
Programming in C

Session 9

Seema Sirpal

Delhi University Computer Centre



Functions

Functions are used to encapsulate a set of operations and return

information to the main program or calling routine. 

Encapsulation is detail, information or data hiding. Once a function is 

written, we need only be concerned with what the function does. 

That is, what data it requires and what outputs it produces. The
details, "how" the function works, need not be known. 



Functions

The use of functions provides several benefits.

First, it makes programs significantly easier to understand and 

maintain. The main program can consist of a series of function calls 

rather than countless lines of code. 

A second benefit is that well written functions may be reused in
multiple programs. The C standard library is an example of the reuse 

of functions. 

A third benefit of using functions is that different programmers
working on one large project can divide the workload by writing 

different  functions. 



Defining & Declaring Functions

A function is declared with a prototype. 

The function prototype, which has been seen in previous lessons, 

consists of the return type, a function name and a parameter list. 

The function prototype is also called the function declaration. 

Here are some examples of prototypes.

return_type function_name(list of parameters);

int max(int n1, int n2); /* A programmer-defined function */

int printf(const char *format,...); /* From the standard library */

int fputs(const char *buff, File *fp); /* From the standard library */



Defining & 
Declaring 
Functions

The function definition consist of 

the prototype and a function body, 
which is a block of code enclosed 

in parenthesis.

A declaration or prototype is a way 
of telling the compiler the data 

types of the any return value and of 

any parameters, so it can perform 
error checking.

The definition creates the actual 

function in memory. Here are some 
examples of functions.

int FindMax(int n1, int n2)
{
if (n1 > n2)
{
return n1;

}
else
{
return n2;

}
}
void PrintMax(int someNumber)
{
printf("The max is 

%d\n",someNumber);
}
void PrintHW()
{
printf("Hello World\n");

}
float FtoC(float faren)
{
float factor = 5./9.;
float freezing = 32.0;
float celsius;

celsius = factor * (faren - freezing);

return celsius;
} 



Defining & Declaring Functions

There are a few significant things to notice in these examples. 

The parameter list of a function may have parameters of any data type and 
may have from no to many parameters. 

The return statement can be used to return a single value from a function. 

The return statement is optional. For instance, the function PrintHW does 

not return a value. 

Finally, observe that variables can be declared within a function. These 
variables are local variables. They have local scope. Scope refers to the 

section of code where a variable name is valid and may be used. We'll see 

more on scope in the next Session.



Using Functions

A function should always be 

declared prior to its use to allow 

the compiler to perform type 

checking on the arguments used in 
its call.

/* Include Files */
#include <stdio.h>
/* Function Declarations */
int FindMax(int n1, int n2);
void PrintMax(int someNumber);
void PrintHW();
float FtoC(float faren);
int main()
{
int i = 5;
int j = 7;
int k;
float tempInF = 85.0; /* A nice sunny day */
float tempInC;
PrintHW(); /* Prints Hello World */
k = FindMax(i,j);
PrintMax(k); /* Prints Max Value */
tempInC = FtoC(tempInF);
printf("%f Fahrenheit equals %f Celsius \n",tempInF,tempInC);
return 0;

}
/* Function Definitions */
int FindMax(int n1, int n2)
{
if (n1 > n2)
{
return n1;

}
else
{
return n2;

}
}
void PrintMax(int someNumber)
{
printf("The max is %d\n",someNumber);

}

void PrintHW()
{
printf("Hello World\n");

}
float FtoC(float faren)
{
float factor = 5./9.;
float freezing = 32.0;
float celsius;

celsius = factor * (faren - freezing);

return celsius;
} 



Using Functions

Notice that the functions are declared prior to their use. 

The function definitions are actually below main in this file.

Also, notice that the function definitions and declarations match. 

They have the same return type, names, and parameters. 

The function definitions need not even be in this file.

For instance, when you use library functions, the definitions are 
not in your file. 

A program may be separated into multiple files. Main, along with

the needed function declarations may be in one file. 



Practice

1) Write functions to convert feet to inches, convert inches to 

centimeters, and convert centimeters to meters. Write a 

program that prompts a user for a measurement in feet and 

converts and outputs this value in meters.

Facts to use: 1 ft = 12 inches, 1 inch = 2.54 cm, 100 cm = 1 

meter.



Solution

1) #include <stdio.h>

double feetToInches(double feet);
double inchesToCentimeters(double inches);
double centimetersToMeters(double cm);
int main()
{
double feet,inches,cms,meters;

printf("Enter your measurement in feet\n");
scanf("%lf",&feet);

inches = feetToInches(feet);
cms = inchesToCentimeters(inches);
meters = centimetersToMeters(cms);

printf("%f feet equals %f inches\n",feet,inches);
printf("%f feet equals %f centimeters\n",feet,cms);
printf("%f feet equals %f meters\n",feet,meters);

return 0;
}

double feetToInches(double feet)
{
return 12.0 * feet;

}

double inchesToCentimeters(double inches)
{
return 2.54 * inches;

}

double centimetersToMeters(double cm)
{
return cm/100.0;

} 



Returning Multiple 
Values from 
Functions

Function to swap two integer 

values. 

