
PDOD: TREE BASED AlGORITHM FOR OUTLIER

DETECTION

Deepali Aggarwal, Pankaj Singhal , Sharanjit Kaur, Vasudha Bhatnagar

Department of Computer Science, University of Delhi, Delhi, India.

agarwal deepali209@yahoo.co.in,pankaj dec21@yahoo.co.in,{skaur,vbhatnagar}@cs.du.ac.in

Abstract

Outlier detection is an important data mining task. It

can lead to a more meaningful discovery than the reg-

ular KDD tasks and therefore has gained considerable

interest in data mining. Earlier works on outlier de-

tection have used distance based, density based, clus-

tering based and tree based approaches. Most of these

approaches are non linear in term of dimensions and

data size.

In this paper we report development of a two

phases outlier detection algorithm. The algorithm is

based on the idea of recursive partitioning of data

on the most skewed dimension and is integrated with

a distance based approach to report outliers. The

algorithm is linear with respect to data size and the

number of dimensions. The experimental results on

synthetic and real data sets show encouraging results.

Keywords: Outlier detection, recursive partition-
ing, variance ratio, neighborhood

1 Introduction

Outlier detection is one of the important KDD tasks.
It is concerned with detection of objects/records
which are distinct from most, if not all other objects
in data set. Outlier detection has wide area of ap-
plications, including credit card industry, insurance
industry, information system security, clinical diag-
nosis etc.. In all these applications, user has knowl-
edge of common patterns in the data and desires to

know about any significant deviation from the normal
patterns.

Most of the approaches used for outlier detection
rely on user input for detecting the number of out-
liers. This is an unreasonable requirement in most
practical situations since the user does not know the
actual number of outliers in the data set. To address
this problem most of algorithms report top N outliers
where N is input by the user.

Traditional statistical approaches are parametric
in nature and presume that the data follows a known
distribution. Such approaches are not suitable for
outlier detection in real life data sets [3]. Nested loop
based approaches use a distance function to assess
the extent of deviation from the normal pattern [9].
In depth based approaches, each object is assigned a
depth and points having minimum depth are reported
as outliers [8]. Density based approaches compute
outlierability based on local outlier factor for each
point [10]. All these approaches do not scale well
with large, high dimensional data sets.

The essential idea behind tree based approach is
to partition the data set into groups so that all data
points in a group are similar to each other. Given
such a partitioning, the problem of finding outliers
reduces to finding outlying groups and thus the time
complexity also reduces because it is now dependent
on the number of leaves, which is expected to be much
less than the number of objects.

In this paper, we propose a two phase algorithm for
finding outliers in high dimensional and large data set
using KD tree. The algorithm PDOD (Partitioning
and Distance based Outlier Detection) recursively

1

partitions the data set along the most skewed dimen-
sion in the first phase [5]. The leaves of the tree
denote dense and sparse regions in the data space.
In the second phase, sparse regions are inspected for
outliers using a distance based approach. The salient
features of the algorithm are listed below:

1. Uses variance to determine the splitting dimen-
sion

2. No need to input number of outliers to be de-
tected

3. Linear time complexity in terms of both, data
size and number of dimension

1.1 Related work

Distance based approaches categorize a point as an
outlier if at least a user defined fraction of the points
in the data set are further away from that point with
in given radius [10]. The intuition is that if there are
other objects that are close to the candidate in the
feature space, then the example is probably not an
outlier. If the nearest objects are substantially differ-
ent, then the example is likely to be an outlier. RBRP
[2] and ORCA [4], finds the top n outliers in the data
set whose distance to the kth nearest neighbor is the
largest using two-phase approach. In the first phase,
data set is recursively partitioned into groups termed
as bins, where size of each bin is user defined. In sec-
ond phase an extension of the nested loop algorithm is
used to find outliers. EN algorithm [13] uses a simple
sampling method to efficiently detect distance-based
outliers in domains where distance computation is
very expensive.

LOF [10] uses density based approach to mine the
outliers. It assigns a outlierability degree termed as
local outlying factor to each object indicating how
isolated the object is with respect to the surrounding
neighborhood. To overcome the limitation of com-
puting LOF for all objects, [12] proposes a method
which compress data in micro-clusters and constrain
the search to top-n outliers only. LOCI [11] is also
based upon density approach and can detect outliers
and groups of outliers. It proposes an automatic,
data-dictated cut-off to determine whether a point

is an outlier. Instead of just an outlier-ness score,
it provides a whole plot for each point that gives a
wealth of information.

