
Expressions and Operators

Expressions

• Using variables within expressions to do
something is what PHP is all about.

 <?php
 $name = ‘Rob’;
 echo $name;
 ?>

Expression

Operator

Some Types of Operator

• Arithmetic
• Assignment
• Bitwise
• Comparison
• Ternary

• Incrementing
/decrementing

• Logical
• String

String Operators

• Use a dot to concatenate two strings:
e.g.
 $firstname = ‘Rob’;
 $surname = ‘Tuley’;
 // displays ‘Rob Tuley’
 echo $firstname.’ ‘.$surname;

Arithmetic Operators

Example Name Result

$a + $b Addition Sum of $a and $b.

$a - $b Subtraction Difference of $a and $b.

$a * $b Multiplication Product of $a and $b.

$a / $b Division Quotient of $a and $b.

$a % $b Modulus Remainder of $a divided by $b.

Assignment Operators

Example Result
$a = $b Sets $b to the same value as $a.

$a += $b Equivalent to $a = $a + $b.

$a .= $b Equivalent to $a = $a.$b.

Combining Operators

• Note that you can combine operators, for
example use =, + and / in one expression:

 $a = 4;
 $b = 2;
 $c = $a + $b + ($a/$b);
 // $c has value 4+2+(4/2) = 8

• Brackets help group operators.

Comparison Operators

Example Name Result
$a == $b Equal TRUE if $a is equal to $b.
$a != $b Not equal TRUE if $a is not equal to $b.
$a <> $b Not equal TRUE if $a is not equal to $b.
$a < $b Less than TRUE if $a is strictly less than $b.
$a > $b Greater than TRUE if $a is strictly greater than $b.
$a <= $b Less than or equal to TRUE if $a is less than or equal to $b.
$a >= $b Gtr than or equal to TRUE if $a is greater than or equal to $b.

Comparisons

• Comparison expressions return a value of
TRUE (or ‘1’) or FALSE (or ‘0’).

e.g.
 $a = 10;
 $b = 13;
 // result is true (‘1’)
 echo $a < $b;

Incrementing/Decrementing

Example Name Effect
++$a Pre-increment Increments $a by one, then returns $a.

$a++ Post-increment Returns $a, then increments $a by one.

--$a Pre-decrement Decrements $a by one, then returns $a.

$a-- Post-decrement Returns $a, then decrements $a by one.

Logical Operators

Example Name Result
$a and $b And TRUE if both $a and $b are TRUE.
$a or $b Or TRUE if either $a or $b is TRUE.
$a xor $b Xor TRUE if either $a or $b is TRUE, but not both.

!$a Not TRUE if $a is not TRUE.
$a && $b And TRUE if both $a and $b are TRUE.
$a || $b Or TRUE if either $a or $b is TRUE.

Finally, a tricky one!

• A single ? is the ternary operator.
(expr) ? if_expr_true : if_expr_false;

• A test expression evaluates to TRUE or FALSE.
• TRUE gives first result (before colon)
• FALSE gives second result (after colon)

Ternary Operator example

<?php
$a = 10;
$b = 13;
echo $a<$b ? ‘a smaller’:‘b smaller’;
// string ‘a smaller’ is echoed
// to the browser..
?>

Groups of variables

• So far, we have stored ONE piece of data in
each variable.

• It is also possible to store multiple pieces of
data in ONE variable by using an array.

• Each piece of data in an array has a key..

An array

Normal Variable, no key:
 $name = ‘Rob’;
Array Variable, multiple pieces with ‘keys’:
 $name[0] = ‘Rob’;
 $name[1] = ‘Si’;
 $name[2] = ‘Sarah’;

 …
The ‘key’

Array keys

• Array keys can be strings as well as numbers..
 $surname[‘rob’] = ‘Tuley’;
 $surname[‘si’] = ‘Lewis’;

• Notice the way that the key is specified, in
square brackets following the variable name.

Working with arrays..

