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Abstract—Real life datasets often suffer from the problem  performance of the classifier [1]. Though the class imbaanc
of class imbalance, which thwarts supervised learning process. may exist in test data too, it is the one in the training data
In such data sets examples of positive (minority) class are  yhat negatively influences learning. Coupled with the fact

significantly less than those of negative (majority) class leading - A
to severe class imbalance. Constructing high quality classifiers that error costs for misclassification for two classes arenof

for such imbalanced training data sets is one of the major Vastly different ( e.g. in medical, financial and scientific
challenges in machine learning, since traditional classification domains), learning from imbalanced data sets has fuelled
algorithms tend to get biased towards majority class. the quest for solutions.

In this paper, we compare three ensemble based approaches 5355 jmbalance problem has been handled either using

for handling imbalanced datasets. All the three approaches - . .
aim to overcome the under representation of minority class data oriented approaches [5], [6], or algorithmically [1],

by learning from each of the minority class samples and a [7], [8]. Data oriented approaches broadly sample the two
subset of majority class samples. The three approaches namely, classes in various ways to create multiple training setsh ea

PARTEN, UMJC and LFM were evaluated on several public  of which is used to induce a classifier. Final prediction is
datasets. Precision, recall, F- measure, g-mean and ROC space done by the ensemble of induced classifiers [6], [5]. Algo-

measures were used for comparison. Thread-bare discussion . . .
of the results is presented in the paper. Subsequently, we rithmic approaches on the other hand focus on techniques

present an astronomy application, where the three methods are !ike adjusting costs or decis:ipn thresholds to countersclas
compared for prediction of class I, lIn and llp supernovae. imbalance [9], [7]. Recognition based learning (one class

Keywords-SVM, Ensembles, Classification, Supervised learning) methods also fall in this category [8].

Learning, Class imbalance In this paper we focus on data oriented approach for
handling class imbalance problem. Ensembles using disjunc
|. INTRODUCTION partitioning [10], [5] (PARTEN) and undersampling of ma-

) ) ) jority class (UMjC) [11], [12], [13] are two well known data
_ Learning from imbalanced data sets is one of the challendg jented approaches to handle the problem. They differ in
ing problems in supervised learning. Imbalanced dataseigq \yay the training sets are created to induce component

arise frequently in real life in both scientific and com- q|,qqfiers from the imbalanced data sets (Sections I1I-A
mercial domains. Fraud/intrusion detection, medical diag g lIl-B). We present empirical comparison of these two

nosis and protein folding applications intrinsically geate |\ ~thods with a third one which is based on learning-

imbalanced datasets either because of rare occurence ﬁ’Bm-mistake§ (LFM) paradigm. LFM generates dependent
events, expensive experimentation or tedious data cliifect |,qgjfiers and selects the components of the ensemble on the
process [1]. A large number of imbalanced datasets prevaagis of user defined criteria of precision of the minority
in information retrieval anq filtering t"?‘SkS [,2]' ) class (Section 11I-C). SVM is used as the base classifier for
The problem of class imbalance is quite pervasive andy|| the three methods. The reader is referred to [15], [16] fo
troublesome for data mining/machine learning community.ap, jntroduction to SVM technique for supervised learning.
requiring special attention. The problem was formally ad- Empirically SVMs have been shown to handle the class
dressed in a workshop in the beginning of current decade [3},pajance ratio of 1:10 [5], [11]. However, for more severe
A special issue of SIGKDD exploration [4] was dedicated t0 ;555 imbalance they do get overwhelmed by the majority
this problem indicating the importance of the problem andgjass. Extensive experimentation on imbalanced dafasets
the strong interest of the community looking for solutions. ghqwn in Table Il support this view. For each dataset, the bes

The challenge in |mbala_1nced datasets arises becaqse of t|2§rnef‘(linear, polynomial, RBF and sigmoid) was chosen
severe under-representation of one dl@ssising suboptimal
2preliminary work on this method is presented in reference .[14]
1As in the prevailing literature, we work in the setting of tvetass 3Class imbalance was created by adopting 1 vs. all approadhritukii-
classification problem though in scientific domains, imbataaften exists  class datasets.
in multi class classification problems. 4LIBSVM [17] implementation was used.