#include <stdio.h>

void swap(int x, int y); 
/* Note that the variable names in the

prototype and function 
definition need not match.
Only the types and number of
variables must match */

int main()
{

int x = 4;
int y = 2;

printf("Before swap, x is %d, y is 
%d\n",x,y);

swap(x,y);
printf("After swap, x is %d, y is %d\n",x,y);

}

void swap(int first, int second)
{

int temp;

temp = second;
second = first;
first = temp;

} 



Returning Multiple 
Values from 
Functions

Results

The values weren't swapped. 



Returning Multiple Values from 
Functions

In C, all arguments are passed into functions by value. 

This means that the function receives a local copy of the argument. Any 
modifications to the local copy do not change the original variable in the 
calling program.

If a variable is to be modified within a function, and the modified value is 
desired in the calling routine, a pointer to the variable should be passed to 
the function. 

The pointer can then be manipulated to change the value of the variable in 
the calling routine. 

It is interesting to note that the pointer itself is passed by value. The 
function cannot change the pointer itself since it gets a local copy of the 
pointer. However, the function can change the contents of memory, the 
variable, to which the pointer refers.

The advantages of passing by pointer are that any changes to variables will 
be passed back to the calling routine and that multiple variables can be 
changed. 



Returning Multiple 
Values from 
Functions

Example with pointers being 

passed into the function.

#include <stdio.h>

void swap(int *x, int *y); 

int main()

{

int x = 4;

int y = 2;

printf("Before swap, x is %d, y is 

%d\n",x,y);

swap(&x,&y);

printf("After swap, x is %d, y is 

%d\n",x,y);

return 0;

}

void swap(int *first, int *second)

{

int temp;

temp = *second;

*second = *first;

*first = temp;

} 



Returning Multiple Values from 
Functions

Results



Practice Problem

1) Write a function that will calculate the area and circumference 

of a circle. Write a program to prompt a user for a radius and 
write out the values calculated by the function. 

Hint: Pass values that will be modified by pointer.

Useful facts:

pi = 3.14

area = pi * radius2

circumference = 2 * pi * radius



Solution

1) #include <stdio.h>
#define PI 3.1415

void calcCircle(float radius, float *area, float *circum);
int main()
{

float radius;
float area;
float circum;
float *apt;

printf("Enter the radius of your circle: ");
scanf("%f",&radius);

apt = &area;
calcCircle(radius,apt,&circum);
/* Notice that for the area an explicit pointer is passed.

For the circumference, the address of operator is used. 
Passing in the address of a variable is the same as passing
a pointer */

printf("A circle of radius %f\n \t has area %f\n \t and 
circumference %f\n",

radius, area, circum);

return 0;

}

void calcCircle(float radius, float *area, float *circum)
{

float pi = PI;

*area = pi * radius * radius;

*circum = 2.0 * pi * radius;

}



Results



Scope & Program Structure

The scope of a variable is simply the part of the program where it 

may be accessed or written. 

It is the part of the program where the variable's name may be used. 
If a variable is declared within a function, it is local to that function. 

Variables of the same name may be declared and used within other

functions without any conflicts. 

int fun1()
{
int a;
int b;
....

}

int fun2()
{
int a;
int c;
....

}

Local Variable



Scope & Program Structure

The scope of a variable is simply the part of the program where it 

may be accessed or written. 

It is the part of the program where the variable's name may be used. 
If a variable is declared within a function, it is local to that function. 

Variables of the same name may be declared and used within other

functions without any conflicts. 

int fun1()
{
int a;
int b;
....

}

int fun2()
{
int a;
int c;
....

}

Local Variable

Here, the local variable "a" in fun1 is distinct from 

the local variable "a" in fun2.

Changes made to "a" in one function have no effect 

on the "a" in the other function. 

"b" exists and can be used only in fun1.

"C" exists and can be used only in fun2. 

The scope of b is fun1. 

The scope of c is fun2. 



Scope & Program 
Structure

int fun1();
int fun2();

int main()
{
int a;
int b;
int x,y,z;

x = fun1();
y = fun2();

return 0;
}

int fun1()
{
int a;
int b;
....

}

int fun2()
{
int a;
int c;

}

here, a, b, x, y and z are local to main, a 

and b are local to fun1 and a and c are 

local to fun2. 

There are three distinct local variables all 
named "a". 

Local variables are also referred to as 

automatic variables. 

They come to life at the beginning of a 

function and die at the end automatically.



