
COLLABORATIVE FILTERING AND

MULTI-LABEL CLASSIFICATION WITH MATRIX

FACTORIZATION

A thesis submitted during 2018 to the University of Hyderabad in
partial fulfillment of the award of a Ph.D. degree in Computer Science

by

VIKAS KUMAR

SCHOOL OF COMPUTER & INFORMATION SCIENCES

UNIVERSITY OF HYDERABAD

(P.O.) CENTRAL UNIVERSITY

HYDERABAD - 500 046, INDIA

July 30, 2018

ar
X

iv
:1

90
7.

12
36

5v
1

 [
cs

.I
R

]
 2

3
Ju

l 2
01

9

CERTIFICATE

This is to certify that the thesis entitled “Collaborative Filtering and Multi-Label

Classification with Matrix Factorization” submitted by Vikas Kumar bearing Reg.

No. 14MCPC07 in partial fulfillment of the requirements for the award of Doctor of

Philosophy in Computer Science is a bonafide work carried out by him under our

supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part

or in full to this or any other university or institution for the award of any degree or

diploma. The student has the following publications before submission of the thesis for

adjudication and has produced evidence for the same.

1. "Collaborative Filtering Using Multiple Binary Maximum Margin Matrix Factor-
izations." Information Sciences 380 (2017): 1-11.

2. "Proximal Maximum Margin Matrix Factorization for Collaborative Filtering."
Pattern Recognition Letters 86 (2017): 62-67.

3. "Multi-label Classification Using Hierarchical Embedding." Expert Systems with
Applications 91 (2018): 263-269.

Further, the student has passed the following courses towards fulfillment of course-
work requirement for Ph.D.

Course Code Name Credits Pass/Fail
CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 810 Metaheuristic Techniques 4 Pass
AI 852 Learning & Reasoning 4 Pass

Prof. Arun K Pujari
Supervisor

Prof. Vineet Padmanabhan
Supervisor

Prof. K. Narayana Murthy
Dean, School of Computer and Information Sciences

DECLARATION

I, Vikas Kumar, hereby declare that this thesis entitled “Collaborative Filtering

and Multi-Label Classification with Matrix Factorization” submitted by me under

the guidance and supervision of Prof. Arun K Pujari and Prof. Vineet Padmanabhan

is a bonafide research work. I also declare that it has not been submitted previously in

part or in full to this university or any other university or institution for the award of any

degree or diploma.

Date: Name: Vikas Kumar

Signature of the Student:

Reg. No. 14MCPC07

i

Dedicated to my parents and family members, for

everything what I am today and above all, devoted to The

Almighty God!

ACKNOWLEDGEMENTS

The accomplishment of doctoral thesis and degree is a result of collective support

and blessings of various people during my journey of Ph.D. I feel overwhelm and plea-

sure to acknowledge each one for the kind of contribution provided to me throughout

my life.

The foremost is my advisor, Prof. Arun K Pujari who has not only taught me

science but the facts behind and beyond science. Sir has endowed me with a sacred

vision to pursue productive full time research in computer science. The importance of

bearing an optimistic attitude and crystal clear concept of the subject is a boon conferred

by sir towards shaping my research questions during my years of Ph.D. I am extremely

obliged to sir for making himself always available for rigorous scientific discussions in

spite of his busy schedule. Those insightful inputs by sir are the substantial asset to

build the carrier further. I wish to acknowledge my sir for being the guiding light in

my dark days of research. It is also a privilege to express my sincere regards to Mrs.

Subha Lakhmi Pujari for her care, encouragement and responsible assistance.

I sincerely gratify my other advisor, Prof. Vineet Padmanabhan for being both

amicable and friendly supervisor with whom I was able to share the days of being a

research scholar. The periodical scientific counselling and supervision when I was at

the initial phase of my Ph.D. carrier is accountably assisted by sir. I genuinely acknowl-

edge sir for taking out his valuable time for undertaking detailed analysis of the given

research problem and giving me precise comments. I thank Mrs. Mrinalini Vineet for

her truthful blessings and generous wishes to accomplish success in my research.

I would like to thank my DRC members, Prof. Arun Agarwal and Prof.

Chakravarthy Bhagvati, for their valuable suggestions. I extend admiration to my

iii

teachers of Pondicherry University, Dr. K. S. Kuppusamy and Prof. G. Aghila for

their inspiration to choose computer science as a research field. I thank my primary

mentor, Dr. Ajit Kumar, for guiding and encouraging my talent. He is the person who

has introduced me to the computer science research related examination and hence to

opt for research carrier. I am thankful to Mr. Sudarshan for teaching me the importace

of education in life.

I would like to honestly praise my colleagues, Mr. Venkat, Mr. Sandeep, and Mrs.

Sowmini for building an enthusiastic environment and engaging in critical discussions

related to research in both inside and outside the lab. I thank all my Ph.D. classmates

for showering the fun times in hostel days stay. I am thankful to my friends, Mr.

Ashutosh, Mrs. Surabhi and Mr. Sandeep, for their considerate friendship. They

have always been appreciating the passion of my profession and unboundedly keeping

in touch during my bad times. I thank my best junior buddies, Mr. Sudhanshu and

Miss Prabha for encouraging me whenever some unfavourable situation demands.

I extend deepest salutation to my whole family members for availing me every need-

ful facilities and emotional assistance. Their support imprints me the property to be

flexible as water and rigid as rock to balance my twisted research life. I also thank

Miss Purnima for always being a lovable and indulgent listener of my problems. She

understands me and tries to be an instant saviour in every possible way.

I wish to express that I am indebted and owe so much to my mother, Mrs. Govinda

Devi and father, Mr. Baban Pandey such that my depth of expressing acknowledge-

ment will always be small when compare to their contributions of parenting. The un-

conditional sacrifices and determined motivation is what I have learnt from them at

every stage of my life and this has enforced me to become a responsible citizen at first

place. With an immense pride this doctoral dissertation is dedicated to my parents for

providing me the strong roots to standalone and sustain in such long journey of life.

Finally, I bow to The Almighty for being a source of unknown power and strength

in my life.

Vikas Kumar

iv

ABSTRACT

Machine learning techniques for Recommendation System and Classification has

become a prime focus of research to tackle the problem of information overload. Rec-

ommender Systems are software tools that aim at making informed decisions about the

services that a user may like. Recommender Systems can be broadly classified into two

categories namely, content-based filtering and collaborative filtering. In content-based

filtering, users and items are represented using a set of features (profile) and an item

is recommended by finding the similarity between the user and item profile. On the

other hand in collaborative filtering, the user-item association is obtained based on the

preferences of the user given so far and the preference information of other users.

Classification technique deals with the categorization of a data object into one of

the several predefined classes. The majority of the methods for supervised machine

learning proceeds from a formal setting in which data objects (instances) are represented

in the form of feature vectors wherein each object is associated with a unique class label

from a set of disjoint class labels. Depending on the total number of disjoint classes,

a learning task is categorized as binary classification or multi-class classification. In

the multi-label classification problem, unlike the traditional multi-class classification

setting, each instance can be simultaneously associated with a subset of labels.

In both recommendation and classification problem, the initial assumption is that the

input-data is in the form of matrices which are inherently low rank. The key technical

challenge involved in designing new algorithms for recommendation and classification

is dependent on how well one can handle the huge and sparse matrices which usually

has thousands to millions of rows and which are usually noisy. Recent years have wit-

nessed extensive applications of low-rank linear factor model for exploiting the complex

v

relationships that exist in such data matrices. The goal is to learn a low-dimensional

embedding where the data object can be represented with a small number of features.

Matrix factorization methods have attracted significant attention for learning the low-

rank latent factors. The focus of thesis is on the development of novel techniques for

collaborative filtering and multi-label classification.

In maximum margin matrix factorization scheme of collaborative filtering, ratings

matrix with multiple discrete values is treated by specially extending hinge loss function

to suit multiple levels. We view this process as analogous to extending two-class classi-

fier to a unified multi-class classifier. Alternatively, multi-class classifier can be built by

arranging multiple two- class classifiers in a hierarchical manner. We investigate this as-

pect for collaborative filtering and propose a novel method of constructing a hierarchical

bi-level maximum margin matrix factorization to handle matrix completion of ordinal

rating matrix. The advantages of the proposed method over other matrix factorization

based collaborative filtering methods are given by detailed experimental analysis. We

also observe that there could be several possible alternative criteria to formulate the

factorization problem of discrete ordinal rating matrix, other than the maximum margin

criterion. Taking the cue from the alternative formulation of support vector machines,

a novel loss function is derived by considering proximity as an alternative criterion in-

stead of margin maximization criterion for matrix factorization framework. We validate

our hypothesis by conducting experiments on real and synthetic datasets.

We extended the concept of matrix factorization for yet another important problem

of machine learning namely multi-label classification which deals with the classification

of data with multiple labels. We propose a novel piecewise-linear embedding method

with a low-rank constraint on parametrization to capture nonlinear intrinsic relation-

ships that exist in the original feature and label space. Extensive comparative studies to

validate the effectiveness of the proposed method against the state-of-the-art multi-label

learning approaches is given through detailed experimental analysis. We also study the

embedding of labels together with the group information with an objective to build an

efficient multi-label classifier. We assume the existence of a low-dimensional space

onto which the feature vectors and label vectors can be embedded. We ensure that

labels belonging to the same group share the same sparsity pattern in their low-rank

representations. We perform comparative analysis which manifests the superiority of

our proposed method over state-of-art algorithms for multi-label learning.

vi

TABLE OF CONTENTS

DECLARATION i

ACKNOWLEDGEMENTS iii

ABSTRACT v

LIST OF TABLES xi

LIST OF FIGURES xiii

ABBREVIATIONS xiv

1 Introduction 1

1.1 Contributions of the Thesis . 6

1.2 Structure of the Thesis . 7

1.3 Publications of the Thesis . 8

2 Foundational Concepts 9

2.1 Matrix Factorization . 10

2.2 Loss Function . 11

2.2.1 Binary Loss Function: . 11

2.2.2 Discrete Ordinal Loss Function 13

2.2.3 Real-valued Loss Function 14

2.3 Regularization . 15

2.4 Collaborative filtering with Matrix Factorization 16

2.5 Multi-label Classification with Matrix Factorization 17

3 Collaborative Filtering Using Hierarchical Matrix Factorizations 21

3.1 Introduction . 21

vii

3.2 Bi-level MMMF . 23

3.3 Multi-level MMMF . 30

3.4 HMF- The Proposed Method . 37

3.5 Parallelization of HMF . 44

3.6 Experimental Analysis . 44

3.6.1 Data Sets . 45

3.6.2 Experimental Protocols . 46

3.6.3 Comparing Algorithms . 47

3.6.4 Evaluation Metrics . 48

3.6.5 Parameter Setting . 48

3.6.6 Results and Discussion . 50

3.7 Conclusions . 55

4 Proximal Maximum Margin Matrix Factorization for Collaborative Fil-
tering 56

4.1 Introduction . 56

4.2 PMMMF- The Proposed Method 57

4.3 Experiments . 61

4.3.1 Data Sets . 61

4.3.2 Evaluation Metrics . 61

4.3.3 Comparing Algorithms . 62

4.3.4 Experimental Results . 62

4.4 Conclusions and Discussion . 64

5 Multi-label Classification Using Hierarchical Embedding 65

5.1 Introduction . 66

5.2 Multi-label Classification Approaches 69

5.2.1 Problem Transformation Approach 69

5.2.2 Algorithm Adaption Approach 74

5.3 Embedding based Approach . 76

5.3.1 Feature Space Embedding (FE) 78

5.3.2 Label Space Embedding (LE) 80

5.4 Outline of the Proposed Approach 82

viii

5.5 MLC-HMF: The Proposed Method 85

5.6 Experimental Analysis . 87

5.6.1 Data Sets . 88

5.6.2 Evaluation Metrics . 88

5.6.3 Comparing Algorithms . 90

5.6.4 Parameter Setting . 91

5.6.5 Results and Discussion . 92

5.7 Conclusions and Discussion . 94

6 Group Preserving Label Embedding for Multi-Label Classification 96

6.1 Introduction . 96

6.2 GroPLE: The Proposed Method 98

6.3 Experimental Analysis . 103

6.3.1 Evaluation Metrics . 104

6.3.2 Baseline Methods . 104

6.3.3 Results and Discussion . 105

6.4 Conclusions . 111

7 Conclusions and Future Work 112

REFERENCES 115

LIST OF TABLES

3.1 Bi-level matrix Y . 25

3.2 Latent factor matrices corresponding to Y 25

3.3 Real-valued prediction corresponding to bi-level matrix Y. 27

3.4 Hinge loss corresponding to observed entries in Y. 27

3.5 Smooth hinge loss corresponding to observed entries in Y. 28

3.6 Runnning example. 32

3.7 Real-valued prediction corresponding to ordinal rating matrix Y . . . 32

3.8 Ordinal rating matrix Y . 40

3.9 Runnning example. 40

3.10 Partially complete matrix after stage 1 40

3.11 Runnning example. 41

3.12 Partially complete matrix after stage 2 41

3.13 Runnning example. 41

3.14 Partially complete matrix after stage 3 42

3.15 Runnning example. 42

3.16 Partially complete matrix after stage 4 42

3.17 Complete matrix computed by HMF 42

3.18 Description of the experimental datasets 46

3.19 Average and standard deviation of NMAE of different models . . . 50

4.1 Average and standard deviation of MAE and RMSE of different models 64

5.1 Multi-label data set. 70

5.2 Training-set Dl for each classifier hl. 70

5.3 Binary Relevance example. 71

5.4 Training-set Djk for each classifier hjk. 71

x

5.5 Training-set Dπ(l) for each classifier hπ(l). 72

5.6 Classifier Chain example. 73

5.7 RAkEL example. 74

5.8 Description of the experimental datasets 88

5.9 Experimental results of comparison of algorithms (mean±std rank) in
terms of Hamming Loss, Accuracy, and Subset Accuracy 92