using default parameters. Subsequent to this, for eackeatata Il. RELATED WORK

thirty pairs of training and test sets were generated and

SVM was induced for each pair with the selected kernel. Joshi et al. [18] conducted a systematic study to evaluate
The performance metrics were averaged over the thirty pairhiow boosting performs for the task of mining rare classes.
The results in Table Il demonstrate the general deteramati They empirically compared three categories of boosting

of SVM performance with increasing imbalance ratio in algorithms and discussed their possible effect on recall an

datasets. For more than half of the data sets, since not evgmecision of the rare class. Later they demonstrated that
a single object of positive class was predicted correctlypboosting mechanism does not overcome the deficiencies of
precision (See Eq. 1) and hence, F-measure are not definetbak base learners, while predicting rare classes [19].

(See Eq. 4). These results strengthen our motivation to work Chawla et al. [1] and Japkowicz [20] present an infor-

with SVM ensembles for imbalanced datasets. mative account of the progression of interest of machine
Table | learning community in the class imbalance problem. The
DATASETS WITH THEIR CLASSES ATTRIBUTES(ATTRIB) AND problem is also known as rare class problem [21] and
IMBALANCE RATIOS(IR) an excellent overview of this aspect of the problem can
DafaSet Wi vs V3] nstances| ATTB R be found_ in We|ss [22]. A review (_)f different approaches
EcoliimuU imU vs all 336 7 36 adopted in this area can be found in [21]. Data based and
Optdigits0 0 vs all 5564 64 9.1 algorithm based approaches have been used to handle the
Vowel0 Ovs al 990 10 | 10 class imbalance problem.
GlassVWFP Veh-win-float-proc 214 9 10.39 . i
vs all The data based approaches include different forms of
Abalonel11-18 | 11vs 18 529 7 11.6 random sampling or directed sampling. Oversampling (with
EcoliOM OM vs all 336 7| 1384 replacement) the minority class or undersampling the ma-
Abalone11-19 | 11 vs 19 519 7 15.2 L .
GlassCont containers vs all 214 9 15.47 Jority c_:Iass 51, [8l, [11] is usually ?mployed to Overcomet
Abalone9-18 | 18 vs 9 731 7 16.68 class imbalance. In directed sampling approach, the choice
$|assgv¥<’;fgox t;\gl)?waf?: ﬁ all iég g gg% of samples to replace or eliminate is informed rather than
east - 'S . : H
NeasivES ME2 va al a4 = BT random [1]. Some d|recte_d sampling approa_ches _effectuate
YeastMEL METL vs all 1484 3 3578 oversampling by generating new examples in an informed
YeastEXC EXC vs all 1484 8 39.16 manner [23]. Liu et al. [5] create multiple classifiers by
undersampling the majority class and oversampling (using
Table Il SMOTE [23]) the minority class. Multiple training sets are
BEST PERFORMANCE OFSVM FOR IMBALANCED DATASETS IN TABLE | generated and multiple classifiers are induced, predition
from which are then combined for each unseen instance.
Data Set Kernel | Acc | Prec | Recall | F-msr | gmean| vygn et al. [6] use SVM ensemble to predict rare classes in
Ecoli-imU All 89.38 - 0 - 0 | ificati
Opdigits0 RBF | 9212] 1 | 02 | 034 | 045 | Scene classification.
Vowel0 Poly | 98.61] 0.98 | 0.87 | 0.92 [ 0.93 Algorithmic mechanisms employed to mitigate class im-
GlassVWFP Poly | 88.06| 018 011 | 019 | 032 | palance problem tend to improve a classifier's performance
Abalone11-18 | Al | 92.09| - 0 - 0 . N o .
Ecoli(OM) Al 5381 - 5 - 5 by working with its inherent characteristics. The misclas-
Abalonel1-19 | All 9368 | - 0 B 0 sification costs of classes can be adjusted to counter the
Glljaslscont P<|>||y 93.33| 053 | 081 | 064 | 0.88 class imbalance [9]. While working with decision trees, the
Abalone9-18 A 9426 | - 0 - 0 . : :
STassTomre Poly | 987 1082 091 | 085 | 005 probabilistic estl|mate at the tree leaf can be .adjl:IS.t.ed [7].
YeastCYT-POX | Linear | 9827 1 096 | 063 | 074 | 0.79 Instead of Iegrnlng from. two classes together (discrinmat
YeastME2 Al 9657 | - 0 - 0 based learning), learning can be done from each class
YeastME1 Al | 96.97] - 0 - 0 separately (recognition based learning) [8]. Akbani efla] [
YeastEXC All 97.58 - 0 - 0

