attacks and look normal. So, assuming an attack trace, it will look normal, if and only

if our stealthiness restrictions hold. If there is no attack trace, we ignore the trace and do

not claim anything.

In the ‘if’ direction, we assume that for ProtoRules , AllowedSequences(ProtoRules),

and a given security property, there is a stealth attack against ProtoRules with trace tr att.

Definitions 5.7 uses individual substitutions corresponding to each step of a trace. E. g.,

the trace tr 1 may use multiple substitutions σ11 , . . . , σ1i corresponding to each of its parts

143

TAMARIN Model of Stealthiness

tr 11 , . . . , tr 1i . As it follows from Theorem 6.1, all these substitutions may be replaced by a

single substitution, i. e., σ in order to generate the trace tr 1. Therefore, Definitions 5.7 and

6.10 along with Theorem 6.1 then tell us that there exists tr 1, . . . , trk and σ1, . . . , σk such

that ∀i tr i ∈ σi(StdTemplates) and tr att ∈ merge(tr 1, . . . , trk) with each tr i matching a

template as per Lemma 6.9 therefore matching both the Correspondence and Uniqueness

restrictions as per Lemmas 6.6 and 6.8. Subsequently, a trace produced using merging of

all such traces merge(tr 1, . . . , trk) will also follow both the restrictions.

We wish to explicitly state that we have two sets of rule lists, first without the

session ID of the form AllowedSequences(ProtoRules) and another using the session ID, i. e.,

Sessions(ProtoRules). Accordingly, we can generate two sets of traces. While the trace

tr 1, . . . , trk generated using substitutions σ1, . . . , σk from AllowedSequences(ProtoRules),

its corresponding trace with session IDs tr ′1, . . . , tr
′
k can be generated using substitutions

σ′1, . . . , σ
′
k from Sessions(ProtoRules). The Lemma 6.1 establishes equivalence among

these two sets of traces.

Each tr ′i will start with an initial rule from one of Sessions(ProtoRules), or with

a message from the attacker, either way a fresh session ID can be used. The following

messages, i. e., the second element of tr ′i can reuse this session ID. Therefore, for each of

the AllowedSequences(ProtoRules) rules that was used to generate tr att the corresponding

rule in Sessions(ProtoRules) can be used to generate a trace tr ′att that is the same as tr att

but with a unique session ID added for all tr i, therefore the Correspondence Restriction

holds. Theorem 6.1 also makes sure that all the variables in the trace have the same value.

Def. 5.7 also tells us that
⋂n
i=1 FrFromRLinTr(σi, ASRi,Logs(tr i))

⋂n
i=1(fresh(RL))σi =

{} and as each σi are the substitutions used for different session IDs, it follows that the

Uniqueness Restriction holds which is also supported by Lemma 6.8.

Finally, as tr att will be equal to tr ′att with the session IDs removed, then if the tr ′att

will invalidate the same properties as tr att and will therefore also be an attack trace.

144

TAMARIN Model of Stealthiness

In the ‘only if’ direction, using Lemma 6.2, we assume there is an attack trace tr ′att

generated by the rules in Sessions(ProtoRules) which violates some security property and

fulfils the Correspondence and Uniqueness Restrictions. We define tr att to be the trace

tr ′att with all session IDs removed.

The Correspondence Restriction, along with Lemma 6.7, tells us that for every

element of the trace tr ′att there is some rewritten template that matches it. Subsequently,

Theorem 6.2, tells us that for every such template, there exists a matching trace with

all other necessary elements also in the trace. The condition on the session IDs in the

definition of the correspondence predicate, defined in the Def. 6.21, ensure that each of

these log actions share a unique session ID, and therefore, they are either a prefix of the

other or don’t overlap with each other.

We may then take the templates used to match all the elements of the trace as t1

to tk, and the Uniqueness Restrictions then tells us that we can find substitutions σi such

that
⋂k
i=1 FrFromRLinTr(σi, ASRi,Logs(tr i)) = {} and tr i = σi(ti) is a sub-trace of tr att.

Therefore, using Theorem 6.2, tr att will be a member of merge({tr 1, . . . , trk), and will be

a ‘standard looking’ trace by Def. 5.7.

By the same reasoning as above, tr att will also be an attack trace, making it a

stealthy attack for the rule set ProtoRules .

6.11 Chapter Summary

In Chapter 5, the formal definitions of ‘standard looking trace’ and ‘stealth attack’ was

developed. Subsequently, in this chapter, we have presented the addition of session IDs

to the logs to distinguish individual runs of the protocol. The session IDs do not, in any

way, modify the execution of the protocol. However, they do help with development and

addition of two restrictions; Correspondence and Uniqueness, for a valid rule list. These

145

TAMARIN Model of Stealthiness

restrictions can be added to the Tamarin models, to verify the stealthiness of the attack

traces, and hence, of the attacks.

We have also analysed the transition of a template to trace produced by a standard

run of the protocol. Generation of a standard trace by firing the valid rules in the order of

any allowed sequence seems straight forward. However, due to the complexity of various

facts and variables used by them, the generated templates are likely to have different

variables in them. We needed to ensure that, given a template and a substitution, the

generated traces always take the same form.

For this purpose, we defined equivalence among the names used in the rule list to

rewrite the templates before converting them to traces by applying substitutions on them.

We also use various definitions to help rewrite the templates with suitable examples.

We have also outlined many restrictions, presented as propositions, and theorems

in this chapter, and using them, provided proof for our central theorem that an attack is

present in a trace with session identifiers, under certain restrictions, if and only if a stealth

attack is present in a trace without session identifiers.

146

Chapter Seven

Modelling TAMARIN Semantics and

Stealthiness using Coq

“There are only two things in the world: nothing and semantics”

Werner Erhard

7.1 Motivation

In Chapters 5 and 6, we have presented formal and Tamarin models of stealthiness.

Tamarin provides support for specifying the protocols and powers of adversaries where

the security properties proofs can be generated either manually or interactively. However,

to prove the equivalence among models or prove or disprove the assumptions, Tamarin

alone is not sufficient. We use Coq, an interactive theorem prover, to model the Tamarin

semantics, and encode various system properties, in order to understand the underlying

Tamarin semantics and underpinning of concepts. The assumption behind our encoding

is that it will provide a solid mathematical foundation to our assumptions apart from

developing a newer class of case study using Coq.

147

Modelling TAMARIN Semantics and Stealthiness using Coq

7.2 Contributions

This chapter starts with encoding of basic Tamarin syntax and semantics using Coq.

This encoding helps us model and understand the working of Tamarin which is used

to develop further assumptions for modelling our stealth framework. Subsequently, we

present Coq based models of both our formal model and Tamarin model of stealthiness.

These models help us verify the correctness of our system assumptions. A selected set of

type checked Coq code of definitions used throughout the thesis have been presented in

this chapter. Our complete Coq model is available at [126].

We have used Coq to encode almost all the definitions presented in Chapters 5

and 6. However, in this chapter, we supplement these definitions by adding many useful

definitions and lemmas about well-formedness and behaviour of the system in order to

help understand the equivalence among our formal and Tamarin based definition of a

stealthy trace. Our exercise of encoding Tamarin semantics has been helpful in many

ways, such as making the definitions stronger and understanding the Tamarin semantics

better. We also present a snapshot of our approach in this chapter to encourage and

inspire the research community to adopt such encoding for other similar use-cases.

To the best of our knowledge, ours is the first attempt in modelling Tamarin using

Coq which can be helpful for the academic community, to understand Tamarin better

and, in testing and verification of theorems on system behaviour.

7.3 Introduction to Coq

Coq is a proof assistant used to model specifications, and verify if a given system adheres

to them. The underlying system allows development of proofs in an interactive manner

with the help of expressive higher-order logic [18].

148

Modelling TAMARIN Semantics and Stealthiness using Coq

Coq provides a general purpose environment for developing formal mathematical

proofs. Its formal language supports everything from defining objects, their behaviours and

finally writing proofs [110]. Some salient features of Coq include, but are not limited to,

providing support for functions, definitions and writing interactive proofs using multiple

tactics. The type system of Coq helps express very precise specifications and as such, we

use it to model the multiset rewrite system used in Tamarin along with its semantics.

There are numerous recent examples of Coq being used successfully for modelling and

verification in various contexts such as in model transformation verification [40, 134],

verifying security protocols [109, 113], performing formal reasoning about security of

various web services such as AWS (Amazon Web Service) [45] to name a few.

We have developed our Coq model in many sub-sections with each of them depen-

dent on all the previous sub-sections. We will now explain these sub-sections and their

importance.

7.4 Modelling of TAMARIN Semantics using Coq

The Coq model developed by us is not only a simulation of Tamarin semantics, but also

augmentation of numerous functions, predicates, and definitions to aid in understanding

the correctness of our assumptions in developing our Stealth framework. Other than

defining Tamarin semantics, to support our proof of correctness and equivalence, we have

written more than 200 lemmas and proved many of them. We leave the proof of all other

lemmas as a possible future work.

In this section, we present Coq encoding of standard Tamarin semantics with some

of our extensions added to it. We use these semantics to define equality and membership

functions. Subsequently, we define how the substitutions take place in Tamarin and how

ground terms are defined. Finally, to prove that all the Coq semantics hold together, we

149

Modelling TAMARIN Semantics and Stealthiness using Coq

apply our model on Needham Schroeder protocol, which is a success proving efficacy of

our model.

Coq System

Rule Facts Label Term

Setup

Protocol

Input

Output

Attacker
knowledge

Generic state
information

Fresh name
in setup stage
Fresh name
in protocol

stage

Basic

Logged

Logged with
Session ID

Function

Base term

Variable

Name

Fresh Name
in Setup

Fresh Name
in Protocol

Public Name

Figure 7.1: Coq Taxonomy

7.4.1 Basic Syntax Definitions

We provide a brief snapshot of some syntax used in our Coq model. We start by defining

actionLabel to model the facts present in the actions of Tamarin rules. We extend the

notion of action labels present in Tamarin by defining three categories of labels to model

Basic and Logged labels, as described in Section 5.5. We also define a Logged label with

Session ID in order to uniquely identify each action label to its protocol execution instance.

The relevance and details of this mechanism is discussed in Chapter 6. Finally, a trace is

defined as a list of labels.

Subsequently, we define a fact to represent various facts present in the premise

150

Modelling TAMARIN Semantics and Stealthiness using Coq

Inductive actionLabel : Type :=
| ActLabel : name → terms → actionLabel.
Inductive label : Type :=
| BasicLabel : list actionLabel → label
| LoggedLabel : actionLabel → list actionLabel → label
| LoggedSIDLabel : baseTerm → actionLabel → list actionLabel → label.
Definition trace : Type := list label.

Inductive fact : Type :=
| IN : terms → fact
| OUT : terms → fact
| K : terms → fact
| STATE : name → terms → fact
| FR S : baseTerm → fact
| FR P : baseTerm → fact.

Inductive rule : Type :=
| RuleSetup : facts → label → facts → rule
| RuleProto : facts → label → facts → rule.

Definition ruleList : Type := list rule.

and conclusions of a Tamarin rule. The facts IN and OUT, present in the premise and

conclusion of a rule, represents an input to and output from a rule, respectively. The facts

K and STATE represent knowledge of an attacker and general protocol state information.

We define two types of fresh names, i. e., FR S and FR P to denote fresh values generated

in the setup rules and protocol rules respectively. As we will see, the fresh names generated

in the setup rules such as public/private keys etc. could be reused by the protocol rules.

However, our model requires the fresh names generated by the protocol rules to be unique.

We define the 4-tuple Tamarin rule, defined in Section 5.4, as a triple leaving out the rule

name rn. These rules have two subtypes, i. e., Setup and Protocol rules as per Section 5.5.

7.4.2 Equality and Membership Functions

We define equality and membership functions based on the syntax defined in previous sec-

tions. The development of equality functions, though self-explanatory, helps to understand

the structure of each data type. Similarly, membership functions help us in understanding

the underlying hierarchy.

151

Modelling TAMARIN Semantics and Stealthiness using Coq

7.4.3 Defining Substitutions and Ground terms

As defined in Chapter 5, a substitution is a mapping from variable(s) to name(s). Using

this substitution, we define various operations such as compose and how these substitutions

are applied on various data types such as labels, action labels, facts etc. We have also

added suitable lemmas to enforce the commutative property on compose operations when

applied to any of the data types.

Subsequently, we define a ground base term as a base term not of type variable. This

definition is then used to define ground terms, facts, rules etc. We also define the grounding

of composition of substitution followed by adding lemmas to enforce the commutative

property.

7.4.4 TAMARIN Reduction

This is the most important section, where we start by defining reduction of a Tamarin rule

r converting facts such as f1 to facts f2 while producing label l.

Definition reduceWithRule (r1 :rule) (f1 :facts) (l :label) (f2 :facts) : Prop :=

∃ r2, (ginst r2 r1) ∧ reduceWithGroundRule r2 f1 l f2.

Subsequently, we define the predicates run and runSigma which emulate the labelled

transition relation present in section 5.4.1.

Inductive run : ruleList → facts → trace → facts → Prop :=

| Run Stop : ∀ rl f1, run rl f1 [] f1

| Run Step : ∀ rl f1 t f2 f3 l, (reduceWithRules rl f1 l f2)

→ (run rl f2 t f3) → run rl f1 (l ::t) f3

| Run Step Silent : ∀ rl f1 t f2 f3, (reduceWithRules rl f1 emptyLabel f2)

→ (run rl f2 t f3) → run rl f1 t f3

152

Modelling TAMARIN Semantics and Stealthiness using Coq

| Run Fresh : ∀ rl f1 t f2 f3 fn, (reduceWithRule (freshRuleP fn) f1 emptyLabel f2)

→ (run rl f2 t f3) → run rl f1 t f3.

7.4.5 TAMARIN Example

Before moving on to encoding and establishing proofs of complex system behaviour, we

proceeded to encode the publicly available Tamarin model of the classic three message

version of the Needham-Schroeder-Lowe Public Key Protocol [55]. Using this example, we

demonstrated that our model can generate the public and private keys for participating

entities apart from executing the rules. We were able to achieve the correctness guarantee

by not only writing down the correctness lemmas but also proving them. An example

lemma is presented here. For detailed working of this example, we refer the reader to our

Coq model available at [126].

Lemma protocolRun2to3Step : run SetupAndProtocolRules

[FR P (Name (Fresh P ”ltkB”)); FR P (Name (Fresh P ”ltkA”))]

[]

[STATE LtkFact [A; (Bterm (Name (Fresh P ”ltkA”)))];

STATE PkFact [A; Func PkName [(Name (Fresh P ”ltkA”))]];

OUT [Func PkName [(Name (Fresh P ”ltkA”))]];

FR P (Name (Fresh P ”ltkB”))].

All the definitions and functions developed up to this section relate to standard

Tamarin semantics, and can easily be reused in any other Tamarin case study with very

little modifications.

153

Modelling TAMARIN Semantics and Stealthiness using Coq

7.5 Modelling of Stealthiness in Coq

In this section, we present the Coq code snippets related closely to our stealthiness

definitions. We present the extensions provided by us in Tamarin semantics and their

encoding in Coq. To help the reader understand the context, code snippets from our

Coq model of Tamarin semantics and our stealthiness definitions from Chapters 5 and 6

are also presented here. This section also talks about rationale and process behind the

selection of specific Tamarin semantics to be modelled.

7.5.1 New TAMARIN Reduction

Recall that while the SetupRules in our system can be executed in any order, the ProtoRules

needs to be executed only in order mandated by any of the members of AllowedSequences .

Both the above predicates can be used to execute any rule in any order and hence used

for execution of setup rules in our model. However, to execute ProtoRules, we use the

predicate runInOrderSigmaP defined as below:

Inductive runInOrderSigmaP : ruleList → substitutions → facts → trace → facts →

Prop :=

| Sigma Run Stop P : ∀ f1 sigma, runInOrderSigmaP [] sigma f1 [] f1

| Sigma Run Step P : ∀ r rlp sigmaNow sigmaPr f1 t f2 f3 l,

groundRule (applySubRule sigmaNow r)

→ reduceWithGroundRule (applySubRule sigmaNow r) f1 l f2

→ (runInOrderSigmaP rlp sigmaPr f2 t f3)

→ runInOrderSigmaP (r ::rlp) (sigmaNow ::sigmaPr) f1 (l ::t) f3

| Sigma Run Step Silent P : ∀ r rlp sigmaNow sigmaPr f1 t f2 f3,

groundRule (applySubRule sigmaNow r)

→ reduceWithGroundRule (applySubRule sigmaNow r) f1 emptyLabel f2

154

Modelling TAMARIN Semantics and Stealthiness using Coq

→ (runInOrderSigmaP rlp sigmaPr f2 t f3)

→ runInOrderSigmaP (r ::rlp) (sigmaNow ::sigmaPr)f1 t f3

| Sigma Run Comm P : ∀ rlp sigmaPr f1 t f2 trm,

(subList [OUT trm] f1)

→ runInOrderSigmaP rlp sigmaPr ((IN trm)::(removeFacts [OUT trm] f1)) t f2

→ runInOrderSigmaP rlp sigmaPr f1 t f2.

Using these definitions and predicates, we have encoded one of the most important

definitions of our model, i. e., Standard Looking Trace from Def. 5.7 as below.

Definition Def5 7 Standard Looking Trace (allowSeq :list ruleList) (setupRules :ruleList)
(testTrace:trace) : Prop :=
∃ σ sometraces, (Subset of Standard Traces allowSeq setupRules σ sometraces)

∧ (merge (map getLogTrace sometraces) (getLogTrace testTrace))
∧ ConditionOnFreshNames σ allowSeq (map getLogTrace sometraces).