5.10 Experimental results of comparison of algorithms (mean±std rank) in
terms of Example Based F1, Macro F1, and Micro F1 93

5.11 Summary of the Friedman statistics FF (K = 7,N = 12) and the crit-
ical value in terms of each evaluation metric(K: # Comparing Algo-
rithms; N : # Data Sets). 93

6.1 Description of the experimental datasets. 104

6.2 Experimental results of each comparing algorithm (mean±std rank)
in terms of Accuracy, Example Based F1, Macro F1, and Micro F1.
Method that cannot be run with available resources are denoted as “-". 109

6.3 Summary of the Friedman statistics FF (K = 8,N = 11) and the crit-
ical value in terms of each evaluation metric(K: # Comparing Algo-
rithms; N : # Data Sets). 110

xi

LIST OF FIGURES

3.1 Geometrical interpretation of bi-level matrix factorization. 26

3.2 Loss function values for the hinge 27

3.3 Loss function values for the smooth hinge 28

3.4 Convergence graph of BMMMF with different initial points 31

3.5 Classification by MMMF for the ith user 35

3.6 Classification by MMMF for ith user 36

3.7 Convergence graph of MMMF with different initial points 37

3.8 Hierarchical matrix factorization 43

3.9 Block diagram of a parallel architecture for HMF 44

3.10 Validation score for different values of λ on MovieLens data set . . . 49

3.11 Validation score for different values of λ on EachMovie data set . . 49

3.12 Testing error on changing d value 51

3.13 Training error vs Test error . 52

3.14 Running time on MovieLens dataset 53

3.15 Running time on EachMovie dataset 53

3.16 Recovery of original rating matrix by MMMF and HMF 54

4.1 Classification by PMMMF for the ith user 60

4.2 Figure (a), (b), (c), (d), (e) and (f) shows the trade-off between Generalization-
error Vs. Empirical-error on synthetic dataset of size 1000× 1000 with
5%, 10%, 15%, 20%, 25% and 30% observed entries respectively. . 63

5.1 Feature space embedding . 78

5.2 Feature space embedding . 78

5.3 Label space embedding . 81

5.4 Hamming loss for different values of λ on emotions data set with vary-
ing training size percentage . 91

xii

5.5 CD diagrams of the comparing algorithms under each evaluation crite-
rion. 95

6.1 Latent factor matrix V k recovered with five label groups. 106

6.2 Influence of regularization parameters λ1 and λ2. 107

6.3 Performance of GroPLE on rcv1 (subset 1) data set with different group
size. 108

6.4 CD diagrams of the comparing algorithms under each evaluation crite-
rion. 111

xiii

ABBREVIATIONS

CF Collaborative Filtering

FE Feature Space Embedding

GroPLE Group Preserving Label Embedding for Multi-Label Classification

HMF Hierarchical Matrix Factorization

LE Label Space Embedding

MF Matrix Factorization

MLC Multi-label Classification

MLC-HMF Multi-label Classification Using Hierarchical Embedding

MMMF Maximum Margin Matrix Factorization

PMMMF Proximal Maximum Margin Matrix Factorization

xiv

CHAPTER 1

Introduction

With the advent of technology and high usage of modern equipment/ devices, large

amounts of data are being generated world over. We now stand at the brink of data-

driven transformation where the data can be harnessed to derive meaningful insights

that can help organizations for better functioning as well as assist the user in his/ her

decision making process. Examples include (a) suggesting the right choice of products

to a user or identifying the most appropriate customers for a product (b) assisting an

organization in classifying the users for better serviceability etc.

The vast amount of accumulated data is a crucial competitive asset and can be tai-

lored to satisfy an individual’s/ organization’s needs. However, the crucial challenge

here is in the processing of the data. The amount of data is enormous and therefore

requires a large amount of time to explore all of them. For example, if one has to pur-

chase an item, he/ she needs to process all the information to select which items meet

their needs. To avoid the information overload, we need some assistance in the form of

recommendation or classification in our day to day life. For instance, when we are pur-

chasing an electronic gadget, we usually rely on the suggestions of friends who shares

similar tastes. Similarly, when we are planning to invest in equity funds, we need some

assistance to differentiate between different equity based on their features before we

decide to invest. In the recent past, machine learning techniques are most commonly

used to understand the nature of data so as to help in reducing the burden on individuals

in the decision making process. Machine learning techniques for Recommendation and

Classification has become a prime focus of research to tackle the problem of informa-

tion overload.

1

Recommendation (Recommender) Systems are software tools that aim at making

informed decisions about the services that a user may like [105, 64, 84]. Given a list

of users, items and user-item interactions (ratings), Recommender System predicts the

score/ affinity of item j for user i and thereby helps in understanding the user behaviour

which in turn can be used to make personalized recommendations. Examples include

classic recommendation tasks such as recommending books, movies, music etc., as well

as new web-based applications such as predicting preferred news articles, websites etc.

Recommender Systems can be broadly classified into two categories namely, content-

based filtering and collaborative filtering[84]. In content-based filtering, users and items

are represented using a set of features (profile) and an item is recommended by finding

the similarity between the user and the item profile. In the case of collaborative filtering

the user-item association is obtained based on the preferences of the user given so far

and the preference information of other users.

Classification is a supervised learning technique which deals with the categorization

of a data object into one of the several predefined classes. Majority of the methods for

supervised machine learning proceeds from a formal setting in which the data objects

(instances) are represented in the form of feature vectors wherein each object is associ-

ated with a unique class label from a set of disjoint class labels L, |L| > 1. Depending

on the total number of disjoint classes in L, a learning task is categorized as binary clas-

sification (when |L| = 2) or multi-class classification (when |L| > 2) [98, 118]. In this

thesis, we are focusing on a special class of classification problem called multi-label

classification. Unlike the traditional classification setting, in multi-label classification

problem, each instance can be simultaneously associated with a subset of labels. For

example, in image classification, an image can be simultaneously tagged with a subset

of labels such as natural, valley, mountain etc. Similarly, in document classification, a

document can simultaneously belong to Computer Science and Physics. The multi-label

classification task aims at building a model that can automatically tag a new example

with the most relevant subset of class labels.

In this thesis we focus on developing novel techniques for collaborative filtering and

multi-label classification. It should be kept in mind that in both recommendation and

classification problem the data is actually organized in matrix form. For example, in

collaborative filtering, users preferences on items can be represented as a matrix, whose

rows represent users, columns represent items, and each element of the matrix represent

2

the preference of a user for an item. Similarly, in multi-label classification problem, the

set of data objects and their corresponding label vectors can be represented as a matrix.

The data object can be represented as a row of the feature matrix and the associated label

vector can be represented as the corresponding row of label matrix. The key technical

challenge involved in designing new algorithms for recommendation and classification

is dependent on how well one can handle the huge and sparse matrices which usually

has thousands and millions of rows and which are usually noisy.

Recent years have witnessed extensive applications of low-rank linear factor mod-

els for exploiting the complex relationships existing in such data matrices. The goal is

to learn a low-dimensional embedding where the data object can be represented with a

small number of features. For instance, in the case of collaborative filtering, the idea is

to learn low-dimensional latent factors for every user and item. Similarly, in multi-label

classification the goal of low-rank factor model learning is to embed the feature and

label vector to a low dimensional space so that the intrinsic relationship in the original

space can be captured. Matrix factorization (MF) methods have attracted significant

attention in the areas of computer vision [13, 14], pattern recognition [127, 146], image

processing [30, 37], information retrieval [57, 114] and signal processing [124, 128]

for learning low-rank latent factor models. The objective of MF is to learn low-rank

latent factor matrices U and V so as to simultaneously approximate the observed en-

tries under some loss measure. Here, the interpretation of factor matrices U and V are

application dependent. We present a brief discussion on matrix factorization approach

for collaborative filtering and multi-label classification.

Matrix factorization is just one way of doing collaborative filtering (CF) wherein it is

possible to discover the latent features underlying the interactions between two different

kinds of entities (user/ item). CF approaches also assume that a user’s preference on an

item is determined by a small number of factors and how each of those factors applies

to the user and the item (low dimensional linear factor model). The intuition behind

using matrix factorization is that there should be some latent features that determine

how a user rates an item. It is possible that two users would highly rate a movie if

it belongs to a particular genre like action/ comedy. Discovering these latent features

definitely helps in predicting the rating with respect to a certain user and a certain item

because the features associated with the user should match with the features associated

with the item. It is also the case that in trying to discover the different features, an

3

assumption is made that the number of features would be smaller than the number of

users and the number of items. The idea is that it is not reasonable to assume that each

user is associated with a unique feature in which case it would be absurd to make any

recommendations because each of these users would not be interested in the items rated

by other users.

The discussion above shows that CF can be formulated as a MF problem in the sense

that, in a d-factor model, given a rating matrix Y ∈ RN×M the idea is to find two low-

rank matrices U ∈ RN×d and V ∈ RM×d such that Y ≈ UV T where d is a parameter.

Each entry yij ∈ {0, 1, 2, . . . , R} in Y , defines the preference given by ith user for jth

item. yij = 0, indicates that the user has not given any preference for jth item and R is

the total level of ratings. The goal is to predict the preference for all items for which the

user’s preference is unobserved. The ith row of U represents the latent factor of the ith

user and the jth row of V represents the latent feature of the jth item. The prediction

for yij can be achieved by the linear combination of the ith row of U with the jth row

of V i.e.

yij =
d∑
p=1

UipVjp = UiV
T
j (1.1)

The outcome of matrix factorization method is a low-rank, dense matrix X which is an

approximation of the given sparse rating matrix Y. Here X is computed as X = UV T .

Multi-label classification can be seen as a generalization of single label classifica-

tion where an instance is associated with a unique class label from a set of disjoint

labels L. Formally, given N training examples in the form of a pair of feature matrix

X and label matrix Y where each example xi ∈ RD, 1 ≤ i ≤ N , is a row of X and its

associated labels yi ∈ {−1,+1}L is the corresponding row of Y , the task of multi-label

classification is to learn a parameterization h : RD → {−1,+1}L that maps each in-

stance to a set of labels. Multi-label classification has applications in many areas such

as machine learning [1, 138, 98, 150], computer vision [82, 126, 12, 9] and data min-

ing [90, 157, 118, 106]. Multi-label classification is nowadays applied to massive data

sets of considerable size and under such conditions, time- and space-efficient imple-

mentations of learning algorithms is of major concern. For example, there are millions

of articles available on Wikipedia each tagged with a set of labels and in most of the

cases, the author of an article associates very few labels which they know from a broad

set of relevant labels.

4

To cope with the challenge of exponential-sized output space, exploiting intrinsic

information in feature and label spaces has been the major thrust of research in re-

cent years and use of parametrization and embedding have been the prime focus. Re-

searchers have studied several aspects of embedding which include label embedding,

feature embedding, dimensionality reduction and feature selection. These approaches

differ from one another in their capability to capture other intrinsic properties such as

label correlation and local invariance. To glean out the potentially hidden dynamics that

exists in the original space, most of the embedding based approaches focus on learning

a low-dimensional representation for the original feature (label) vector. There are two

strategies of embedding for exploiting inter-label correlation; (1) Feature Space Em-

bedding (FE); and (2) Label Space Embedding (LE). FE aims to design a projection

function which can map the instance in the original feature space to an embedded space

and then a mapping is learnt from the embedded space to the label space. The second

approach is to transform the label vectors to an embedded space, followed by the asso-

ciation between feature vectors and embedded label space for classification purpose.

In recent years, matrix factorization based approach which aims at determining two

matrices U and V is frequently used to achieve the FE and LE. In FE, the goal is to

transform each D-dimensional feature vector (a row of matrix X) from the original

feature space to a L-dimensional label vector (corresponding row in Y) and usually

the mapping is achieved through a linear transformation matrix W ∈ RD×L. The MF

based approach assumes that the label matrix Y is of low-rank due to the presence of

similar labels and thereby models the inter-label correlation implicitly using low-rank

constraints on the transformation matrix W . The transformation matrix W is approxi-

mated using the product of two latent factor matrices U and V . The matrix U acts as a

transformation matrix which transforms the data from the original feature space to an

embedded space and the matrix V can be interpreted as the decoding matrix from the

embedded space to the label space.

In LE, the goal is to transform each L-dimensional label vector (a row of matrix

Y) from the original label space to a d-dimensional embedded vector. Thereafter, a

predictive model is trained from the original feature space to the embedded space. With

proper decoding process that maps the projected data back to the original label space,

the task of multi-label prediction is achieved. The LE approach based on MF aims

at approximating the label matrix Y as a product of two matrices U and V with the

5

assumption that the label matrix exhibits a low-rank structure. The ith row of matrix U

can be viewed as the embedded representation of the label vector associated with the

ith instance and the matrix V can be viewed as the decoding matrix from the embedded

space to the label space.

