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Abstract—Real life datasets often suffer from the problem
of class imbalance, which thwarts supervised learning process.
In such data sets examples of positive (minority) class are
significantly less than those of negative (majority) class leading
to severe class imbalance. Constructing high quality classifiers
for such imbalanced training data sets is one of the major
challenges in machine learning, since traditional classification
algorithms tend to get biased towards majority class.

In this paper, we compare three ensemble based approaches
for handling imbalanced datasets. All the three approaches
aim to overcome the under representation of minority class
by learning from each of the minority class samples and a
subset of majority class samples. The three approaches namely,
PARTEN, UMjC and LFM were evaluated on several public
datasets. Precision, recall, F- measure, g-mean and ROC space
measures were used for comparison. Thread-bare discussion
of the results is presented in the paper. Subsequently, we
present an astronomy application, where the three methods are
compared for prediction of class II, IIn and IIp supernovae.

Keywords-SVM, Ensembles, Classification, Supervised
Learning, Class imbalance

I. I NTRODUCTION

Learning from imbalanced data sets is one of the challeng-
ing problems in supervised learning. Imbalanced datasets
arise frequently in real life in both scientific and com-
mercial domains. Fraud/intrusion detection, medical diag-
nosis and protein folding applications intrinsically generate
imbalanced datasets either because of rare occurence of
events, expensive experimentation or tedious data collection
process [1]. A large number of imbalanced datasets prevail
in information retrieval and filtering tasks [2].

The problem of class imbalance is quite pervasive and
troublesome for data mining/machine learning community,
requiring special attention. The problem was formally ad-
dressed in a workshop in the beginning of current decade [3].
A special issue of SIGKDD exploration [4] was dedicated to
this problem indicating the importance of the problem and
the strong interest of the community looking for solutions.

The challenge in imbalanced datasets arises because of the
severe under-representation of one class1 causing suboptimal

1As in the prevailing literature, we work in the setting of twoclass
classification problem though in scientific domains, imbalance often exists
in multi class classification problems.

performance of the classifier [1]. Though the class imbalance
may exist in test data too, it is the one in the training data
that negatively influences learning. Coupled with the fact
that error costs for misclassification for two classes are often
vastly different ( e.g. in medical, financial and scientific
domains), learning from imbalanced data sets has fuelled
the quest for solutions.

Class imbalance problem has been handled either using
data oriented approaches [5], [6], or algorithmically [1],
[7], [8]. Data oriented approaches broadly sample the two
classes in various ways to create multiple training sets, each
of which is used to induce a classifier. Final prediction is
done by the ensemble of induced classifiers [6], [5]. Algo-
rithmic approaches on the other hand focus on techniques
like adjusting costs or decision thresholds to counter class
imbalance [9], [7]. Recognition based learning (one class
learning) methods also fall in this category [8].

In this paper we focus on data oriented approach for
handling class imbalance problem. Ensembles using disjunct
partitioning [10], [5] (PARTEN) and undersampling of ma-
jority class (UMjC) [11], [12], [13] are two well known data
oriented approaches to handle the problem. They differ in
the way the training sets are created to induce component
classifiers from the imbalanced data sets (Sections III-A
and III-B). We present empirical comparison of these two
methods with a third one which is based on learning-
from-mistakes2 (LFM) paradigm. LFM generates dependent
classifiers and selects the components of the ensemble on the
basis of user defined criteria of precision of the minority
class (Section III-C). SVM is used as the base classifier for
all the three methods. The reader is referred to [15], [16] for
an introduction to SVM technique for supervised learning.

Empirically SVMs have been shown to handle the class
imbalance ratio of 1:10 [5], [11]. However, for more severe
class imbalance they do get overwhelmed by the majority
class. Extensive experimentation on imbalanced datasets3

shown in Table II support this view. For each dataset, the best
kernel4(linear, polynomial, RBF and sigmoid) was chosen

2Preliminary work on this method is presented in reference [14].
3Class imbalance was created by adopting 1 vs. all approach in all multi-

class datasets.
4LIBSVM [17] implementation was used.



using default parameters. Subsequent to this, for each dataset
thirty pairs of training and test sets were generated and
SVM was induced for each pair with the selected kernel.
The performance metrics were averaged over the thirty pairs.
The results in Table II demonstrate the general deterioration
of SVM performance with increasing imbalance ratio in
datasets. For more than half of the data sets, since not even
a single object of positive class was predicted correctly,
precision (See Eq. 1) and hence, F-measure are not defined
(See Eq. 4). These results strengthen our motivation to work
with SVM ensembles for imbalanced datasets.