7.5.2 Well-formedness and Validity Definitions

Moving on to start of Chapter 6, we start by Coq encoding of well-formedness definitions

by translating the conditions for well-formedness of rule lists already described in the

Section 6.4. The well-formedness of a protocol rule list is defined using the wellforme-

dRulesFromState definition below.

Definition wellformedRulesFromState (fs :facts) (rs :ruleList) : Prop :=
(oneInputXorOutput fs ∧ wellFormedProtoRuleFromInOut rs)
∨ (noInputOrOutput fs ∧ wellFormedProtoRuleNoInOut rs).

Similarly, the well-formedness of the setup rule list is defined using the wellformedRules-

FromStateSetup definition. Subsequently, we encode the definitions presented in the

Definition wellformedRulesFromStateSetup (fs :facts) (rs :ruleList) : Prop :=
(oneInputXorOutput fs ∧ wellFormedSetupRuleFromInOut rs)
∨ (noInputOrOutput fs ∧ wellFormedSetupRuleNoInOut rs).

section 6.5, for validity of facts, rules, rule list, as below.

155

Modelling TAMARIN Semantics and Stealthiness using Coq

Definition Def6 4 allowedFactType (f :fact) (r : rule) (rs :list rule) : Prop :=
(∃ t, (member (FR P t) (premiseFacts r)) ∧ (eq fact f (FR P t))) ∨

(∃ ts, (member (IN ts) (premiseFacts r) ∧ (eq fact f (IN ts)) ∨
(member (OUT ts) (conclFacts r)) ∧ (eq fact f (OUT ts)))) ∨

(uniqueStateFact f (r ::rs)) ∨
(uniqueArgumentsFact f r rs).

Definition Def6 5 variableDirectlyLinked (var : variable) (newRule:rule) (pastRules : list
rule) : Prop :=

(variableLinkedInputOutput var newRule pastRules)
∨ (variableInUniqueStateFact var newRule pastRules).

Fixpoint Def6 6 variableIndirectlyLinked (v :variable) (newRule:rule) (pastRules: list
rule) : Prop :=
∃ n ts, uniqueArgumentsFact (STATE n ts) newRule pastRules
∧ member (STATE n ts) (premiseFacts newRule)
∧ (∃ RuleA, member (STATE n ts) (conclFacts RuleA) ∧ (member RuleA pas-

tRules))
∧ member v (variablesInTerms ts)
∧ (∃ t, member t (variablesInTerms ts)
∧ Def6 3 variableDirectlyLinked t newRule pastRules)
∧ (∃ c, member c (constantsInTerms ts)).

Definition Def6 7 validVariable (newRule:rule) (pastRules : list rule) (var : variable) :
Prop :=

(variableIsNew var pastRules) ∨ (Def6 3 variableDirectlyLinked var newRule pas-
tRules)

∨ (Def6 6 variableIndirectlyLinked var newRule pastRules).

Definition Def6 8 validRule (newRule:rule) (pastRules : list rule): Prop :=
(∀ f, (member f (allFactsRL (appendAny pastRules [newRule])))

∧ (Def6 4 allowedFactType f newRule pastRules))
∧ (∀ vs, trueForAll (Def6 7 validVariable newRule pastRules) vs).

Fixpoint Def6 9 validRuleList (rs : list rule) : Prop :=
match rs with

| [] ⇒ True
| r ::rst ⇒ (Def6 7 validRuleList rst) ∧ (Def6 7 validVariables r rst (variablesInRule r))
end.

The Coq definitions used here along with the complete model is available online at [126].

156

Modelling TAMARIN Semantics and Stealthiness using Coq

7.5.3 TAMARIN definitions of Stealthiness

As discussed earlier, the major difference between the formal and Tamarin definitions of

stealthiness is the presence of session ID in the labels and traces in Tamarin framework.

Therefore, we start this section with annotation of rules and traces with session IDs, in

Coq, using the following functions.

Fixpoint annotateRules (rl : ruleList) : ruleList :=

match rl with

| [] ⇒ []

| r ::t ⇒ (annotateFirstRule r) ::(annotateOtherRules t)

end.

Definition AddSID :(list ruleList) → (list ruleList) := map annotateRules.

Definition AddSIDTrace: trace → trace := map updateLabel.

Definition Def6 11 SessionsRL (allowSeq :list ruleList) : (list trace) :=

Def StdTemplates (AddSID allowSeq).

Definition Def6 12 StdSessionTemplate (allowSeq :list ruleList) (thisTemp:trace) : Prop

:=

(In thisTemp (Def6 11 SessionsRL allowSeq)).

Similarly, we have also defined a function to remove the session IDs from a trace.

Fixpoint RemoveSIDfromLabel (l1 : label) : label :=

match l1 with

| (LoggedSIDLabel t al lb) ⇒ (LoggedLabel al lb)

| (LoggedLabel al lb) ⇒ (LoggedLabel al lb)

| (BasicLabel als) ⇒ (BasicLabel als)

end.

Definition RemoveSID : trace → trace := map RemoveSIDfromLabel.

157

Modelling TAMARIN Semantics and Stealthiness using Coq

Finally, we encode the main restrictions namely Correspondence and Uniqueness as per

Def. 6.22 and 6.23.

Definition Def6 21 Correspondence (tr temp:trace) (tr log :trace) (m:nat) (sigma:substitution)

: Prop :=

∀ temp m lbl,

(subSequenceTrace (applySubTrace sigma tr temp) tr log) ∧

(eq label (lastElement temp m (applySubTrace sigma tr temp)) (LabelAt m tr log

lbl)).

Definition Def6 22 CorrespondenceRestriction (RL proto:ruleList) (allowSeq : list ruleList)

(tr log :trace) (tr tempsessions : trace) : Prop :=

∀ m, (indexExists m tr log) ∧

Def6 12 StdSessionTemplate allowSeq tr tempsessions →

∃ sigma tr rewrittenTemp ,

(Def6 20 3 RewriteTemplate tr tempsessions RL proto tr rewrittenTemp) →

Def6 21 Correspondence tr rewrittenTemp tr log m sigma.

Definition Def6 23 UniquenessRestriction (RL proto:ruleList) (tr log :trace) : Prop :=

∀ Log i Log j x sid 1 sid 2 pars i pars j ,

(member x (Def5 5 freshInRLProto RL proto))

∧ (LoggedLbl in Trace Log i tr log)

∧ (LoggedLbl in Trace Log j tr log)

∧ (getSID Log i sid 1)

∧ (getSID Log j sid 2)

∧ (getParsFromLog Log i pars i)

∧ (getParsFromLog Log j pars j)

∧ (member x (commonFreshNames (getFreshProtoNamesinLabel Log i) (get-

FreshProtoNamesinLabel Log j)))

→ (eq baseTerm sid 1 sid 2).

158

Modelling TAMARIN Semantics and Stealthiness using Coq

7.5.4 Correctness Lemmas and Axioms on System Behaviour

After encoding all the definitions of stealthiness, we write many axioms and prove several

lemmas which helps us establish the correctness behaviour of the system. We have written

over 100 lemmas and axioms and proved many of them to establish the correctness of our

assumptions. A selection of lemmas and axioms is placed below.

Lemma StateToStateOneOutRule : ∀ r sigma f1 l f2,

oneOutput f1 → StateToStateProtocolRule r →

reduceWithRuleSigma r sigma f1 l f2 → oneOutput f2.

Axiom InputToOutputRemovesInput : ∀ r sigma f1 l f2,

oneInputXorOutput f1 → InputToOutputProtocolRule r →

reduceWithRuleSigma r sigma f1 l f2 → noInputs f2.

Axiom FreshRuleDoesNotChangeOutputs : ∀ f1 f2 fn sigma,

reduceWithRuleSigma (freshRuleP fn) sigma f1 emptyLabel f2

→ oneOrNoOutput f1 → oneOrNoOutput f2.

Axiom SetupRuleFromInOutDoesNotChangeInOut : ∀ r f1 l f2,

oneInputXorOutput f1 → wellFormedSetupRuleFromInOut r →

reduceWithRules r f1 l f2 → oneInputXorOutput f2.

Axiom outputInRuleWillMatchRule : ∀ rule1 rules sigma f1 l f2 vars,

reduceWithGroundRule (applySubRule sigma rule1) f1 l f2

→ groundRule (applySubRule sigma rule1)

→ Def6 2 wellformedRulesFromState f1 (rule1 ::rules)

→ oneOutputAndNoInputIs (conclFacts rule1) (OUT vars)

→ member (OUT (applySubTerms sigma vars)) f2.

We have proved many Lemmas in this section and written some of very obvious

ones as Axioms. We aim to prove them in our possible future work.

159

Modelling TAMARIN Semantics and Stealthiness using Coq

7.5.5 Correctness Lemmas and Propositions

In this section, we present lemmas and propositions from Chapter 6. These propositions

help us in establishing various properties which are self-explanatory using their names.

E.g., Prop1 DirectlyLinkedVarsHaveSameValues helps establish that all directly linked

variables will have same values and so on.

Lemma Prop1 DirectlyLinkedVarsHaveSameValues : ∀ fs1 fs2 σj tr v r rlProto rlSetup σ,
((Def6 9 validRuleList (appendAny rlProto [r])
∧ runInOrderSigma (appendAny rlProto [r]) rlSetup (appendAny σ [σj]) fs1 tr

fs2))
→ ((Def6 5 variableDirectlyLinked v r rlProto)
→ (variableIsNew v rlProto)

(∃ σi, (eq name (σi v) (σj v))
∧ ((member σi σ))))

Lemma Prop2 IndirectlyLinkedVarsHaveSameVal: ∀ fs1 fs2 σj tr v r rlProto rlSetup σ,
((Def6 9 validRuleList (appendAny rlProto [r])
∧ runInOrderSigma (appendAny rlProto [r]) rlSetup (appendAny σ [σj]) fs1 tr

fs2))
→ ((Def6 6 variableIndirectlyLinked v r rlProto)
→ (variableIsNew v rlProto) ∨

(∃ σi, (eq name (σi v) (σj v))
∧ ((member σi σ)))).

Lemma Prop3 AllSigmasCanBeReplacedbyASingleSigma: ∀ fs1 fs2 tr r rlProto rlSetup σ,
(Def6 9 validRuleList (appendAny rlProto [r])
∧ runInOrderSigma (appendAny rlProto [r]) rlSetup σ fs1 tr fs2)

→ (∃ σ, ∀ v σi, (Def6 7 validVariable r rlProto v)
∧ (member σi σ)
→ (eq name (σi v) (σ v)))

Lemma Prop4 ExistsTraceAndSigmaForTemplate: ∀ allowSeq rlSetup rlp tr temp,
(Def6 9 validRuleList rlp ∧ Def2 1 Valid AllowSequences allowSeq rlp)
→ ∃ tr log σ σi, Def5 4 Standard Trace allowSeq rlSetup σ, tr log

→ (Def6 10 StdTemplate allowSeq [tr temp])
∧ (eq (applySubTrace σ [tr temp]) tr log)

∧ (member σi σ)

Theorem Thm ExistsTemplateAndSigmaForTrace: ∀ allowSeq rlSetup rlp tr log,
(Def6 9 validRuleList rlp ∧ Def2 1 Valid AllowSequences allowSeq rlp)
→ ∃ tr template σ, Def5 4 Standard Trace allowSeq rlSetup σ tr log

→ (Def6 10 StdTemplate allowSeq tr template)
∧ (eq (applySubTrace σ tr template) tr log).

160

Modelling TAMARIN Semantics and Stealthiness using Coq

7.6 Equivalence of Two Models

Our main Theorem 6.3 from Chapter 6 and its manual proof-sketch established the

equivalence among two set of attack traces, one with the session ID and other without it.

Though we have not been able to complete the proof of equivalence using Coq, we

have encoded the theorem as below and left its proof as a future work.

Theorem Thm 6 3 StealthAttackImpliesBothRestrictionsOnTraces : ∀ allowSeq rlSetup

attackTrace rlProto,

((WellFormedAndValidRLSetupProto rlSetup rlProto

∧ (eq allowSeq (allPrefixs rlProto)))

→

(Def5 9 Stealth Attack allowSeq rlSetup (RemoveSID attackTrace)))

↔

(∃ tmplt sessions tmplt Rewritten,

Def6 12 StdSessionTemplate allowSeq tmplt sessions ∧

Def6 20 3 RewriteTemplate tmplt sessions rlProto tmplt Rewritten ∧

Def6 22 CorrespondenceRestriction rlProto allowSeq tmplt Rewritten attackTrace

∧

Def6 23 UniquenessRestriction rlProto attackTrace).

7.7 Importance of Coq Encoding and Learnings

Our Coq model consisting of definitions and semantics presented in previous chapters are

not merely encoding of formal or Tamarin definitions to Coq but more than that in

many ways. The Coq encoding helped us in improving our definitions at more than one

occasion. E.g., initially, the definition of template rewriting, i. e., Def. 6.20.3 was written

161

Modelling TAMARIN Semantics and Stealthiness using Coq

as a non-deterministic combination of some rewrite rules. These rules could have been

fired in any sequence sometimes leading to an incorrect rewritten template. The Coq

encoding of this definition helped us see the problem, and we broke this definition into

smaller ones making them deterministic.

Inductive Def6 20 PreRewriteTemplate: trace → ruleList → trace → Prop :=

| Case Base : ∀ RL , Def6 20 PreRewriteTemplate [] RL []

| case Step : ∀ l1 l2 RL t1 t2, (rewriteWithRules l1 RL l2)

→ Def6 20 PreRewriteTemplate t1 RL t2

→ Def6 20 PreRewriteTemplate (l1 ::t1) RL (l2 ::t2).

Definition Def 6 20 1 TemplateNormalForm (tmp:trace) (RL:ruleList) :=

∀ t1, (In t1 (termsFromTemplate tmp))

→ (noOtherEquivalentTermsPresent t1 tmp RL)

∧ ∃ tf, (In tf (singleEqClass RL t1)) ∧ (termIsFunc tf)

→ (eq termFuncName t1 tf)

∧ ∃ tp, (In tp (singleEqClass RL t1) ∧ (termIsPub tp)

→ (eq term t1 tp)).

Axiom normalFormExistsForEveryTmp : ∀ tmp f2 RL,

Def6 9 validRuleList RL ∧

Def6 2 wellformedRulesFromState f2 RL ∧

Def6 10 StdTemplate [RL] tmp

→ ∃ tmp1, Def6 20 PreRewriteTemplate tmp RL tmp1

∧ Def 6 20 1 TemplateNormalForm tmp1 RL.

Definition Def 6 20 2 InstantiateTemplate (tmp1 :trace) (RL:ruleList) (tmp2 :trace):

Prop := ∃ sigma, ∀ uafP, (In uafP (ProtocolUAFsFromRL RL))

→ ∃ uafS, (In uafS (SetupUAFsFromRL RL)) ∧

(eq fact uafS (applySubFact sigma uafP)) ∧

eq trace tmp2 (applySubTrace sigma tmp1).

162

Modelling TAMARIN Semantics and Stealthiness using Coq

Definition Def6 20 3 RewriteTemplate (tmp1 :trace) (RL:ruleList) (tmp2 :trace): Prop

:=

∃ tmp, (Def6 20 PreRewriteTemplate tmp1 RL tmp) ∧

Def 6 20 1 TemplateNormalForm tmp RL ∧

Def 6 20 2 InstantiateTemplate tmp RL tmp2.

Similarly, Coq helped us type check and correct errors arising out of incompatibility

between many predicates or definitions when used in subsequent definitions.

7.8 Chapter Summary

This chapter starts with an introduction to Coq and its use in modelling standard Tamarin

semantics. One of the main contributions of our work present in this chapter is the possible

reusability of our Coq code of Tamarin semantics for anyone looking to verify their work

using Tamarin.

We have also presented the process and importance of Coq encoding of our formal

and Tamarin model and definitions of stealthiness. The Coq model and encoding is

helpful to any reader for better understanding of our system with the help of multiple

type checked definitions and propositions from our Coq model. Using these type checked

definitions, we have been able to prove many lemmas and propositions in our Coq model.

Though we have not been able to provide machine checked proofs for all the lemmas

and theorem, we have provided a proof sketch to establish correctness of our system in

section 6.3. We leave developing Coq proofs, for all the lemmas and theorems, as a future

work.

163

Chapter Eight

Case Studies: Testing for

Stealthiness in TAMARIN

The man of science has learned to believe in justification, not by faith, but by

verification.

Thomas H. Huxley

8.1 Motivation

After presenting the theoretical framework for stealthy traces in previous chapters, the

next step is to try to implement the theory by testing the stealthiness of attacks using

the automatic protocol verification tool Tamarin. As already explained, to solve the

exponential blow-up of multiple runs, we have introduced an identifier, such as Session−ID

to the logs, in order to uniquely identify and map them to their respective runs. The

publicly available Tamarin models do not follow any such annotation, hence they need to

be modified in order to be used by our framework. Subsequently, we also need to generate

the correct restrictions, as per Def. 6.22 and 6.23, to be placed on the traces generated

by the Tamarin tool in order to make the traces equivalent to standard looking traces

defined using Def. 5.7.

165

Case Studies: Testing for Stealthiness in TAMARIN

Various attacks on protocols present a challenge to both the protocol designers and

users alike. In order to develop resilient security protocols, protocol designers must look

for correctness of cryptographic scheme used in the protocol along with proofs of various

security guarantees claimed by it. They should also be aware of various attacks against a

specific class of protocol. Analysing the attacks and their detection mechanism can be

very helpful while designing the attack-resilient protocols and systems. Detecting a stealth

attack is most likely to involve more effort than a non-stealth attack, hence it is important

to study and analyse the stealth attacks and their behaviour. It is with this objective that

we seek to test the stealthiness of various known attacks on security protocols.