• Create Array (automatic keys):
 $letters = array('a','b','c','d');
 The array keys are automatically assigned by PHP as

0, 1, 2, 3
 i.e. $letters[1] has value ‘b’
• Create Array (explicit keys):
 $letters = array(10=>’a’,13=>’b’);
 i.e. $letters[13] has value ‘b’

Working with arrays…

• Create array (component by component):
 $letters[10] = ‘a’;
 $letters[13] = ‘b’;

• Access array component:
 echo $letters[10];
 // displays a
 echo $letters[10].$letters[13];
 // displays ab

Working with arrays…

Note that trying to echo an entire array will not
display the data. To print an entire array to

screen (for debug, for example) use the
function print_r instead.

 echo $letters;

 print_r($letters);

So..
We know we can:
1. Store things in named variables.
2. Use expressions to operate on the contents

of these variables.
3. Can compare variables..

 How do we actually include logic in the
code such as ‘if this is bigger than that, do
this’?

Control Structures

• if, elseif, else
• while, do … while
• for, foreach
• switch
• break, continue, return
• require, include, require_once,
include_once

If …
• To do something depending on a comparison,

use an if statement.
 if (comparison) {
 expressions; // do if TRUE
 }

• NB: Notice the curly brackets – these are
important!

If example
 <?php
 $a = 10;
 $b = 13;
 if ($a<$b) {
 echo ‘a is smaller than b’;
 }
 ?>

Extending IF statements

• It is possible to add extra optional clauses to if
statements..

 if (comparison) {
 expressions; // do if TRUE
 } else {
 expressions; // do otherwise
 }

Extending If statements

 if (comparison1) {
 expressions;
 } elseif (comparison2) {
 expressions;
 } else {
 expressions;
 }

An example..

$a = 10;
$b = 13;
if ($a<$b) {
 echo ‘a is smaller than b’;
} elseif ($a==$b) {
 echo ‘a is equal to b’;
} else {
 echo ‘a is bigger than b’;
}

While loops

• Might want to do something repeatedly while
a comparison is true..

 while (comparison) {
 expressions;

 }

Example

• Lets count to 10! Displays 1,2,3,4,5,..,10:

$i = 1;
while ($i <= 10) {
 echo $i++;

}

Do .. While

• An alternative...

$i = 1;
do {
 echo $i++;

} while ($i <= 10);

For loop

• Sometimes we want to loop around the same bit of
code a number of times.. Use a for loop.

• for (expr1; expr2; expr3) { statements; }

– expr1 evaluated/executed initially
– expr2 evaluated at beginning of each iteration

(Continues if TRUE)
– expr3 evaluated/executed at end of each

iteration

For loop example

• To count from 1 to 10:

 for ($i=1; $i<=10; $i++) {
 echo $i;
 }

initialise
Continue if true

Execute at end of loop

Foreach loop

• A foreach loop is designed for arrays. Often
you want to loop through each item in an
array in turn..

 $letters = array(‘a’,’b’,’c’);
 foreach ($letters as $value) {
 echo $value;

 } // outputs a,b,c in turn

Foreach.. With keys

• Sometimes we want to use the array ‘key’
value too:

 $letters = array(‘a’,’b’,’c’);

 foreach ($letters as $key => $value) {
 echo “array $key to $value”;

 }

Switch statement
switch (expr) {

case (result1):
 statements;
break;
case (result2):
 statements;
break;
default:
 statements;

}

• expr is evaluated
– Case corresponding to

result is executed
– Otherwise default case

is executed
• break

– Ensures next case isn’t
executed

Switch Example
switch ($name) {

case ‘Rob’:
 echo ‘Your name is Rob’;
break;
case ‘Fred’:
 echo ‘You are called Fred’;
break;
default:
 echo ‘Not sure what your name is’;

}

break, continue, return

• break
– Ends execution of current for, foreach, do … while, while or

switch structure
– Option: Number of nested structures to break out of

• continue
– Skip rest of current loop
– Option: Number of nested loops to skip

• return
– Ends execution of current function/statement/script

Indentation..

• Code readability IS important – notice how all
the code inside a loop/control structure is
indented.