1.1 Contributions of the Thesis

The major contributions of the thesis are as follows. In maximum margin matrix

factorization scheme (a variant of basic matrix factorization method), ratings matrix

with multiple discrete values is treated by specially extending hinge loss function to

suit multiple levels. We view this process as analogous to extending two-class classifier

to a unified multi-class classifier. Alternatively, multi-class classifier can be built by

arranging multiple two- class classifiers in a hierarchical manner. We investigate this

aspect for collaborative filtering and propose a novel method of constructing a hierar-

chical bi-level maximum margin matrix factorization to handle matrix completion of

ordinal rating matrix [67].

We observe that there could be several possible alternative criteria to formulate the

factorization problem of discrete ordinal rating matrix, other than the maximum margin

criterion. Taking a cue from the alternative formulation of support vector machines, a

novel loss function is derived by considering proximity as an alternative criterion instead

of margin maximization criterion for matrix factorization framework [69].

We extended the concept of matrix factorization for yet another important problem

of machine learning namely multi-label classification which deals with the classification

of data with multiple labels. We propose a novel piecewise-linear embedding method

with a low-rank constraint on the parametrization to capture nonlinear intrinsic relation-

ships that exist in the original feature and label space [66].

We study the embedding of labels together with the group information with an ob-

jective to build an efficient multi-label classifier. We assume the existence of a low-

dimensional space onto which the feature vectors and label vectors can be embedded.

We ensure that labels belonging to the same group share the same sparsity pattern in

their low-rank representations.

6

1.2 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we start our discussion with an

introductory discussion on matrix factorization and the associated optimization prob-

lem formulation. Thereafter we discuss some common loss functions used in matrix

factorization to measure the deviation between the observed data and the corresponding

approximation. We also discuss several ways of norm regularization which is needed

to avoid overfitting in matrix factorization models. In the later part of the chapter we

discuss at length the application of matrix of factorization techniques in collaborative

filtering and multi-label classification.

Chapter 3 starts with a discussion on bi-level maximum margin matrix factorization

(MMMF) which we subsequently use in our proposed algorithm. We carry out a deep

investigation of the well known maximum margin matrix factorization technique for

discrete ordinal rating matrix. This investigation led us to propose a novel and efficient

algorithm called HMF (Hierarchical Matrix Factorization) for constructing a hierarchi-

cal bi-level maximum margin matrix factorization method to handle matrix completion

of ordinal rating matrix. The advantages of HMF over other matrix factorization based

collaborative filtering methods are given by detailed experimental analysis at the end of

the chapter.

Chapter 4 introduces a novel method termed as PMMMF (Proximal Maximum Mar-

gin Matrix Factorization) for factorization of matrix with discrete ordinal ratings. Our

work is motivated by the notion of Proximal SVMs (PSVMs) [77, 31] for binary classi-

fication where two parallel planes are generated, one for each class, unlike the standard

SVMs [121, 10, 87]. Taking the cue from here, we make an attempt to introduce a

new loss function based on the proximity criterion instead of margin maximization cri-

terion in the context of matrix factorization. We validate our hypothesis by conducting

experiments on real and synthetic datasets.

Chapter 5 extended the concept of matrix factorization for yet another important

problem in machine learning namely multi-label classification. We visualize matrix

factorization as a kind of low-dimensional embedding of the data which can be practi-

cally relevant when a matrix is viewed as a transformation of data from one space to the

other. At the beginning of the chapter we discuss briefly about the traditional approach

7

of multi-label classification and establish a bridge between multi-label classification

and matrix factorization. We present a novel multi-label classification method, called

MLC-HMF (Multi-label Classification using Hierarchical Embedding), which learns

piecewise-linear embedding with a low-rank constraint on parametrization to capture

nonlinear intrinsic relationships that exist in the original feature and label space. Exten-

sive comparative studies to validate the effectiveness of the proposed method against the

state-of-the-art multi-label learning approaches is discussed in the experimental section.

In Chapter 6, we study the embedding of labels together with group information

with an objective to build an efficient multi-label classifier. We assume the existence of

a low-dimensional space onto which the feature vectors and label vectors can be embed-

ded. In order to achieve this, we address three sub-problems namely; (1) Identification

of groups of labels; (2) Embedding of label vectors to a low rank-space so that the spar-

sity characteristic of individual groups remains invariant; and (3) Determining a linear

mapping that embeds the feature vectors onto the same set of points, as in stage 2, in

the low-rank space. At the end, we perform comparative analysis which manifests the

superiority of our proposed method over state-of-art algorithms for multi-label learning.

We conclude the thesis with a discussion on future directions in Chapter 7.

1.3 Publications of the Thesis

1. Vikas Kumar, Arun K Pujari, Sandeep Kumar Sahu, Venkateswara Rao Kagita,
Vineet Padmanabhan. "Collaborative Filtering Using Multiple Binary Maximum
Margin Matrix Factorizations." Information Sciences 380 (2017): 1-11.

2. Vikas Kumar, Arun K Pujari, Sandeep Kumar Sahu, Venkateswara Rao Kagita,
Vineet Padmanabhan. "Proximal Maximum Margin Matrix Factorization for Col-
laborative Filtering." Pattern Recognition Letters 86 (2017): 62-67.

3. Vikas Kumar, Arun K Pujari, Vineet Padmanabhan, Sandeep Kumar Sahu,
Venkateswara Rao Kagita. "Multi-label Classification Using Hierarchical Em-
bedding." Expert Systems with Applications 91 (2018): 263-269.

4. Vikas Kumar, Arun K Pujari, Vineet Padmanabhan, Venkateswara Rao Kagita.
"Group Preserving Label Embedding for Multi-Label Classification." Pattern
Recognition, Under Review.

8

CHAPTER 2

Foundational Concepts

In majority of data-analysis tasks, the datasets are naturally organized in matrix

form. For example, in collaborative filtering, users preferences on items can be rep-

resented as a matrix, whose rows represent users, columns represent items, and each

element of the matrix represent the preference of a user for an item. In a clustering

problem, a row of the matrix represents data object (instance) and the columns repre-

sent associated features (attributes). In image inpainting problem, an image can be rep-

resented by a matrix where each entry of the matrix corresponds to pixel values. Sim-

ilarly, in document analysis, a set of document can be represented as a matrix wherein

the rows represent terms and the columns represent documents. Each entry represents

the frequency of the associated terms in a particular document.

Recent advances in many data-analysis tasks have been focused on finding a mean-

ingful (simplified) representation of the original data matrix. A simplified representa-

tion typically helps in better understanding the structure, relationship within the data

or attributes and retrieving the hidden information that exists in the original data ma-

trix. Matrix Factorization (MF) methods have attracted significant attention for finding

the latent (hidden) structure from the original data matrix. Given an original matrix

Y ∈ RN×M , MF aims at determining two matrices U ∈ RN×d and V ∈ RM×d such

that Y ≈ UV T where the inner dimension d is called the numerical rank of the matrix.

The numerical rank is much smaller than M and N , and hence, factorization allows

the matrix to be stored inexpensively. Here, the interpretation of factor matrices U and

V are application dependent. For example, in collaborative filtering, given that Y is a

N ×M size user-item rating matrix, MF aims at determining the latent factor represen-

9

tation of users and items. The ith row of U represents the latent factor of the ith user

and the jth row of V represents the latent feature of the jth item [65, 100, 89, 62, 104].

In a clustering problem with M data points (columns of Y) and d cluster, the jth col-

umn of U can be interpreted as the representative of the jth cluster and ith column

of V T can be visualized as the reconstruction weights of the ith data point from those

representatives [25, 137, 81, 125].

The MF field is too vast to cover and there are many research directions one can

pursue starting from theoretical aspects to application-oriented aspects. In this thesis,

we focus our discussion on two special applications of matrix factorization, namely col-

laborative filtering [65, 100, 89, 62, 104] and multi-label classification [12, 133, 3, 53].

The purpose of this chapter is to introduce the basic matrix factorization framework and

concepts which will be used throughout the thesis (Section 2.1). In Section 2.2, we dis-

cuss some of the common loss functions used in MF to measure the deviation between

the observed data and corresponding approximation. We briefly discuss the different

ways to avoid overfitting in MF model in Section 2.3. In Section 2.4 and 2.5, we ex-

plore how matrix factorization can be applied to interesting applications of machine

learning namely collaborative filtering and multi-label classification, respectively.

2.1 Matrix Factorization

Matrix factorization is a key technique employed for many real-world applications

wherein the objective is to select U and V among all the matrices that fit the given data

and the one with the lowest rank is preferred. In most applications, the task that needs

to be performed is not just to compute any factorization, but also to enforce additional

constraints on the factors U and V . The matrix factorization problem can be formally

defined as follows:

Definition 1 (Matrix Factorization). Given a data matrix Y ∈ RN×M , matrix factoriza-

tion aims at determining two matrices U ∈ RN×d and V ∈ RM×d such that Y ≈ UV T

where the inner dimension d is called the numerical rank of the matrix. The numerical

rank is much smaller than M and N , and hence, factorization allows the matrix to be

stored inexpensively. X = UV T is called as low-rank approximation of Y .

10

A common formulation for this problem is a regularized loss problem which can be

given as follows.

min
U,V

`(Y, U, V) + λR(U, V) (2.1)

where Y is the data matrix, X = UV T is its low-rank approximation, `(·) is a loss

function that measures how well X approximates Y , and R(·) is a regularization func-

tion that promotes various desired properties in X (low-rank, sparsity, group-sparsity,

etc.). When `(·) and R(·) are convex functions of X (equivalently, of U and V) the

above problem can be solved efficiently. The loss function `(Y, U, V) can further be

decmposed into the sum of pairwise discrepancy between the observed entries and their

corresponding prediction, that is, `(Y, U, V) =
∑N

i=1

∑M
j=1 `(yij, Ui, Vj), where yij is

the ijth entry of the matrix Y and Ui, the ith row of U , represent the latent feature vector

of ith user and Vj , the jth row of V , represent the latent feature vector of jth item. There

have been umpteen number of proposals for factorizing a matrix and these differ, by and

large, among themselves in defining the loss function and the regularization function.

The structure of the latent factors depends on the types of loss (cost) functions and the

constraints imposed on the factor matrices. In the following subsections, we present a

brief literature review of the major loss functions and regularizations.

2.2 Loss Function

Loss function ` : Y × Y → R in MF model is used to measure the discrepancy

between the observed entry and the corresponding prediction. Based on the types of

observed data, the loss function in MF can be roughly grouped into three categories:

(1) Loss function for Binary data; (2) Loss function for Discrete ordinal data; and (3)

Loss function for Real-valued data.

2.2.1 Binary Loss Function:

For a binary data matrix Y = [yij] where the entries are restricted to take only two

values yij ∈ {+1,−1}, we review some of the important loss functions such as zero-

one loss, hinge loss, smooth hinge loss, modified least square and logistic loss [101] in

the following subsections.

11

Zero-One Loss : The zero-one loss is a standard loss function to measure the penalty

for an incorrect prediction which takes only two values zero or one. For a given ob-

served entry yij and the corresponding prediction UiV
T
j , zero-one loss is defined as

`(z) =

0 if z ≥ 0;

1 otherwise,
(2.2)

where z = yij(UiV
T
j).

Hinge Loss: There are two major drawbacks with zero-one loss (1) Minimizing ob-

jective function involving zero-one loss is difficult to optimize as the function is non-

convex; (2) It is insensitive to the magnitude of prediction whereas in general, when

the entries are binary, the magnitude of score yij(UiV T
j) represent the confidence in our

prediction. The hinge loss is a convex upper bound on zero-one error [34] and sensi-

tive to the magnitude of prediction. In the case of classification with large confidence

(margin), hinge loss is the most preferred loss function and is defined as

`(z) =

0 if z ≥ 1;

1− z otherwise.
(2.3)

Smooth Hinge Loss: Hinge loss, h(z) is non-differentiable at z = 1 and very sensitive

to outliers [100]. An alternative of hinge loss is proposed in [101] called smooth hinge

and is defined as

`(z) =

0 if z ≥ 1;

1
2
(1− z)2 if 0 < z < 1;

1
2
− z otherwise.

(2.4)

Smooth Hinge shares many properties with hinge loss and is insensitive to outliers. A

detailed discussion about hinge and smooth hinge loss is given in Chapter 3.

Modified Square Loss: In [153], the hinge function is replaced by a smoother quadratic

function to make the derivative smooth. The modified square loss is defined as

`(z) =

0 if z ≥ 1;

(1− z)2 otherwise.
(2.5)

12

Logistic Loss: The logistic loss function is strictly convex function which enjoys prop-

erties similar to that of the hinge loss [86]. The logistic loss is defined as

`(z) = log(1 + exp−z). (2.6)

2.2.2 Discrete Ordinal Loss Function

For a discrete ordinal matrix Y = [yij] where entries are no more like and dislike

but can be any value from a discrete range, that is, yij ∈ {1, 2, . . . , R}, there is need

to extend binary class loss function to multi-class loss function. There are two ma-

jor approaches for extending loss function for binary class classification to multi-class

classification. The first approach is to directly solve a multi-class problem by modi-

fying the binary class objective function by adding a constraint to it for every class as

suggested in [101] [143] . The second approach is to decompose the multi-class clas-

sification problem into a series of independent binary class classification problems as

given in [11].

To extend binary loss function to multi-class setting, most of the approaches define

a set of threshold values θ1 < θ1 < · · · < R − 1 such that the real line is divided

into R regions. The region defined by threshold θq−1 and θq corresponds to rating

q [101]. For simplicity of notation, we assume θ0 = −∞ and θR = +∞. There

are different approaches for constructing a loss function based on a set of threshold

values such as immediate-threshold and all-threshold [101]. For each observed entry

and corresponding prediction pair (yij, UiV
T
j), the immediate-threshold based approach

calculates the loss as the sum of immediate-threshold violation.