Table I
DATASETS WITH THEIR CLASSES, ATTRIBUTES(ATTRIB) AND

IMBALANCE RATIOS(IR)

Data Set Min vs Maj Instances Attrib IR
Ecoli-imU imU vs all 336 7 8.6
Optdigits0 0 vs all 5564 64 9.1
Vowel0 0 vs all 990 10 10
GlassVWFP Veh-win-float-proc 214 9 10.39

vs all
Abalone11-18 11 vs 18 529 7 11.6
EcoliOM OM vs all 336 7 13.84
Abalone11-19 11 vs 19 519 7 15.2
GlassCont containers vs all 214 9 15.47
Abalone9-18 18 vs 9 731 7 16.68
GlassTware tableware vs all 214 9 22.81
YeastCYT-POX POX vs CYT 483 8 23.15
YeastME2 ME2 vs all 1484 8 28.41
YeastME1 ME1 vs all 1484 8 32.78
YeastEXC EXC vs all 1484 8 39.16

Table II
BEST PERFORMANCE OFSVM FOR IMBALANCED DATASETS IN TABLE I

Data Set Kernel Acc Prec Recall F-msr gmean
Ecoli-imU All 89.38 - 0 - 0
Optdigits0 RBF 92.12 1 0.2 0.34 0.45
Vowel0 Poly 98.61 0.98 0.87 0.92 0.93
GlassVWFP Poly 88.06 0.18 0.11 0.19 0.32
Abalone11-18 All 92.09 - 0 - 0
Ecoli(OM) All 93.81 - 0 - 0
Abalone11-19 All 93.68 - 0 - 0
GlassCont Poly 93.33 0.53 0.81 0.64 0.88
Abalone9-18 All 94.26 - 0 - 0
GlassTware Poly 98.7 0.82 0.91 0.85 0.95
YeastCYT-POX Linear 98.27 0.96 0.63 0.74 0.79
YeastME2 All 96.57 - 0 - 0
YeastME1 All 96.97 - 0 - 0
YeastEXC All 97.58 - 0 - 0

The major contribution of the paper is the empirical
comparison of the earlier mentioned three SVM ensembles
for handling imbalanced datasets. The paper is organized as
follows. Section II describes the related work in the field
of learning from imbalanced data sets. Section III describes
in detail the three methods that are examined. Section IV
details the experimental setting. Section V presents the
discussion on the results on UCI datasets. An astronomy
application for prediction of rare supernovae is presentedin
Section VI. Finally, section VII concludes the paper.

II. RELATED WORK

Joshi et al. [18] conducted a systematic study to evaluate
how boosting performs for the task of mining rare classes.
They empirically compared three categories of boosting
algorithms and discussed their possible effect on recall and
precision of the rare class. Later they demonstrated that
boosting mechanism does not overcome the deficiencies of
weak base learners, while predicting rare classes [19].

Chawla et al. [1] and Japkowicz [20] present an infor-
mative account of the progression of interest of machine
learning community in the class imbalance problem. The
problem is also known as rare class problem [21] and
an excellent overview of this aspect of the problem can
be found in Weiss [22]. A review of different approaches
adopted in this area can be found in [21]. Data based and
algorithm based approaches have been used to handle the
class imbalance problem.

The data based approaches include different forms of
random sampling or directed sampling. Oversampling (with
replacement) the minority class or undersampling the ma-
jority class [5], [8], [11] is usually employed to overcome
class imbalance. In directed sampling approach, the choice
of samples to replace or eliminate is informed rather than
random [1]. Some directed sampling approaches effectuate
oversampling by generating new examples in an informed
manner [23]. Liu et al. [5] create multiple classifiers by
undersampling the majority class and oversampling (using
SMOTE [23]) the minority class. Multiple training sets are
generated and multiple classifiers are induced, predictions
from which are then combined for each unseen instance.
Yan et al. [6] use SVM ensemble to predict rare classes in
scene classification.