• Once you start writing nested control loops,
indentation is the only way to keep track of
your code!

require, include

• require('filename.ext')
– Includes and evaluates the specified file
– Error is fatal (will halt processing)

• include('filename.ext')
– Includes and evaluates the specified file
– Error is a warning (processing continues)

• require_once / include_once
– If already included won’t be included again

Code Re-use

• Often you will want to write a piece of code
and re-use it several times (maybe within the
same script, or maybe between different
scripts).

• Functions are a very nice way to encapsulate
such pieces of code..

Eh..? What?

• You have already used functions..

echo(‘text to display’);

Function NAME Function ARGUMENT

What is a function?

• A function takes some arguments (inputs) and
does something with them (echo, for example,
outputs the text input to the user).

• As well as the inbuilt PHP functions, we can
define our own functions..

Definition vs. Calling

There are two distinct aspects to functions:
1. Definition: Before using a function, that

function must be defined – i.e. what inputs
does it need, and what does it do with
them?

2. Calling: When you call a function, you
actually execute the code in the function.

Function Definition

• A function accepts any number of input
arguments, and returns a SINGLE value.

function myfunction($arg1,$arg2,…,$argN)
{
 statements;
 return $return_value;
}

Example

• Function to join first and last names together
with a space..

function make_name($first,$last)
{
$fullname = $first.’ ‘.$last;
return $fullname;
}

Calling functions..

• Can be done anywhere..
myfunction($arg1,$arg2,…,$argN)

or
$answer = myfunction($arg1,$arg2,…,$argN)

e.g.

echo make_name(‘Rob’,’Tuley’);
// echoes ‘Rob Tuley’

Functions: Return Values

• Use return()
– Causes execution of function to cease
– Control returns to calling script

• To return multiple values
– Return an array

• If no value returned
– NULL

‘Scope’
• A function executes within its own little

protected bubble, or local scope.
• What does this mean? Its means that the

function can’t ‘see’ any of the variables you
have defined apart from those passed in as
arguments..

• Each new function call starts a clean slate in
terms of internal function variables.

In other words..
• Variables within a function

– Are local to that function
• Disappear when function execution ends

• Variables outside a function
– Are not available within the function

• Unless set as global

• Remembering variables
– Not stored between function calls

• Unless set as static

Global variables..
• To access a variable outside the ‘local’ scope of a

function, declare it as a global:
function add5toa()
{
 global $a;
 $a = $a + 5;
}
$a = 9;
add5toa();
echo $a; // 14

Static Variables
• Local function variable values are not saved between

function calls unless they are declared as static:
function counter()
{
 static $num = 0;
 return ++$num;
}
echo counter(); // 1
echo counter(); // 2
echo counter(); // 3

Default Arguments

• Can specify a default value in the function
definition which is used only if no value is
passed to the function when called..

• Defaults must be specified last in the list

function myfunction($arg1,$arg2=‘blah’)…

function myfunction($arg1=‘blah’,$arg2)…

Passing References

• Pass a reference to a variable
– Not the actual variable

• Why?
– Enables a function to modify its arguments

• How?
– Use an ampersand in front of the variable
– &$variable

	Slide Number 1
	Expressions
	Some Types of Operator
	String Operators
	Arithmetic Operators
	Assignment Operators
	Combining Operators
	Comparison Operators
	Comparisons
	Incrementing/Decrementing
	Logical Operators
	Finally, a tricky one!
	Ternary Operator example
	Groups of variables
	An array
	Array keys
	Working with arrays..
	Working with arrays…
	Working with arrays…
	So..
	Control Structures
	If …
	If example
	Extending IF statements
	Extending If statements
	An example..
	While loops
	Example
	Do .. While
	For loop
	For loop example
	Foreach loop
	Foreach.. With keys
	Switch statement
	Switch Example
	break, continue, return
	Indentation..
	require, include
	Code Re-use
	Eh..? What?
	What is a function?
	Definition vs. Calling
	Function Definition
	Example
	Calling functions..
	Functions: Return Values
	‘Scope’
	In other words..
	Global variables..
	Static Variables
	Default Arguments
	Passing References