`(yij, UiV
T
j) = `(UiV

T
j − θi,yij−1) + `(θi,yij − UiV T

j) (2.7)

On the other hand, all-threshold loss is calculated as the sum of loss for all threshold

which is the cost of crossing multiple rating-boundaries and is defined as

`(UiV
T
j , yij) =

yij−1∑
r=1

`(UiV
T
j − θi,r) +

R−1∑
r=yij

`(θi,r − UiV T
j). (2.8)

13

2.2.3 Real-valued Loss Function

For a real-valued data matrix Y = [yij] where the entries are in real-valued do-

main R, we review some of the important loss functions such as square-loss [93], KL-

divergence [73], β-divergence [17] and Itakura-Saito divergence [29] loss. These are

given in the following subsections.

Squared Loss: The square loss is the most common loss function used for real-valued

prediction. The penalty for misclassification is calculated as the square distance be-

tween the observed entry and the corresponding prediction. The square loss is defined

as

`(yij, ŷij) = (yij − ŷij)2 (2.9)

where ŷij = UiV
T
j .

Kullback-Leibler Divergence Loss: The KL-divergence loss also know as I-divergence

loss is the measure of information loss when UiV T
j is used as an approximate to yij . The

KL-divergence loss is defined as

`(yij, ŷij) = yij ln
yij
ŷij
− yij + ŷij. (2.10)

Itakura-Saito Divergence: Itakura and Saito [29] is obtained from the the maximum

likelihood (ML) estimation. The loss function is defined as

`(yij, ŷij) =
yij
ŷij
− yij ln

yij
ŷij
− 1. (2.11)

β-Divergence Loss: Cichocki et al. [17] proposed a generalized family of loss function

called β-divergence defined as

`(yij, Ui, Vj) =

yβij
β(β−1)

+
ŷβij
β
− yij ŷ

β−1
ij

β−1
if β ∈ R \ {0, 1};

yij ln
yij
ŷij
− yij + ŷij if β = 1;

yij
ŷij
− yij ln

yij
ŷij
− 1 if β = 0,

(2.12)

where β ≥ 0 is a generalization parameter. At limitng case β = 0 and β = 1, the β-

divergence corresponds to Itakura-Saito divergence and Kullback-Leibler divergence,

14

respectively. The squared loss can be obtained as a special case at β = 2.

2.3 Regularization

Most of the machine learning algorithms suffer from the problem of overfitting

where the model fits the training data too well but have poor generalization capabil-

ity for new data. Thus, a proper technique should be adopted to avoid overfitting of the

training data. In MF community, to make the model unbiased i.e., to avoid the model to

fit only with a particular dataset, many researchers have tried with different regulariza-

tion terms along with some loss function [63, 94, 113, 65]. Regularization is not only

used to prevent overfitting but also to achieve different structural representation of the

latent factors. Several methods based on norm regularization has been proposed in the

literature which includes `1, `2 and `2,1.

`1 Norm: The `1 norm, also know as sparsity inducing norm, is used to produce sparse

latent factors and thus avoids overfitting by retaining only the useful factors. In effect,

this implies that most units take values close to zero while only few take significantly

non-zero values. For a a given matrix A, the `1 norm is defined as

‖A‖1 =
∑
ij

|aij|. (2.13)

`2 Norm: The most popular and widely investigated regularization term used in MF

model is `2 norm which is also known as Frobenius norm. For a given matrix A, the `2

norm is defined as

‖A‖F =

√∑
ij

a2
ij (2.14)

where ‖·‖2 is the `2 norm of a matrix. Minimizing the objective function containing the

`2 norm as regularization term gives two benefits 1) It avoids overfitting by penalizing

the large latent factor values. 2) Approximating the target matrix with low-rank factor

matrix is a typical non-convex optimization problem and in fact, the `2 norm has also

been suggested as a convex surrogate for the rank in control applications [28, 100].

`2,1 Norm: The `2,1 norm also known as group sparsity norm is used to induce a sparse

15

representation at the level of groups. For a given matrix A, the `2,1 norm is defined as

‖A‖2,1 =
n∑
i=1

√√√√ m∑
j=1

A2
ij. (2.15)

2.4 Collaborative filtering with Matrix Factorization

In collaborative filtering, the goal is to infer user preferences for items based on

his/ her previously given preference and a large collection of preferences of other users.

Given a partially observed N ×M user-item rating matrix Y with N number of users

and M number of items the goal is to predict unobserved preference of users for items.

The collaborative filtering problem can be formally defined as follows:

Definition 2 (Collaborative Filtering). Let Y be a N ×M size user-item rating matrix

and Ω be the set of observed entries. For each (i, j) ∈ Ω, the entry yij ∈ {1, 2, . . . , R}

defines the preference of ith user for jth item. For each (i, j) /∈ Ω, yij = 0 indicates that

preference of ith user for jth item is not available (unsampled entry). Given a partially

observed rating matrix Y ∈ RN×M , the goal is to predict yij for (i, j) /∈ Ω.

Matrix factorization is a key technique employed for completion of user-item rating

matrix wherein the objective is to learn low-rank (or low-norm) latent factors U (for

users) and V (for items) so as to simultaneously approximate the observed entries under

some loss measure and predict the unobserved entries. There are various ways of doing

so. It is shown in [71] that to approximate Y , the entries in the factor matrix U and

V need to be non-negative so that only additive combination factors are allowed. The

basic idea is to learn factor matrices U and V in such a way that, the squared sum

distance between the observed entry and corresponding prediction is minimized. The

optimization problem is formulated as

min
U≥0,V≥0

J(U, V) =
∑

(i,j)∈Ω

(yij − UiV T
j)2. (2.16)

Singular value decomposition (SVD) is used in [105] to learn the factor matrices U and

V . The key technical challenge when SVD is applied to sparse matrices is that it suf-

fers from severe overfitting. When SVD factorization is applied on sparse data, error

16

function needs to be modified so as to consider only the observed ratings by setting

the non-observed entries to zero. This minor modification results in a non-convex opti-

mization problem. Instead of minimizing the rank of a matrix, maximum margin matrix

factorization (MMMF) [110] proposed by srebro et al. aims at minimizing the Froebe-

nius norms of U and V , resulting in convex optimization problems. It is shown that

MMMF can be formulated as a semi-definite programming (SDP) problem and solved

using standard SDP solvers. However, current SDP solvers can only handle MMMF

problems on matrices of dimensionality up to a few hundred. Hence, a direct gradient

based optimization method for MMMF is proposed in [100] to make fast collaborative

prediction. The detailed discussion about MMMF is given in Chapter 3. To further

improve the performance of MMMF, in [23], MMMF is casted using ensemble meth-

ods which includes bagging and random weight seeding. MMMF was further extended

in [129] by introducing offset terms, item dependent regularization and a graph kernel

on the recommender graph. In [135], a noparametric Bayesian-style MMMF was pro-

posed that utilizes nonparametric techniques to resolve the unknown number of latent

factors in MMMF model [129][100][23]. A probabilistic interpretation of MMMF was

presented in [136] model through data augmentation.

The proposal of MMMF hinges heavily on extended hinge loss function. Research

on different loss functions and their extension to handle multiple classes has not at-

tracted much attention of researchers though there are some important proposals [83].

MMMF has become a very popular research topic since its publication and several ex-

tensions have been proposed [23, 129, 135, 136]. There has also been some research on

matrix factorization on binary or bi-level preferences [122]. But many view binary pref-

erence as a special case of matrix factorization with discrete ratings. In [155] the rating

matrix is decomposed hierarchically by grouping similar users and items together, and

each sub-matrix is factorized locally. To the best of our knowledge, there is no research

on hierarchical MMMF.

2.5 Multi-label Classification with Matrix Factorization

In machine learning and statistics, the classification problem is concerned with the

assignment of a class (category) to a data object (instance) from a given set of discrete

17

classes. For example, classifying a document into one of the several known categories

such as sports, crime, business, politics etc. In a traditional classification problem, data

objects are represented in the form of feature vectors, each associated with a unique

class label from a set of disjoint class labels L, |L| > 1. Depending on the total

number of disjoint classes in L, a learning task is categorized as binary classification

(when |L| = 2) or multi-class classification (when |L| > 2) [108]. However, in many

real-word classification tasks, data object can be simultaneously associated with one or

more than one class in L. For example, a document can simultaneously belong to more

than one class such as politics and business. The objective of multi-label classifica-

tion (MLC) is to build a classifier that can automatically tag an example with the most

relevant subset of labels. This problem can be seen as a generalization of the single

label classification where an instance is associated with a unique class label from a set

of disjoint labels L. The multi-label classification problem can be formally defined as

follows:

Definition 3 (Multi-label Classification). Given N training examples in the form of a

pair of feature matrix X and label matrix Y where each example xi ∈ RD, 1 ≤ i ≤ N ,

is a row of X and its associated labels yi ∈ {−1, 1}L is the corresponding row of

Y . The +1 entry at the jth coordinate of vector yi indicates the presence of label j

in data point xi. The task of multi-label classification is to learn a parametrization

h : RD → {−1, 1}L that maps each instance (or, a feature vector) to a set of labels (a

label vector).

MLC is a major research area in the machine learning community and finds appli-

cation in several domains such as computer vision [12, 9], data mining [118, 106] and

text classification [150, 106]. Due to the exponential size of the output space, exploit-

ing intrinsic information in the feature and the label space has been the major thrust

of research in recent years and the use of parametrization and embedding techniques

have been the prime focus in MLC. The embedding based approach assumes that there

exists a low-dimensional space onto which the given set of feature vectors and/ or label

vectors can be embedded. The embedding strategies can be grouped into two cate-

gories namely; (1) Feature space embedding; and (2) Label space embedding. Feature

space embedding aims to design a projection function which can map the instance in

the original feature space to the label space. On the other hand, the label space em-

bedding approach transform the label vectors to an embedded space via linear or local

18

non-linear embeddings, followed by the association between feature vectors and em-

bedded label space for classification purpose. With proper decoding process that maps

the projected data back to the original label space, the task of multi-label prediction

is achieved [41, 97, 112]. We present a brief review of the FE and LE approaches for

multi-label classification. The detailed discussion is given in Chapter 5.

Given N training examples in the form of a pair of feature matrix X and label ma-

trix Y where each example xi ∈ RD, 1 ≤ i ≤ N , is a row of X and its associated

labels yi ∈ {−1,+1}L is the corresponding row of Y , the goal of FE is to learn a trans-

formation matrix W ∈ RD×L which maps instances feature space to label space. This

approach requires D × L parameter to model the classification problem, which will

be expensive when D and L are large [139]. In [139] a generic empirical risk mini-

mization (ERM) framework is used with low-rank constraint on linear parametrization

W = UV T , where U ∈ RD×d and V ∈ RL×d are of rank d � D. The problem can be

restated as follows.

min
U,V

`(Y,XUV T) +
λ

2
(‖U‖2

F + ‖V ‖2
F) (2.17)

where ‖ · ‖F is Frobenius norm. The formulation in Eq. (2.17) can capture the intrinsic

information of both feature and label space. It can also be seen as a joint learning frame-

work in which dimensionality reduction and multi-label classification are performed

simultaneously [51, 140].

The matrix factorization (MF) based approach for LE aims at determining two ma-

trices U ∈ RN×d and V ∈ Rd×L [5, 134]. The matrix U can be viewed as the basis

matrix, while the matrix V can be treated as the coefficient matrix and a common for-

mulation is the following optimization problem.

min
U,V

`(Y, U, V) + λR(U, V) (2.18)

where `(·) is a loss function that measures how well UV approximates Y , R(·) is a

regularization function that promotes various desired properties in U and V (sparsity,

group-sparsity, etc.) and the constant λ ≥ 0 is the regularization parameter which

controls the extent of regularization. In [79], a MF based approach is used to learn

the label encoding and decoding matrix simultaneously. The problem is formulated as

19

follows.

min
U,V
‖Y − UV ‖2

F + αΨ(X,U) (2.19)

where U ∈ RN×d is the code matrix, V ∈ Rd×L is the decoding matrix, Ψ(X,U) is

used to make U feature-aware by considering correlations between X and U as side

information and the constant α ≥ 0 is the trade-off parameter.

20

CHAPTER 3

Collaborative Filtering Using

Hierarchical Matrix Factorizations

In the previous chapter, we discussed the basic matrix factorization model and the

associated formulation of matrix factorization as an optimization problem. We have also

discussed at length the application of matrix of factorization techniques in collaborative

filtering and multi-label classification. In this chapter, we elaborate on those basics and

propose a matrix factorization based collaborative filtering approach.

3.1 Introduction

In this chapter, we describe the proposed method, termed as HMF (Hierarchical

Matrix Factorization). HMF is a novel method for constructing a hierarchical bi-level

maximum margin matrix factorization to handle matrix completion of ordinal rating

matrix. The proposed method draws motivation from research on multi-class classifica-

tion. There are two major approaches of extending two-class classifiers to multi-class

classifiers. The first approach explicitly reformulates the classifier, resulting in a unified

multiclass optimization problem (embedded technique). The second approach (combi-

national technique) is to decompose a multiclass problem into multiple, independently

trained, binary classification problems and to combine them appropriately so as to form

a multiclass classifier. In maximum margin matrix factorization (MMMF) [100], the au-

thors adopted embedded approach by extending bi-level hinge loss to multi-level cases.