Algorithmic mechanisms employed to mitigate class im-
balance problem tend to improve a classifier’s performance
by working with its inherent characteristics. The misclas-
sification costs of classes can be adjusted to counter the
class imbalance [9]. While working with decision trees, the
probabilistic estimate at the tree leaf can be adjusted [7].
Instead of learning from two classes together (discrimination
based learning), learning can be done from each class
separately (recognition based learning) [8]. Akbani et al [11]
proposed a technique in which they combine oversampling
with class cost adjustment using SVM.

III. M ETHODSEXAMINED

Ensemble methods have been examined extensively by
the advocates of data oriented solution to class imbalance
problem [5], [6], [24]. We present a detailed description of
the three ensemble creation methods examined in this paper.
In all these methods, majority voting has been used as the
combining function.
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Figure 1. PARTEN approach

A. PARTEN - PARTitionining ENsemble

Given a data setT with imbalance ratio1 : b. The exam-
ples from minority class are denoted byTmin and examples
from majority class denoted byTmaj . The majority class
Tmaj is divided intob disjunct partitions [25], [6] . With each
of theseb partitions, the complete minority class is combined
to createT1, T2 . . .Tb. Thus, b balanced training sets are
created. This approach leads to zero data loss since each
majority class record is used at least once while minority
class records are usedb times for learning. Further, the
size of ensemble is fixed by the ratio of imbalance. We are
aware that some researchers opine that perfect balance in
the training set is no guarantee for best learning [21]. But to
the best of authors’ knowledge, there has been no theoretical
work to prove this. We follow this approach because of its
simplicity. Figure 1 describes the approach pictorially.

B. UMjC - Undersampling Majority Class

Undersampling (with replacement) is used forTmaj to
generateb sets [11], [12], [13]. The size of each of the
sampled set is the same as the number of instances inTmin.
Each of theb sets is then combined withTmin to generate
training setsT1. . .Tb. Thus, an ensemble withb components
is generated.
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Figure 2. Ensemble creation using LFM

C. LFM Ensemble - Learning From Mistakes

This ensemble technique creates a set of dependant clas-
sifiers, each of which is created using the mistakes of the
previous classifier, hence, the name ”Learning from Mis-
takes”. A balanced training set (T1) for the first classifier of

the ensemble is constructed by sampling (with replacement)
the majority class and combining it with all minority class
instances.

A weak SVM (M1) is induced from the training set, by
setting a high value of cost parameter. Weak classifiers are
preferred in SVM ensemble approach for better predictive
performance. The training setT is then predicted byM1.
Since a limited number of negative examples and all positive
examples were used for learning,M1 is expected to make a
large number of mistakes. The training set for next iteration
is constructed by combining the unbounded support vectors
of M1 with equal number of randomly sampled mistakes.
The intuition behind using the unbounded support vectors
is that they are the data points which lie exactly on the
class margin boundary. These points define the boundary
to which the class extends and are favourable candidates
for correctly classified instances in the current training set.
Note that there are equal number of correctly and incorrectly
classified records inT2.

All subsequent training sets are similarly generated by
combining unbounded support vectors from selected models
and the mistakes made by the classifier in the previous
iteration, while maintaining uniqueness of training instances.
The process is repeatedb number of times to maintain com-
parability with the other two methods under investigation.
In case there are no mistakes in an iteration, the ensemble
may have< b classifiers. Figure 2 describes the process of
LFM ensemble creation.

Not all the classifiers that are generated may exhibit desir-
able performance. In each iteration the training set has equal
number of correctly classified and misclassified instances
thereby reducing the chances of hyperplane getting biased
towards mistakes. However, a situation where the hyperplane
is overwhelmed by the mistakes of the negative class,
cannot be totally ruled out. Hence, only those classifiers are
selected for ensemble creation which show an acceptable
performance on the training set. Joshi et al. argued that
boosting can fail to achieve overall good recall and precision
levels in imbalanced datasets if the base learner always
achieves poor recall and precision with respect to the class
distribution in training data [19]. Extending this argument,
we propose that only those classifiers be selected which have
acceptable precision and/or recall. In case the application
demands improved recognition of both classes, g-mean can
be used as selection measure. In short, LFM method includes
those component classifiers, which satisfy the criterion that
is desired to be improved.

