
Programming in C

Session 3

Seema Sirpal

Delhi University Computer Centre



Conditional Processing 

All the code in the previous examples executed, that is, from the first 

line of the program to the last, every statement was executed in the 
order it appeared in the source code. 

This may be correct for some programs, but others need a way to 
choose which statements will be executed or run. 

Conditional processing extends the usefulness of programs by 

allowing the use of simple logic or tests to determine which blocks of 
code are executed. In this lesson, a simple guessing game will be 

developed to illustrate the use of conditional execution.



If Statement 

The if statement is used to conditionally execute a block of code 
based on whether a test condition is true. If the condition is true the 
block of code is executed, otherwise it is skipped.

#include <stdio.h>
int main()

{
int number = 5;

int guess;
printf("I am thinking of a number between 1 and 10\n");
printf("Enter your guess, please \n");

scanf("%d",&guess);
if (guess == number)

{
printf("Incredible, you are correct\n");

}

return 0;

}



If Statement 

The if statement is used to conditionally execute a block of code 
based on whether a test condition is true. If the condition is true the 
block of code is executed, otherwise it is skipped.

#include <stdio.h>
int main()

{
int number = 5;

int guess;
printf("I am thinking of a number between 1 and 10\n");
printf("Enter your guess, please \n");

scanf("%d",&guess);
if (guess == number)

{
printf("Incredible, you are correct\n");

}

return 0;

}



If Statement 

The "==" is called a relational operator. 

Relational operators

==, !-, >, >=, <, and <=, are used to compare two operands. 

The program works, but it needs some improvements. If the user 
enters 5 as a choice, he gets back a nice message, "Incredible, you 
are correct". But what happens if the user puts in an incorrect choice? 

Nothing. No message, no suggestions, nothing. 

The else statement provides a way to execute one block of code if a 
condition is true, another if it is false.



If Statement 

#include <stdio.h>

int main()
{

int number = 5;
int guess;

printf("I am thinking of a number between 1 and 10\n");
printf("Enter your guess, please\n");

scanf("%d",&guess);
if (guess == number)
{

printf("Incredible, you are correct\n");
}

else
{

printf("Sorry, try again\n");
}
return 0;

}



if / else if Statement 

#include <stdio.h>
int main()
{

int number = 5;
int guess;
printf("I am thinking of a number between 1 and 10\n");
printf("Enter your guess, please ");
scanf("%d",&guess);
if (guess == number)
{

printf("Incredible, you are correct\n");
}
else if (guess < number)
{

printf("Higher, try again\n");
}
else // guess must be too high
{

printf("Lower, try again\n");
}
return 0;

} 



Practice 

Write a game program that allows a user to guess the day of your

birthday. Add logic to your program to limit the guesses between
1 and 31, since the days of a month are in this limit. Print out
appropriate error messages if the guess is outside of this range. 
Add logic and messages to guide the user towards the correct 
answer, that is, output "Higher" or "Lower" if the guess if wrong.



Solution 

#include <stdio.h>
int main()
{

int myBirthday = 13;
int guess;
printf("Please guess the day of my birth, from 1 to 31\n");
printf("Enter your guess, please ");
scanf("%d",&guess);
/* Test for out of range guesses first */
if (guess <= 0)
{

printf("Months have at least one day, Einstein\n");
}
else if (guess > 31)
{

printf("Pretty long month, genius\n");
}
else if (guess == myBirthday)
{

printf("Incredible, you are correct\n");
}
else if (guess < myBirthday)
{

printf("Higher, try again\n");
}
else /* Guess is in range and not greater than or equal */
{

printf("Lower, try again\n");
}
return 0;

} 



Summary of Relational Operators

Operator Description Example Evaluation

== equal 5 == 4 FALSE
5 == 5 TRUE

!= not equal 5 != 4 TRUE
5 != 5 FALSE

> greater than 5 > 4 TRUE
5 > 5 FALSE

>= greater than or equal 5 >= 4 TRUE
5 >= 5 TRUE

< less than 5 < 4 FALSE
5 < 5 FALSE

<= less than or equal 5 <= 4 FALSE
5 <= 5 TRUE



Switch Statement

The switch statement is a construct that is used to replace deeply 

nested or chained if/else statements. Nested if/else statements arise 
when there are multiple alternative threads of execution based on 
some condition. 