proposed a technique in which they combine oversampling

. I . .. with class cost adjustment using SVM.
The major contribution of the paper is the empirical

comparison of the earlier mentioned three SVM ensembles

for handling imbalanced datasets. The paper is organized as I1l. M ETHODSEXAMINED

follows. Section Il describes the related work in the field

of learning from imbalanced data sets. Section Il dessribe Ensemble methods have been examined extensively by
in detail the three methods that are examined. Section I\the advocates of data oriented solution to class imbalance
details the experimental setting. Section V presents theroblem [5], [6], [24]. We present a detailed description of
discussion on the results on UCI datasets. An astronomihe three ensemble creation methods examined in this paper.
application for prediction of rare supernovae is preseied In all these methods, majority voting has been used as the
Section VI. Finally, section VII concludes the paper. combining function.




the ensemble is constructed by sampling (with replacement)
the majority class and combining it with all minority class
instances.

A weak SVM (M) is induced from the training set, by
setting a high value of cost parameter. Weak classifiers are
preferred in SVM ensemble approach for better predictive
performance. The training sét is then predicted by\/;.
Since a limited number of negative examples and all positive
examples were used for learniny; is expected to make a
large number of mistakes. The training set for next iteratio
is constructed by combining the unbounded support vectors
of My with equal number of randomly sampled mistakes.
A. PARTEN - PARTItionining ENsemble The intuition behind using the unbounded support vectors
is that they are the data points which lie exactly on the
class margin boundary. These points define the boundary
to which the class extends and are favourable candidates
for correctly classified instances in the current trainiey s

of theseb partitions, the complete minority class is combined Note that there are equal number of correctly and incogrectl

to createTy, T ...T,. Thus,b balanced training sets are classified records ”TQ_' ) o
created. This approach leads to zero data loss since each”ll Subsequent training sets are similarly generated by
majority class record is used at least once while minority®®mPining unbounded support vectors from selected models
class records are usddtimes for learning. Further, the and the mistakes made by the classifier in the previous
size of ensemble is fixed by the ratio of imbalance. We ardt€ration, while maintaining uniqueness of training imsfes.
aware that some researchers opine that perfect balance I{1€ Process is repeatédumber of times to maintain com-
the training set is no guarantee for best learning [21]. But t Parability with the other two methods under investigation.
the best of authors’ knowledge, there has been no thedretic! case there are no mistakes in an iteration, the ensemble
work to prove this. We follow this approach because of itsM&Y have< b cIaSS|f|_ers. Figure 2 describes the process of
simplicity. Figure 1 describes the approach pictorially. LFM ensemble creation.
) i . Not all the classifiers that are generated may exhibit desir-
B. UMC - Undersampling Majority Class able performance. In each iteration the training set haalequ
Undersampling (with replacement) is used fBf.; 0 number of correctly classified and misclassified instances
generateb sets [11], [12], [13]. The size of each of the thereby reducing the chances of hyperplane getting biased
sampled set is the same as the number of instancEsin  towards mistakes. However, a situation where the hypeeplan
Each of theb sets is then combined with,.;, to generate is overwhelmed by the mistakes of the negative class,
training setsly. .. Ty,. Thus, an ensemble withcomponents  cannot be totally ruled out. Hence, only those classifiegs ar
is generated. selected for ensemble creation which show an acceptable
performance on the training set. Joshi et al. argued that
boosting can fail to achieve overall good recall and preaisi
levels in imbalanced datasets if the base learner always
achieves poor recall and precision with respect to the class
distribution in training data [19]. Extending this argumen
we propose that only those classifiers be selected which have
acceptable precision and/or recall. In case the applitatio
Apply SVM on Ti demands improved recognition of both classes, g-mean can
be used as selection measure. In short, LFM method includes
those component classifiers, which satisfy the criteriat th
Figure 2. Ensemble creation using LFM is desired to be improved.