There is an abundance of Tamarin based protocol models publicly available. Most

of these models simply provide proof of correctness and that the security properties hold

for those protocols. However, some of them do provide evidence of an attack, and are

useful for us to test these attacks for their stealthiness. For our analysis, we want to

use the protocol models from Tamarin repository, exhibiting an attack on any of the

security property, along with the attack models developed by us. Our objective is to test

the stealthiness of the attacks against logs composed of a combination of parameters.

8.2 Contributions

This chapter introduces a Python-based tool StealthCheck, developed by us, to automat-

ically add the stealthiness restrictions to any Tamarin source of a protocol. We have

used StealthCheck to compare different logging strategies for relative effectiveness at

recording evidence of attacks. This approach has been successful to specify protocols and

analyse them for vulnerability to stealthy attacks. Finally, we present a summary of our

stealthiness analysis of various known attacks, using our framework, on both the publicly

available Tamarin models [55] and on a Tamarin model of a real-life attack, i.e., the

KRACK attack [137] on IEEE 802.11 4-way handshake. Based on our stealthiness test on

166

Case Studies: Testing for Stealthiness in TAMARIN

the attack traces, we have presented a minimal set of parameters, to be logged to convert

a stealth attack into a non-stealth attack and vice-versa.

8.3 Overview

The Formal Stealth Model presented in the Chapter 5 guarantees that, in the Def. 5.7

of “standard looking trace”, all the logs appear in sequence as per the protocol standard

template with no intermediate logs missing. Further, in Chapter 6, we developed two

restrictions, namely Correspondence and Uniqueness, to ensure that the traces generated

under these restrictions are always stealthy. However, there is currently no tool that can

directly, and automatically check this definition.

As discussed in Sec. 3.5, Tamarin can demonstrate an attack on any vulnerable

protocol by falsifying one of the security lemmas provided in the model, signifying that a

counter example has been found violating the conditions stated in the lemma, and generate

an attack trace in the process. Further, Tamarin[103] can also restrict generation of traces

using restriction feature. To automatically analyse the attack traces for stealthiness, we

use Tamarin to allow generation of only standard looking traces of a protocol by executing

the vulnerable Tamarin models under Correspondence and Uniqueness restrictions.

In order to automatically verify such attack traces for stealthiness, we outline the

development process of Python-based tool StealthCheck in this chapter. The chapter also

explains the steps taken by StealthCheck to generate the Tamarin restrictions equivalent

to stealthiness definitions presented in previous chapters. We start with a user adding

custom logs and selected parameters to the Tamarin model of a vulnerable protocol that

exhibits an attack by falsifying one of the security lemmas. Subsequently, StealthCheck

scans the Tamarin model and extracts list of logs, in order of allowed sequences, and a

list of fresh names, to construct two restrictions, and add them to the original model. It

167

Case Studies: Testing for Stealthiness in TAMARIN

further verifies if the attack exists in the restricted environment, classifying them as either

stealth attack or non-stealth attack. This chapter outlines a step-by-step process of the

tool development.The StealthCheck tool is available online and can be at [126].

To test various attacks for their stealthiness, we have applied StealthCheck to

both publicly available Tamarin models from [55] and Tamarin model of KRACK

attack [137] developed by us. Our analysis has shown that, in most of the cases, a

correct combination of logged parameters is able to detect the attacks and convert them

to non-stealthy. However, some attacks are still able to bypass the detection completely,

and remain stealthy.

8.4 Algorithm used by StealthCheck

We start with a Tamarin model of a protocol containing a rule list of the forms

SetupRulesstealth and ProtoRulesstealth similar to the running example from Sec. 5.6. The

ProtoRulesstealth is annotated with stealth logs prior to its processing by StealthCheck.

We call the new rule list as RuleListproto.

The Tamarin model presented in Chapter 6 mandates applying the two restrictions

on traces, namely Correspondence and Uniqueness, formed on standard session templates

of the form TemplatesSessions, as per Def. 6.12 and rewritten using Def. 6.20.3. We, however,

did not need to rewrite any of the templates generated by Tamarin protocol models.

This is because in both public, and custom models developed by us, we did not encounter

a situation when a specific term, present in the generated restrictions, could receive two

distinct substitutions. We, however, intend to incorporate this feature in StealthCheck,

and leave this extension as a future work.

StealthCheck starts by scanning RuleListproto for Fr fact for collecting a list frList

of fresh names and the logs that use them. Subsequently, it adds session IDs to RuleListproto

168

Case Studies: Testing for Stealthiness in TAMARIN

resulting in a modified rule list of the form Sessions(RuleListproto) similar to one presented

in Sec. 6.7. A list of all the log labels present, LogList, in the Sessions(ProtoRules)

is also prepared. Based on these two lists, i. e., list of fresh names and the log labels,

StealthCheck proceeds to generate Correspondence and Uniqueness restrictions. In

order to add Uniqueness restrictions to the model, StealthCheck uses the lists frList

and LogList. These restrictions are generated, for each pair of logs using any fresh names

from list frList using Def. 6.23, to guarantee that different fresh names are used in

different sessions.

Subsequently, Correspondence restrictions equivalent to Def. 6.22 are generated by

looking at each of the standard session templates from TemplatesSessions, generated using

AllowedSequences(RuleListproto), verifying that, for every last element of template, the

trace corresponds to at least one of these templates. To generate these restrictions,

StealthCheck looks at the last log label and its parameters and a list of log labels

preceding it in the template and their parameters. The restriction mandates that for every

occurrence of this last log label, there must exist a previous occurrence of all the preceding

log labels present in the template in the same order. The complexity, however, arises at

the point of classifying the log label parameters as either existential or universal quantifiers

in the first-order formula of restriction. All the common parameters among all the log

labels present are placed as universal quantifiers at the front of the formula whereas the

remaining parameters from the log labels are placed before them as existential quantifiers

while also specifying a time-point based ordering among the log labels as defined by the

template. Apart from maintaining this ordering, the restriction also ensures that there

is at most a single occurrence of each log label with respect to a single session identifier.

Finally, if any log label appears as the last element in more than one template, the system

generates one restriction per such occurrence, and all these restrictions are then combined

in form of a disjunction.

The StealthCheck tool follows the syntax of ‘restriction’ feature of Tamarin while

169

Case Studies: Testing for Stealthiness in TAMARIN

Algorithm 8.1 Steps and Main Functions used in StealthCheck

Input: Tamarin model with RuleListproto annotated with Stealth logged labels and
security lemmas

Output: Tamarin input model added with Session IDs in RuleListproto and appended
with Stealthiness restrictions

1: function CollectFreshFromPremise(RuleListproto)
2: frList=[]
3: for ruleN ∈ RuleListproto do
4: if Fr(x) fact present in premise(rule) then
5: idx=“Log”+N
6: frList.setdefault(idx,[]).append(x)
7: end if
8: end for
9: return frList

10: end function
11: function SelectLogLabels(RuleListproto)
12: LogList=[]
13: for ruleN ∈ RuleListproto do
14: LogList.append(getLog(Action(ruleN))
15: end for
16: return LogList
17: end function
18: function GenUniquenessRestrictions(FrList,LogList)
19: for fr1, fr2 in FrList: do
20: for log1, log2 in LogList: do
21: if log1 and log2 using fr1, fr2 then
22: Return restriction from Def. 6.23 using log1,log2,fr1, and fr2.
23: end if
24: end for
25: end for
26: return UniqueRest
27: end function
28: function GenCorrespondenceRestrictions(LogList)
29: for lastAL in len(LogList)-1, len(LogList)-2,...,1): do
30: currentLog=LogList[lastAL]
31: allprevLogs=LogList[:lastAL]
32: Return restriction using Def. 6.22 based on allprevLogs and currentLog
33: end for
34: end function
35: function Main
36: frList= CollectFreshFromPremise(RuleListproto)
37: SidRuleListproto = Sessions(RuleListproto) using Def. 6.11
38: LogList=selectLogLabels(SidRuleListproto)
39: return(GenUniquenessRestrictions(FrList,LogList)+ GenCorrespondenceRestric-

tions(LogList))
40: end function

170

Case Studies: Testing for Stealthiness in TAMARIN

generating all such restrictions. For detailed working of these algorithms, we refer the

reader to StealthCheck python code available at [126].

8.4.1 Applying TAMARIN Stealth Model to Example 5.1

As explained above, StealthCheck starts by collecting the list of fresh names and log labels.

For the example rule list Sessions(ProtoRules) as shown in the Sec. 6.7, StealthCheck

will generate the lists as:

frList = [nA]

LogList = [LogA1(sid, A, nA), LogB2(sid, A,B, nA), LogX3(sid, A,B, nA)]

It would also need to take into consideration the standard session templates.

TemplatesSessions(ProtoRules) =

{[[LogA1 (sid, A, nA)], [LogA1 (sid, A, nA),LogB2 (sid, A,B, nA)],

[LogA1 (sid, A, nA),LogB2 (sid, A,B, nA),LogX3 (sid, A,B, nA)]}

Accordingly, StealthCheck automatically generates the following restrictions and adds

them to the Tamarin model.

Correspondence Restrictions:

restriction EveryALBeforeLogX3andUniqueLogs :

“(∀A,B, nA, sid, t1. LogX3(sid, A,B, nA)@t1 ⇒

(∃ t2.LogB2(sid, A,B, nA)@t2 ∧ (t2 < t1)∧

(∃ t3.LogA1(sid, A,B, nA)@t3 ∧ (t3 < t2)∧

171

Case Studies: Testing for Stealthiness in TAMARIN

(∀A1, B1, nA1, sid, t4.LogX3(sid, A1, B1, nA1)@t4 ⇒ (t4 = t1))∧

(∀A2, B2, nA2, sid, t5.LogB2(sid, A2, B2, nA2)@t5 ⇒ (t5 = t2))∧

(∀A3, B3, nA3, sid, t6.LogA1(sid, A3, B3, nA3)@t6 ⇒ (t6 = t3))))”

restriction EveryALBeforeLogB2andUniqueLogs :

The correspondence restrictions, generated by applying Def. 6.22, enforce that for

each log present in any of the standard template, all the previous logs present in the same

template must be present in the trace in the same order. It also restricts use of a single

session ID, at most once for each of the log entry. These restrictions are generated for

every possible log entry, with a single restriction generated per log entry. To generate

these restrictions, we follow the general steps outlined in the Algorithm 8.1.

It may be noted that while generating these restrictions, a universal quantifier is

used with the parameters for the present log entry, whereas existential quantifiers are used

for parameters exclusive to each of the previous log entries. E. g., the example above uses

∀A,B, nA, sid, t1. for the LogX3, whereas for other logs such as LogA1 and LogB2, we

use ∃ for time point parameters only.

TemplatesSessions(ProtoRules) =

{ [. . .], [LogA1 (sid, A, nA),LogX3 (sid, A,B, nA)]

[LogA1 (sid, A, nA),LogB2 (sid, A,B, nA),LogX3 (sid, A,B, nA)]}

As shown above, in the case of a log entry appearing as the last member in more

than one standard template, there would be multiple restrictions possible for such a log

entry, i.e., one restriction per template to be precise. However, to make things simpler,

all such restrictions, generated for a log entry, will be combined in a single restriction. It

172

Case Studies: Testing for Stealthiness in TAMARIN

is worth emphasising that for all of our case studies presented later in this chapter, this

situation does not arise as the AllowedSequences(RL) are prefix-closed, hence none of the

log entry appear with a different set of prefix ever in the standard template. Therefore, all

our Correspondence restrictions take the form as described earlier.

However, this may not always be true, and we can have some cases where the

templates are not prefix-closed. Our system will still be able to handle such cases. E. g.,

assuming standard session templates TemplatesSessions with LogX3 (A,B, nA) appearing in

more than one standard template, the restriction for LogX3 will have the following form:

restriction EveryALBeforeLogX3andUniqueLogs :

“(∀A,B, nA, sid, t1. LogX3(sid, A,B, nA)@t1 ⇒

(∃ t2.LogB2(sid, A,B, nA)@t2 ∧ (t2 < t1)∧

(∃ t3.LogA1(sid, A,B, nA)@t3 ∧ (t3 < t2)∧

(∀A1, B1, nA1, sid, t4.LogX3(sid, A1, B1, nA1)@t4 ⇒ (t4 = t1))∧

(∀A2, B2, nA2, sid, t5.LogB2(sid, A2, B2, nA2)@t5 ⇒ (t5 = t2))∧

(∀A3, B3, nA3, sid, t6.LogA1(sid, A3, B3, nA3)@t6 ⇒ (t6 = t3))

∨

(∃ t7.LogA1(sid, A,B, nA)@t7 ∧ (t7 < t1))∧

(∀A1, B1, nA1, sid, t8.LogX3(sid, A1, B1, nA1)@t8 ⇒ (t8 = t1))∧

(∀A3, B3, nA3, sid, t9.LogA1(sid, A3, B3, nA3)@t9 ⇒ (t9 = t7))))”

Lemma 8.1. Every element of a logged trace tr log generated from well-formed and valid

rules will match one and only one of the above generated Tamarin restrictions.

Proof. The proof follows directly from Def. 6.22 and 6.23.

173

Case Studies: Testing for Stealthiness in TAMARIN

Lemma 8.2. Given a trace tr log, if the Tamarin Correspondence restriction is true for a

log entry present in tr log, then there is a template that matches all the logged entries that

make the restriction true.

Proof. The proof follows directly from Def. 6.22.

Uniqueness Restrictions: The uniqueness restrictions, generated by applying Def. 6.23,

enforce that all the fresh names used in the protocol run are unique for each instance, i.e.,

corresponding to each session ID. This restriction enforces the uniqueness of all the log

parameters that are fresh names, except for the session ID, for which the uniqueness is

enforced in the correspondence restriction. Following Algorithm 8.1, StealthCheck scans

for all the usages of Fresh fact in protocol rules, e.g., Fr(x), and keeps adding restrictions

for each fresh value generated. E.g., our Running Example 5.1 uses the nonce nA in all the

protocol rules namely A1, B2, and X3. The following restriction enforces that a specific

value of nA only be used in the same run of the protocol and never reused in any other

run. These restrictions are generated for all the fresh variables used by a pair of log entries

present in the template. In the event of no fresh variables used in the log entries, these

restrictions do not need to be enforced and accordingly, the StealthCheck skips generating

them and adding to the Tamarin model.

restriction Unique na forLogA1andLogB2 :

“(∀A1, nA, sid1, A2, B2, sid2, t1, t2.

LogA1(sid1, A1, nA)@t1 ∧ LogB2(sid2, A2, B2, nA)@t2 ⇒ (sid1 = sid2))”

restriction Unique na forLogA1andLogX3 :

StealthCheck verifies the stealthiness of any attack against logs of individual, as

well as all possible combination of, participant logs with different sets of parameters. For

more details, we refer the reader to StealthCheck user manual in Appendix C.

174

Case Studies: Testing for Stealthiness in TAMARIN

8.5 Testing Stealthiness of Attacks

In order to verify if an attack exists on a security protocol, we execute the Tamarin

model of a protocol with security lemmas with each lemma ideally representing a security

property. Tamarin may terminate with the lemmas either verified or falsifies meaning the

security property being preserved or violated respectively. We take into account only those

situations where a security lemma is falsified, providing proof of existence of an attack.

This attack model can then be subjected to be tested in a controlled scenario, using the

restriction feature of Tamarin with the attacker only allowed to perform stealthy actions,

i. e., the attack traces conform to both Correspondence and Uniqueness restrictions. In

case the attack still exists, we call such attacks a stealth attack.

As already stated, we have selected Tamarin sources showing violation of any

security property demonstrating an attack from its public repository [55]. This has been

done to demonstrate that our tool is compatible with the publicly available sources. We

divide this section into two subsections, with the first section summarising the stealthiness

of attacks on existing public models, followed by a demonstration of our tool for our new

KRACK attack model, shown in Fig. 3.4.

8.5.1 Stealthiness of Public TAMARIN models

The StealthCheck tool [126] parses the Tamarin source code, adds session identifiers

to the rules followed by adding all the required restrictions to check stealthiness of the

generated attack traces. It checks the stealthiness of attacks for all possible combinations

of logs of participants. As most of the protocols have an initiator I and a responder R,

with some of them also using an authenticator or a server S, many combinations of logs

are possible. Our analysis results in most of the example attacks being labelled as stealthy

when analysed against logs of a single participant. StealthCheck outputs Tamarin source

175

Case Studies: Testing for Stealthiness in TAMARIN

codes for all the possible combinations of participants, and also outputs the results after

executing them. To help the user understand the working on StealthCheck, Appendix D.1

lists Tamarin code of the Needham-Schroeder Public Key Protocol [93], taken from [55],

and modified as valid input for StealthCheck. It is followed by the output code generated

by StealthCheck ready to be tested stealthiness of attack on this protocol, placed in

Appendix D.2.

Combined logs: Initiator, Responder and Server Logged Parameters
Vulnerable Protocol Security

Property
Verified

Names Names
&
Nonces

Names,
Nonces
& Keys

Names
& Mes-
sage

Denning-Sacco with ‘prefix property’ [46] Session Match-
ing

7 3 3 3

Classic Needham-Schroeder Public Key
Protocol [93]

Nonce Secrecy 7 3 3 3

KAS2 (eCK) Protocol [39] Key Secrecy 7 7 7 7

The Station-To-Station Protocol (MAC
version) [26]

Perfect For-
ward Secrecy

7 7 3 3

The MTI/C0 protocol [91] Key Secrecy 7 7 7 7

One-round AKE (JKL TS2 2004) [83] Key Secrecy 7 7 3 3

One-round AKE (JKL TS1 2004) [83] Key Secrecy 7 3 3 3

One-round AKE (JKL TS1 2008) [84] Key Secrecy 7 7 7 7

BAN concrete Andrew Secure RPC [36] Entity Authen-
tication

7 3 3 3

Table 8.1: Stealth Attack Analysis against Global parameterised logs

Table 8.1 summarises the stealthiness of known attacks on vulnerable protocols

using our Tamarin framework, for a range of logging strategies. For our analysis, we have

used four logging strategies as evident in the table; logging only partner names, logging

names and nonces, logging names, nonces, and keys and logging names and messages.