Example - Suppose that an ice cream store has asked us to write a 
program that will automate the taking of orders. We will need to
present a menu and then based on the customer's choice take an 
appropriate action. 



Switch Statement
#include <stdio.h>
int main()
{

int choice;
printf("What flavor ice cream do want?\n");
printf("Enter 1 for chocolate\n");
printf("Enter 2 for vanilla\n");
printf("Enter 3 for strawberry\n");
printf("Enter 4 for green tea flavor\n");
printf("Enter you choice: ");
scanf("%d",&choice);

if (choice == 1) {
printf("Chocolate, good choice\n");

}
else if (choice == 2) {

printf("Vanillarific\n");
}
else if (choice == 3) {

printf("Berry Good\n");
}
else if (choice == 4) {

printf("Big Mistake\n");
}
else {

printf("We don't have any\n");
printf("Make another selection \n");

}
return 0;

} 

Using If/else

This program will work fine, but 
the if/else block is cumbersome. 



Switch Statement

#include <stdio.h>
int main()
{

int choice;
printf("What flavor ice cream do want?\n");
printf("Enter 1 for chocolate\n");
printf("Enter 2 for vanilla\n");
printf("Enter 3 for strawberry\n");
printf("Enter 4 for green tea flavor, yuck\n");
printf("Enter you choice: \n");
scanf("%d",&choice);
switch (choice) {
case 1:

printf("Chocolate, good choice\n");
break;

case 2:
printf("Vanillarific\n");
break;

case 3:
printf("Berry Good\n");
break;

case 4:
printf("Big Mistake\n");
break;

default:
printf("We don't have any\n");
printf("Make another selection\n");

}
return 0;

} 

Using Switch



Switch Statement

The general form of a switch statement is:

switch (variable) {

case expression1:
do something 1;
break;

case expression2:
do something 2;

break;
....

default:

do default processing;
} 

Each expression must be a constant. The variable is compared for equality 

against each expression. 

When an expression is found that is equal to the tested variable, execution 

continues until a break statement is encountered.



Switch Statement

It is possible to have a case without a break. This causes execution to fall 
through into the next case. This is sometimes very useful. Suppose we need to 
determine if a letter stored in a variable is a vowel or consonant.

switch (myLetter) {

case 'A':
case 'E':

case 'I':
case 'O':
case 'U':

vowelCnt++; /* increments vowel count */
/* same as, vowelCnt = vowelCnt + 1; */

break;
default:

consonantCnt = consonantCnt + 1;

}



Switch Statement

For some coding practice, how could the same logic be 
implemented using if and else's?



Switch Statement

Implementation without logical operators :

if (myLetter == 'A') {
vowelCnt++;

}
else if (myLetter == 'E') {

vowelCnt++;

}
else if (myLetter == 'I') {

vowelCnt++;
}
else if (myLetter == 'O') {

vowelCnt++;
}

else if (myLetter == 'U') {
vowelCnt++;

}
else {

constanantCnt++;

}



Switch Statement

Implementation with logical operators:

if ((myLetter == 'A') ||

(myLetter == 'E') ||
(myLetter == 'I') ||

(myLetter == 'O') ||
(myLetter == 'U')) {
vowelCnt++;

}
else {

constantantCnt++;
} 



Logical Operators

C provides several logical operators that allow more complex 
relational expressions to be formed and evaluated.

Operator Description Example Evaluation

&& AND (5 > 3) AND (5 > 6) FALSE

&& AND (5 > 3) AND (5 > 4) TRUE

|| OR (5 > 3) OR (5 > 6) TRUE

|| OR (5 > 3) OR (5 > 4) TRUE

! NOT !(5 > 3) FALSE

! NOT !(5 > 6) TRUE



Logical Operators

Relational operators are of higher precedence than the logical and the 

order of evaluation is from left to right. Here are some examples that 
illustrate what this means.

if (myChoice == 'A' and myAge < 25) is evaluated as

if ((myChoice == 'A') and (myAge < 25))

Suppose x = 8, y = 49, z = 1.

if (x < 7 && y > 50 || z < 2) is evaluated as
if (((x < 7) && (y > 50)) || (z < 2)) which is TRUE, not as
if ((x < 7) && ((y > 50) || (z < 2)) which is FALSE. 



Logical Operators

Here are a few final points to wrap up this lesson :

Even if you are sure about the order of precedence of an expression, 
use explicit parenthesis. 

This serves to increase readability and will help avoid errors. 