21

Combinational techniques have been very popular and successful as they all ex-

hibit some relative advantages over embedded techniques and this prompts us to ques-

tion whether some sort of combinational approach can be employed in the context of

MMMF. There are several approaches in combinational techniques and these are One-

Against-All (OAA) [40, 102, 131], One-Against-One (OAO) [22, 40] etc. HMF falls

into the category of OAA approach with a difference. The OAA approach of classi-

fication employs one binary classifier for each class against all other classes. In the

present context ‘class’ corresponds to the number of ordinal ranks. Interestingly, since

the ranks are ordered, in the present case, OAA strategy is used by taking advantage of

the ordering of ’classes’. Unlike the traditional OAA strategy, (which means that one

bi-level matrix factorization to be used for rank q as one label (say, −1) and all other

ranks as the other label (say, +1)), here we employ for each rank q, all ranks below q as

−1 and all ranks above q as +1.

MMMF and HMF, like any other matrix factorization methods, use latent factor

model approach. The latent factor model is concerned with learning from limited ob-

servations, latent factor vector Ui for each user and latent factor vector Vj for each item,

such that the dot product of Ui and Vj gives the ranking of user i for item j. In MMMF,

besides learning the latent factors, the set of thresholds also needs to be learned. It is

assumed that there are R− 1 thresholds θi,r for each user i (R is the number of ordinal

values or number of ranks). Thus, the rating of user i for item j is decided by compar-

ing the dot product of Ui and Vj with each θi,r. Thus, the fundamental assumption of

MMMF is that the latent factor vectors determine the properties of users and items and

the threshold values capture the characteristics of rating. HMF differs from MMMF

on this principle. The underlying principle of HMF is that the latent factors of users

and items are going to be different, if the users’ likes or dislikes cutoff thresholds are

different. The latent factors are different according to situations. For instance, the latent

factors when ranks above q are identified as likes is different from situations wherein

the ranks above q + 1 are identified as likes. Thus if we have R ratings then, there will

be R − 1 pairs of latent factors (U q, V q). Unlike the process of learning single pair of

latent factors, U and V , HMF learns several U ’s and V ’s in this process without any ad-

ditional computational overheads. The process is proved to be a more accurate matrix

completion process. There has not been any attempt in this direction and we believe

that our present study will open up new areas of research in future.

22

The rest of the chapter is organized as follows. In Section 3.2, we describe the

bi-level MMMF which we use subsequently in our algorithm. Section 3.3 summarizes

the well-known existing MMMF method. We introduce our proposed method of Hi-

erarchical Matrix Factorization (HMF) in Section 3.4. The advantages of HMF over

other matrix factorization based collaborative filtering methods are given by detailed

experimental analysis in Section 3.6. Section 3.7 concludes the chapter.

3.2 Bi-level MMMF

In this section we describe Maximum Margin Matrix Factorization for a bi-level

rating matrix. The matrix completion of bi-level matrix is concerned with the following

problem.

Problem P ±1(Y): Let Y be a N ×M partially observed user-item rating matrix and

Ω is the set of observed entries. For each (i, j) ∈ Ω, the entry yij ∈ {−1,+1} defines

the preference of ith user for jth item with +1 for likes and −1 for dislikes. For each

(i, j) /∈ Ω, the entry yij = 0 indicates that the preference of ith user for jth item is not

available. Given a partially observed rating matrix Y ∈ RN×M , the goal is to infer yij

for (i, j) /∈ Ω.

Matrix factorization is one of the major techniques employed for any matrix com-

pletion problem. In this line, the above problem can be rephrased using latent fac-

tors. Given a partially observed rating matrix Y ∈ RN×M and the observed preference

set Ω, matrix factorization aims at determining two low-rank (or, low-norm) matrices

U ∈ RN×d and V ∈ RM×d such that Y ≈ UV T . The row vectors Ui, 1 ≤ i ≤ N

and Vj , 1 ≤ j ≤ M are the d-dimensional representations of the users and the items,

respectively. A common formulation of P±1(Y) is to find U and V as solution of the

following optimization problem.

min
U,V

J(U, V) =
∑

(i,j)∈Ω

`(yij, Ui, Vj) + λR(U, V) (3.1)

where `(·) is a loss function that measures how well (Ui.V
T
j) approximates yij , andR(·)

is a regularization function. The idea of the above formulation is to alleviate the problem

of outliers through a robust loss function and at the same time to avoid overfitting and

23

to make the optimization function smooth with the use of regularization function.

A number of approaches can be used to optimize the objective function 3.1. Gradi-

ent Descent method and its variants start with random U and V and iteratively update

U and V using the equations 3.2 and 3.3, respectively.

U t+1
ip = U t

ip − c
∂J

∂U t
ip

(3.2)

V t+1
jq = V t

jq − c
∂J

∂V t
jq

(3.3)

where c is the step length parameter and suffixes t and (t + 1) indicate current values

and updated values.

The step-wise description of the process is given as Pseudo-code in Algorithm 1.

Algorithm 1: A±1 (Y , d, λ)
input : Bi-level Rating Matrix: Y , Number of Latent Factors: d, Regularization

Parameter: λ
output: Factor Matrices: U and V

t← 0;
Initialize: U t, V t;
while Stopping criteria met do

Calculate ∂J
∂Utip

and ∂J
∂V tjq

at U t and V t, respectively;

t← t+ 1;
U t+1
ip ← U t

ip − c ∂J
∂Utip

;

V t+1
jq ← V t

jq − c ∂J
∂V tjq

;

end
Let U and V are the factor matrices obtained after convergence;
return U and V ;

Once U and V are computed by Algorithm 1, the matrix completion process is

accomplished from the factor matrices as follows.

ŷij =

−1, if (i, j) /∈ Ω ∧ UiV T

j < θ;

+1, if (i, j) /∈ Ω ∧ UiV T
j ≥ θ;

yij, if (i, j) ∈ Ω,

(3.4)

where θ is the user-specified threshold value.

24

The latent factor Vj of each item j can be viewed as a point in d-dimensional space

and the latent factor Ui of user i can be viewed as a decision hyperplane in this space.

The objective of bi-level matrix factorization is to learn the embeddings of these points

and hyperplanes in Rd such that each hyperplane (corresponding to a user) separates (or,

equivalently, classifies) the items by likes and dislikes of a user. Let us consider the fol-

lowing partially observed bi-level matrix Y (Table 3.1) for illustration. The unobserved

entries are indicated by 0 entries.

Table 3.1: Bi-level matrix Y

0 1 0 0 1 0 -1
-1 0 1 1 1 0 -1
0 1 -1 0 0 1 -1

-1 1 -1 1 -1 1 0
-1 0 -1 1 1 0 0
0 -1 0 1 0 1 1
1 1 0 -1 0 0 0

Let us assume that the following U and V are the latent factor matrices with d = 2.

Table 3.2: Latent factor matrices corresponding to Y .

-0.63 -0.50
-0.69 -0.96
0.27 -1.09
0.63 -0.84

-0.02 -1.03
1.19 -0.03

-1.11 0.21
U

-0.37 0.94
-0.70 -1.02
-1.06 0.42
0.55 -0.97

-1.04 -0.36
0.67 -0.58
0.65 0.81

V

The same is depicted graphically in Figure 3.1. V1, V2, . . . , V7 are depicted as points.

The hyperplanes U1, U2, . . . , U7 with threshold 0.1 are depicted as lines. An arrow is

shown to indicate the positive side of each line. In other words, if a point falls this

side, the preference is like (+1) and the other side preference is dislikes (−1). Entry

y34 is predicted based on the position of V4 with respect to U3. V4 falls to the positive

side of line corresponding to U3 and hence, the entry y34 is predicted as +1. The latent

factor U and V are obtained by a learning process making use of the generic algorithm

(Algorithm 1) with the observed entries as the training set. The objective of this learning

process is to minimize the loss due to discrepancy between computed entries and the

observed entries. In the example (Figure 3.1) point V3 and V5 are in the positive side of

U2 and V7 in the negative side of U2. These points are located at different distance.

25

Figure 3.1: Geometrical interpretation of bi-level matrix factorization.

There are many matrix factorization algorithms for bi-level matrices which adopts

the generic algorithm describe in Algorithm 1. These algorithms are designed based on

the specification of the loss function and the regularization function. We adopt here a

maximum-margin formulation as the guiding principle.

Loss functions in matrix factorization models are used to measure the discrepancy

between the observed entry and the corresponding prediction. Furthermore, especially

when predicting discrete values such as ratings, loss functions other then sum-squared

loss are often more appropriate [100]. The trade-off between generalization loss and

empirical loss has been prevailing since the advent of support vector machine (SVM).

Maximum margin approach aims at providing higher generalization ability and avoiding

overfitting. In this context, hinge loss function is the most preferred loss function and

is defined as follows.

h(z) =

0, if z ≥ 1;

1− z, otherwise,
(3.5)

where z = yij(UiV
T
j). The hinge loss is illustrated in Figure 3.2.

26

Figure 3.2: Loss function values for the hinge

The following real-valued prediction matrix is obtained from the latent factor ma-

trices U and V (Table 3.2) corresponding to the matrix Y (Table 3.1).

Table 3.3: Real-valued prediction corresponding to bi-level matrix Y.

-0.24 0.95 0.46 0.14 0.84 -0.13 -0.81
-0.65 1.46 0.33 0.55 1.06 0.09 -1.23
-1.12 0.92 -0.74 1.21 0.11 0.81 -0.71
-1.02 0.42 -1.02 1.16 -0.35 0.91 -0.27
-0.96 1.06 -0.41 0.99 0.39 0.58 -0.85
-0.47 -0.80 -1.27 0.68 -1.23 0.81 0.75
0.61 0.56 1.26 -0.81 1.08 -0.87 -0.55

The hinge loss function values corresponding to the observed entries in Y (Table 3.1)

and the real-valued prediction (Table 3.3) is shown in Table 3.4.

Table 3.4: Hinge loss corresponding to observed entries in Y.

0 0.05 0 0 0.16 0 0
0.35 0 0.67 0.45 0 0 0.35

0 0.08 0.26 0 0 0.19 0
0 0.58 0 0 0.65 0.09 0

0.04 0 0.59 0.01 0.61 0 0.04
0 0.20 0 0.32 0 0.19 0

0.39 0.44 0 0.19 0 0 0.39

27

Hinge loss, h(z) is non-differentiable at z = 1 and is very sensitive to outliers

as mentioned in [100]. Therefore an alternative called smooth hinge loss is proposed

in [101] and can be defined as,

h(z) =

0, if z ≥ 1;

1
2
(1− z)2, if 0 < z < 1;

1
2
− z, otherwise.

(3.6)

The smooth hinge loss is illustrated in Figure 3.3.

Figure 3.3: Loss function values for the smooth hinge

The smooth hinge loss function values corresponding to the observed entries in Y

(Table 3.1) and the real-valued prediction (Table 3.3) is shown in Table 3.5.

Table 3.5: Smooth hinge loss corresponding to observed entries in Y.

0 0 0 0 0.01 0 0
0.06 0 0.23 0.10 0 0 0.06

0 0 0.03 0 0 0.02 0
0 0.17 0 0 0.21 0 0
0 0 0.17 0 0.19 0 0
0 0.02 0 0.05 0 0.02 0

0.08 0.10 0 0.02 0 0 0.08

28

Figure 3.2 and 3.3 show the loss function values for the hinge and smooth hinge loss,

respectively. It can be seen that the smooth hinge loss shares important similarities to

the hinge loss and has a smooth transition between a zero slope and a constant negative

slope. Table 3.4 and 3.5 show the hinge loss and smooth hinge loss function values

corresponding to the observed entries in Y (Table 3.1). It can also be seen that the

smooth hinge is less sensitive to the outliers as compared to the hinge loss function.

For example, the rating given by user 4 for item 2 is positive and the same reflect in

the embedding (Figure 3.1). The loss incurred by hinge and smooth hinge are 0.58

and 0.17, respectively. Even though the point is embedded with margin the hinge loss

function gives more reward to the model for the increase in objective value.

We reformulate P±1(Y) problem for the bi-level rating matrix as the following opti-

mization problem.

min
U,V

J(U, V) = Σ
(i,j)∈Ω

h
(
yij(UiV

T
j)
)

+
λ

2
(‖U‖2

F + ‖V ‖2
F) (3.7)

where ‖.‖F is the Frobenius norm which is the same as defined in Chapter 2, λ > 0

is the regularization parameter and h(·) is the smooth hinge loss function as defined

previously.

The gradients of the variables to be optimized are determined as follows. The gra-

dient with respect to each element of U is calculated as

∂J

∂Uip
=

∑
j|(i,j)∈Ω

∂h
(
yij(UiV

T
j)
)

∂Uip
+
λ

2

(
∂‖U‖2

F

∂Uip
+
∂‖V ‖2

F

∂Uip

)

=
∑

j|(i,j)∈Ω

yijh
′(yij(UiV T

j)
)∂(UiV

T
j)

∂Uip
+ λUip

=
∑

j|(i,j)∈Ω

yijh
′(yij(UiV T

j)
)
Vjp + λUip (3.8)

Similarly, the gradient with respect to each element of V is calculated as follows.

∂J

∂Vjq
=

∑
i|(i,j)∈Ω

yijh
′(yij(UiV

T
j))Uiq + λVjq (3.9)

29

where h′(z) is defined as follows.

h′(z) =

0, if z ≥ 1;

z − 1, if 0 < z < 1;

−1, otherwise.