After applying the restrictions discussed in Section 6.10 to the models, some attacks

are stopped, i. e., become non-stealthy. This is denoted by 3. The attacks that can bypass

the restrictions, i. e., stealth attacks are denoted by 7. The results of Table 8.1 are based

on the combined logs of all the participants. However, it is also possible to verify the

stealthiness of these attacks against various combinations of participant’s logs.

Next, we analyse stealthiness of these attacks against the logs of only the initiator,

the result of which is shown in the Table 8.2. We find that this log is not capable of

capturing any attack, and all the attacks are stealthy against such logs. Accordingly, all

the attacks are labelled as stealth attacks, denoted by 7.

176

Case Studies: Testing for Stealthiness in TAMARIN

Individual participant log (Initiator only) Logged Parameters
Vulnerable Protocol Security

Property
Verified

Names Names
&
Nonces

Names,
Nonces
& Keys

Names
& Mes-
sage

Denning-Sacco with ‘prefix property’ [46] Session Match-
ing

7 7 7 7

Classic Needham-Schroeder Public Key
Protocol [93]

Nonce Secrecy 7 7 7 7

KAS2 (eCK) Protocol [39] Key Secrecy 7 7 7 7

The Station-To-Station Protocol (MAC
version) [26]

Perfect For-
ward Secrecy

7 7 7 7

The MTI/C0 protocol [91] Key Secrecy 7 7 7 7

One-round AKE (JKL TS2 2004) [83] Key Secrecy 7 7 7 7

One-round AKE (JKL TS1 2004) [83] Key Secrecy 7 7 7 7

One-round AKE (JKL TS1 2008) [84] Key Secrecy 7 7 7 7

BAN concrete Andrew Secure RPC [36] Entity Authen-
tication

7 7 7 7

Table 8.2: Stealth Attack Analysis against Initiator logs only

We further analyse stealthiness of these attacks against the logs of responder only,

the result of which is shown in the Table 8.3. We find that even this log alone, just like

the previous case, is not capable of capturing any of these attacks, and all the attacks

are stealthy against such logs. Accordingly, all the attacks are labelled as stealth attacks,

denoted by 7.

Individual participant log (Responder only) Logged Parameters
Vulnerable Protocol Security

Property
Verified

Names Names
&
Nonces

Names,
Nonces
& Keys

Names
& Mes-
sage

Denning-Sacco with ‘prefix property’ [46] Session Match-
ing

7 7 7 7

Classic Needham-Schroeder Public Key
Protocol [93]

Nonce Secrecy 7 7 7 7

KAS2 (eCK) Protocol [39] Key Secrecy 7 7 7 7

The Station-To-Station Protocol (MAC
version) [26]

Perfect For-
ward Secrecy

7 7 7 7

The MTI/C0 protocol [91] Key Secrecy 7 7 7 7

One-round AKE (JKL TS2 2004) [83] Key Secrecy 7 7 7 7

One-round AKE (JKL TS1 2004) [83] Key Secrecy 7 7 7 7

One-round AKE (JKL TS1 2008) [84] Key Secrecy 7 7 7 7

BAN concrete Andrew Secure RPC [36] Entity Authen-
tication

7 7 7 7

Table 8.3: Stealth Attack Analysis against Responder logs only

We have seen that the analysis based on the individual logs only results in all

the attacks getting marked as stealthy. However, it is not the case for a combination of

participant logs. Analysis suggests that combined logs of initiator and responder is enough

to capture the stealthiness of the attack, even without the server log. E. g., the attack

on Denning-Sacco protocol with prefix property is non-stealthy against combined logs of

initiator and responder only, even after excluding the server logs. This is an important

result as, apart from suggesting the optimal parameters from the logs, we can also figure

177

Case Studies: Testing for Stealthiness in TAMARIN

Combined log of Initiator and Responder Logged Parameters
Vulnerable Protocol Security

Property
Verified

Names Names
&
Nonces

Names,
Nonces
& Keys

Names
& Mes-
sage

Denning-Sacco with ‘prefix property’ [46] Session Match-
ing

7 3 3 3

Classic Needham-Schroeder Public Key
Protocol [93]

Nonce Secrecy 7 3 3 3

KAS2 (eCK) Protocol [39] Key Secrecy 7 7 7 7

The Station-To-Station Protocol (MAC
version) [26]

Perfect For-
ward Secrecy

7 7 3 3

The MTI/C0 protocol [91] Key Secrecy 7 7 7 7

One-round AKE (JKL TS2 2004) [83] Key Secrecy 7 7 3 3

One-round AKE (JKL TS1 2004) [83] Key Secrecy 7 3 3 3

One-round AKE (JKL TS1 2008) [84] Key Secrecy 7 7 7 7

BAN concrete Andrew Secure RPC [36] Entity Authen-
tication

7 3 3 3

Table 8.4: Stealth Attack Analysis against Initiator and Responder combined logs

out the optimal combination of logs to detect the attacks.

Usefulness of Stealthiness

A protocol may have various participants and similarly many attacks exploiting the

design vulnerabilities. In order to detect the attacks, the protocol designers would always

be interested in finding out the most suitable partner, or a set of partners, capable of

providing the most useful analysis results. Testing the stealthiness of an attack w.r.t.

various combination of logging parameters helps us in identifying the logging partners

and parameters, to be used in the logs, in order to detect the stealth attacks. As we can

see from the tables above, there are cases where even a subset of participant’s logs are

sufficient to detect the attacks.

Analysis of Attacks Stealthiness w.r.t. Logs parameters

The analysis clearly establishes the fact that only logging the names may not be a good idea,

as the attacker can easily mount stealth attacks in such cases. It is highly recommended

that in addition to the participant names, nonces, and keys (both hashed) should be

added to the logs. After trying out various combination of logs and a mix of parameters

in the logs, we have three attacks namely, key secrecy attacks on KAS2 (eCK) Protocol

178

Case Studies: Testing for Stealthiness in TAMARIN

[39], The MTI/C0 protocol [91] and One-round AKE (JKL TS1 2008) [84], that could

not be detected, and hence are stealthy against all combination of logs. Analysis of the

stealthiness of various attacks as shown in the tables above, in case of combination of

participant logs, also presents us with the following findings:

Logs with Names: None of the attacks is captured by the logs containing only the

participant identifiers, i.e., names and hence all our attacks are stealthy against the logs

containing only names.

Logs with Names and Nonces: Some attacks are captured by the logs containing the

participant identifier and nonces used in the protocol, i.e., names and nonces combination.

In fact, out of nine attacks, only five attacks remain stealthy against the logs containing

the names and nonces while the rest are captured by the logs and hence non-stealthy.

Logs with Names, Nonces and Keys: In this case, some more attacks are captured

by the logs containing the participant identifier, nonces, and keys used in the protocol,

i.e., names, nonces, and keys combination. Now, out of Nine (09) attacks, only Three (03)

attacks remain stealthy against the logs containing the names, nonces, and keys while the

rest are captured by the logs and hence non-stealthy.

Logs with Names and Messages: The results in this case are exactly the same as per

the logs with names, nonces, and keys combination. It implies that logs with names and

messages are not able to capture any more attacks, and hence adding the whole messages

to the logs does not have any qualitative effect.

179

Case Studies: Testing for Stealthiness in TAMARIN

8.5.2 Stealthiness of KRACK attack

In the previous section, most of the protocols used as case studies are theoretical, very

old, or rarely implemented. This begs the question whether our tool can be used to learn

something new, a real-world protocol attack. With this objective, we have modelled the

KRACK attack presented in Fig. 3.4 using Tamarin. Using the StealthCheck tool, we

receive the following results:

Initiator log (Authenticator only) Logged Parameters
Vulnerable Protocol Attack Modelled Names Names

&
Nonces

Names,
Nonces
& Keys

IEEE 802.11 4-way handshake [137] KRACK attack 7 7 7

Table 8.5: Stealthiness of KRACK attack against Authenticator logs only

Responder log (Supplicant only) Logged Parameters
Vulnerable Protocol Attack Modelled Names Names

&
Nonces

Names,
Nonces
& Keys

IEEE 802.11 4-way handshake [137] KRACK attack 7 3 3

Table 8.6: Stealthiness of KRACK attack against Supplicant logs only

Combined logs (Authenticator and Supplicant) Logged Parameters
Vulnerable Protocol Attack Modelled Names Names

&
Nonces

Names,
Nonces
& Keys

IEEE 802.11 4-way handshake [137] KRACK attack NT 3 3

Table 8.7: Stealthiness of KRACK attack against combined logs (NT:Non-Termination)

Analysis of KRACK attack

The KRACK attack is captured by the Supplicant using its logs alone, with the logs

containing ‘Names and Nonces’ and ‘Names, Nonces and Keys’. Intuitively, a combined

log of Supplicant and Authenticator messages should also be able to capture this attack.

However, the Tamarin model does not terminate in the case of testing KRACK against

the combined logs. We would like to handle the non-termination as future work. However,

the non-termination in Tamarin, we can either prove the security property in interactive

mode or prove only a specific lemma. All the Tamarin models of protocol examples used

in this section, ready to be analysed by the StealthCheck tool, and the tool manual is

present at [126]. The StealthCheck tool manual is also made available in Appendix C.

180

Case Studies: Testing for Stealthiness in TAMARIN

8.6 Chapter Summary

Based on the analysis of attacks and their stealthiness, we can summarise our results to

safely make some conclusions. To start with, the presence or absence of logged values

does have an effect on the stealthiness of the attack. Needless to say, as expected, all the

attacks with empty logs are always stealthy. The attacks are also stealthy against logs

with only names. In some cases, adding additional parameters to logs also does not help

in capturing the attacks. However, a universal log is always more effective than individual

local logs in detecting stealth attacks. We define a universal log as the combination of

logs of all the parties, e.g., both clients or client(s) and server, whereas the local log will

belong to only one participant such as only the client or server.

There is an important distinction between how industry looks at a single participant

log compared to our framework. Lots of industry look at a single log to look for attacks

and find it sufficient to detect attacks, such as scanning, brute-force attacks, and buffer

overflow, just by looking at them. A single participant log, in such cases, can be sufficient

for an IDS to flag that an attack is in progress.

However, our analysis of attacks is different in the sense that we are looking

for protocol attacks under Dolev-Yao [64] attacker model where a single logs usually is

insufficient to show attacks. The attacks, analysed by our framework, under Dolev-Yao

model [64], are difficult to be detected using a single participant log alone as we need a

group of logs to look for correspondence among the participant’s activity. As can be seen

in our results, a single participant log alone has mostly been unable to capture any attack,

barring the case of KRACK attack captured by the Responder log alone.

All the other cases of non-stealth attacks have involved some combination of logs.

It is possible to convert a non-stealthy attack to a stealthy one or vice-versa by adding

parameters to a combined log of protocol participants.

181

Case Studies: Testing for Stealthiness in TAMARIN

An important future result could be testing the impact of logging certain protocol

steps, and leaving out others, using our framework. An attack may be ‘stealthy’ if a

specific step is not logged, as it allows the attacker to perform an activity without getting

noticed, and vice versa.

While we have been able to analyse the stealthiness of the attacks under study, we

did not have enough time to look at the attacks and their behaviour in detail. We leave

it as future work to analyse the attack and investigate why some attacks could not be

captured by any combination of logs.

182

Part IV

Closing Statements

183

Chapter Nine

Conclusions and Future Directions

In literature and in life we ultimately pursue, not conclusions, but beginnings.

Sam Tanenhaus

During the course of this thesis, we have attempted to answer three research

questions presented in Section 1.2 relating to security properties and stealthiness in the

attacks on security protocols.

We studied various examples of complete protocol modelling, which used formal

verification to test if the security guarantees claimed by the protocols hold or not. The

literature study showed that such modelling is, more often than not, a complex task,

and are both time and effort-intensive process. Keeping in mind that an attack on the

protocol should be expected to violate one of its security guarantees, we decided to explore

modelling of an attack, as compared to the full protocol model, and test the security

properties. Our methodology involved modelling only a subset of interactions, leading to

an attack. By modelling KRACK and Downgrade attacks on WPA2 4-way handshake, we

successfully established that there is enough merit in modelling the attacks. We proved

that the set of security properties mandated is not sufficient to capture these attacks. We

were also able to demonstrate the technique of augmenting additional security properties to

capture the attacks. The guiding philosophy of this work was to uncover the insufficiency

185

Conclusions and Future Directions

of security properties and identify new ones by modelling various attack scenarios that

can be used to stop such class of attacks in future.

Subsequently, in order to classify the attacks as stealth and non-stealth ones, we

provided a novel definition of stealthiness for attacks against a protocol by comparing the

attack trace to templates generated by single normal runs of the protocol. We also formally

defined the formation of a normal looking trace by merging multiple valid single traces.

Subsequently, we successfully established that a formal definition of a standard run of a

protocol is equivalent to imposing some restrictions on a version of the protocol annotated

with session IDs. Using our StealthCheck tool, we have shown how this definition can be

automatically checked using the Tamarin tool. Our framework can be used to identify

stealth attacks on any vulnerable protocol and generate the minimal set of parameters to

be logged in order to convert the stealth attacks to non-stealth attacks.

Our analysis of multiple vulnerable protocols suggested that it is possible to identify

most of the attacks using a correct logging strategy. Our technique and results can be

used to recommend the minimal set of parameters, which if logged, could help detect many

attacks on security protocols. The results of experiments from the case studies presented

in Chapter 6 not only help one understand the details of stealth attacks on protocols, but

also help evaluate the efficacy of various detection mechanisms adopted.

The results of checking stealthiness of various attacks helped us to form some

conclusions. We found that the presence or absence of logged values was directly related

with stealthiness of the attack. The attacks with empty logs were always stealthy. None

of the attacks were captured by stealthy logs containing only the names, and sometimes

adding additional parameters was also not helpful. However, a universal log, i.e., a

combined log of various participants, was always more effective than individual local logs

in detecting stealth attacks. We found that we can convert a non-stealthy attack to a

stealthy one or vice-versa by adding parameters to a combined log of protocol participants.

186

Conclusions and Future Directions

9.1 Contributions and Reflections

The research work presented in this thesis can be helpful in many ways to augment, and

test, the design of resilient systems. While the attack modelling technique can be used

to improve the protocol specification by augmenting additional security properties, the

stealth framework can be used to improve the protocol design, developing a system to

analyse logs during an attack to raise the flag in case of an attack, and handling zero-day

attacks etc.

Additionally, this thesis has demonstrated use of both pen-and-paper and automatic

verification techniques of protocols, their security requirements, and attacks on them using

Tamarin [103] to verify the security guarantees based on protocol traces. Modelling

of Tamarin using theorem prover Coq is a novel contribution and has the potential of

opening up new frontiers in research by verifying the correctness of formal results. We

outline a summarised contribution of our work presented in this thesis, followed by their

possible applications, in this section.

Modelling of Attacks, and not the Complete Protocol: The formal modelling of

attacks presented in Chapter 3 stands in contrast with earlier formal models of protocols

which usually involved modelling of the complete specifications of the protocols. Our

attempt was prompted by the fact that modelling a complete protocol is a time and effort

intensive process. The earlier complete models also needed to be accurate and require

understanding of intricate details of every state of protocol state machine. In contrast to

this, our model comprising a subset of these state machine states has proved to be cost-

effective and helpful in improving the protocol specification. We have successfully modelled

various attacks, on IEEE 802.11 4-way handshake protocols, such as KRACK [137]

and Downgrade attacks [131], and found that it’s much easier to produce a smaller

model to study attacks compared to modelling the complete protocol specifications. This

contribution aligns with our research questions RQ1 presented in Section 1.2.

187

Conclusions and Future Directions

Testing Adequacy of Set of Security Properties: Chapter 4 made an important

contribution by proposing a new paradigm in protocol analysis where, given a known attack

on a protocol along with its set of security properties, the analysis evaluated the adequacy

of this set of security properties in capturing or missing this attack. This methodology was

also able to check if the set of security properties needed to be augmented with additional

security properties. After analysing various attacks on IEEE 802.11 4-way handshake

protocols, such as KRACK [137] and Downgrade attacks [131], we found that the set of

security properties were insufficient. We then successfully suggested additional security

properties to enable capturing such classes of attacks. This contribution aligns with our

research questions RQ1 presented in Section 1.2.

This is an important result as it can not only analyse the existing security properties,

but also recommend an additional set of security properties that should be added to the

protocol standards to make them more robust. Finally, our methodology also allows to

test the correctness of augmented security properties in stopping the attacks.

Stealth Attack Framework: Using the definition of a ‘standard looking trace’ presented

in Chapter 5, we provided a novel definition of stealthiness for attacks against a protocol

by comparing the attack traces against standard looking runs of the protocol. We started

by developing a formal model to represent the protocol interaction employing multiset

rewriting rules that allows labelled logging of parameters during protocol run. Then, by

using formal notions, we presented definitions of a stealthy run and stealth attack.

Subsequently, in Chapter 6, we showed how we can implement this formal definition

using automatic protocol verification tool Tamarin by annotating each run of the protocol

with session IDs. The standard protocol model was executed under stealthy restrictions,

allowing production of traces corresponding to only the stealthy runs of a protocol.