Scope & Program 
Structure

int j;
...
int main()
{
....

}

int k;
float funA()
{
}

int l;
float funB()
{
}

Variables may also be defined outside of 

any function. 

These are referred to as global or 

external variables. 

The scope of an external variable is from 

its declaration to the end of the file.

External Variable

The variable "j" will be visible in main, funA and funB. 

The variable "k" will be visible in funA and funB only. 

The variable "l" will be visible only in function funB.



Scope of Function
int fun1();
int fun2();
int main()
{
....

}
int fun3();

int fun1()
{
int i;
....
i = fun3();
....

}

int fun2()
{
.....

}
int fun3()
{
.....

}

The scope for a function is similar to that 

of an external variable.

Its scope is from the functions 

declaration to the end of the file.

here fun1 and fun2 may be called from 

main but fun3 may not.

The function fun3 can be called from fun1 

and fun2 or from anywhere after its 
declaration.



Multiple Files

Till now all the examples have shown an entire program within one 

file. 

This is fine for short simple programs but any large real world 

program is likely to have its code distributed among multiple files.

There are several practical reasons for organizing a program into 

multiple files. 

First, it allows parts of the program to be developed independently, 
possible by different programmers. This separation also allows 

independent compiling and testing of the modules in each file. 

Second, it allows greater reuse. Files containing related functions can 
become libraries of routines that can be used in multiple programs.



Multiple Files

Having a program distributed in multiple files raises some 
important issues. 

Within one file the scope of a global (external) variable is from its 
definition to the end of the file. 

The keyword "extern" makes it possible to use a global variable in 
multiple files. 

Suppose a program is in three files and it is desired to use a global 
variable, myState, to communicate some information between 
routines in each of the files. 

The variable, myState, is defined in one file and declared in the 
other two files using the extern keyword.



Multiple Files
File One:

int myState;

int main()

{

....

}

File Two:

extern int myState;

float foo1()

{

....

}

float foo2()

{

....

}

.....

File Three:

extern int myState;

float fooA()

{

.....

}

....

Notice that a variable may only be 
defined once.

It may be declared multiple times. 
Remember that a definition creates 
space, or reserves memory, for the 
variable. 

The declaration just informs the 
compiler that a variable or function 
exists. 

The keyword extern tells the 
compiler that the variable is defined 
in another file.



Multiple Files

The second issue with multiple files is that of function declarations, or 
prototypes. 

Function prototypes should always be used even if the compiler used does not 
enforce their use. 

They allow the compiler to perform type checking on the arguments in function 
calls and can prevent many errors. 

Suppose a function that is defined in one file is to be called in several others. 

Each of these other files should contain a prototype for this function. One 
approach would be as follows.



Multiple Files

fileone.c:
int fun1(float x, float y);
int main()
{
float x,y,z;
x = 5.0;
y = 6.0;
z = fun1(x,y);
....

}

filetwo.c:
int fun1(float x, float y);
float fun2()
{
float a = 4.0;
float b = 6.0;
float c;
c = fun1(a,b);
....

}
.....

filethree.c:
int fun1(float x, float y);
....
....
float fun1(float x, float y)
{
return (x * y);

}
....



Include Files and 

Program Structure

Suppose we had many functions and 

hated typing. 

Fortunately, there is a simple solution, 

"include" files.

All function prototypes and global 

variables can be put into an include file, 

and code in this file will be sourced into 

each file using the #include 

preprocessor directive.

Include File: filethree.h
int fun1(float x, float y);
......
fileone.c:
#include "filethree.h"
int main()
{
float x,y,z;
x = 5.0;
y = 6.0;
z = fun1(x,y);
....

}
filetwo.c:
#include "filethree.h";
float fun2()
{
float a = 4.0;
float b = 6.0;
float c;
c = fun1(a,b);
....

} ….

filethree.c:
#include "filethree.h";
....
....
float fun1(float x, float y)
{
return (x * y);

} ….



Include Files and 

Program Structure

Putting the main program in a single file and related functions in their own 
files is recommended.

So, you might have a large program divided into several files such as main.c, 
input.c, output.c and calc.c. 

Here, main.c would contain the main program. Input functions would be in 
input.c. Output functions would be in output.c and calculation functions in 
calc.c. 

Each of the "function" files should have its own include file containing the 
prototypes of all the functions in that file. So in this example, you would also 
have the include files input.h, output.h and calc.h. 

Assume that main uses functions from all three files and that calc.c requires 
routines from output.c to log error messages.



Include Files and 

Program Structure

main.c:
#include "input.h"
#include "output.h"
#include "calc.h"
main()
{
....

}

input.c:
function1() /* Functions can, of course, have any name */
{
}
function2()
{
}

output.c:
functionA()
{
}
functionB()
{
}

calc.c:
#include "output.h"
functiony()
{
}
functionz()
{
}