(3.10)

Algorithm 2 outlines the main flow of the bi-level maximum margin matrix factor-

ization (BMMMF).

Algorithm 2: BMMMF (Y , d, λ)
input : Bi-level Rating Matrix: Y , Number of Latent Factors: d, Regularization

Parameter: λ
output: Factor Matrices: U and V

t← 0;
Initialize: U t, V t;
while Stopping criteria met do

∂J
∂Utip
←
∑

j|(i,j)∈Ω yijh
′(yij(U

t
iV

tT

j))V t
jp + λU t

ip ;
∂J
∂V tjq
←
∑

i|(i,j)∈Ω yijh
′(yij(U

t
iV

tT

j))U t
iq + λV t

jq;

t← t+ 1;
U t+1
ip ← U t

ip − c ∂J
∂Utip

;

V t+1
jq ← V t

jq − c ∂J
∂V tjq

;

end
Let U and V are the factor matrices obtained after convergence;
return U and V ;

We also show the behaviour of J (Equation 3.7). We plot the value of J obtained in

every iteration for the same Y (Table 3.1) starting from different initial points. It can be

seen from Figure 3.4 that J is having asymptotic convergence.

3.3 Multi-level MMMF

As discussed in the previous chapter, MMMF [110] and subsequently, Fast MMMF [100]

are proposed primarily for collaborative filtering with ordinal rating matrix when user-

preferences are not in the form of like/ dislike but are values in a discrete range. The

matrix completion of ordinal rating matrix is concerned with the following problem.

Problem Pord(Y): Let Y be a N ×M partially observed user-item rating matrix and Ω

30

Figure 3.4: Convergence graph of BMMMF with different initial points

is the set of observed entries. For each (i, j) ∈ Ω, the entry yij ∈ {1, 2, . . . , R} defines

the preference of the ith user for the jth item. For each (i, j) /∈ Ω, yij = 0 indicates that

the preference of ith user for jth item is not available. Given a partially observed rating

matrix Y ∈ RN×M , the goal is to predict yij for (i, j) /∈ Ω.

Need for multiple thresholds: Unlike P±1(Y), Pord(Y) has domain of yij with more

than two values. When the domain has two values, Pord(Y) is equivalent to P±1(Y).

Continuing our discussion on geometrical interpretation of P±1(Y), the likes (+1) and

dislikes (−1) of user i are separated with both sides of the hyperplane defined by Ui.

The same concept when extended to Pord(Y), it is necessary to define threshold values

{θ1, . . . , θR−1} such that the region between two parallel hyperplanes defined by the

same Ui with different threshold θq−1 and θq corresponds to the rating q. Thus, in

Pord(Y), in addition to learning the latent factor matrices U and V it is also needed

to learn the thresholds θ’s. There may be a debate on the number of θ’s needed, but

following the original proposal of MMMF [100], we follow R − 1 thresholds for each

user and hence there are n(R− 1) thresholds.

There are different approaches for constructing a loss function based on a set of

thresholds such as immediate-threshold and all-threshold [101]. For each observed en-

31

try and the corresponding prediction pair (yij, UiV
T
j), the immediate-threshold based

approach calculates the loss as sum of immediate-threshold violation which is `(UiV T
j −

θi,yij−1) + `(θi,yij − UiV T
j). On the other hand, all-threshold loss is calculated as the

sum of loss for all thresholds which is the cost of crossing multiple rating-boundaries

and is defined as follows.

`(UiV
T
j , yij) =

yij−1∑
r=1

`(UiV
T
j − θi,r) +

R−1∑
r=yij

`(θi,r − UiV T
j) (3.11)

Using the R− 1 thresholds θ’s, MMMF extended the hinge loss function meant for bi-

nary classification to ordinal settings. The difference between immediate-threshold and

all-threshold hinge is illustrated with the help of the following example. Let us consider

the partially observed ordinal rating matrix Y with R = 5, the learnt factor matrices U ,

V and the set of thresholds θ’s for each user (Table 3.6).

Table 3.6: Runnning example.

1 2 4 3 5 2 1 4 3 0
0 4 5 3 2 4 1 1 3 2
4 3 5 5 2 0 2 3 1 4
5 0 1 2 3 1 4 3 5 2
2 5 3 4 2 4 0 3 1 1
0 1 5 3 1 5 3 2 4 4
4 2 5 1 4 3 2 5 0 3
2 2 3 1 3 4 5 0 5 4
5 4 5 2 3 1 4 0 1 2
3 0 4 5 1 2 1 5 3 4

Y

0.22 -0.12
0.90 0.05
1.45 0.31

-1.52 0.04
0.94 1.06
1.09 -1.45
0.10 0.14

-0.60 -1.65
-0.24 0.71
0.48 0.59

U

-0.79 1.01
0.10 1.21
1.51 -0.32
0.76 0.63

-0.53 0.24
1.45 -0.79

-0.98 -0.74
-0.17 0.72
-0.72 -1.32
0.39 -0.63

V

-0.61 -0.18 0.51 1.21
-0.74 0.09 0.69 1.41
-1.42 -0.65 0.28 0.91
-1.35 -0.25 0.74 0.96
-0.50 0.25 0.77 1.44
-1.08 -0.60 0.56 1.51
-1.10 -0.24 0.34 0.62
-1.41 -0.62 0.13 0.99
-0.73 -0.24 0.02 0.83
-0.73 -0.51 0.09 0.90

θ’s

The following real-valued prediction matrix is obtained from the above latent factor

matrices U and V corresponding to the matrix Y .

Table 3.7: Real-valued prediction corresponding to ordinal rating matrix Y .

-0.30 -0.12 0.37 0.09 -0.15 0.41 -0.13 -0.12 0.00 0.16
-0.66 0.15 1.34 0.72 -0.47 1.27 -0.92 -0.12 -0.71 0.32
-0.83 0.52 2.09 1.30 -0.69 1.86 -1.65 -0.02 -1.45 0.37
1.24 -0.10 -2.31 -1.13 0.82 -2.24 1.46 0.29 1.04 -0.62
0.33 1.38 1.08 1.38 -0.24 0.53 -1.71 0.60 -2.08 -0.30

-2.33 -1.65 2.11 -0.09 -0.93 2.73 0.00 -1.23 1.13 1.34
0.06 0.18 0.11 0.16 -0.02 0.03 -0.20 0.08 -0.26 -0.05

-1.19 -2.06 -0.38 -1.50 -0.08 0.43 1.81 -1.09 2.61 0.81
0.91 0.84 -0.59 0.26 0.30 -0.91 -0.29 0.55 -0.76 -0.54
0.22 0.76 0.54 0.74 -0.11 0.23 -0.91 0.34 -1.12 -0.18

32

One can see that the entry y13 is observed as 4 and the corresponding real-valued pre-

diction is 0.37. When immediate-threshold hinge is the loss measure, the overall loss is

calculated as follows.

h(y13, U1V
T

3) = h(U1V
T

3 − θi,3) + h(θi,4 − U1V
T

3)

= h(0.37− 0.51) + h(1.21− 0.37)

= h(−0.14) + h(0.84)

= 0.65

where h(·) is the smooth hinge loss function as defined previously. For the same exam-

ple, the overall loss with all-threshold hinge function is calculated as follows.

h(y13, U1V
T

3) = h(U1V
T

3 − θi,1) + h(U1V
T

3 − θi,2) + h(U1V
T

3 − θi,3) + h(θi,4 − U1V
T

3)

= h(0.37 + 0.61) + h(0.37 + 0.18)) + h(0.37− 0.51) + h(1.21− 0.37)

= h(0.98) + h(0.55) + h(−0.14) + h(0.84)

= 0.75

Continuing our discussion on geometrical interpretation, immediate-threshold loss tries

to embed the point V3 into the region defined by the parallel hyperplanes (U1, θi,3) and

(U1, θ1,4) which basically mean that U1V
T

3 − θ1,3 > 0 and U1V
T

3 − θ1,4 < 0. The

all-threshold hinge function not only tries to embed the points rated as r into the region

defined by (Ui, θr−1) and (Ui, θr) but also consider the position of the points with respect

to other hyperplanes. It is also desirable that every point Vj rated by user i should satisfy

the condition UiV T
j − θi,r−1 > 0 for r < yij and UiV T

j − θi,r < 0 for r ≥ yij .

In MMMF [100], each hyperplane acts as a maximum-margin separator which is

ensured by considering smooth hinge as the loss function (all-threshold hinge). The

resulting optimization problem for Pord(Y) is

min
U,V

J(U, V, θ)
∑

(i,j)∈Ω

(yij−1∑
r=1

h(UiV
T
j − θi,r) +

R−1∑
r=yij

h(θi,r − UiV T
j)

)
+
λ

2
(‖U‖2

F+‖V ‖2
F)

(3.12)

where ‖.‖F is the Frobenius norm, λ > 0 is the regularization parameter, Ω is the set

of observed entries, h(z) is the smooth hinge loss as defined previously and θi,r is the

33

threshold for rank r of user i. The equation given above can be rewritten as follows.

min
U,V

J(U, V, θ)
R−1∑
r=1

∑
(i,j)∈Ω

h
(
T rij(θi,r − UiV T

j)) +
λ

2
(‖U‖2

F + ‖V ‖2
F) (3.13)

where T is defined as

T rij =

+1, if r ≥ yij;

−1, if r < yij .

The gradients of the variables to be optimized are determined as follows. The gra-

dient with respect to each element of U is calculated as follows.

∂J

∂Uip
=

R−1∑
r=1

∑
j|(i,j)∈Ω

∂h
(
T rij(θi,r − UiV T

j)
)

∂Uip
+
λ

2

(
∂‖U‖2

F

∂Uip
+
∂‖V ‖2

F

∂Uip

)

=
R−1∑
r=1

∑
j|(i,j)∈Ω

T rijh
′(T rij(θi,r − UiV T

j)
)∂(θi,r − UiV T

j)

∂Uip
+ λUip

= λUip −
R−1∑
r=1

∑
j|(i,j)∈Ω

T rijh
′(T rij(θi,r − UiV T

j)
)
Vjp (3.14)

where h′(·) is the same as defined previously. Similarly, the gradients with respect to

each element of V is calculated as

∂J

∂Vjq
= λVjq −

R−1∑
r=1

∑
i|(i,j)∈Ω

T rijh
′(T rij(θi,r − UiV T

j)
)
Uiq (3.15)

and the gradient with respect to each θi,r is determined as follows.

∂J

∂θi,r
=

∑
j|(i,j)∈Ω

∂h
(
T rij(θi,r − UiV T

j)
)

∂θi,r
+
λ

2

(
∂‖U‖2

F

∂θi,r
+
∂‖V ‖2

F

∂θi,r

)

=
∑

j|(i,j)∈Ω

T rijh
′(T rij(θi,r − UiV T

j)
)∂(θi,r − UiV T

j)

∂θi,r

=
∑

j|(i,j)∈Ω

T rijh
′(T rij(θi,r − UiV T

j)
)

(3.16)

Once U , V and θ’s are computed, the matrix completion process is accomplished as

34

Figure 3.5: Classification by MMMF for the ith user

follows.

ŷij =

r, if (i, j) /∈ Ω ∧ (θi,r ≤ xij ≤ θi,r+1) ∧ (0 ≤ r ≤ R− 1);

yij, if (i, j) ∈ Ω,

where, ŷij is the prediction for item j by user i. For simplicity of notation, we assume

θi,0 = −∞ and θi,R = +∞ for each user i.

The objective of MMMF is to learn the embedding of items as points, users as hy-

perplanes and ratings as thresholds such that the points fall as correctly as possible into

regions with the margin of ratings defined by the decision hyperplane (Uj, θj,r). We il-

lustrate this concept by taking a synthetic dataset of size 5×1000 with 10% of observed

entries. The number of ordinal ratings is 5 and d = 2. Figure 3.5 gives the decision hy-

perplane for a user and embedding of points corresponding to the items. Since R = 5,

there are 4 hyperplanes that subdivide the entire space into 5 regions corresponding to

5 ratings. The data so chosen is balanced in the sense that the number of items for

each rating is uniform. From the figure, it is clear that the embedding is learnt perfectly

and the points corresponding to the items fall in the region of respective ratings with

the margin. The margin is also shown in the figure by drawing parallel lines artifically.

35

Figure 3.6: Classification by MMMF for ith user

Thus, one can see that the embedding is achieved with true sense of maximum-margin.

However, this is not so for all cases. It is observed through several experiments that the

margin for the parallel lines is not the same and these hyperplanes separate classes with

unequal margin with bias toward classes with sparse training samples. When the data is

balanced, as in the previous case (Figure 3.5), the unequal margin phenomenon is not

evident. In another synthetic example of size 5 × 1000 with 20% of observed entries,

R = 5, d = 2 and where the data is not balanced the inequalities in the margin size is

evident. This is depicted in Figure 3.6. In this example the observed entries for rating

2, 3 and 4 are substantially less than those for ratings 1 and 5. The observed entries for

rating 3 is substantially less than the observed entries for ratings 2 and 4. When the

points are embedded in two dimensional plane the parallel separating line correspond-

ing to different thresholds for a given user have different margins and this is depicted

in Figure 3.6. One can see that the hyperplanes tend to come closer towards the ratings

with sparse samples. The hyperplane separating regions 4 and region 5 is not giving

sufficient margin for rating 4 but overfits rating 5. The hyperplane separating regions

3 and 4 have unequal margin on both sides. So as a conclusion, it is observed that the

proposed MMMF [100] is not truly handling margin maximization for predictions of

ratings.