IV. EXPERIMENTAL SETUP

Prior to discussion of results, we describe three important
aspects of the experimental setting.



A. Evaluation metrics

Evaluation of a classifier induced by imbalanced data sets
needs special attention because despite high accuracy it may
not meet user requirement of recognition of minority class.
For two-class confusion matrix shown in Table III, a few
more measures are defined below:

Table III
TWO CLASSCONFUSIONMATRIX - TP:TRUE POSITIVES, TN:TRUE

NEGATIVES, FP:FALSE POSITIVES, FN:FALSE NEGATIVES

Predicted Positive Predicted Negative
Actual Positive TP FN
Actual Negative FP FN

Precision =
TP

TP + FP
(1)

Recall = Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

g − mean =
√

Specificity ∗ Sensitivity (5)

F-measure combines recall and precision of a class giving
an idea of its overall performance, while g-mean measures
how well the classifier performs for both the classes. If the
classifier is biased towards negative class, it will have low
sensitivity and hence low g-mean. But if the classifier is
able to classify both positive and negative instances well,
specificity and sensitivity will be high and the g-mean will
also be high.

B. Datasets Description

Fourteen datasets downloaded from UCI repository [26],
with their imbalance ratios are displayed in Table I. Since
very few two-class imbalanced data sets are publically avail-
able, class imbalance was created for multi-class datasetsby
treating one class as positive (minority), and all others as
negative (majority). Similar strategy was followed in [27].

C. Training and Test Set Creation

For evaluation purposes the data set was randomly par-
titioned using stratified sampling into training and test set
(2:1). Conclusions based on one such run may have low
credibility. To beat this, thirty sets of training and test
sets were created and experiments with each method were
executed on each of these train-test pairs. All the measures
presented in the next section are averaged over thirty runs
for each method, and their variances are also computed.

V. RESULTS AND DISCUSSION

The three ensemble methods were tested on the datasets
mentioned in Table I. LIBSVM implementation was used.
Linear kernel with the value of cost parameter C set to
1000, was used to generate component classifiers. Each
ensemble contained at mostb (imbalance ratio) classifiers
and majority voting was used for decision making. LFM
uses an additional parameter, i.e, the selection criterion
for including classifiers in the ensemble. We use precision
≥ 25% as the threshold. The rationale for low value of the
threshold is the lack of information in some of the data
sets. Consider for example, GlassVWFP dataset which has
only twelve positive examples in the training set of 140
instances. Though the imbalance is not very severe, it is the
lack of information which leads to very low precision for all
three methods (Table IV). In order to avoid adding another
dimension to discussion by varying the selection criterionin
LFM for different datasets, we chose to keep threshold for
component selection uniformly low.

Consolidated results in Table IV show the measures
calculated for the minority class. The following conclusions
can be drawn from the results:

1) LFM improves accuracy of the classifier on all
datasets. It is also evident that LFM reduces false
positives significantly leading to improved precision.
(with exception of GlassVWFP dataset) (Eq. 1). This
improvement also positively influences the F-measure
(Eq. 4). On the other hand, LFM reduces the number
of true positives leading to lower TP rate or recall
which also pulls down g-mean (Eq. 5). Further the
extent of reduction in FP and TP varies in different
datasets. We envisage that as the number of classi-
fiers in ensemble is increased (currently it has been
restricted tob), better results are achievable with LFM.

2) PARTEN reduces false negatives more effectively than
UMjC and LFM, which explains higher recall of the
minority class. PARTEN is also the winner in g-mean,
which indicates the higher extent of recognition of
minority and majority classes taken together. Usage of
each majority class example for learning is attributed
to better recognition of both classes.