Many protocols can be modelled against known attacks on them, and an optimal

set of logging parameters can be put together to convert a stealth attack to a non-

188

Conclusions and Future Directions

stealth one. This information, i.e., optimal set of logging parameters, can be useful while

designing similar classes of protocols in future and such parameters may be verified by

the communicating parties as part of the protocol interaction. The analysis of multiple

vulnerable protocols suggested that it is possible to detect most of the attacks using a

correct logging strategy.

Using StealthCheck framework, the results of experiments presented in Chapter 8

not only verify the stealthiness of stealth attacks on protocols, but also compare the

efficacy of various detection mechanisms adopted. This contribution aligns with our

research questions RQ2 and RQ3 presented in Section 1.2.

Verification using Coq: Presented in Chapter 7, to prove that the formal model for

stealth check and Tamarin model for stealth check are equivalent, we used Coq, a formal

proof management system. This approach included modelling of Tamarin semantics in

Coq, which is a novel research contribution and can be helpful for the research community

to understand the working of Tamarin better. While we have not been able to provide

a complete machine-checked proof, using Coq has helped us type check our definitions,

lemmas, and theorems etc. We look forward to completing the manual proofs of theorems,

presented in this thesis, as a future work.

The methodologies presented in this thesis have the potential of opening up new

frontiers in formal verification. We have demonstrated that modelling of just the attack

traces against the complete protocol specification is indeed economical as well effective

effort, helpful in improving the protocol specification. The testing of stealthiness of attacks

on security protocols can be used to improve the protocols and also convert stealth attacks

to non-stealth attacks. We discuss some possible applications of our work below.

While this thesis has made some key research contributions, we should not lose

sight of the fact that, in terms of their real-world implementations, our research work

still needs further attention. Both our key contributions; novel methodology of verifying

189

Conclusions and Future Directions

the set of security properties, and testing stealthiness in the protocol trace, have been

performed following the principles of formal verification methods, more specifically using

symbolic analysis of protocols. As such, the results suffer from all the usual limitations

and drawbacks of formal verification and symbolic analysis techniques. We have not been

able to model many network parameters such as timing of messages, packet size, and

network load etc. to name a few. While our results hold theoretically, we have not been

able to test them in a practical setting.

In the following section, we list out some possible future research directions related

to our research presented in this thesis. Our proposals consist of both the possible

extensions to the current work, and future adaptations based on our framework.

9.2 Future Scope and Directions

The work presented in the thesis has potential of being adopted for possible future research

directions in the area of modelling and verification of the protocols.

The methodology of modelling only the attacks against the complete protocol

specification can be easily applied to other use cases. It can be easily applied to test the

set of required security properties for other protocols, such as TLS, against known attacks

on them. It could be interesting to see if the results suggest additional security properties

to be augmented to the protocol specifications. Some ideal candidates could be modelling

of attacks on TLS [128] such as BEAST [120], LOGJAM [7]), Triple handshake [21], etc.

in order to test the adequacy of set of security properties listed in the TLS standard.

Similarly, the stealth framework presented in this thesis can also be used to improve

the initial protocol design and their robustness. Formal analysis of a protocol has the

potential to uncover possible attacks. Once such an attack is found, stealthiness of this

attack can be tested using our framework, and if found stealthy, we can find out the set of

190

Conclusions and Future Directions

parameters to convert this attack to non-stealth attack.

Our stealth framework can model any protocol, including those that are victim

of a zero-day attack. Using various combination of logs, our framework can evaluate

stealthiness of the zero-day attack, and suggest a possible set of parameters to detect the

attack as a non-stealthy one.

Possible Extensions to Current Framework

Extending notion of ‘Stealthiness’ In this thesis, while modelling the protocol attacks

and verifying their stealthiness, we do not consider aspects of network traffic, such as

timing and packet size, or the probability of a particular message, which could be used to

indicate attacks. It should be an interesting study to model these attributes and to see

the results, we leave such an extension as future work.

Another interesting study could be verifying the impact of logging certain protocol

steps on stealthiness of the attacks. An attack may be ‘stealthy’ if a specific step is not

logged, as it allows the attacker to perform an activity without getting noticed, and vice

versa. Such experiments will help both the protocol designers and attackers to identify

and compare various protocol steps in terms of their relative vulnerability.

Completing ‘Coq’ framework We have shown the proof sketch of our central theorem

based on a mix of manual and ‘Coq’ based proofs of propositions and lemmas presented in

Chapter 6. We would like to convert the manual proofs of all the lemmas and propositions

to develop a machine-checked proof for our central theorem showing that the attack

trace generated by the rule list ProtoRules, using the Def. 5.9 and another attack trace

generated using same rule list with session identifiers, are equivalent if the latter conforms

to Correspondence and Uniqueness restrictions.

191

Conclusions and Future Directions

Future Adaptations Based on Our Work

Log-based IDS Our stealth framework can be implemented to develop an intrusion

detection system (IDS), where the communicating parties may share their logs, containing

the logged values and timestamp, with a trusted server. Since this server will have logs

from all the protocol participants, it will essentially have access to global view or universal

logs. The server, capable of testing stealthiness of protocol traces using our framework,

would raise an alert, to all the parties, as soon as it detects a deviation from the standard

expected run. Subsequently, all the parties can take appropriate steps to stop the attack.

Such a system could also take the form of a forensic suite capable of performing

stealthiness of traces. By fine-tuning the parameters to be logged, these IDS should be

able to capture and convert stealthy attacks to non-stealthy, making them easy to capture.

Handling Zero-day Attacks Zero-click exploits [107], such as by Pegasus [98, 99], are

successful in taking over complete control of the devices, mainly mobile phones, without

active participation of the users. These attacks exploit the bugs present in popular

messaging applications such as iMessage, FaceTime, and WhatsApp etc. As per the

literature available [98, 99], its working has remained stealthy, and it took a while for

the community to verify presence of this spyware on victim phones. Our ‘stealthiness’

framework can be employed for modelling such attacks, and try to capture these attacks

by observing possible changes in system logs, if any.

Studying Stealth attacks on IDS A stealthy attacker may not try to break the whole

system in one go, rather focusing on gaining useful information in a stealthy manner,

i. e., without getting noticed. Wagner and Soto [139] have shown that the IDS can be

susceptible to mimicry attacks, which disguise an attack appearing normal to the IDS.

Lightweight stealthy attacks may be dangerous, and a small attack can be carried out

192

Conclusions and Future Directions

multiple times to mount severe attacks. Sufatrio et al., [144] have also presented an efficient

algorithm for automated mimicry attack construction, which can be useful for evaluating

the robustness of the IDS to attacks.

Modelling these attacks using our framework can be an interesting research problem

to test if such actions can be captured by putting the successive logged information

together. A mimicry attack is able to cloak a basic attack subtrace into a stealthy attack

subtrace which the IDS classify as being normal. The important point to note here is

the ‘subtrace’. Recall that, in our stealth model, the allowed sequences of protocols are

prefix-closed and therefore capable of modelling both the complete and incomplete runs

of a protocol. On similar lines, our framework may be tweaked to model subtraces, as a

possible extension to our work.

Stealth attack on users Humans can be modelled as part of the system, based on

their knowledge level, characterised as Naive, Intermediate, and Expert [14]. Every level

of user would be expected to know about some safeguards. During the interaction with

the machine, a human or automated program would respond to a protocol step following

the protocol specifications. A dishonest user or an adversary controlled user would be able

to launch successful attacks.

Stealth attacks on humans, e. g., phishing or social engineering attacks, can then

be defined, assuming that any attack on an expert user would be unstoppable by a user

at intermediate or beginner level. At the same time, an attack on a beginner would be

detected by the other two groups and will be a non-stealth attack to them. These results

can be used to classify the stealth attacks on human or automated users based on their

capability levels.

We can use the results of stealth or non-stealth attacks on various level of users

in identifying the weaknesses among users. Subsequently, these results can be helpful in

193

Conclusions and Future Directions

training the users to handle various social engineering and phishing attacks.

Analysing attacks on a combination of secure protocols Similar to the use of

Tamarin in formal analysis of combination of secure protocols presented in [31], extending

our stealth framework to handle multiprotocol traces can be an interesting research problem.

Research [49] has shown that many protocols are vulnerable to multi-protocol attacks, and

simply detecting attacks against a single protocol alone may not be sufficient to stop the

attacks. Constructing various possible standard traces based on multiple protocols running

simultaneously is likely to be a challenging task. However, by analysing the combination

of protocol traces, we can use our stealth framework to develop a notion of ‘standard

trace’ in a multi-protocol execution setting. Such a research study can also be helpful in

understanding multi-protocol attack traces [49], and analysing their stealthiness based on

our framework.

194

Bibliography

[1] IEEE 802.11 WLANs WG Group Information. Available at https://mentor.ieee.

org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx (Ac-

cessed : July 2020).

[2] Wi-Fi Alliance : Security Update October 2017. Available at https://www.wi-fi.

org/security-update-october-2017 (Accessed : July 2020).

[3] IEEE Standard for Local and Metropolitan Area Networks–Port-Based Network

Access Control. IEEE Std. 802.1X-2020, Feb. 2020.

[4] Abad, C., Taylor, J., Sengul, C., Yurcik, W., Zhou, Y., and Rowe, K.

Log correlation for intrusion detection: A proof of concept. In Computer Security

Applications Conference, 2003. Proceedings. 19th Annual (2003), IEEE, pp. 255–264.

[5] Abadi, M., and Needham, R. Prudent engineering practice for cryptographic

protocols. In Research in Security and Privacy, 1994. Proceedings., 1994 IEEE

Computer Society Symposium on (1994), IEEE, pp. 122–136.

[6] Abadi, M., and Rogaway, P. Reconciling two views of cryptography (the

computational soundness of formal encryption). Journal of cryptology 15, 2 (2002),

103–127.

[7] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M.,

Halderman, J. A., Heninger, N., Springall, D., Thomé, E., Valenta, L.,

195

https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
https://mentor.ieee.org/802.11/dcn/17/11-17-1602-03-000m-nonce-reuse-prevention.docx
https://www.wi-fi.org/security-update-october-2017
https://www.wi-fi.org/security-update-october-2017

BIBLIOGRAPHY

et al. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In Proceedings

of the 22nd ACM SIGSAC Conference on Computer and Communications Security

(2015), ACM, pp. 5–17.

[8] Agarwal, M., Biswas, S., and Nandi, S. Advanced Stealth Man-in-The-Middle

Attack in WPA2 Encrypted Wi-Fi Networks. IEEE Communications Letters 19, 4

(2015), 581–584.

[9] AlEroud, A., and Karabatis, G. A Contextual Anomaly Detection Approach

to Discover Zero-Day Attacks. In 2012 International Conference on Cyber Security

(2012), pp. 40–45.

[10] Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L.,

Cuéllar, J., Drielsma, P. H., Héam, P.-C., Kouchnarenko, O., Man-

tovani, J., et al. The AVISPA tool for the automated validation of internet

security protocols and applications. In International conference on computer aided

verification (2005), Springer, pp. 281–285.

[11] Armando, A., Carbone, R., Compagna, L., Cuellar, J., and Tobarra, L.

Formal analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based

single sign-on for Google apps. In Proceedings of the 6th ACM workshop on Formal

methods in security engineering (2008), ACM, pp. 1–10.

[12] Avalle, M., Pironti, A., and Sisto, R. Formal verification of security protocol

implementations: a survey. Formal Aspects of Computing 26, 1 (2014), 99–123.

[13] Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., and

Stettler, V. A formal analysis of 5G authentication. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security (2018),

pp. 1383–1396.

196

BIBLIOGRAPHY

[14] Basin, D., Radomirovic, S., and Schmid, L. Modeling human errors in security

protocols. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF)

(2016), IEEE, pp. 325–340.

[15] Bella, G., Massacci, F., and Paulson, L. C. Verifying the SET purchase

protocols. Journal of Automated Reasoning 36, 1-2 (2006), 5–37.

[16] Bellare, M., and Rogaway, P. Entity authentication and key distribution. In

Annual international cryptology conference (1993), Springer, pp. 232–249.

[17] Bertot, Y. A short presentation of Coq. In International Conference on Theorem

Proving in Higher Order Logics (2008), Springer, pp. 12–16.

[18] Bertot, Y., and Castéran, P. Interactive theorem proving and program de-

velopment: Coq’Art: the calculus of inductive constructions. Springer Science &

Business Media, 2013.

[19] Bhargavan, K., Blanchet, B., and Kobeissi, N. Verified models and reference

implementations for the TLS 1.3 standard candidate. In 2017 IEEE Symposium on

Security and Privacy (SP) (2017), IEEE, pp. 483–502.

[20] Bhargavan, K., Fournet, C., and Kohlweiss, M. mitls: Verifying protocol

implementations against real-world attacks. IEEE Security & Privacy 14, 6 (2016),

18–25.

[21] Bhargavan, K., Lavaud, A. D., Fournet, C., Pironti, A., and Strub,

P. Y. Triple handshakes and cookie cutters: Breaking and fixing authentication over

TLS. In 2014 IEEE Symposium on Security and Privacy (2014), IEEE, pp. 98–113.

[22] Bhargavan, K., and Leurent, G. Transcript collision attacks: Breaking

authentication in TLS, IKE, and SSH. In Network and Distributed System Security

Symposium – NDSS 2016 (2016).

197

BIBLIOGRAPHY

[23] Bian, H., Bai, T., Salahuddin, M. A., Limam, N., Abou Daya, A., and

Boutaba, R. Host in danger? detecting network intrusions from authentication

logs. In 2019 15th International Conference on Network and Service Management

(CNSM) (2019), IEEE, pp. 1–9.

[24] Bilge, L., and Dumitraş, T. Before we knew it: an empirical study of zero-day

attacks in the real world. In Proceedings of the 2012 ACM conference on Computer

and communications security (2012), ACM, pp. 833–844.

[25] Birge-Lee, H., Sun, Y., Edmundson, A., Rexford, J., and Mittal, P.

Using BGP to acquire bogus TLS certificates. In Workshop on Hot Topics in Privacy

Enhancing Technologies (HotPETs 2017), Minneapolis, MN, USA (2017).

[26] Blake-Wilson, S., and Menezes, A. Unknown key-share attacks on the station-

to-station (STS) protocol. In International Workshop on Public Key Cryptography

(1999), Springer, pp. 154–170.

[27] Blanchet, B. Automatic proof of strong secrecy for security protocols. In IEEE

Symposium on Security and Privacy, 2004. Proceedings. 2004 (2004), IEEE, pp. 86–

100.

[28] Blanchet, B. Security protocol verification: Symbolic and computational models.

In Proceedings of the First international conference on Principles of Security and

Trust (2012), Springer-Verlag, pp. 3–29.

[29] Blanchet, B., Cheval, V., Allamigeon, X., and Smyth, B. Proverif:

Cryptographic protocol verifier in the formal model. URL http://prosecco. gforge.

inria. fr/personal/bblanche/proverif (2010).

[30] Blanchet, B., et al. Modeling and verifying security protocols with the applied

pi calculus and ProVerif. Foundations and Trends R© in Privacy and Security 1, 1-2

(2016), 1–135.

198

BIBLIOGRAPHY

[31] Blot, E., Dreier, J., and Lafourcade, P. Formal Analysis of Combinations

of Secure Protocols. In International Symposium on Foundations and Practice of

Security (2017), Springer, pp. 53–67.

[32] Bopardikar, S. D., and Speranzon, A. On analysis and design of stealth-

resilient control systems. In Resilient Control Systems (ISRCS), 2013 6th Interna-

tional Symposium on (2013), IEEE, pp. 48–53.

[33] Bortolozzo, M., Centenaro, M., Focardi, R., and Steel, G. Attacking

and fixing PKCS# 11 security tokens. In Proceedings of the 17th ACM conference

on Computer and communications security (2010), ACM, pp. 260–269.

[34] Boyd, C., and Mathuria, A. Protocols for authentication and key establishment.

Springer Science & Business Media, 2013.

[35] Bryans, J., and Ryan, P. Security and Trust in a Voter-Verifiable Voting Scheme.

In Fast (2003), pp. 113–120.

[36] Burrows, M., Abadi, M., and Needham, R. M. A logic of authentication.

In Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences (1989), vol. 426, The Royal Society, pp. 233–271.

[37] Callegati, F., Cerroni, W., and Ramilli, M. Man-in-the-Middle Attack to

the HTTPS Protocol. IEEE Security & Privacy 7, 1 (2009), 78–81.

[38] Cazorla, L., Alcaraz, C., and Lopez, J. Cyber Stealth Attacks in Critical

Information Infrastructures. IEEE Systems Journal (2016).

[39] Chatterjee, S., Menezes, A., and Ustaoglu, B. A generic variant of NIST’s

KAS2 key agreement protocol. In Australasian Conference on Information Security

and Privacy (2011), Springer, pp. 353–370.

[40] Cheng, Z., Tisi, M., and Douence, R. CoqTL: a Coq DSL for rule-based model

transformation. Software and Systems Modeling 19, 2 (2020), 425–439.

199

BIBLIOGRAPHY

[41] Chrétien, R., Cortier, V., and Delaune, S. Decidability of trace equivalence

for protocols with nonces. In 2015 IEEE 28th Computer Security Foundations

Symposium (2015), IEEE, pp. 170–184.

[42] Clark, J., and Jacob, J. A survey of authentication protocol literature, 1997.

[43] Coffey, T., Dojen, R., and Flanagan, T. Formal verification: an imperative

step in the design of security protocols. Computer Networks 43, 5 (2003), 601–618.

[44] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., and Stebila,

D. A formal security analysis of the signal messaging protocol. Journal of Cryptology

33, 4 (2020), 1914–1983.