KD Tree based algorithm for outlier detection [5],
is based on the idea of recursively partitioning the
data along the most skewed dimension. The al-
gorithm uses a space decomposition data structure
called K-d tree (a binary multidimensional tree) and
detects outliers from leaf cells. CD tree algorithm
[7], is also based on the concept of partitioning the
data space into a set of non-overlapping rectangular
cells.

2 PDOD Algorithm

The proposed algorithm works in two phases. In the
first phase data set is partitioned into sparse and
dense regions. All the objects in a group are expected
to behave similarly with respect to being outliers. In
the second phase, each point in the sparse region is
examined for a threshold neighborhood density (α)
within a given radius (r). The points which don’t
have the minimum desired density are classified as
outliers. Thus the large dataset is reduced to only
few sparse regions for outlier detection.

2.1 Construction of Tree

Given a data set D = {p1, p2, p3, . . . , pN} with d
dimensional data points. Each attribute Ai in the
set A = {A1, A2, . . . , Ad} has a numeric domain
Dom(Ai). Each data point p is of the form <
v1, v2, . . . , vd >, such that vi ∈ Dom(Ai). For at-
tribute Ai, let li denote the minimum value and hi de-
note the maximum value in the domain. The length
ri of region along ith dimension, is given by (hi − li).
The complete d-dimensional data space R is defined
by (l1, h1) × (l2, h2) × (l3, h3), . . . ,×(ld, hd).

Initially, root node r represents the region R and
the data set D. At each node, data is partitioned on
the basis of a dimension i, also known as splitting di-

mension (Section 2.1.1). After selecting the splitting
dimension, a cut point is decided for partitioning the
region of the node into two disjoint regions (Section
2.1.2). The algorithm keeps on partitioning the re-

2

Figure 1: KD tree structure

gion R in two regions, Rl and Rr till either (i) the
number of points in R is less than a threshold λ or
(ii) the volume of hyper rectangle formed is less than
hyper sphere of radius r (Section 2.1.3). This pro-
cedure results into a KD Tree structure as shown in
Figure 1 (for 2D dataset).

2.1.1 Selection of splitting dimension

The splitting dimension for a node(region) is selected
on the basis of variance. The variance is computed
along all dimensions, and the dimension with maxi-
mum variance is selected for splitting the node. Intu-
itively data points along a dimension with low vari-
ance are very similar to each other and hence do not
contribute to the outlierability. Therefore dimension
with highest variance is selected as the splitting di-
mension.

2.1.2 Splitting the node

The next task is to choose a suitable cut point in
the splitting dimension that partitions the region into
two disjoint sub-regions. The cut point represents the
partitioning hyperplane which separates the dense re-
gion and the sparse region.

To find the cut point, the range of the splitting
dimension is divided into n equal sized intervals
[lxi ,ai1),[ai1,ai2),...,[ain−1,h

x
i). Let the data in node

x have the range (lxi , h
x
i) along dimension i. We com-

pute the local variance for ith dimension in the jth

Figure 2: Finding cut point of a splitting dimension

cumulative interval (σ2

ij(x)) using all the data points

falling up to jth interval along dimension i i.e.

σ2

ij(x) = variance of cumulative interval (lxi , a
x
ij)
(1)

Global variance, σ2

i (x) is the variance of all the data
point in the node x along dimension i. We compute
the ratio Rij(x) of local to global variance as follows:

Rij(x) =
σ2

ij(x)

σ2

i (x)
(2)

Rij(x) gives a low value when the local variance is
small as compared to global variance. This corre-
sponds to the situation when all the data points are
densely located on that interval. The end point of the
cumulative interval (i.e. aij) with maximum ratio is
selected for partitioning the node x. This point sep-
arates sparse and dense regions in x along dimension
i (Figure 2).

Cutpoint(x, i) = maxn−1

j=1
Rij(x) ∀j (3)

The intuition behind splitting the node region us-
ing this concept is that densely located interval has
low variance over sparsely located interval (Figure 2)
and hence need not to be observed for outliers.

2.1.3 Additional Stopping Criteria for split-

ting of a node

Though the number of points in a node is used as the
stopping criterion for node split, size of the region

3

can be used to further optimize the tree construction
i.e. to reduce the splitting and the depth of the tree.
If the node represents a significantly small region in
data space, then it is not useful to split it further.