3) UMjC performs almost as well as PARTEN in these
experiments. Marginal under-performance of UMjC
is due to the fact that while minority class is fully
represented in each training set, some of the majority
class instances may not be selected in any of the
training sets.

Plotting TP rate vs FP rate in ROC space further clarifies
difference in the performance of the three methods with
respect to the minority class. Clustering of points in the
top left corner in ROC space demonstrates effectiveness of
the ensemble methods in general, for learning from imbal-
anced datasets. Visual inspection confirms that PARTEN and
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Figure 3. FP-rate vs TP-rate for three methods using 14 data sets

UMjC classifiers have higher TP rates compared to LFM
classifiers which have lower FP rates.Thus, LFM technique
focuses on lowering FP-rate whereas PARTEN and UMjC
give higher TP-rates for imbalanced data sets.

Having analyzed the properties of the three ensemble
methods, it is important to mention where is this tradeoff
(between reduction in FP and TP) useful. Prediction of
the minority (rare) class is only indicative, with confidence
estimated by generalization error. In most practical appli-
cations predictions have to be inspected either manually
(mostly in financial frauds, medical/bio applications). Ifthe
cost of inspection is very high (eg. as in genomic wet
lab experiments), it makes sense to reduce false positives;
particularly when we do not mind missing some TPs. In such
cases, LFM delivers better cost effective solution. Please
note that in financial fraud detection the opposite would
be true. There the cost of missing TP (frauds) is much
higher than the cost of detecting a FP (non-fraud). In such
applications, PARTEN or UMjC should be preferred over
LFM.

UMjC can be described as an approximation to PARTEN,
as it produces almost the same results as PARTEN. In the
cases where the size of datasets is too large, instead of
generatingb classifiers, lesser number of classifiers can be
generated by UMjC to reduce the training as well as the
prediction costs.

VI. A STRONOMY APPLICATIONS

Astronomy is replete with datasets that contain rare ob-
jects mixed with more well-known types [28], [29]. Espe-
cially real-time transient astronomy, a still evolving field,
requires that interesting objects be flagged within minutes
of detection, the rarer ones be selected and followed up with
larger telescopes as soon as possible [30], [31]. The training
sets generally have object types forming rather imbalanced
samples in terms of frequency, making them a suitable
sample for techniques we are considering here.

In this section we have considered one application on
artificial supernova data [32] with a large majority of the

objects being SN of type Ia. We attempt detection of rarer
supernovae from the spectroscopically confirmed subset of
the SuperNova Challenge dataset [32]. The dataset contains
observed flux for objects in 4 bands viz.g, r, i and z. We
selected 270 objects that were present in all four bands.

In order to use the data we carried out the following
operations: ignore points with errorbars greater than the flux
values, convert the fluxes to magnitudes, obtain slopes for
the curves by dividing the lightcurve into four parts, Thus,
for each filter we ended up with four numbers. These 16
features were used. We separated type I SN from type II and
used them. Ib and Ic were mixed with Ia due to the similarity
of their light curves. IIn and IIp were tested separately as
well as together. We chose to identify classes IIn (IR 22.5),
IIp (IR 9) and IIp+IIn (IR 6.42).

Stratified sampling was used to create thirty training-
test pairs. The three ensemble methods were applied and
the results are displayed in Table V. The precision shows
signicant improvement by LFM method. The improvement
in precision is proportional to severity of imbalance. The
improved precision is advantageous in being able to choose
rarer classes, as followup is expensive. As we move into
the domain of bigger surveys like LSST, it will just not be
possible to follow-up all transients and such methods will
be key to choice of objects. Also, a lower recall but higher
value of F-measure by LFM method indicates that the LFM
ensemble balances the precision and recall of the minority
class better than other two methods.

VII. C ONCLUSION

In this paper we compare three ensemble methods for
learning from imbalanced datasets. Ensemble of disjunct
partitions (PARTEN) and under-sampled majority class
(UMjC) have been earlier shown to perform well for imbal-
anced datasets. In this paper Learning-from-mistakes (LFM)
method has been described and empirically compared with
the above mentioned two methods using public data sets.
This method is shown to be effective in reducing the false
positives, leading to improvement in precision of the minor-
ity(positive) class. It is found to best balance the precision
and recall of the minority (positive) class. However, in
applications where recognition of both classes is important
it is advantageous to use PARTEN method. UMjC is close to
PARTEN as far as recognition of both classes is concerned.