We also show the behaviour of J defined in Equation 3.13. We plot the value of

36

J obtained in every iteration for the same Y (Table 3.6) starting from different initial

points. It can be seen from Figure 3.7 that J is having asymptotic convergence.

Figure 3.7: Convergence graph of MMMF with different initial points

For ordinal ratings with discrete values such as 1-5 stars, it is necessary to think

of a sort of multiclass separation such that items are classified based on ratings which

take on values from a finite discrete set. MMMF [100] follows the principle of single

machine extension and handles ordinal rating matrix factorization by proposing a multi-

class extension of the hinge loss function.

3.4 HMF- The Proposed Method

In this section, we describe the proposed method, termed as HMF (Hierarchical Ma-

trix Factorization). As discussed in Section 3.1, the proposed method draws motivation

from research on multi-class classification. There are two major approaches for address-

ing multi-class classification problems namely embedded techniques [132, 74, 20, 8]

and combinational technique [40, 102, 2]. The first approach explicitly formulate the

multi-class problem directly. The second approach (combinational technique) is to de-

37

compose the multi-class problem to multiple independent binary classification prob-

lems. In (MMMF) [100], an embedded approach is proposed to address the Pord(Y)

problem. The authors has extended hinge loss defined for binary-level to multi-level

cases. As discussed in Section 3.3, the extension of hinge-loss to multi-level does not

preserve the property of maximum margin and also impose the parallel constraints on

decision hyperplane. Our goal is to examine a solution to the Pord(Y) problem by con-

structing a hierarchy of bi-level MMMF using the principle of combinational approach.

We believe that by following the principle of combinational approach the maximum

margin advantage of bi-level matrix factorization can be retained and the parallel con-

straints on the decision hyperplane can also be relaxed.

As discussed previously, HMF is a stage-wise matrix completion technique that

makes use of several bi-level MMMFs in a hierarchical fashion. At every stage q of

HMF, the original problem Pord(Y) is converted to P±1(Y) and solved using the method

described in Section 3.2. The output at stage q is the learnt latent factor matrices U q

and V q. The so computed latent factors U q and V q are used to predict the entries of

the matrix of a specific ordinal value q. In other words, at Stage q , HMF attempts

to complete only those unobserved entries of the rating matrix where the rating q is

predicted. Thus for a R -level ordinal rating matrix, we use R − 1 stages. The method

of conversion from Pord(Y) to P±1(Y) at stage q is discussed below.

Conversion of Pord(Y) to P±1(Y): At every stage q of HMF, a BMMMF is employed

and for this purpose, the Pord(Y) is converted to P±1(Y) problem as follows.

yqij =

−1, if (i, j) ∈ Ω ∧ yij ≤ q;

+1, if (i, j) ∈ Ω ∧ yij > q;

0, if (i, j) /∈ Ω.

(3.17)

This conversion states that any rating above q is treated as likes and below or equal to

q is treated as dislike.

The outcome of BMMMF at stage q are the factor matrices U q and V q approximat-

ing Y q. Let Ŷ q be the bi-level prediction matrix obtained from the factor matrices U q

and V q and Ωq is the index set corresponding to the −1 entries in Ŷ q. For simplicity of

notation, we assume Ω0 is empty. The entries in ordinal rating prediction matrix Ŷ are

38

predicted as q based on the following rule.

ŷij =

q if (i, j) /∈ (Ω0 ∪ Ω1 · · · ∪ Ωq−1) ∧ (Ωq = −1)

yij if (i, j) ∈ Ω

(3.18)

At the last stage, stage R − 1, after employing the above rule to predict entries with

values R − 1, we complete the matrix by assigning R for all remaining unobserved

entries.

Algorithm 3 outlines the main flow of the proposed method HMF for the ordinal

rating matrix completion problem.

Algorithm 3: HMF (Y , R, d, θ, λ)
input : Ordinal Rating Matrix: Y , Maximum Rating: R, Number of Latent

Factors: d, Threshold: θ, Regularization Parameters: {λ1, . . . , λR−1}
output: Ŷ

Initialize: Ŷ ← 0;
for q = 1 to R− 1 do

Y q ← 0;
for (i, j) ∈ Ω do

if yij ≤ q then
yqij = −1;

else
yqij = +1;

end
end
(U q, V q)← BMMMF (Y q, d, λq);
for ever user-item pair (i, j) do

if U q
i V

qT

j < θ then
ŷqij = -1;

else
ŷqij = +1;

end
end
for ever user-item pair (i, j) do

if
(
(i, j) /∈ Ω ∧ ŷqij = −1

)
∨ yij = q then

ŷij ← q
end

end
end
ŷij ← R, if ŷij = 0, ∀(i, j) /∈ Ω ;
return Ŷ ;

We illustrate the working of HMF using a toy example. Let us consider the follow-

39

ing partially observed ordinal rating matrix Y of size 5× 7 with 5 levels.

Table 3.8: Ordinal rating matrix Y

3 0 0 5 2 0 0
5 4 0 1 5 3 4
1 0 4 0 3 1 0
5 4 0 0 0 0 1
0 3 2 0 5 2 0

For notational convenience, we use ij to denote (i, j). The set of observed entries Ω =

{11, 14, 15, 21, 22, 24, 25, 26, 27, 31, 33, 35, 36, 41, 42, 47, 52, 53, 55, 56}. For each of

the 4 stages, the original 5-level rating matrix Y is converted to a bi-level (±1) matrix.

Taking d = 2, we employed bi-level MMMF to get factor matrix pairs (U q, V q) for

each stage q independently. At stage 1, the bi-level matrix Y 1 obtained from Y , the

learnt latent factor matrices U1 and V 1 and the corresponding bi-level prediction Ŷ 1 is

shown in Table 3.9.

Table 3.9: Runnning example.

1 0 0 1 1 0 0
1 1 0 -1 1 1 1

-1 0 1 0 1 -1 0
1 1 0 0 0 0 -1
0 1 1 0 1 1 0

Y 1

-0.48 -0.54
0.12 -1.09
0.98 -0.13

-0.77 -0.29
-0.01 -0.94

U1

-0.70 -0.63
-0.36 -0.72
0.47 -0.53

-0.51 0.25
0.28 -0.80

-0.52 -0.66
0.58 -0.37

V 1

1 1 1 1 1 1 -1
1 1 1 -1 1 1 1

-1 -1 1 -1 1 -1 1
1 1 -1 1 1 1 -1
1 1 1 -1 1 1 1

Ŷ 1

At stage 1, the set of entries Ω1 = {17, 24, 31, 32, 34, 36, 43, 47, 54} are predicted as

−1. The set of entries Ω1 \ Ω i.e., {17, 32, 34, 43, 54} and the set of entries where

1 are observed now contains rating 1 in the partially complete prediction matrix Ŷ

(Table 3.10).

Table 3.10: Partially complete matrix after stage 1

0 0 0 0 0 0 1
0 0 0 1 0 0 0
1 1 0 1 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0

Similarly, at stage 2, the original matrix is mapped to bi-level matrix Y 2. The bi-level

MMMF is employed on Y 2 to get the factor matrices U2 and V 2. The factor matrices

and the corresponding bi-level prediction Ŷ 2 is shown in the Table 3.11.

40

Table 3.11: Runnning example.

1 0 0 1 -1 0 0
1 1 0 -1 1 1 1

-1 0 1 0 1 -1 0
1 1 0 0 0 0 -1
0 1 -1 0 1 -1 0

Y 2

-0.69 -0.47
-0.43 1.06
0.92 0.01

-0.79 0.05
0.24 0.86

U2

-0.89 0.21
-0.43 0.64
0.42 -0.54

-0.21 -0.67
0.53 0.76

-0.76 0.01
0.35 0.56

V 2

1 -1 -1 1 -1 1 -1
1 1 -1 -1 1 1 1

-1 -1 1 -1 1 -1 1
1 1 -1 1 -1 1 -1

-1 1 -1 -1 1 -1 1
Ŷ 2

As discussed previously, at any stage q, the candidate set of entries for prediction will

exclude the set of observed entries and the set of entries predicted before stage q. At

stage 2, the set of entries Ω2 = {12, 13, 15, 17, 23, 24, 31, 32, 34, 36, 43, 45, 47, 51, 53,

54, 56} are predicted as −1. The set of entries Ω2 \ {Ω1 ∪ Ω} i.e., {12, 13, 23, 45, 51}

along with the entries where 2 are observed now contains rating 2 in the partially com-

plete prediction matrix Ŷ (Table 3.12).

Table 3.12: Partially complete matrix after stage 2

0 2 2 0 2 0 1
0 0 2 1 0 0 0
1 1 0 1 0 1 0
0 0 1 0 2 0 1
2 0 2 1 0 2 0

The bi-level mapping Y 3, the latent factor matrices U3, V 3 and the corresponding bi-

level prediction Ŷ 3 obtained at stage 3 is shown in able 3.13.

Table 3.13: Runnning example.

-1 0 0 1 -1 0 0
1 1 0 -1 1 -1 1

-1 0 1 0 -1 -1 0
1 1 0 0 0 0 -1
0 -1 -1 0 1 -1 0

Y 3

-0.42 0.70
0.26 -1.05

-0.80 0.44
0.84 0.08

-0.05 -0.81
U3

0.72 -0.54
0.80 -0.12

-0.18 0.68
-0.26 0.62
0.26 -0.83
0.59 0.52

-0.39 -0.57
V 3

-1 -1 1 1 -1 1 -1
1 1 -1 -1 1 -1 1

-1 -1 1 1 -1 -1 1
1 1 -1 -1 1 1 -1
1 1 -1 -1 1 -1 1

Ŷ 3

It can be seen from Table 3.13 that the entries set Ω3 = {11, 12, 14, 15, 23, 25, 31, 32,

35, 36, 43, 44, 46, 53, 54, 56} are predicted as−1. The set of entries Ω3 \{Ω1∪Ω2∪Ω}

i.e., {44} and the set of entries where 3 are observed now is fixed to 3 in Ŷ (Table 3.14).

41

Table 3.14: Partially complete matrix after stage 3

3 2 2 0 2 0 1
0 0 2 1 0 3 0
1 1 0 1 3 1 0
0 0 1 3 2 0 1
2 3 2 1 0 2 0

Similarly, at stage 4, the observed matrix Y is mapped to bi-level matrix Y 4. Table 3.15

shows the bi-level matrix Y 4, the factor matrix U4, V 4 and the corresponding bi-level

prediction matrix Ŷ 4 obtained at stage 4.

Table 3.15: Runnning example.

-1 0 0 1 -1 0 0
1 -1 0 -1 1 -1 -1

-1 0 -1 0 -1 -1 0
1 -1 0 0 0 0 -1
0 -1 -1 0 1 -1 0

Y 4

0.76 0.28
-0.76 -0.73
0.81 -0.58

-0.71 -0.43
-0.43 -0.85

U4

-0.89 -0.15
0.54 0.55

-0.17 0.69
0.58 0.35

-0.86 -0.27
0.01 0.83
0.54 0.40

V 4

-1 1 1 1 -1 1 1
1 -1 -1 -1 1 -1 -1

-1 1 -1 1 -1 -1 1
1 -1 -1 -1 1 -1 -1
1 -1 -1 -1 1 -1 -1

Ŷ 4

The set of entries Ω4 = {11, 15, 22, 23, 24, 26, 27, 31, 33, 35, 36, 42, 43, 44, 46, 47, 52, 53

, 54, 56, 57} are predicted as − at stage 4. The set of entries Ω4 \ {Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω}

i.e., {46, 57} and the set of entries where 4 are observed now contains rating 4 in the

partially complete prediction matrix Ŷ (Table 3.16).

Table 3.16: Partially complete matrix after stage 4

3 2 2 0 2 0 1
0 4 2 1 0 3 4
1 1 4 1 3 1 0
0 4 1 3 2 4 1
2 3 2 1 0 2 4

After completion of stage 4, the set of entries where 0 is present in Ŷ 4 are filled with

rating 5. The resulting complete matrix is shown in Table 3.17.

Table 3.17: Complete matrix computed by HMF

3 2 2 5 2 5 1
5 4 2 1 5 3 4
1 1 4 1 3 1 5
5 4 1 3 2 4 1
2 3 2 1 5 2 4

42

For the example given in Table 3.8, the complete process of HMF is summarized in

Figure 3.8.

Figure 3.8: Hierarchical matrix factorization

43

3.5 Parallelization of HMF

The process described in Section 3.4 is sequential as the candidate entries for stage q

are those which are completed till Stage q−1. A minor modification makes the process

suitable for distributed computing. Since every pair of (U, V) is used to predict only a

non-overlapping subset of elements of Y , the computing need required at each stage q

can be ported to a parallel or a distributed environment. In other words, the factorization

for each Y q can be accomplished in parallel on a multiprocessor system.

Figure 3.9: Block diagram of a parallel architecture for HMF

Figure 3.9 shows the block diagram of a parallel architecture for HMF. Each proces-

sor solves a P±1(Y) problem defined at stage q. After that, the output of each processor

i.e., Ŷ 1, Ŷ 2, . . . , Ŷ R−1 is combined to obtain the complete prediction matrix Ŷ . Algo-

rithm 4 outlines the main flow of the parallel architecture for HMF.