[45] Cook, B. Formal reasoning about the security of Amazon Web Services. In

International Conference on Computer Aided Verification (2018), Springer, pp. 38–

47.

[46] Cortier, V., Delaune, S., and Lafourcade, P. A survey of algebraic properties

used in cryptographic protocols. Journal of Computer Security 14, 1 (2006), 1–43.

[47] Cortier, V., Filipiak, A., Florent, J., Gharout, S., and Traoré, J.

Designing and proving an EMV-compliant payment protocol for mobile devices. In

2017 IEEE European Symposium on Security and Privacy (EuroS&P) (2017), IEEE,

pp. 467–480.

[48] Cortier, V., Grimm, N., Lallemand, J., and Maffei, M. A type system

for privacy properties. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (2017), pp. 409–423.

[49] Cremers, C. Feasibility of multi-protocol attacks. In First International Conference

on Availability, Reliability and Security (ARES’06) (2006), IEEE, pp. 8–pp.

[50] Cremers, C. On the protocol composition logic PCL. In Proc. ACM Symp. Inf.,

Comput. Commun. Secur. (ASIACCS) (Tokyo, Japan, Mar. 2008), ACM, pp. 66–77.

200

BIBLIOGRAPHY

[51] Cremers, C., Horvat, M., Hoyland, J., Scott, S., and van der Merwe,

T. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security (2017), pp. 1773–

1788.

[52] Cremers, C., Horvat, M., Scott, S., and van der Merwe, T. Analysis of

TLS 1.3: 0-RTT, Resumption and Delayed Authentication. https://tls13tamarin.

github.io/TLS13Tamarin/tls13-draft10.html. (Accessed on 14/08/2021).

[53] Cremers, C., Horvat, M., Scott, S., and van der Merwe, T. Automated

analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentication.

In Security and Privacy (SP), 2016 IEEE Symposium on (2016), IEEE, pp. 470–485.

[54] Cremers, C., Kiesl, B., and Medinger, N. A Formal Analysis of {IEEE}

802.11’s WPA2: Countering the Kracks Caused by Cracking the Counters. In 29th

{USENIX} Security Symposium ({USENIX} Security 20) (2020), pp. 1–17.

[55] Cremers, C., and Schmidt, B. Github - tamarin-prover/tamarin-prover: Main

source code repository of the tamarin prover for security protocol verification. https:

//github.com/tamarin-prover/tamarin-prover. (Accessed on 11/09/2020).

[56] Cremers, C. J., Mauw, S., and De Vink, E. Defining authentication in a trace

model. In Fast (2003), pp. 131–145.

[57] Cremers, C. J., Mauw, S., and de Vink, E. P. A syntactic criterion for

injectivity of authentication protocols. Electronic Notes in Theoretical Computer

Science 135, 1 (2005), 23–38.

[58] Cremers, C. J. F. Scyther: Semantics and verification of security protocols.

Eindhoven University of Technology Eindhoven, Netherlands, 2006.

[59] Datta, A., Derek, A., Mitchell, J. C., and Roy, A. Protocol composition

logic (PCL). Electronic Notes in Theoretical Computer Science 172 (2007), 311–358.

201

https://tls13tamarin.github.io/TLS13Tamarin/tls13-draft10.html
https://tls13tamarin.github.io/TLS13Tamarin/tls13-draft10.html
https://github.com/tamarin-prover/tamarin-prover
https://github.com/tamarin-prover/tamarin-prover

BIBLIOGRAPHY

[60] De Renesse, F., and Aghvami, A. Formal verification of ad-hoc routing protocols

using SPIN model checker. In Electrotechnical Conference, 2004. MELECON 2004.

Proceedings of the 12th IEEE Mediterranean (2004), vol. 3, IEEE, pp. 1177–1182.

[61] Delaune, S., Kremer, S., and Ryan, M. Verifying privacy-type properties of

electronic voting protocols: A taster. In Towards trustworthy elections. Springer,

2010, pp. 289–309.

[62] Dershowitz, N., Kaplan, S., and Plaisted, D. A. Rewrite, rewrite, rewrite,

rewrite, rewrite,. . . . Theoretical Computer Science 83, 1 (1991), 71–96.

[63] Diffie, W., Van Oorschot, P. C., and Wiener, M. J. Authentication and

authenticated key exchanges. Designs, Codes and cryptography 2, 2 (1992), 107–125.

[64] Dolev, D., and Yao, A. On the security of public key protocols. IEEE Transac-

tions on information theory 29, 2 (1983), 198–208.

[65] Dowling, B., Fischlin, M., Günther, F., and Stebila, D. A Cryptographic

Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol. IACR

Cryptol. ePrint Arch. 2016 (2016), 81.

[66] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J. A., Bailey, M.,

Li, F., Weaver, N., Amann, J., Beekman, J., Payer, M., et al. The matter

of heartbleed. In Proceedings of the 2014 Conference on Internet Measurement

Conference (2014), ACM, pp. 475–488.

[67] Even, S., Goldreich, O., and Shamir, A. On the security of ping-pong

protocols when implemented using the RSA. In Conference on the Theory and

Application of Cryptographic Techniques (1985), Springer, pp. 58–72.

[68] Fábrega, F. J. T., Herzog, J. C., and Guttman, J. D. Strand spaces: Why

is a security protocol correct? In Proceedings. 1998 IEEE Symposium on Security

and Privacy (Cat. No. 98CB36186) (1998), IEEE, pp. 160–171.

202

BIBLIOGRAPHY

[69] Ficco, M., and Rak, M. Intrusion tolerance of stealth DoS attacks to web

services. In IFIP International Information Security Conference (2012), Springer,

pp. 579–584.

[70] Gavrichenkov, A. Breaking https with bgp hijacking. Black Hat. Briefings (2015).

[71] Goguen, J. A., and Meseguer, J. Order-sorted algebra I: Equational deduction

for multiple inheritance, overloading, exceptions and partial operations. Theoretical

Computer Science 105, 2 (1992), 217–273.

[72] Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of computer

and system sciences 28, 2 (1984), 270–299.

[73] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+ Flush: a fast

and stealthy cache attack. In International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (2016), Springer, pp. 279–299.

[74] Guo, Z., Shi, D., Johansson, K. H., and Shi, L. Worst-case stealthy innovation-

based linear attack on remote state estimation. Automatica 89 (2018), 117–124.

[75] He, C., and Mitchell, J. C. Analysis of the 802.11 i 4-Way Handshake. In

Proceedings of the 3rd ACM workshop on Wireless security (2004), pp. 43–50.

[76] He, C., Sundararajan, M., Datta, A., Derek, A., and Mitchell, J. C. A

modular correctness proof of IEEE 802.11 i and TLS. In Proceedings of the 12th

ACM conference on Computer and communications security (2005), pp. 2–15.

[77] Hirschi, L., Baelde, D., and Delaune, S. A method for verifying privacy-type

properties: the unbounded case. In 2016 IEEE Symposium on Security and Privacy

(SP) (2016), IEEE, pp. 564–581.

[78] IEEE. IEEE standard for Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specs. IEEE Std 802.11-1997 (1997), 1–445.

203

BIBLIOGRAPHY

[79] IEEE. IEEE Standard for information technology-Telecommunications and infor-

mation exchange between systems-Local and metropolitan area networks-Specific

requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications: Amendment 6: Medium Access Control (MAC) Security

Enhancements. IEEE Std 802.11i-2004 (2004), 1–190.

[80] IEEE. IEEE standard for Information technology—Telecommunications and infor-

mation exchange between systems Local and metropolitan area networks—Specific

requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-

ical Layer (PHY) Specifications. IEEE Std 802.11-2016 (Revision of IEEE Std

802.11-2012) (2016), 1–3534.

[81] Jakobsson, M., Wetzel, S., and Yener, B. Stealth attacks on ad-hoc wireless

networks. In Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE

58th (2003), vol. 3, IEEE, pp. 2103–2111.

[82] Javed, M., and Paxson, V. Detecting stealthy, distributed SSH brute-forcing. In

Proceedings of the 2013 ACM SIGSAC conference on Computer & communications

security (2013), ACM, pp. 85–96.

[83] Jeong, I. R., Katz, J., and Lee, D. H. One-round protocols for two-party

authenticated key exchange. In International Conference on Applied Cryptography

and Network Security (2004), Springer, pp. 220–232.

[84] Jeong, I. R., Katz, J., and Lee, D. H. One-round protocols for two-party

authenticated key exchange. Journal of KIISE: Computer Systems and Theory 33

(2008).

[85] Joux, A. Authentication failures in NIST version of GCM. NIST Comment (2006),

3.

[86] Kemmerer, R. A. Analyzing encryption protocols using formal verification tech-

niques. IEEE Journal on Selected areas in Communications 7, 4 (1989), 448–457.

204

BIBLIOGRAPHY

[87] Kenkre, P. S., Pai, A., and Colaco, L. Real time intrusion detection and

prevention system. In Proceedings of the 3rd International Conference on Frontiers

of Intelligent Computing: Theory and Applications (FICTA) 2014 (2015), Springer,

pp. 405–411.

[88] Kim, J. Y., Holz, R., Hu, W., and Jha, S. Automated Analysis of Secure

Internet of Things Protocols. In Proceedings of the 33rd Annual Computer Security

Applications Conference (2017), ACM, pp. 238–249.

[89] Kremer, S., and Künnemann, R. Automated analysis of security protocols with

global state. Journal of Computer Security 24, 5 (2016), 583–616.

[90] Künnemann, R. Automated backward analysis of PKCS# 11 v2. 20. In Interna-

tional Conference on Principles of Security and Trust (2015), Springer, pp. 219–238.

[91] Kunz-Jacques, S., and Pointcheval, D. About the Security of MTI/C0 and

MQV. In International Conference on Security and Cryptography for Networks

(2006), Springer, pp. 156–172.

[92] Lowe, G. An Attack on the Needham- Schroeder Public- Key Authentication

Protocol. Information processing letters 56, 3 (1995).

[93] Lowe, G. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. In International Workshop on Tools and Algorithms for the Construction and

Analysis of Systems (1996), Springer, pp. 147–166.

[94] Lowe, G. Casper: A compiler for the analysis of security protocols. In Proceedings

10th Computer Security Foundations Workshop (1997), IEEE, pp. 18–30.

[95] Lowe, G. A hierarchy of authentication specifications. In Computer security

foundations workshop, 1997. Proceedings., 10th (1997), IEEE, pp. 31–43.

205

BIBLIOGRAPHY

[96] Malladi, S., Alves-Foss, J., and Heckendorn, R. B. On preventing replay

attacks on security protocols. Tech. rep., IDAHO UNIV MOSCOW DEPT OF

COMPUTER SCIENCE, 2002.

[97] Mao, W., and Boyd, C. Towards formal analysis of security protocols. In

[1993] Proceedings Computer Security Foundations Workshop VI (1993), IEEE,

pp. 147–158.

[98] Marczak, B., Anstis, S., Crete-Nishihata, M., Scott-Railton, J., and

Deibert, R. Stopping the press: New York Times journalist targeted by Saudi-

linked Pegasus spyware operator. Tech. rep., 2020.

[99] Marczak, B., Scott-Railton, J., McKune, S., Abdul Razzak, B., and

Deibert, R. HIDE AND SEEK: Tracking NSO Group’s Pegasus Spyware to

operations in 45 countries. Tech. rep., 2018.

[100] Marrero, W., Clarke, E., and Jha, S. Model checking for security pro-

tocols. Tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF

COMPUTER SCIENCE, 1997.

[101] Meadows, C. A model of computation for the NRL protocol analyzer. In Proceedings

The Computer Security Foundations Workshop VII (1994), IEEE, pp. 84–89.

[102] Meier, S. Advancing automated security protocol verification. PhD thesis, ETH

Zurich, 2013.

[103] Meier, S., Schmidt, B., Cremers, C., and Basin, D. The TAMARIN prover

for the symbolic analysis of security protocols. In International Conference on

Computer Aided Verification (2013), Springer, pp. 696–701.

[104] Meseguer, J. Conditional rewriting logic as a unified model of concurrency.

Theoretical computer science 96, 1 (1992), 73–155.

206

BIBLIOGRAPHY

[105] Moh, M., Pininti, S., Doddapaneni, S., and Moh, T.-S. Detecting web

attacks using multi-stage log analysis. In 2016 IEEE 6th International Conference

on Advanced Computing (IACC) (2016), IEEE, pp. 733–738.

[106] Naik, N., and Jenkins, P. Discovering hackers by stealth: Predicting fingerprint-

ing attacks on honeypot systems. In 2018 IEEE International Systems Engineering

Symposium (ISSE) (2018), IEEE, pp. 1–8.

[107] OCCRP. How Does Pegasus Work. https://www.occrp.org/en/

the-pegasus-project/how-does-pegasus-work, July 2021. (Accessed on

19/07/2021).

[108] Otway, D., and Rees, O. Efficient and timely mutual authentication. ACM

SIGOPS Operating Systems Review 21, 1 (1987), 8–10.

[109] Palombo, H. M., Zheng, H., and Ligatti, J. POSTER: Towards precise

and automated verification of security protocols in Coq. In Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security (2017),

pp. 2567–2569.

[110] Paulin-Mohring, C. Introduction to the coq proof-assistant for practical software

verification. In LASER Summer School on Software Engineering (2011), Springer,

pp. 45–95.

[111] Paulson, L. C. Proving properties of security protocols by induction. In Proceedings

10th Computer Security Foundations Workshop (1997), IEEE, pp. 70–83.

[112] Payer, M. HexPADS: a platform to detect “stealth” attacks. In International

Symposium on Engineering Secure Software and Systems (2016), Springer, pp. 138–

154.

207

https://www.occrp.org/en/the-pegasus-project/how-does-pegasus-work
https://www.occrp.org/en/the-pegasus-project/how-does-pegasus-work

BIBLIOGRAPHY

[113] Rahli, V., Vukotic, I., Völp, M., and Esteves-Verissimo, P. Velisarios:

Byzantine fault-tolerant protocols powered by Coq. In European Symposium on

Programming (2018), Springer, pp. 619–650.

[114] Rescorla, E., and Dierks, T. The transport layer security (TLS) protocol

version 1.3, 2018.

[115] Roscoe, A., Creese, S., Goldsmith, M., and Zakiuddin, I. The attacker in

ubiquitous computing environments: Formalising the threat model, 2003.

[116] Rudd, E., Rozsa, A., Gunther, M., and Boult, T. A Survey of Stealth

Malware: Attacks, Mitigation Measures, and Steps Toward Autonomous Open World

Solutions. IEEE Communications Surveys & Tutorials (2016).

[117] Ryan, P., Schneider, S. A., Goldsmith, M., Lowe, G., and Roscoe, B.

The modelling and analysis of security protocols: the CSP approach. Addison-Wesley

Professional, 2001.

[118] Sahadevaiah, K., and PVGD, P. R. Impact of security attacks on a new security

protocol for mobile ad hoc networks. Network Protocols and Algorithms 3, 4 (2011),

122–140.

[119] Sarjana, F. W., Yuliar Arif, T., Adriman, R., and Munadi, R. Simple

Prevention of Advanced Stealth Man-in-The-Middle Attack in WPA2 Wi-Fi Networks.

In 2019 International Conference on Electrical Engineering and Computer Science

(ICECOS) (2019), pp. 349–353.

[120] Sarkar, P. G., and Fitzgerald, S. Attacks on ssl a comprehensive study of

beast, crime, time, breach, lucky 13 & rc4 biases. Internet: https://www. isecpartners.

com/media/106031/ssl attacks survey. pdf [June, 2014] (2013).

[121] Scarfone, K., and Mell, P. Guide to intrusion detection and prevention systems

(idps). Tech. rep., National Institute of Standards and Technology, 2012.

208

BIBLIOGRAPHY

[122] Schmidt, B. Formal analysis of key exchange protocols and physical protocols. PhD

thesis, ETH, Zurich, 2012.

[123] Schmidt, B., Meier, S., Cremers, C., and Basin, D. Automated analysis

of Diffie-Hellman protocols and advanced security properties. In 2012 IEEE 25th

Computer Security Foundations Symposium (2012), IEEE, pp. 78–94.

[124] Shittu, R. O. Mining intrusion detection alert logs to minimise false positives &

gain attack insight. PhD thesis, City University London, 2016.

[125] Shu, G., and Lee, D. Testing security properties of protocol implementations-a

machine learning based approach. In 27th International Conference on Distributed

Computing Systems (ICDCS’07) (2007), IEEE, pp. 25–25.

[126] Singh, R. R. StealthCheck Tool Webpage: Python based automated Stealth

Verification Tool using Tamarin-Prover (Source code, Manual and Examples). http:

//people.du.ac.in/~rrsingh/StealthCheck/. (Accessed on 14/08/2021).

[127] Singh, R. R., Moreira, J., Chothia, T., and Ryan, M. D. Tamarin prover

models of the 802.11 4-way handshake Attacks and Security Properties (Source code

and Proof Results). http://people.du.ac.in/~rrsingh/wpa2models/, 2020.

[128] Sirohi, P., Agarwal, A., and Tyagi, S. A comprehensive study on security

attacks on ssl/tls protocol. In 2016 2nd International Conference on Next Generation

Computing Technologies (NGCT) (2016), IEEE, pp. 893–898.

[129] Song, D. X. Athena: a new efficient automatic checker for security protocol

analysis. In Proceedings of the 12th IEEE Computer Security Foundations Workshop

(1999), IEEE, pp. 192–202.

[130] Song, J., Kim, H., and Park, S. Enhancing conformance testing using symbolic

execution for network protocols. IEEE Transactions on Reliability 64, 3 (2015),

1024–1037.