We further studied the performance of the three methods
for detection of SNe of classes IIn, IIp and II. One of the
issues in such applications is to reduce the number of false
positives. LFM was found to achieve this effectively, while
for effective prediction of both classes, PARTEN and UMjC
performed equally well.
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Table IV
PERFORMANCE MEASURES FOR MINORITY(POSITIVE) CLASS ON14 DATASETS USING THEPARTEN, UMJC AND LFM. THE VALUES IN

PARENTHESES ARE THE STANDARD DEVIATIONS OF THE MEASURES FROM THE AVERAGE VALUES.

Dataset Ensemble TP FP FN TN Acc Precision Recall F-msr gmean
Ecoli-imU PARTEN 9.83(0.7) 14.5(3.79) 2.17(0.87) 86.5(3.79) 85.25(3.43) 0.41(0.06) 0.82(0.07) 0.55(0.06) 0.84(0.04)

UMjC 10.67(1.15) 14.33(3.2) 1.33(1.5) 86.67(3.2) 86.14(2.67) 0.43(0.06) 0.89(0.1) 0.58(0.05) 0.87(0.05)
LFM 9.67(1.65) 10.3(6.02) 2.33(1.65) 90.7(6.02) 88.82(4.73) 0.51(0.11) 0.81(0.14) 0.61(0.09) 0.84(0.08)

Optdigit0 PARTEN 183.33(1.27) 14.3(5.19) 1.67(1.27) 1674.7(5.19) 99.15(0.26) 0.93(0.01) 0.99(0.01) 0.96(0.01) 0.99(0)
UMjC 184.17(1.15) 5.1(3.21) 0.83(1.15) 1683.9(3.21) 99.68(0.16) 0.97(0.02) 1(0.01) 0.98(0.01) 1(0)
LFM 183.6(1.28) 1.83(1.18) 1.4(1.28) 1687.17(1.18) 99.83(0.08) 0.99(0.01) 0.99(0.01) 0.99(0) 1(0)

Voweldata PARTEN 27.83(1.51) 24.63(6.28) 2.17(1.51) 275.37(6.28) 91.88(1.83) 0.54(0.06) 0.93(0.05) 0.68(0.05) 0.92(0.02)
UMjC 29.83(0.46) 13.6(4.22) 0.17(0.46) 286.4(4.22) 95.83(1.3) 0.69(0.07) 0.99(0.02) 0.82(0.05) 0.97(0.01)
LFM 28.5(2.36) 2.5(2.39) 1.5(2.36) 297.5(2.39) 98.79(0.74) 0.93(0.06) 0.95(0.08) 0.93(0.04) 0.97(0.04)

GlassVWFP PARTEN 4.03(1.13) 30.63(5.74) 1.97(1.13) 35.37(5.74) 54.72(7.31) 0.12(0.03) 0.67(0.19) 0.2(0.04) 0.59(0.07)
UMjC 4.1(1.54) 30.3(7.59) 1.9(1.54) 35.7(7.59) 55.28(10.35) 0.12(0.05) 0.68(0.26) 0.2(0.08) 0.59(0.13)
LFM 0.6(0.93) 5.8(4.52) 5.4(0.93) 60.2(4.52) 84.44(5.98) 0.11(0.15) 0.1(0.16) 0.21(0.09) 0.18(0.24)

Abalone PARTEN 9.7(1.39) 29.8(2.73) 4.3(1.39) 133.2(2.73) 80.73(1.52) 0.25(0.03) 0.69(0.1) 0.36(0.04) 0.75(0.05)
11-18 UMjC 8.47(1.87) 44.5(22.27) 5.53(1.87) 118.5(22.27) 71.73(11.62) 0.18(0.05) 0.6(0.13) 0.27(0.05) 0.65(0.03)