Combine the b models by majority votifg

Figure 1. PARTEN approach

Given a data set’ with imbalance ratial : b. The exam-
ples from minority class are denoted By,;,, and examples
from majority class denoted b¥,,,; . The majority class
Tona; is divided intob disjunct partitions [25], [6] . With each

Repeat the procedur
b times

ey My U=Unique(U-+Ui)
e
Select Ui from Mi

%amFlln with
eplacement
Apply SVM
Model M1
Predicly

‘Mislakes from T ‘Unbtl)Junded SVF

Sample [U
mistakes

C. LFM Ensemble - Learning From Mistakes

This ensemble technique creates a set of dependant clas-
sifiers, each of which is created using the mistakes of the
previous classifier, hence, the name "Learning from Mis- Prior to discussion of results, we describe three important
takes”. A balanced training seTy) for the first classifier of aspects of the experimental setting.

IV. EXPERIMENTAL SETUP



A. Evaluation metrics V. RESULTS ANDDISCUSSION

Evaluation of a classifier induced by imbalanced data sets The three ensemble methods were tested on the datasets
needs special attention because despite high accuracy it mgnentioned in Table I. LIBSVM implementation was used.
not meet user requirement of recognition of minority class.Linear kernel with the value of cost parameter C set to
For two-class confusion matrix shown in Table Ill, a few 1000, was used to generate component classifiers. Each

more measures are defined below: ensemble contained at most(imbalance ratio) classifiers
Table Il and majority voting was used for decision making. LFM
TWO CLASS CONFUSIONMATRIX - TP:TRUE POSITIVES, TN: TRUE uses an .additione_‘ll par_ameter, i.e, the selection Crit_er_ion
NEGATIVES, FP:FALSE POSITIVES, FN:FALSE NEGATIVES for including classifiers in the ensemble. We use precision

_ _ . . > 25% as the threshold. The rationale for low value of the
S — Pred'“ﬁg Positive Pred'Cti‘?\lNegm'Ve threshold is the lack of information in some of the data
Actual Negative EP EN sets. Consider for example, GlassVWFP dataset which has
only twelve positive examples in the training set of 140
instances. Though the imbalance is not very severe, it is the

TP lack of information which leads to very low precision for all
Precision = TP+ FP (1)  three methods (Table IV). In order to avoid adding another
dimension to discussion by varying the selection critefion
L TP LFM for different datasets, we chose to keep threshold for
Recall = Sensitivity = —— TFN (2) component selection uniformly low.
Consolidated results in Table IV show the measures
Speci ficity = TN (3)  calculated for the minority class. The following concluso
TN+ FP can be drawn from the results:
2 % Precision x Recall 1) LFM improves accuracy of the classifier on all
F —measure = Precision + Recall (4) datasets. It is also evident that LFM reduces false

positives significantly leading to improved precision.
g — mean = \/Specificity * Sensitivity (5) (with exception of GlassVWFP dataset) (Eq. 1). This
improvement also positively influences the F-measure

F-measure combines recall and precision of a class giving (EQ. 4). On the other hand, LFM reduces the number
an idea of its overall performance, while g-mean measures of true positives leading to lower TP rate or recall

how well the classifier performs for both the classes. If the which also pulls down g-mean (Eg. 5). Further the
classifier is biased towards negative class, it will have low extent of reduction in FP and TP varies in different
sensitivity and hence low g-mean. But if the classifier is datasets. We envisage that as the number of classi
able to classify both positive and negative instances well, fiers in ensemble is increased (currently it has been
specificity and sensitivity will be high and the g-mean will restricted tah), better results are achievable with LFM.
also be high. 2) PARTEN reduces false negatives more effectively than
UMjC and LFM, which explains higher recall of the
minority class. PARTEN is also the winner in g-mean,

B. Datasets Description

Fourteen datasets downloaded from UCI repository [26], which indicates the higher extent of recognition of
with their imbalance ratios are displayed in Table I. Since minority and majority classes taken together. Usage of
very few two-class imbalanced data sets are publicallyl-avai each majority class example for learning is attributed
able, class imbalance was created for multi-class dathgets to better recognition of both classes.
treating one class as positive (minority), and all others as 3) UM|C performs almost as well as PARTEN in these
negative (majority). Similar strategy was followed in [27] experiments. Marginal under-performance of UM|C

is due to the fact that while minority class is fully
C. Training and Test Set Creation represented in each training set, some of the majority

For evaluation purposes the data set was randomly par- ~ Class instances may not be selected in any of the

titioned using stratified sampling into training and test se training sets.