209

http://people.du.ac.in/~rrsingh/StealthCheck/
http://people.du.ac.in/~rrsingh/StealthCheck/
http://people.du.ac.in/~rrsingh/wpa2models/

BIBLIOGRAPHY

[131] Stone, C. M., Chothia, T., and de Ruiter, J. Extending automated protocol

state learning for the 802.11 4-way handshake. In European Symposium on Research

in Computer Security (2018), Springer, pp. 325–345.

[132] Stubblefield, A., Ioannidis, J., and Rubin, A. D. A key recovery attack

on the 802.11 b wired equivalent privacy protocol (WEP). ACM transactions on

information and system security (TISSEC) 7, 2 (2004), 319–332.

[133] Tews, E., and Beck, M. Practical attacks against WEP and WPA. In Proceedings

of the second ACM conference on Wireless network security (2009), pp. 79–86.

[134] Tisi, M., and Cheng, Z. Coqtl: An internal DSL for model transformation in

COQ. In International Conference on Theory and Practice of Model Transformations

(2018), Springer, pp. 142–156.

[135] van der Merwe, T. An Analysis of the Transport Layer Security Protocol, 2018.

[136] Vanhoef, M., and Piessens, F. Predicting, decrypting, and abusing

WPA2/802.11 group keys. In 25th {USENIX} Security Symposium ({USENIX}

Security 16) (2016), pp. 673–688.

[137] Vanhoef, M., and Piessens, F. Key reinstallation attacks: Forcing nonce reuse

in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (2017), pp. 1313–1328.

[138] Vigano, L. Automated security protocol analysis with the AVISPA tool. Electronic

Notes in Theoretical Computer Science 155 (2006), 61–86.

[139] Wagner, D., and Soto, P. Mimicry attacks on host-based intrusion detection sys-

tems. In Proceedings of the 9th ACM Conference on Computer and Communications

Security (2002), ACM, pp. 255–264.

[140] Wang, J., Zhang, J., and Zhang, H. Type flaw attacks and prevention in

security protocols. In Software Engineering, Artificial Intelligence, Networking,

210

BIBLIOGRAPHY

and Parallel/Distributed Computing, 2008. SNPD’08. Ninth ACIS International

Conference on (2008), IEEE, pp. 340–343.

[141] Wesemeyer, S., Newton, C. J., Treharne, H., Chen, L., Sasse, R., and

Whitefield, J. Formal Analysis and Implementation of a TPM 2.0-based Direct

Anonymous Attestation Scheme. In Proceedings of the 15th ACM Asia Conference

on Computer and Communications Security (2020), pp. 784–798.

[142] Whitefield, J., Chen, L., Kargl, F., Paverd, A., Schneider, S., Tre-

harne, H., and Wesemeyer, S. Formal analysis of V2X revocation protocols.

In International Workshop on Security and Trust Management (2017), Springer,

pp. 147–163.

[143] Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., and

Wesemeyer, S. A symbolic analysis of ecc-based direct anonymous attestation. In

2019 IEEE European Symposium on Security and Privacy (EuroS&P) (2019), IEEE,

pp. 127–141.

[144] Yap, R. H., et al. Improving host-based IDS with argument abstraction to

prevent mimicry attacks. In International Workshop on Recent Advances in Intrusion

Detection (2005), Springer, pp. 146–164.

[145] Zhang, M., Wang, L., Jajodia, S., Singhal, A., and Albanese, M. Network

diversity: a security metric for evaluating the resilience of networks against zero-day

attacks. IEEE Transactions on Information Forensics and Security 11, 5 (2016),

1071–1086.

[146] Zlomislić, V., Fertalj, K., and Sruk, V. Denial of service attacks, defences

and research challenges. Cluster Computing 20, 1 (2017), 661–671.

211

Appendices

213

Appendix One

Functions used in Def. 5.7

MergeList : List × List→ Set[List]

MergeList(x : xs, y : ys) = {x : MergeList(xs, y : ys), y : MergeList(x : xs, ys)}

mergeList([], ys) = {ys}

mergeList(xs, []) = {xs}

mergeSet : Set[List] × List→ Set[List]

mergeSet({S1} ∪ S, L) = mergeList(S1, L) ∪mergeSet(S, L)

mergeSet({}, L) = {L}

merge : MultiSet[List] → Set[List]

merge({L} ∪ S) = mergeSet(merge(S), L)

merge({}) = {}

215

Appendix Two

SAPiC Code for Attacks on 802.11

4-way handshake

B.1 Code for KRACK Attack of Figure 3.3

/∗∗∗

AUTHORS : R R Singh, J Moreira, Tom Chothia, M. D. Ryan

Attack against the 4-way handshake, when the supplicant when (victim) still

accepts plaintext retransmissions of message 3 if a PTK is installed.

Notation:

pmk = Pairwise Master Key,

ptk = Pairwise Transient Key, composed of:

kck = Key Confirmation Key

kek = Key Encryption Key

tk = Temporal Key

gtk = Group Temporal Key

A = Events only in authenticator process

S = Events only in supplicant process

∗∗∗/

theory Krack fig4

begin

builtins :

symmetric-encryption,

multiset

functions :

true/0, CalcPtk/1, mic/2, kck/1, kek/1, tk/1, verifyMic/3

217

SAPiC Code for Attacks on 802.11 4-way handshake

equations:

verifyMic(mic(m,k), m, k) = true

let Supplicant =

ν ˜S id; out(˜S id) ;

! (

out(〈 ’AuthRequest’, ˜S id〉);

in(〈 ’AuthResponse’, ˜S id, cs〉) ;

out(〈 ’AssociationRequest’, ˜S id, cs〉) ;

in(〈 ’AssociationResponse’, ˜S id, cs〉) ;

event S HasPmk(˜S id, ˜pmk);

// Initial 4-way handshake

ν ˜tid ;

in(A id);

let pat msg1 contents = 〈’Header1’, r, ANonce, cs〉 in

in(pat msg1 contents);

ν ˜SNonce;

let tptk = CalcPtk(〈˜pmk, ANonce, ˜SNonce, A id, ˜S id〉) in

event S ComputesPtk(˜S id, ˜tid, tptk);

let msg2 contents = 〈’Header2’, r, ˜SNonce, cs〉 in

out(〈msg2 contents, mic(msg2 contents, 〈cs, kck(tptk)〉)〉) ;

let msg3 contents =

〈 ’Header3’, r+’1’, ANonce, cs, senc(gtk, 〈cs , kek(tptk)〉)〉 in

in(〈msg3 contents, mic(msg3 contents, 〈cs, kck(tptk)〉)〉) ;

event S ReceivesGtk(˜S id, ˜tid, gtk);

let ptk = tptk in

event S RunningPtk(˜S id, A id, ptk);

event S RunningGtk(˜S id, A id, 〈ANonce, ˜SNonce, gtk〉);

event S RunningCs(˜S id, A id, 〈ANonce, ˜SNonce, cs〉);

let msg4 contents = 〈’Header4’, r+’1’, cs〉 in

out(〈msg4 contents, mic(msg4 contents, 〈cs, kck(tptk)〉)〉) ;

event S InstallsPtk(˜S id, ptk); // MLME-SETKEYS.request

event S InstallsGtk(˜S id, gtk); // MLME-SETKEYS.request

((

event S CommitPtk(˜S id, A id, ptk);

event S CommitGtk(˜S id, A id, 〈ANonce, ˜SNonce, gtk〉);

event S CommitCs(˜S id, A id, 〈ANonce, ˜SNonce, cs〉);

event S Branch1()

218

SAPiC Code for Attacks on 802.11 4-way handshake

) +

(

let msg3 rtx contents =

〈 ’Header3’, r+’1’+’1’, ANonce, cs, senc(gtk2, 〈cs , kek(tptk)〉)〉 in

in(〈msg3 rtx contents, mic(msg3 rtx contents, 〈cs , kck(tptk)〉)〉) ;

let ptk = tptk in

event S RunningPtk(˜S id, A id, ptk);

event S RunningGtk(˜S id, A id, 〈ANonce, ˜SNonce, gtk〉);

event S RunningCs(˜S id, A id, 〈ANonce, ˜SNonce, cs〉);

let msg4 rtx contents = 〈’Header4’, r+’1’+’1’, cs〉 in

out(senc(〈msg4 rtx contents, mic(msg4 rtx contents,

〈cs , kck(tptk)〉)〉 , tk(ptk))) ;

event S InstallsPtk(˜S id, ptk); // MLME-SETKEYS.request

event S InstallsGtk(˜S id, gtk2); // MLME-SETKEYS.request

event S CommitPtk(˜S id, A id, ptk);

event S CommitGtk(˜S id, A id, 〈ANonce, ˜SNonce, gtk〉);

event S CommitCs(˜S id, A id, 〈ANonce, ˜SNonce, cs〉);

event S Branch2()

)))

let Authenticator =

ν ˜A id; out(˜A id);

! (ν ˜tid ;

in(〈 ’AuthRequest’, S id〉);

out(〈 ’AuthResponse’, S id, ’CCMP’〉);

let cs = ’CCMP’ in

in(〈 ’AssociationRequest’, S id , cs〉) ;

out(〈 ’AssociationResponse’, S id, cs〉) ;

event A HasPmk(˜A id, ˜pmk);

// Initial 4-way handshake

ν ˜r;

ν ˜ANonce;

in(S id) ;

let pat msg1 contents = 〈’Header1’, ˜r, ˜ANonce, cs〉 in

out(pat msg1 contents);

let ptk = CalcPtk(〈˜pmk, ˜ANonce, SNonce, ˜A id, S id〉) in

let msg2 contents = 〈’Header2’, ˜r, SNonce, cs〉 in

in(〈msg2 contents, mic(msg2 contents, 〈cs, kck(ptk)〉)〉) ;

219

SAPiC Code for Attacks on 802.11 4-way handshake

ν ˜gtk;

event A GeneratesGtk(˜gtk);

event A RunningPtk(˜A id, S id, ptk);

event A RunningGtk(˜A id, S id, 〈˜ANonce, SNonce, ˜gtk〉);

event A RunningCs(˜A id, S id, 〈˜ANonce, SNonce, cs〉);

event A InstallsGtk(˜gtk); // MLME-SETKEYS.request

let msg3 contents =

〈 ’Header3’, ˜r+’1’, ˜ANonce, cs, senc(˜gtk, 〈cs , kek(ptk)〉)〉 in

out(〈msg3 contents, mic(msg3 contents, 〈cs, kck(ptk)〉)〉) ;

((

let msg4 contents = 〈’Header4’, ˜r+’1’, cs〉 in

in(〈msg4 contents, mic(msg4 contents, 〈cs, kck(ptk)〉)〉) ;

event A InstallsPtk(ptk); // MLME-SETKEYS.request

event A CommitPtk(˜A id, S id, ptk);

event A CommitGtk(˜A id, S id, 〈˜ANonce, SNonce, ˜gtk〉);

event A CommitCs(˜A id, S id, 〈˜ANonce, SNonce, cs〉);

event A Branch1()

)+ (

let msg3 rtx contents =

〈 ’Header3’, ˜r+’1’+’1’, ˜ANonce, cs, senc(˜gtk, 〈cs , kek(ptk)〉)〉 in

out(〈msg3 rtx contents, mic(msg3 rtx contents, 〈cs , kck(ptk)〉)〉) ;

// Msg4(r+1) could have been received here (ignored)

let msg4 rtx contents = 〈’Header4’, ˜r+’1’+’1’, cs〉 in

in(senc(〈msg4 rtx contents, mic(msg4 rtx contents,

〈cs , kck(ptk)〉)〉 , tk(ptk))) ;

// Msg4(r+1) could have been received here (ignored)

event A InstallsPtk(ptk); // MLME-SETKEYS.request

event A CommitPtk(˜A id, S id, ptk);

event A CommitGtk(˜A id, S id, 〈˜ANonce, SNonce, ˜gtk〉);

event A CommitCs(˜A id, S id, 〈˜ANonce, SNonce, cs〉);

event A Branch2()

)))

// Main process starts here

ν ˜pmk; (!Supplicant | Authenticator)

==== omitted some lemmas=====

// The KRACK attack does not exist.

lemma NoKrackPtk:

”All id ptk #i. S InstallsPtk(id , ptk)@i ==〉

220

SAPiC Code for Attacks on 802.11 4-way handshake

not(Ex #j. S InstallsPtk(id , ptk)@j & (j〈i))”

// Security properties specified in [IEEE 802.11, Sec. 12.6.14]

// a) Confirm the existence of the PMK at the peer.

lemma ConfirmPmk:

all - traces

”All id1 id2 pmk1 pmk2 #t1 #t2.

A HasPmk(id1, pmk1)@t1 & S HasPmk(id2, pmk2)@t2 ==〉 (pmk1=pmk2)”

// b) Ensure that the security association keys are fresh .

lemma FreshPtk:

all - traces

”All id tid1 tid2 ptk #t1 #t2.

S ComputesPtk(id, tid1, ptk)@t1 & S ComputesPtk(id, tid2, ptk)@t2 ==〉 (tid1=tid2)”

lemma FreshGtk:

all - traces

”All id tid1 tid2 gtk #t1 #t2.

S ReceivesGtk(id, tid1, gtk)@t1 & S ReceivesGtk(id, tid2, gtk)@t2 ==〉 (tid1=tid2)”

// c) Synchronize the installation of one or more temporal keys into the MAC.

lemma AgreementPtk:

all - traces

”(All X Y ptk #i. A CommitPtk(X, Y, ptk)@i ==〉

((Ex #j. S RunningPtk(Y, X, ptk)@j & (j〈i))

& not(Ex X2 Y2 #i2. A CommitPtk(X2, Y2, ptk)@i2 & not(#i2=#i))

))

& (All X Y ptk #i. S CommitPtk(X, Y, ptk)@i ==〉

((Ex #j. A RunningPtk(Y, X, ptk)@j & (j〈i))

& not(Ex X2 Y2 #i2. S CommitPtk(X2, Y2, ptk)@i2 & not(#i2=#i))

))”

lemma AgreementGtk:

all - traces

”(All X Y gtk #i. A CommitGtk(X, Y, gtk)@i ==〉

((Ex #j. S RunningGtk(Y, X, gtk)@j & (j〈i))

& not(Ex X2 Y2 #i2. A CommitGtk(X2, Y2, gtk)@i2 & not(#i2=#i))

))

& (All X Y gtk #i. S CommitGtk(X, Y, gtk)@i ==〉

((Ex #j. A RunningGtk(Y, X, gtk)@j & (j〈i))

& not(Ex X2 Y2 #i2. S CommitGtk(X2, Y2, gtk)@i2 & not(#i2=#i))

))”

lemma SecretPtk:

221

SAPiC Code for Attacks on 802.11 4-way handshake

all - traces

”All id ptk #i. S InstallsPtk(id , ptk)@i ==〉 (not (Ex #j. K(ptk)@j))”

lemma SecretGtk:

all - traces

”All id gtk #i. S InstallsGtk(id , gtk)@i ==〉 (not (Ex #j. K(gtk)@j))”

// d) Transfer the GTK from the Authenticator to the Supplicant.

lemma SameGtk:

all - traces

”All S gtk #i. S InstallsGtk(S, gtk)@i ==〉 (Ex #j. A GeneratesGtk(gtk)@j & (j〈i))”

// e) Confirm the selection of cipher suites .

lemma AgreementCs:

all - traces

”(All X Y cs #i. A CommitCs(X, Y, cs)@i ==〉

((Ex #j. S RunningCs(Y, X, cs)@j & (j〈i))

& not(Ex X2 Y2 #i2. A CommitCs(X2, Y2, cs)@i2 & not(#i2=#i))

))

& (All X Y cs #i. S CommitCs(X, Y, cs)@i ==〉

((Ex #j. A RunningCs(Y, X, cs)@j & (j〈i))

& not(Ex X2 Y2 #i2. S CommitCs(X2, Y2, cs)@i2 & not(#i2=#i))

))”

// f) Security Property to capture KRACK attack

lemma NoPtkReuse:

all - traces

”All id ptk #i #j. S InstallsPtk(id , ptk)@i & S InstallsPtk(id, ptk)@j ==〉 (#i=#j)”

lemma NoGtkReuse:

all - traces

”All id gtk #i #j. S InstallsGtk(id , gtk)@i & S InstallsGtk(id, gtk)@j ==〉 (#i=#j)”

// Uncomment the following to enforce restrictions and verify the proposed as well as standard properties

/∗

restriction RestNoPtkReuse:

”All id ptk #i #j. S InstallsPtk(id, ptk)@i & S InstallsPtk(id, ptk)@j ==〉 (#i=#j)”

restriction RestNoGtkReuse:

”All id gtk #i #j. S InstallsGtk(id, gtk)@i & S InstallsGtk(id, gtk)@j ==〉 (#i=#j)”

∗/

end

222

Appendix Three

StealthCheck user manual

The StealthCheck tool, developed in Python, verifies the the stealthiness of attacks against

the various combinations of logged parameters of participants as well as individual logs,

e.g., while testing attack on Needham- Shroeder Public Key protocol with two participants,

the tool will generate three output Tamarin files, one each using logs of I and R and

third using combined logs of I and R.

Rules for TAMARIN file to be processed : In order to be verified for stealthiness,

a model should follow the conventions listed below for rules/facts/action labels:

• Prefix logs to the action labels of all the rules of the form : LogRule-

Name(Pars(RuleName)),.....with parameters to be logged as required chosen from

those being used in the rule.

• Rulename specification : String of the form ID (a letter) followed by SEQ (a number),

where ID is for identifying participant ID uniformly used in model such as I, R, A,

B etc.

• All protocol rules must be numbered 1,2,3,..,n and placed in a sequence in Tamarin

file. This is to help the tool differentiate between protocol rules and auxiliary rules.