LFM 3.7(2.78) 7.67(7.57) 10.3(2.78) 155.33(7.57) 89.85(3.06) 0.43(0.22) 0.26(0.2) 0.26(0.12) 0.46(0.17)
Ecoli PARTEN 6.7(0.47) 13.03(2.77) 0.3(0.47) 92.97(2.77) 88.2(2.54) 0.35(0.06) 0.96(0.07) 0.51(0.06) 0.92(0.04)
OM UMjC 7(0) 14.67(9.29) 0(0) 91.33(9.29) 87.02(8.22) 0.39(0.18) 1(0) 0.54(0.18) 0.93(0.05)

LFM 6.37(0.61) 1.6(2.21) 0.63(0.61) 104.4(2.21) 98.02(1.84) 0.84(0.14) 0.91(0.09) 0.86(0.09) 0.95(0.04)
Abalone PARTEN 8.63(0.93) 37.17(5.89) 2.37(0.93) 125.83(5.89) 77.28(3.13) 0.2(0.02) 0.78(0.08) 0.31(0.03) 0.78(0.04)
11-19 UMjC 6.87(2.33) 53.9(24.4) 4.13(2.33) 109.1(24.4) 66.65(12.92) 0.12(0.03) 0.62(0.21) 0.19(0.04) 0.62(0.08)

LFM 1.47(2.4) 3.87(5.13) 9.53(2.4) 159.13(5.13) 92.3(1.91) 0.21(0.25) 0.13(0.22) 0.26(0.14) 0.23(0.27)
GlassCont PARTEN 4.6(0.5) 7.7(2.91) 0.4(0.5) 59.3(2.91) 88.75(4.02) 0.4(0.11) 0.92(0.1) 0.55(0.11) 0.9(0.05)

UMjC 4.7(0.47) 10.6(5.72) 0.3(0.47) 56.4(5.72) 84.86(8.05) 0.36(0.01) 0.94(0.09) 0.5(0.05) 0.89(0.07)
LFM 3.6(0.7) 2.9(1.94) 1.4(0.7) 64.1(1.94) 94.03(2.85) 0.6(0.19) 0.72(0.13) 0.64(0.14) 0.83(0.08)

Abalone PARTEN 11.93(1.14) 27.1(5.01) 2.07(1.14) 202.9(5.01) 88.05(1.71) 0.31(0.03) 0.85(0.08) 0.45(0.03) 0.87(0.03)
9-18 UMjC 9.77(1.65) 15.37(6.64) 4.23(1.65) 214.63(6.64) 91.97(2.37) 0.41(0.1) 0.7(0.12) 0.51(0.07) 0.8(0.06)

LFM 5.5(2.43) 2.7(3.78) 8.5(2.43) 227.3(3.78) 95.41(1.02) 0.77(0.2) 0.39(0.17) 0.48(0.13) 0.61(0.14)
GlassTware PARTEN 3(0) 16.23(4.58) 0(0) 52.77(4.58) 77.45(6.37) 0.17(0.05) 1(0) 0.28(0.07) 0.87(0.04)

UMjC 2.67(0.48) 14.73(6.35) 0.33(0.48) 54.27(6.35) 79.07(9.16) 0.18(0.08) 0.89(0.16) 0.29(0.11) 0.83(0.11)
LFM 2.87(0.35) 1.8(1.06) 0.13(0.35) 67.2(1.06) 97.31(1.26) 0.65(0.15) 0.96(0.12) 0.76(0.08) 0.96(0.06)

Yeast PARTEN 4.6(1.19) 29(15.57) 2.4(1.19) 126(15.57) 80.62(9) 0.15(0.05) 0.66(0.17) 0.24(0.06) 0.72(0.06)
CYT-POX UMjC 4.23(1.48) 6.97(5.56) 2.77(1.48) 148.03(5.56) 93.99(3.31) 0.51(0.28) 0.6(0.21) 0.49(0.15) 0.75(0.13)

LFM 3.7(1.44) 0.57(0.82) 3.3(1.44) 154.43(0.82) 97.61(1.01) 0.89(0.15) 0.53(0.21) 0.64(0.18) 0.71(0.14)
YeastME2 PARTEN 12.97(1.59) 74.07(8.69) 4.03(1.59) 403.93(8.69) 84.22(1.71) 0.15(0.02) 0.76(0.09) 0.25(0.03) 0.8(0.05)