(2:1). Conclusions based on one such run may have low Plotting TP rate vs FP rate in ROC space further clarifies
credibility. To beat this, thirty sets of training and test difference in the performance of the three methods with
sets were created and experiments with each method werespect to the minority class. Clustering of points in the
executed on each of these train-test pairs. All the measurdep left corner in ROC space demonstrates effectiveness of
presented in the next section are averaged over thirty runthe ensemble methods in general, for learning from imbal-
for each method, and their variances are also computed. anced datasets. Visual inspection confirms that PARTEN and



‘ e ‘ objects being SN of type la. We attempt detection of rarer
o PARTEN supernovae from the spectroscopically confirmed subset of
.l e, | the SuperNova Challenge dataset [32]. The dataset contains
. observed flux for objects in 4 bands vig. r, ¢ and z. We
ol Ll . | selected 270 objects that were present in all four bands.

In order to use the data we carried out the following
operations: ignore points with errorbars greater than the fl
values, convert the fluxes to magnitudes, obtain slopes for
the curves by dividing the lightcurve into four parts, Thus,

TP-Rate

0.4

2T 1 for each filter we ended up with four numbers. These 16
features were used. We separated type | SN from type Il and

o5 oz oa o5 o5 1 used them. Ib and Ic were mixed with la due to the similarity
Frase of their light curves. IIn and llp were tested separately as

Figure 3. FP-rate vs TP-rate for three methods using 14 déta se well as together. We chose to identify classes IIn (IR 22.5),
llp (IR 9) and lip+lin (IR 6.42).

UM|C classifiers have higher TP rates compared to LFM Stratified sampling was used to create thirty training-
classifiers which have lower FP ratd@us, LFM technique (€St pairs. The three ensemble methods were applied and
focuses on lowering FP-rate whereas PARTEN and UMthr_‘e result_s are displayed in Table V. The precision shows
give higher TP-rates for imbalanced data sets. signicant improvement by LFM method. The improvement

Having analyzed the properties of the three ensemblg' precision is_ prop_ortional to severi_ty of_ imbalance. The
methods, it is important to mention where is this tradeoffiMProved precision is advantageous in being able to choose

(between reduction in FP and TP) useful. Prediction of@rer classes, as followup is expensive. As we move into
the minority (rare) class is only indicative, with confidenc the dpmam of bigger surveys ,I'ke LSST, it will just not b?

estimated by generalization error. In most practical appli possible to fqllow-up a” transients and such method§ will
cations predictions have to be inspected either manuallf€ key to choice of objects. Also, a lower recall but higher
(mostly in financial frauds, medical/bio applications)the ~ value of F-measure by LFM method indicates that the LFM
cost of inspection is very high (eg. as in genomic Wetensemble balances the precision and recall of the minority

lab experiments), it makes sense to reduce false positive§/ass better than other two methods.
particularly when we do not mind missing some TPs. In such VIl. CONCLUSION
cases, LFM delivers better cost effective solution. Please |, this paper we compare three ensemble methods for

note that in financial fraud detection the opposite wouldigaing from imbalanced datasets. Ensemble of disjunct
be true. There the cost of missing TP (frauds) is muchyaritions (PARTEN) and under-sampled majority class
higher than the cost of detecting a FP (non-fraud). In suchiymicy have been earlier shown to perform well for imbal-
applications, PARTEN or UM|C should be preferred over ynceq gatasets. In this paper Learning-from-mistakes jLFM
LEM. . . L method has been described and empirically compared with
UM|C can be described as an approximation to PARTENne apove mentioned two methods using public data sets.
as it produces almost the same results as PARTEN. In theis method is shown to be effective in reducing the false
cases where the size of datasets is too large, instead Bhgitives, leading to improvement in precision of the minor
generatingb classnflers, lesser number pf_ classifiers can belty(positive) class. It is found to best balance the prexisi
generated by UMJC to reduce the training as well as theynq recall of the minority (positive) class. However, in
prediction costs. applications where recognition of both classes is impaértan
VI. ASTRONOMY APPLICATIONS it is advantageous to use PARTEN method. UMjC is close to
Astronomy is replete with datasets that contain rare obPARTEN as far as recognition of both classes is concerned.
We further studied the performance of the three methods
for detection of SNe of classes lin, llp and Il. One of the

requires that interesting objects be flagged within minutedSSUesS N such applications is to reduce the number of false

of detection, the rarer ones be selected and followed up Witﬁosn]:fves: LFM \c/j\{ag four;dbtohaclhleve thgz;qf_gﬁ've% L’JV,CI'.IE
larger telescopes as soon as possible [30], [31]. The mgini or effective prediction of both classes, an !

sets generally have object types forming rather imbalanceBerformed equally well.
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Table IV
PERFORMANCE MEASURES FOR MINORITYPOSITIVE) CLASS ON 14 DATASETS USING THEPARTEN, UMJC AND LFM. THE VALUES IN
PARENTHESES ARE THE STANDARD DEVIATIONS OF THE MEASURES FROTHE AVERAGE VALUES.