Let the v(x) be the volume of the hyper−rectangle
represented by a node x where all the points fall in
(lxi , h

x
i) for dimension i.

v(x) =

d∏

i=1

|hx
i − lxi | (4)

If r is the user parameter used to compute the neigh-
borhood density of a point (Section 2.2), then S = rd

gives the volume of the hyper sphere in d dimension
space. If v(x) < S, then the hyper rectangle formed
by the node fits into the hyper sphere and there is no
need to split the node further.

The complete algorithm for construction of tree
is given below where split(x, p) is used to split the
region and cutpoint is the function used to find
cutpoint.

Tree(x, λ)
Input : Node x, density threshold λ
Output: Tree T

1: if points in a node < λ||v(x) < rd then

2: return
3: end if

4: for i = 1 to d do

5: temp = σ2

i (x)
6: if temp < maxvar then

7: maxvar = temp
8: splitdim = i
9: end if

10: end for

11: ψ = Cutpoint(x, splitdim) // as per eq 3
12: for all p in x do

13: if vsplitdim < ψ then

14: split(x− > left, p)
15: else

16: split(x− > right, p)
17: end if

18: end for

19: Tree(x− > left, λ)
20: Tree(x− > right, λ)

Figure 3: Comparing hyper rectangle and hyper
sphere

2.2 Mining outliers from leaf cells

This phase uses sparse regions for outlier detection
which are identified by number of points in node. For
each leaf cell c, Sparse(c) is computed as follows

Sparse(c) =
v(c)

nc

(5)

where v(c) is the volume (computed as in eq 4) and
nc is number of points of the cell c. Lower sparsity
means that the cell is densely packed with data.

Sparsity of the hyper-sphere with radius r by

Sphere(r, α) =
rd

α
(6)

If Sparse(c) ≥ Sphere(r, α) then the probability
of detecting outliers from cell c is more, else it is
expected that it will not have outliers. In Figure 3,
hyper rectangle R1 is more densely packed than R2

whereas both are equal in volume. So it is expected
that R1 cannot contain an outlier but same may not
be true for R2.

Once sparse cells have being identified, their points
are examined. For each point in the sparse cell, its
neighbors are determined. If a data point has got
α neighbors with in the radius r in the same cell,
then it is certainly not an outlier. Otherwise adjacent
leaf cells are searched for neighbors. As soon as α
neighbors are found, search is stopped for that data
point. This procedure is repeated for all data points
in leaf cell. If a data point x has neighbors less then α

4

even after searching entire data set then x can safely
termed as outlier.

Tree structure helps in fast searching for neighbors
because adjacent leaf cells in tree can be considered
more similar than others because two adjacent leaf
cells must be having same parent or grand parent at
some point during the construction of the tree. So
adjacent cells must be siblings or cousins and there-
fore must be similar to each other in some respect.

2.3 Time Complexity

Tree construction takes O(ρNd) time, where ρ is
depth of tree, N is total data size and d is number of
dimensions. Time complexity for the second phase is
O(N ×m) where m = N/l is the average number of
data points per leaf cell and l is the number of leave
cells. Hence total time taken by PDOD is O(ρNd) +
O(N ×m), which is linear in terms of both N and d.

3 Experimental Study

We implemented our algorithm using C++ language
and compiled using g++ with no optimization. All
the experiments were performed with no other user
process running on a Linux based system with a 3.03
GHZ Intel Pentium 4 processor and 512 MB of main
memory. We compare PDOD with ORCA [4]. We
used following data sets for experiments:

1. Synthetic data sets generated by ENCLUS data
generator [6] : We generated 10 different data
sets for experiment purpose, each having 10 nu-
meric attributes. The number of outliers in
each data set are proportional to the numbers
of records, so as to make results comparable.

2. KDD Cup 1999 data set : It has 4,94,021 tu-
ples each of 42 dimensions belonging to any of 23
classes. Out of 42 dimensions, only 10 commonly
used numeric dimensions are selected. Class 0
represent the normal class and rest are attack
classes. For experimentation purpose, we cre-
ated 22 files corresponding to each attack class.
Each file has 97,278 tuples of class 0 and at most
10 tuples from one attack class.