• All the logs must have distinct names of the form Log[RuleName]. Fact and action

223

StealthCheck user manual

label names must also be distinct.

• Comments should be avoided within the rules. If required, must be made either

before the start of the rule or after the rule ends.

• ‘sid’ must not be used by any rule in the Tamarin source. If present, rename ’sid’

to avoid confusion.

• None of the security lemmas, originally present in the model, should be modified to

use any of the stealth logs added above.

StealthCheck features : The python based StealthCheck utility stealthcheck.py modifies

the Tamarin source by adding session IDs to premise, conclusions and stealth logs, stealth

Logs in rules, if not present, with no parameters, and finally constructing and adding the

two stealthiness restrictions : Correspondence and Uniqueness. Finally, it automatically

verifies the stealthiness of an attack by verifying / falsifying the security lemmas present

in the model.

Usage : Execute Tamarin to check presence of any attack on the protocol. Execute

./stcheck singlefile with this Tamarin source file name or ./stcheck directory with a

directory name containing multiple such Tamarin source file names.

e.g., to check one protocol, execute

$./stcheck singlefile NamesMessages/densac sym cbc.spthy

and, to check all protocols in a single directory, execute

$./stcheck directory NamesMessages

It is also possible for Tamarin to not terminate as the StealthCheck utility tries

to prove all the files in one go. In such cases, the models should be passed individually to

Tamarin to verify the stealthiness of attacks. Additionally, lemma proofs could also be

attempted manually using ‘auto-sources’ feature. $ tamarin-prover –prove –auto-sources

filename.spthy

224

Appendix Four

TAMARIN code for the case studies

D.1 TAMARIN Codes of NSPK protocol [55]

Original TAMARIN Code snippets annotated with Logs, containing Partner

names and Nonces, given as input to the StealthCheck tool

theory NSPK3

begin

builtins : asymmetric-encryption

// Public key infrastructure

rule Register pk:

[Fr(˜ltkA)]

- -〉

[!Ltk(A, ltkA), !Pk(A, pk(˜ltkA)), Out(pk(˜ltkA))]

rule Reveal ltk:

[!Ltk(A, ltkA)] - - [RevLtk(A)]-〉 [Out(ltkA)]

rule I1:

let m1 = aenc{’1’, ˜ni, I\}pkR

in

[Fr(˜ni) , !Pk(R, pkR)]−−[OUT I 1(m1), LogI1(I,R, ni)]− > [Out(m1), St I1(I,R, ˜ni)]

rule R2:

let m1 = aenc{’1’, ni, I}pk(ltkR)

m2 = aenc{’2’, ni, ˜nr}pkI

in

225

TAMARIN code for the case studies

[!Ltk(R, ltkR), In(m1), !Pk(I, pkI), F r(nr)]−−[IN R1 ni(ni,m1), OUT R 1(m2), Running(I,R, 〈’init’,ni,˜nr〉)

, LogR2(I,R,ni, nr)]− > [Out(m2), StR1(R, I, ni, ˜nr)]

rule I3:

let m2 = aenc{’2’, ni, nr}pk(ltkI)

m3 = aenc{’3’, nr}pkR

in

[St I1(I , R, ni) , !Ltk(I, ltkI) , In(m2)

, !Pk(R, pkR)]

- - [IN I 2 nr(nr, m2), LogI3(I,R,ni,nr)

, Commit (I, R, 〈’ init ’ ,ni ,nr〉)

, Running(R, I, 〈’resp’ ,ni ,nr〉)] -〉

[Out(m3), Secrecy(I,R,nr), Secrecy(I ,R,ni)]

rule R4:

[St R 1(R, I, ni , nr) , !Ltk(R, ltkR)

, In(aenc{’3’ , nr}pk(ltkR))]

- - [Commit (R, I, 〈’resp’ ,ni ,nr〉) , LogR4(I,R,ni,nr)

] -〉

[Secrecy(R,I,nr) , Secrecy(R,I,ni)]

rule X5:

[Secrecy(A, B, m)] - - [Secret(A, B, m), LogX5(A,B,m)]-〉 []

// Nonce secrecy from the perspective of both the initiator and the responder.

lemma nonce secrecy:

not(Ex A B s #i.

Secret(A, B, s) @ i

& (Ex #j. K(s) @ j)

& not (Ex #r. RevLtk(A) @ r)& not (Ex #r. RevLtk(B) @ r)

)

// Injective agreement from the perspective of both the initiator and the responder.

lemma injective agree :

All actor peer params #i. Commit(actor, peer, params) @ i

==〉 (Ex #j. Running(actor, peer, params) @ j & j 〈 i

& not(Ex actor2 peer2 #i2.

Commit(actor2, peer2, params) @ i2 & not(#i = #i2)

))

| (Ex #r. RevLtk(actor) @ r) | (Ex #r. RevLtk(peer) @ r)

end

226

TAMARIN code for the case studies

D.2 TAMARIN Code of NSPK modified by

StealthCheck

Modified TAMARIN Code snippets by StealthCheck tool for stealthiness test

based on combined logs of (I)nitiator and (R)esponder

theory NSPK3

begin

builtins : asymmetric-encryption

rule Register pk: [Fr(˜ltkA)] - -〉

[! Ltk(A, ltkA), !Pk(A,pk(˜ltkA)),Out(pk(˜ltkA))]

rule Reveal ltk: [! Ltk(A,ltkA)]

- - [RevLtk(A)]-〉 [Out(ltkA)]

rule I1: let m1 = aenc{’1’, ˜ni, I}pkR in[Fr(sid), F r(ni), !Pk(R,pkR)]

- - [OUT\ I\ 1(m1),LogI1(˜sid,I,R,ni)]-〉

[Out(˜sid),Out(m1),St I1(I,R,˜ni)]

rule R2: let m1 = aenc{’1’, ni, I}pk(ltkR)

m2 = aenc{’2’, ni, ˜nr}pkI in

[In(sid) ,! Ltk(R, ltkR), In(m1), !Pk(I, pkI), F r(nr)]−−[IN R1 ni(ni,m1), OUT R 1(m2), Running(I,R,〈’init’

,ni,˜nr〉),

LogR2(sid,I,R,ni, nr)]− > [Out(m2), St R1(R,I,ni,˜nr)]

rule I3: let m2 = aenc{’2’, ni, nr}pk(ltkI)

m3 = aenc{’3’, nr}pkR in

[In(sid) ,St\ I1(I ,R,ni) ,! Ltk(I, ltkI) ,In(m2),!Pk(R,pkR)]

- - [IN I 2 nr(nr,m2),LogI3(sid,I,R,ni,nr),

Commit(I,R,〈’init’ ,ni ,nr〉) ,

Running(R,I,〈’resp’ ,ni ,nr〉)] -〉

[Out(m3),Secrecy(I,R,nr),Secrecy(I,R,ni)]

rule R4: [In(sid) ,St R 1(R,I,ni ,nr) ,! Ltk(R,ltkR),In(aenc{’3’,nr}pk(ltkR))]

- - [Commit(R,I,〈’resp’,ni,nr〉) ,LogR4(sid,I,R,ni,nr)] -〉

[Secrecy(R,I,nr),Secrecy(R,I,ni)]

rule X5: [In(sid) ,Secrecy(A,B,m)] --[Secret(A,B,m),LogX5(sid,A,B)]-〉 []

227

TAMARIN code for the case studies

lemma nonce secrecy:

” not(Ex A B s #i. Secret(A, B, s) @ i

& (Ex #j. K(s) @ j) & not (Ex #r. RevLtk(A) @ r)

& not (Ex #r. RevLtk(B) @ r)

)”

lemma injective agree :

” All actor peer params #i.

Commit(actor, peer, params) @ i ==〉

(Ex #j. Running(actor, peer, params) @ j & j 〈 i

& not(Ex actor2 peer2 #i2.

Commit(actor2, peer2, params) @ i2 & not(#i = #i2)))

| (Ex #r. RevLtk(actor) @ r) | (Ex #r. RevLtk(peer) @ r) ”

restriction Unique ni forLogI1andLogI1:

”All I2 sid2 ni I1 R1 sid1 R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogI1(sid2,I2,R2,ni) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogR2:

”All I2 nr2 sid2 ni I1 R1 sid1 R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogR2(sid2,I2,R2,ni,nr2) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogR2 1:

”All I2 ni sid2 ni2 I1 R1 sid1 R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogR2(sid2,I2,R2,ni2,ni) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogI3:

”All I2 nr2 sid2 ni I1 R1 sid1 R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogI3(sid2,I2,R2,ni,nr2) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogI3 1:

”All I2 sid2 ni2 I1 R1 sid1 ni R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogI3(sid2,I2,R2,ni2,ni) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogR4:

”All I2 nr2 sid2 ni I1 R1 sid1 R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogR4(sid2,I2,R2,ni,nr2) @j ==〉 (sid1 = sid2)”

restriction Unique ni forLogI1andLogR4 1:

”All I2 sid2 ni2 I1 R1 sid1 ni R2 #i #j. LogI1(sid1,I1,R1,ni) @i & LogR4(sid2,I2,R2,ni2,ni) @j ==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR2:

”All I2 nr2 sid2 ni I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogR2(sid2,I2,R2,ni,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR2 1:

”All I2 ni sid2 ni2 I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogR2(sid2,I2,R2,ni2,ni) @j

==〉 (sid1 = sid2)”

228

TAMARIN code for the case studies

restriction Unique nr forLogR2andLogR2 2:

”All I2 nr2 sid2 nr I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogR2(sid2,I2,R2,nr,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR2 3:

”All I2 nr sid2 ni2 I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogR2(sid2,I2,R2,ni2,nr) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogI3:

”All I2 nr2 sid2 ni I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogI3(sid2,I2,R2,ni,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogI3 1:

”All I2 ni sid2 ni2 I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogI3(sid2,I2,R2,ni2,ni) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogI3 2:

”All I2 nr2 sid2 nr I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogI3(sid2,I2,R2,nr,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogI3 3:

”All I2 nr sid2 ni2 I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogI3(sid2,I2,R2,ni2,nr) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR4:

”All I2 nr2 sid2 ni I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogR4(sid2,I2,R2,ni,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR4 1:

”All I2 ni sid2 ni2 I1 R1 sid1 nr1 R2 #i #j. LogR2(sid1,I1,R1,ni,nr1) @i & LogR4(sid2,I2,R2,ni2,ni) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR4 2:

”All I2 nr2 sid2 nr I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogR4(sid2,I2,R2,nr,nr2) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR4 3:

”All I2 nr sid2 ni2 I1 R1 sid1 ni1 R2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogR4(sid2,I2,R2,ni2,nr) @j

==〉 (sid1 = sid2)”

restriction Unique nr forLogR2andLogR4:

229

TAMARIN code for the case studies

”All sid1 I1 nr ni1 I2 R2 sid2 R1 ni2 #i #j. LogR2(sid1,I1,R1,ni1,nr) @i & LogR4(sid2,I2,R2,ni2,nr) @j ==〉 (sid1 =

sid2)”

restriction EveryALBeforeLogR4 1:

”All sid I R ni nr #i1. LogR4(sid,I,R,ni,nr)@i1 ==〉

(Ex #i2. LogI3(sid,I ,R,ni,nr) @i2 & (i2 〈 i1)

& Ex #i3. LogR2(sid,I,R,ni,nr) @i3 & (i3 〈 i2)

& Ex #i4. LogI1(sid,I ,R,ni) @i4 & (i4 〈 i3)

&

(All I1 R1 ni1 nr1 #i5. LogR4(sid,I1,R1,ni1,nr1) @i5 ==〉 (#i5 = #i1))

&

(All I2 R2 ni2 nr2 #i6. LogI3(sid,I2 ,R2,ni2,nr2) @i6 ==〉 (#i6 = #i2))

&

(All I3 R3 ni3 nr3 #i7. LogR2(sid,I3,R3,ni3,nr3) @i7 ==〉 (#i7 = #i3))

&

(All I4 R4 ni4 #i8. LogI1(sid,I4 ,R4,ni4) @i8 ==〉 (#i8 = #i4)))”

restriction EveryALBeforeLogI3 2:

”All sid I R ni nr #i1. LogI3(sid,I ,R,ni,nr)@i1 ==〉

(Ex #i2. LogR2(sid,I,R,ni,nr) @i2 & (i2 〈 i1)

& Ex #i3. LogI1(sid,I ,R,ni) @i3 & (i3 〈 i2)

& (

All I1 R1 ni1 nr1 #i4. LogI3(sid,I1 ,R1,ni1,nr1) @i4 ==〉 (#i4 = #i1)) &

(All I2 R2 ni2 nr2 #i5. LogR2(sid,I2,R2,ni2,nr2) @i5 ==〉 (#i5 = #i2))

&

(All I3 R3 ni3 #i6. LogI1(sid,I3 ,R3,ni3) @i6 ==〉 (#i6 = #i3)))”

restriction EveryALBeforeLogR2 3:

”All sid I R ni nr #i1. LogR2(sid,I,R,ni,nr)@i1 ==〉

(Ex #i2. LogI1(sid,I ,R,ni) @i2 & (i2 〈 i1)

&

(All I1 R1 ni1 nr1 #i3. LogR2(sid,I1,R1,ni1,nr1) @i3 ==〉 (#i3 = #i1))

&

(All I2 R2 ni2 #i4. LogI1(sid,I2 ,R2,ni2) @i4 ==〉 (#i4 = #i2)))”

end

230

	Title Page
	Abstract
	I Introduction and Background
	Introduction
	Overview
	Research Objective and Questions
	Thesis Overview & Structure
	Publications

	Background & Related Work
	Overview
	Introduction
	Security Properties
	Attacks on Security Protocols
	Replay/Pre-play Attack
	Type Flaw Attack
	Man-in-the-Middle Attack
	Reflection Attack
	Attacks on Authentication

	Formal Protocol Verification
	Security Protocol Verification Models
	Formal Protocol Verification Tools
	Protocols and Trace Properties

	Formal Verification of Security Properties
	TAMARIN PROVER Use Cases

	Stealth Attacks in Various Context
	Stealth Attacks on Cyber-physical Systems
	Stealth Attacks on Operating Systems
	Stealthy Denial of Service (DoS) attacks
	Miscellaneous Stealth Attacks Scenarios
	Detecting Stealth Attacks

	Notational Preliminaries
	Term Rewriting
	Labelled Multiset Rewriting

	Summary

	II Modelling Attacks in a Formal Universe
	Modelling of Attacks on 802.11 4-Way Handshake
	Motivation
	Contribution
	Overview
	Preliminaries
	Fundamentals of TAMARIN PROVER
	The SAPiC Front End.

	Formal Models of the 802.11 4-Way Handshake Attacks
	KRACK Attacks
	Cipher Suite Downgrade

	Modelling Issues
	Chapter Summary

	Analysis of 802.11 4-Way Handshake Attacks and Security Properties
	Motivation
	Contribution
	Overview
	Related Work
	Methodology for Analysing Security Properties
	Analysis of IEEE 802.11 Security Properties
	Proposing New Security Properties
	Verifying the Mitigations to the Models
	Chapter Summary

	III Defining Stealthiness in a Trace Model
	Formal Model of Stealthiness
	Motivation
	Contribution
	Overview
	Modelling Protocols in our Framework
	Labelled Transition relation
	Protocol Run and Trace

	Extensions to Labelled MSR in our Framework
	Restrictions on Setup and Protocol Rules

	Running Example
	Protocol and Logged Traces

	Allowed Sequences of Protocol Rules
	Defining `Standard Trace'
	`Standard Looking Trace' and `Stealth Attack'
	Chapter Summary

	TAMARIN Model of Stealthiness
	Motivation
	Contributions
	Overview
	Well-formedness of Rules and Rule Lists
	Validity of Facts, Variables, and Rules
	Valid and Well-Formed Rule List

	Introducing Session Identifier
	Applying Formal Stealth Model to Running Example

	Adding Sessions to Running Example:
	Substitutions on Templates and Standard Traces
	Substitutions Properties on Variables and Rule lists
	Analysing Templates and Traces

	Rewriting Templates using Equivalence of Names
	Classification of Equivalence Class
	Template Rewriting

	Enforcing Stealthiness in TAMARIN
	Chapter Summary

	Modelling TAMARIN Semantics and Stealthiness using Coq
	Motivation
	Contributions
	Introduction to Coq
	Modelling of TAMARIN Semantics using Coq
	Basic Syntax Definitions
	Equality and Membership Functions
	Defining Substitutions and Ground terms
	TAMARIN Reduction
	TAMARIN Example

	Modelling of Stealthiness in Coq
	New TAMARIN Reduction
	Well-formedness and Validity Definitions
	TAMARIN definitions of Stealthiness
	Correctness Lemmas and Axioms on System Behaviour
	Correctness Lemmas and Propositions

	Equivalence of Two Models
	Importance of Coq Encoding and Learnings
	Chapter Summary

	Case Studies: Testing for Stealthiness in TAMARIN
	Motivation
	Contributions
	Overview
	Algorithm used by StealthCheck
	Applying TAMARIN Stealth Model to Example 5.1

	Testing Stealthiness of Attacks
	Stealthiness of Public TAMARIN models
	Stealthiness of KRACK attack

	Chapter Summary

	IV Closing Statements
	Conclusions and Future Directions
	Contributions and Reflections
	Future Scope and Directions

	Appendices
	Functions used in Def. 5.7
	SAPiC Code for Attacks on 802.11 4-way handshake
	Code for KRACK Attack of Figure 3.3

	StealthCheck user manual
	TAMARIN code for the case studies
	TAMARIN Codes of NSPK protocol Tamarinrepository
	TAMARIN Code of NSPK modified by StealthCheck