Dataset Ensemble TP FP FN TN Acc Precision Recall F-msr gmean
Ecoli-imU PARTEN 9.83(0.7) 14.5(3.79) | 2.17(0.87) 86.5(3.79) 85.25(3.43) | 0.41(0.06) | 0.82(0.07)| 0.55(0.06)| 0.84(0.04)
uwmjc 10.67(1.15) | 14.33(3.2) 1.33(1.5) 86.67(3.2) 86.14(2.67) | 0.43(0.06)| 0.89(0.1) | 0.58(0.05)| 0.87(0.05)
LFM 9.67(1.65) 10.3(6.02) | 2.33(1.65) 90.7(6.02) 88.82(4.73) | 0.51(0.11)| 0.81(0.14)| 0.61(0.09)| 0.84(0.08)
Optdigit0 PARTEN | 183.33(1.27) 14.3(5.19) 1.67(1.27) | 1674.7(5.19) | 99.15(0.26) | 0.93(0.01) | 0.99(0.01) | 0.96(0.01)| 0.99(0)
UMjC 184.17(1.15)| 5.1(3.21) 0.83(1.15) | 1683.9(3.21) | 99.68(0.16) | 0.97(0.02) | 1(0.01) | 0.98(0.01) 1(0)
LFM 183.6(1.28) | 1.83(1.18) 1.4(1.28) | 1687.17(1.18)| 99.83(0.08) | 0.99(0.01)| 0.99(0.01)| 0.99(0) 1(0)
Voweldata PARTEN | 27.83(1.51) | 24.63(6.28) | 2.17(1.51) | 275.37(6.28) | 91.88(1.83) | 0.54(0.06) | 0.93(0.05)| 0.68(0.05)| 0.92(0.02)
UMjC 29.83(0.46) | 13.6(4.22) | 0.17(0.46) | 286.4(4.22) 95.83(1.3) | 0.69(0.07)| 0.99(0.02) | 0.82(0.05)| 0.97(0.01)
LFM 28.5(2.36) 2.5(2.39) 1.5(2.36) 297.5(2.39) | 98.79(0.74) | 0.93(0.06) | 0.95(0.08)| 0.93(0.04)| 0.97(0.04)
GlassVWFP | PARTEN 4.03(1.13) | 30.63(5.74) | 1.97(1.13) | 35.37(5.74) | 54.72(7.31) | 0.12(0.03)| 0.67(0.19)| 0.2(0.04) | 0.59(0.07)
uwmjc 4.1(1.54) 30.3(7.59) 1.9(1.54) 35.7(7.59) 55.28(10.35)| 0.12(0.05) | 0.68(0.26) | 0.2(0.08) | 0.59(0.13)
LFM 0.6(0.93) 5.8(4.52) 5.4(0.93) 60.2(4.52) 84.44(5.98) | 0.11(0.15)| 0.1(0.16) | 0.21(0.09) | 0.18(0.24)
Abalone PARTEN 9.7(1.39) 29.8(2.73) 4.3(1.39) 133.2(2.73) | 80.73(1.52) | 0.25(0.03)| 0.69(0.1) | 0.36(0.04)| 0.75(0.05)
11-18 uwmjc 8.47(1.87) | 44.5(22.27) | 5.53(1.87) | 118.5(22.27) | 71.73(11.62)| 0.18(0.05)| 0.6(0.13) | 0.27(0.05)| 0.65(0.03)
LFM 3.7(2.78) 7.67(7.57) 10.3(2.78) | 155.33(7.57) | 89.85(3.06) | 0.43(0.22)| 0.26(0.2) | 0.26(0.12) | 0.46(0.17)
Ecoli PARTEN 6.7(0.47) 13.03(2.77) | 0.3(0.47) 92.97(2.77) 88.2(2.54) | 0.35(0.06) | 0.96(0.07)| 0.51(0.06)| 0.92(0.04)
oM UMjC 7(0) 14.67(9.29) 0(0) 91.33(9.29) | 87.02(8.22) | 0.39(0.18) 1(0) 0.54(0.18) | 0.93(0.05)