UMjC 12.93(1.7) 62.5(13.27) 4.07(1.7) 415.5(13.27) 86.55(2.52) 0.17(0.03) 0.76(0.1) 0.28(0.04) 0.81(0.05)
LFM 2.47(2.19) 6.5(6.13) 14.53(2.19) 471.5(6.13) 95.75(0.96) 0.32(0.26) 0.15(0.13) 0.21(0.1) 0.32(0.2)

YeastME1 PARTEN 15(0) 30.3(4.06) 0(0) 449.7(4.06) 93.88(0.82) 0.33(0.03) 1(0) 0.5(0.03) 0.97(0)
UMjC 15(0) 39.47(7.44) 0(0) 440.53(7.44) 92.03(1.5) 0.28(0.04) 1(0) 0.44(0.04) 0.96(0.01)
LFM 12.37(3.27) 17.6(8.96) 2.63(3.27) 462.4(8.96) 95.91(1.41) 0.45(0.14) 0.82(0.22) 0.55(0.11) 0.88(0.15)

YeastEXC PARTEN 10.47(0.94) 65.57(11.11) 1.53(0.94) 417.43(11.11) 86.44(2.1) 0.14(0.01) 0.87(0.08) 0.24(0.02) 0.87(0.03)
UMjC 10.3(1.12) 50.43(11.52) 1.7(1.12) 432.57(11.52) 89.47(2.27) 0.17(0.03) 0.86(0.09) 0.29(0.04) 0.88(0.05)
LFM 6.2(2.64) 14.17(10.24) 5.8(2.64) 468.83(10.24) 95.97(1.69) 0.35(0.14) 0.52(0.22) 0.38(0.11) 0.69(0.17)

Table V
PERFORMANCE MEASURES FOR MINORITY CLASS ONSUPERNOVAECHALLENGE DATASET USING PARTEN, UMJC AND LFM

+ vs - Class Ensemble TP FP FN TN Acc Precision Recall F-msr gmean
IIn vs all PARTEN 3.6(0.67) 16.73(1.66) 0.4(0.67) 69.27(1.66) 80.96(1.72) 0.18(0.03) 0.9(0.17) 0.29(0.05) 0.85(0.08)
(IR 22.5) UMjC 3.4(0.72) 20.07(6.14) 0.6(0.72) 65.93(6.14) 77.04(7.13) 0.16(0.05) 0.85(0.18) 0.26(0.08) 0.8(0.11)

LFM 2.5(0.97) 2.03(1.79) 1.5(0.97) 83.97(1.79) 96.07(1.99) 0.63(0.24) 0.63(0.24) 0.62(0.17) 0.75(0.23)
IIp vs all PARTEN 8.23(0.43) 6.93(2.26) 1.77(0.43) 73.07(2.26) 90.33(2.07) 0.55(0.06) 0.82(0.04) 0.66(0.04) 0.87(0.01)
(IR 9) UMjC 8.67(0.66) 5.3(1.21) 1.33(0.66) 74.7(1.21) 92.63(1.18) 0.63(0.05) 0.87(0.07) 0.72(0.04) 0.9(0.03)

LFM 8.13(0.73) 1.93(1.17) 1.87(0.73) 78.07(1.17) 95.78(1.64) 0.82(0.1) 0.81(0.07) 0.81(0.07) 0.89(0.04)
II vs all PARTEN 13.3(0.6) 3.5(1.81) 0.7(0.6) 72.5(1.81) 95.33(2.07) 0.8(0.08) 0.95(0.04) 0.87(0.05) 0.95(0.02)
(IR 6.42) UMjC 12.6791.06) 5.53(3.44) 1.33(1.06) 70.47(3.44) 92.37(3.81) 0.71(0.1) 0.9(0.08) 0.79(0.08) 0.91(0.04)

LFM 11.33(1.35) 1.47(1.07) 2.67(1.35) 74.53(1.07) 95.41(1.69) 0.89(0.07) 0.81(0.1) 0.84(0.06) 0.89(0.05)