Table 1: Execution time over synthetic data
Data size Total Time taken by Time taken by
in lacs outliers PDOD(in secs) ORCA(in secs)

1 100 40 335
2 200 85 1098
3 300 130 2282
4 400 165 3886
5 500 210 5912
6 600 250 8358
7 700 300 11225
8 800 345 14513
9 900 390 18222
10 1000 440 22352

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

Ti
m

e
in

 se
co

nd
s

Data Size in LACS

Time taken by KDtree in seconds

Alpha=5
Alpha=10
Alpha=15
Alpha=20

Figure 4: Scalability with data size

3.1 Scalability with data size

We tested the scalability of PDOD algorithm using
ENCLUS data in terms of execution time and results
are compared with ORCA. The algorithm is repeat-
edly executed with λ = .5 and r = .25, for different
values of neighborhood threshold α. We find that for
all values of α, the time varies linearly with increase
in data size. Figure 4 shows the linear relationship
between time to mine outliers and data size. Table 1
shows that PDOD takes linear time but ORCA has
quadratic time complexity (theoretically O(n2)).

5

Table 2: Detection rate for KDD Cup Data
Attack Accuracy by Accuracy by
type ORCA(%) by PDOD(%)
smurf 10 100

portsweep 0 40
nmap 10 90
back 0 0

bufferoverflow 0 0
multihop 0 0
neptune 30 100

land 0 100
spy 0 100

warezclient 0 0
guesspasswd 20 40

rootkit 0 10
ipsweep 0 0
teardrop 0 0
ftpwrite 0 25

loadmodule 0 45
pod 0 0

satan 10 70
warezmaster 0 0

imap 0 90
perl 0 0
phf 0 0

3.2 Quality comparison

Both the algorithms PDOD and ORCA detected all
the actual outliers and gave 100% accuracy for syn-
thetic data. We used KDD cup dataset to compare
the quality of output of ORCA and PDOD. Although
PDOD is not able to detect certain attack types, it
manages to detect the most of the attack types and
has performed better than ORCA in detecting at-
tacks Table 2.

Acknowledgment: We are thankful to Naveen
Kumar (DU) and Sona jhariaminz (JNU), their com-
ments on our work and constant encouragement.

4 CONCLUSION

In this paper we have proposed PDOD algorithm
for outlier detection. This two phase algorithm in-
tegrates partitioning approach and distance base ap-
proach. The Objective is to integrate all the posi-
tive points of both approaches while minimizing the
drawbacks of each approach. We have done experi-

ments with real and synthetic datasets. Results re-
veal that tree partitioning approach with distance ap-
proach detect outliers efficiently.

References

[1] D. Aggarwal and P. Singhal. Tree based Outlier De-

tection. University of Delhi, New Delhi, 2006.
[2] S. P. Amol Ghoting and M. E. Otey. Fast mining of

distance-based outliers in high dimensional datasets.
In Proc. SDM, 2006.

[3] V. Barnett and T. Lewis. Outliers in Statistical

Data. John Wiley, 1994.
[4] S. Bay and M. Schwabacher. Mining distance-based

outliers in near linear time with randomization and
a simple pruning rule. In Proc. ACM, 2003.

[5] A. Chaudhary, A. S. Szalay, and A. W. Moore. Very
fast outlier detection in large multidimensional data
sets. In Proc. DMKD, 2002.

[6] A. W.-C. F. Chung Heng Cheng and Y. Zhang.
http://www.cse.cuhk.edu.hk/ kdd/clustering/enclus.html,
1999.

[7] Y. B. Huanliang Sun and et. al. Cd-tree: An effi-
cient index structure for outlier detection. In Proc.

WAIM, 2004.
[8] T. Johnson, I. Kwok, and R. T. Ng. Fast compu-

tation of 2-dimensional depth contours. In Proc.

Knowledge Discovery and Data Mining, pages 224–
228, 1998.

[9] K. E. M. Outliers and Data Mining: Finding Ex-

ceptions in Data. PhD thesis, Dept. of Computer
science, University of British Columbia, 2002.

[10] H.-P. K. Markus M. Breunig and et. al. Lof: Iden-
tifying density-based local outliers. In Proc. ACM

SIGMOD, pages 93–104, 2000.
[11] P. G. S. Papadimitriou, H. Kitagawa and C. Falout-

sos. Loci: Fast outlier detection using the local cor-
relation integral. In Proc. 19th ICDE, pages 351–
326, 2003.

[12] A. K. H. T. Wen Jin and J. Han. Mining top-n local
outliers in large databases. In Proc. KDD. ACM,
2001.

[13] M. Wu and C. Jermaine. Outlier detection by sam-
pling with accuracy guarantees. In Proc. KDD.
ACM, 2006.

6