LFM 6.37(0.61) 1.6(2.21) 0.63(0.61) 104.4(2.21) | 98.02(1.84) | 0.84(0.14)| 0.91(0.09)| 0.86(0.09)| 0.95(0.04)
Abalone PARTEN 8.63(0.93) | 37.17(5.89) | 2.37(0.93) | 125.83(5.89) | 77.28(3.13) | 0.2(0.02) | 0.78(0.08)| 0.31(0.03)| 0.78(0.04)
11-19 uwmjc 6.87(2.33) 53.9(24.4) | 4.13(2.33) 109.1(24.4) | 66.65(12.92)| 0.12(0.03)| 0.62(0.21)| 0.19(0.04)| 0.62(0.08)
LFM 1.47(2.4) 3.87(5.13) 9.53(2.4) 159.13(5.13) | 92.3(1.91) | 0.21(0.25) | 0.13(0.22) | 0.26(0.14) | 0.23(0.27)
GlassCont | PARTEN 4.6(0.5) 7.7(2.91) 0.4(0.5) 59.3(2.91) 88.75(4.02) | 0.4(0.11) | 0.92(0.1) | 0.55(0.11)| 0.9(0.05)
uwmjc 4.7(0.47) 10.6(5.72) 0.3(0.47) 56.4(5.72) 84.86(8.05) | 0.36(0.01)| 0.94(0.09)| 0.5(0.05) | 0.89(0.07)
LFM 3.6(0.7) 2.9(1.94) 1.4(0.7) 64.1(1.94) 94.03(2.85) | 0.6(0.19) | 0.72(0.13)| 0.64(0.14)| 0.83(0.08)
Abalone PARTEN | 11.93(1.14) | 27.1(5.01) | 2.07(1.14) | 202.9(5.01) | 88.05(1.71) | 0.31(0.03)| 0.85(0.08)| 0.45(0.03)| 0.87(0.03)
9-18 uwmjc 9.77(1.65) 15.37(6.64) | 4.23(1.65) | 214.63(6.64) | 91.97(2.37) | 0.41(0.1) | 0.7(0.12) | 0.51(0.07)| 0.8(0.06)
LFM 5.5(2.43) 2.7(3.78) 8.5(2.43) 227.3(3.78) | 95.41(1.02) | 0.77(0.2) | 0.39(0.17) | 0.48(0.13)| 0.61(0.14)
GlassTware | PARTEN 3(0) 16.23(4.58) 0(0) 52.77(4.58) | 77.45(6.37) | 0.17(0.05) 1(0) 0.28(0.07) | 0.87(0.04)
UMjC 2.67(0.48) 14.73(6.35) | 0.33(0.48) | 54.27(6.35) | 79.07(9.16) | 0.18(0.08)| 0.89(0.16)| 0.29(0.11)| 0.83(0.11)
LFM 2.87(0.35) 1.8(1.06) 0.13(0.35) 67.2(1.06) 97.31(1.26) | 0.65(0.15)| 0.96(0.12)| 0.76(0.08)| 0.96(0.06)
Yeast PARTEN 4.6(1.19) 29(15.57) 2.4(1.19) 126(15.57) 80.62(9) 0.15(0.05) | 0.66(0.17)| 0.24(0.06) | 0.72(0.06)
CYT-POX umjc 4.23(1.48) 6.97(5.56) | 2.77(1.48) | 148.03(5.56) | 93.99(3.31) | 0.51(0.28)| 0.6(0.21) | 0.49(0.15)| 0.75(0.13)
LFM 3.7(1.44) 0.57(0.82) 3.3(1.44) 154.43(0.82) | 97.61(1.01) | 0.89(0.15)| 0.53(0.21) | 0.64(0.18)| 0.71(0.14)
YeastME2 PARTEN | 12.97(1.59) | 74.07(8.69) | 4.03(1.59) | 403.93(8.69) | 84.22(1.71) | 0.15(0.02)| 0.76(0.09) | 0.25(0.03)| 0.8(0.05)
umjc 12.93(1.7) | 62.5(13.27) | 4.07(1.7) 415.5(13.27) | 86.55(2.52) | 0.17(0.03)| 0.76(0.1) | 0.28(0.04)| 0.81(0.05)
LFM 2.47(2.19) 6.5(6.13) 14.53(2.19)| 471.5(6.13) | 95.75(0.96) | 0.32(0.26) | 0.15(0.13)| 0.21(0.1) | 0.32(0.2)
YeastME1 PARTEN 15(0) 30.3(4.06) 0(0) 449.7(4.06) | 93.88(0.82) | 0.33(0.03) 1(0) 0.5(0.03) 0.97(0)
umjc 15(0) 39.47(7.44) 0(0) 440.53(7.44) | 92.03(1.5) | 0.28(0.04) 1(0) 0.44(0.04) | 0.96(0.01)
LFM 12.37(3.27) | 17.6(8.96) | 2.63(3.27) | 462.4(8.96) | 95.91(1.41) | 0.45(0.14)| 0.82(0.22)| 0.55(0.11)| 0.88(0.15)
YeastEXC PARTEN | 10.47(0.94) | 65.57(11.11)| 1.53(0.94) | 417.43(11.11)| 86.44(2.1) | 0.14(0.01)| 0.87(0.08) | 0.24(0.02) | 0.87(0.03)
umjc 10.3(1.12) | 50.43(11.52)| 1.7(1.12) | 432.57(11.52)| 89.47(2.27) | 0.17(0.03) | 0.86(0.09)| 0.29(0.04) | 0.88(0.05)
LFM 6.2(2.64) 14.17(10.24)| 5.8(2.64) | 468.83(10.24)| 95.97(1.69) | 0.35(0.14) | 0.52(0.22)| 0.38(0.11)| 0.69(0.17)
Table V
PERFORMANCE MEASURES FOR MINORITY CLASS ONBUPERNOVAE CHALLENGE DATASET USING PARTEN, UMJC AND LFM
+ vs - Class| Ensemble TP FP FN TN Acc Precision Recall F-msr gmean
IIn vs all PARTEN 3.6(0.67) | 16.73(1.66)| 0.4(0.67) | 69.27(1.66)| 80.96(1.72)| 0.18(0.03)| 0.9(0.17) | 0.29(0.05)| 0.85(0.08)
(IR 22.5) umjCc 3.4(0.72) | 20.07(6.14)| 0.6(0.72) | 65.93(6.14)| 77.04(7.13)| 0.16(0.05)| 0.85(0.18)| 0.26(0.08) | 0.8(0.11)
LFM 2.5(0.97) 2.03(1.79) | 1.5(0.97) | 83.97(1.79)| 96.07(1.99)| 0.63(0.24)| 0.63(0.24)| 0.62(0.17) | 0.75(0.23)
IIp vs all PARTEN 8.23(0.43) | 6.93(2.26) | 1.77(0.43)| 73.07(2.26)| 90.33(2.07)| 0.55(0.06)| 0.82(0.04)| 0.66(0.04) | 0.87(0.01)
(IR9) uwmjCc 8.67(0.66) 5.3(1.21) | 1.33(0.66)| 74.7(1.21) | 92.63(1.18)| 0.63(0.05)| 0.87(0.07)| 0.72(0.04)| 0.9(0.03)
LFM 8.13(0.73) | 1.93(1.17) | 1.87(0.73)| 78.07(1.17)| 95.78(1.64)| 0.82(0.1) | 0.81(0.07)| 0.81(0.07) | 0.89(0.04)
II'vs all PARTEN 13.3(0.6) 3.5(1.81) 0.7(0.6) 72.5(1.81) | 95.33(2.07)| 0.8(0.08) | 0.95(0.04)| 0.87(0.05) | 0.95(0.02)
(IR 6.42) uwmjc 12.6791.06)| 5.53(3.44) | 1.33(1.06)| 70.47(3.44)| 92.37(3.81)| 0.71(0.1) | 0.9(0.08) | 0.79(0.08)| 0.91(0.04)
LFM 11.33(1.35) | 1.47(1.07) | 2.67(1.35)| 74.53(1.07)| 95.41(1.69)| 0.89(0.07)| 0.81(0.1) | 0.84(0.06) | 0.89(0.05)