3.6 Experimental Analysis

In this section we analyze the performance of HMF by taking into account factors

such as accuracy and efficiency. In the following sections, we describe the experimen-

tal setup including the data sets and relevant statistics, the experimental protocols, the

competing algorithms, the evaluation metrics, the parameter setting and following this,

we discuss the experimental results.

44

Algorithm 4: PHMF (Y , R, d, θ, λ)
input : Ordinal Rating Matrix: Y , Maximum Rating: R, Number of Latent

Factors: d, Threshold: θ, Regularization Parameters: {λ1, . . . , λR−1}
output: Ŷ

Initialize: Ŷ ← 0;
for each processor q in parallel do

Y q ← 0;
for (i, j) ∈ Ω do

if yij ≤ q then
yqij = −1;

else
yqij = +1;

end
end
Ŷ q ← 0;
(U q, V q)← BMMMF (Y q, d, λq);
for ever user-item pair (i, j) do

if U q
i V

qT

j < θ then
ŷqij = -1;

else
ŷqij = +1;

end
end

end
for q = 1 to R− 1 do

for ever user-item pair (i, j) do
if
(
(i, j) /∈ Ω ∧ ŷqij = −1

)
∨ yij = q then

ŷij ← q
end

end
end
return Ŷ ;

3.6.1 Data Sets

For a comprehensive performance evaluation, we conducted experiments on both

real and synthetic data sets. We used three benchmark datasets for our experiments,

namely MovieLens 100K, MovieLens 1M and EachMovie, which are the standard data

sets used in the matrix factorization community. All of these datasets can be down-

loaded from grouplens1. The MovieLens 100K data set consists of 100, 000 ratings

given by 943 users for 1682 movies. The MovieLens 1M dataset consists of 1, 000, 209

ratings, given by 6, 040 users for 3, 952 movies, out of which 3, 706 are actually rated

1http://grouplens.org/datasets/

45

and every user has at least 20 ratings. There are five possible rating values, {1, 2 . . . , 5}

in MovieLens 100K and MovieLens 1M. The EachMovie dataset consists of 2, 811, 983

ratings, given by 72, 916 users for 1, 628 movies, out of which 1, 623 are actually rated

and 36, 656 users has given at least 20 ratings. There are six possible rating values,

{0, 0.2, . . . , 1} and we mapped them to {1, 2 . . . , 6}. The detailed characteristics of

these data sets are summarized in Table 3.18.

Table 3.18: Description of the experimental datasets

Data set #Users #Items #Ratings Sparsity Rating-scale Filtering
MovieLens 100K 943 1682 100,000 93.7% 5 20
MovieLens 1M 6040 3900 1,000,209 95.7% 5 20
EachMovie 72,916 1628 2,811,983 97.6% 6 20

Synthetic Data Generation: We generated the synthetic dataset of size 1000 × 1000

with ratings in the range 1-5. Synthetic data is generated by a novel method. The

motivation for using synthetic dataset in the experiments is to see whether a method can

successfully retrieve the factor matrices when the input matrix is known to be the exact

product of the latent factor matrices. Since the rating matrix is discrete and cannot be the

exact product of two real-valued matrices, we make use of a novel iterative technique

to generate the rating matrices. Let Y0 be a random rating matrix of size N ×M and

d ≤ min(n,m). We start with a random N × d factor matrix U . Then the latent factor

matrix V is obtained as V = ((UTU)
−1
UTY0)T . We then compute [UV T] as Y1, where

[·] denotes rounding to the nearest integer2 . Y1, so computed, becomes new Y0 and U

is computed as U = Y0(V V T)
−1
V . This process is repeated iteratively, by alternatively

updating U and V , until the matrices stbilize. The current Y0 becomes the synthetic

rating matrix.

3.6.2 Experimental Protocols

Our experimental set up is based on two different and popular experimental proto-

cols that have been proposed in the literature for evaluating the empirical performance

of collaborative filtering methods i.e., weak and strong generalization [88].
2In case if nearest integer is exceeding (or below) the range of rating we set it to maximum (minimum)

rating.

46

• Weak generalization: Testing based on weak generalization protocol is based on
the notion that the test set is formed by randomly holding out one rating from
each user’s rating set and the rest of the known ratings are considered as part of
the training set. A prediction model is trained using the data in the training set,
and its performance is evaluated over the test set. Therefore weak generalization
is a one stage process wherein one can measure the ability of a model to generalize
to other items rated by the same users used for training the model.

• Strong generalization: It is a two stage process in which, initially, a subset of
users is randomly selected and completely removed from the training set so as to
form the test set. We can call this test set G. The initial prediction model (M)
is trained (learned) with all available ratings from the bulk of the users in the
training set (all users not in the test set G) . In the second stage (testing phase)
one rating is randomly selected from each user in the set G to form the held out
set. The remaining ratings for each user in the set G can be used to tweak the
prediction model (M) during strong testing. The model is evaluated by predicting
the held out ratings. The main idea behind strong generalization is to build a
prediction model for a large set of initial users that can be generalized later for a
small set of novel users (G).

3.6.3 Comparing Algorithms

We consider the following nine well-known state-of-the-art algorithms for compar-

ison:

• URP [88]: The user rating profile (URP) model is the generative version of the
vector aspect model for rating profiles. The URP model sample the latent features
for each user from a Dirichlet prior and then perform variational inference on the
user profile. Finally, compute the distribution over rating values for a particular
unrated item given a user profile.

• Attitude [88]: The attitude model representsthe latent space description of a user
as a vector of attitude expression levels. Given an attitude vector of user, the
probability of rating value for each item is a product of attitude expression levels
and preference parameters.

• MMMF [100]: The hinge loss function defined for bi-level is extended to multi-
level for collaborative filtering with ordinal rating matrix when user-preferences
are not in the form of like/ dislike but values in a discrete range.

• E-MMMF [23]: To overcome the problem of local minima and impact of outliers
(e.g. abnormal or even malicious raters) and other noise in MMMF, E-MMMF
investigates diffrent ensemble methods such as multiple random weight seeds and
baggings with MMMF.

• PMF [89]: Salakhutdinov et al. [89] proposed a probabilistic framework for ma-
trix factorization where the factor variables are assumed to be marginally inde-
pendent while rating variables are assumed to be conditionally independent given
the factor variables.

47

• BPMF [103]: Given the ratings, inferring the posterior distribution over the fac-
tors is intractable in PMF. BPMF presented a fully Bayesian treatment of Prob-
abilistic Matrix Factorization by placing hyperpriors over the hyperparameters.
BPMF uses Markov chain Monte Carlo (MCMC) method for approximate infer-
ence in this model.

• GP-LVM [70]: Lawrence et al. [70], developed a non-linear extension to PMF
by generating latent components via Gaussian process latent variable models.

• iPMMMF and iBPMMMF [135]: In [135], a noparametric Bayesian-style MMMF
was proposed that utilizes nonparametric techniques to resolve the unknown num-
ber of latent factors in MMMF model.

• Gibbs MMMF and iPMMMF [136]: A probabilistic interpretation of MMMF
model through data augmentation is presented in [136].

3.6.4 Evaluation Metrics

In order to evaluate the performance of the proposed method, we use two popular

evaluation metrices: Normalized Mean Absolute Error (NMAE) [88] and Frobenius-

norm RelativeError (FRE) [80]. NMAE is defined as Mean Absolute Error (MAE)

divided by 1.6 in the case of MovieLens data set and for EachMovie data set it is MAE

divide by 1.944 [88]. Given Y a N ×M partially observed user-item rating matrix, Ω

the observed entries set and Ŷ be a recovered matrix, the MAE and FRE are defined as

follows.

MAE =

∑
(i,j)∈Ω |yij − ŷij|

|Ω|
FRE =

√∑
(i,j)∈Ω (yij − ŷij)2∑

(i,j)∈Ω y
2
ij

3.6.5 Parameter Setting

We first demonstrate the effect of regularization parameter λ. Determining λ value

is one of the critical aspect for learning latent factors optimized over a loss function.

To select the best regularization value for each dataset, we follow the same approach as

defined in [23]. We held out one rating from every user to form the validation set which

is later used to evaluate the model performance. We repeat the selection process (train/

validation set) 3 times for every candidate λ and calculate Zero-One Error (ZOE) on

validation set. Finally, we select λ corresponding to the smallest ZOE. The candidate

48

Figure 3.10: Validation score for different values of λ on MovieLens data set

Figure 3.11: Validation score for different values of λ on EachMovie data set

values of λ are {10
i
16},∀i ∈ {4, 5, . . . , 40}. We repeat the same procedure for every

level and select the best λ for the experiments reported in Table 3.19. Figures 3.10

and 3.11 depict the variation of ZOE for different values of λ for two data sets for Stage

3. We carry out this exercise for each stage.

49

3.6.6 Results and Discussion

Comparative Analysis: Table 3.19 gives the comparative analysis of the proposed

HMF against state-of-art algorithms on two different data sets with two different exper-

imental setups. We use the same d value (d = 100) as reported in all the comparative

methods to attain fair evaluation. We observe that our algorithm exhibits better accuracy

in case of EachMovie data set than any of the algorithms in both strong and weak gener-

alization. In the case of MovieLens 1M data set, our method outperforms other methods

in weak generalization and is better than all but GP-LVM for strong generalization. The

results reported here are average values of three runs.

Table 3.19: Average and standard deviation of NMAE of different models

MovieLens EachMovie

Algorithms weak strong weak strong

URP .4341 ± .0023 .4444 ± .0032 .4422 ± .0008 .4557 ± .0008

Attitude .4320 ±.0055 .4375 ± .0028 .4520 ± .0016 .4550 ± .0023

MMMF .4156 ± .0037 .4203 ± .0138 .4397 ± .0006 .4341 ± .0025

E-MMMF .4029 ± .0027 .4071 ± .0093 .4287 ± .0020 .4295 ± .0030

PMF .4332 ± .0033 .4413 ± .0074 .4466 ± .0016 .4579 ± .0016

BPMF .4235 ± .0023 .4450 ± .0085 .4352 ± .0014 .4445 ± .0005

GP-LVM .4026 ± .0020 .3994 ± .0145 .4179 ± .0018 .4134 ± .0049

iPMMMF & iBPMMMF .4031 ± .0030 .4089 ± .0146 .4211 ± .0019 .4224 ± .0051

Gibbs MMMF & iPMMMF .4037 ± .0005 .4040 ± .0055 .4134 ± .0017 .4142 ± .0059

HMF .4019 ± .0044 .4032 ± .0022 .4118 ± .0019 .4095 ± .0044

As stated earlier, the main motivation of our algorithm is to examine combinational

approach as an alternative to otherwise well-known embedded principle of MMMF.

There is substantial improvement of performance (in terms of NMAE) of HMF from

MMMF. This corroborates our claim that the proposed framework which is based on

a combinational approach has advantages over factorizations based on embedded ap-

proach (like MMMF).

Number of Latent Factors: Selecting an optimal (minimum) number of latent factors

(d) with less compromise on accuracy is important for any matrix factorization tech-

nique. In the second set of experiments we analyse the impact of d on the proposed

method versus MMMF. We use MovieLens 100K dataset for this study. We randomly

select 80% data for training and rest 20% for testing. For every d, we tune the regular-

50

ization parameter in both MMMF and HMF so that the NMAE on training set is in the

range [0.06, 0.08]. We calculate the NMAE on the test set. The average NMAE of three

runs are reported in Figure 3.12, where the abscissa depicts d in decreasing order. It can

Figure 3.12: Testing error on changing d value

be seen from Figure 3.12 that when d decreases the performance of MMMF drastically

deteriorates whereas HMF maintains a balanced performance. This observation indi-

cates that the proposed method can be used for lower ranks of the latent factor matrices

without compromising the accuracy of prediction.

Generalization Analysis: Traditionally, the concept of maximum margin was intro-

duced with an objective of achieving good generalization error in contrast to empirical

error. It is well-known that both cannot be achieved together and hence there is a trade-

off between test-error and training-error. We analyse the interaction between test error

and the training error for HMF and MMMF on MovieLens 100K data set. We fix the

value of d to 100 and plot test-error against training-error (Figure 3.13). It is observed

that the trade-off of MMMF is much higher than that of the proposed method. When the

training-error is reduced, test-error for MMMF becomes higher than that of our method.

Similarly, for low test-error, training error of MMMF is higher than that of our method.

Computation Time: Although HMF uses several stages of matrix factorization, it re-

quires less computational time than MMMF. The optimization problem of MMMF has

51

Figure 3.13: Training error vs Test error

Nd + Md + N(R − 1) variables whereas each stage of HMF is an optimization prob-

lem of Nd + Md variables. Any Gradient Descent based algorithm requires updating

these variables iteratively and hence the number of variables has a major influence on

the computational time. We carry out experiments to compare the computational effi-

ciency of HMF with MMMF for different values of d with fixed λ. For MMMF we use

the same λ as reported in [23]. Aggregated time of HMF for all R − 1 stages requires

substantially less computational time than that of MMMF for MovieLens 1M (Figure

3.14) and EachMovie (Figure 3.15) datasets. It can be concluded that the proposed

framework, HMF is both accurate and computationally efficient.

Matrix Recovery: In this experiment we analyzed the effect of sample percentage and

the number of latent factors that are necessary for acceptable recovery of the original

matrix Y . A synthetic matrix Y of size 500×500 is generated using the procedure given

in Section 3.6.1. We kept the observed entries percentage to 100 and the number of

ordinal ratings to five (1−5). Given Y , we train HMF and MMMF models with different

percentage of sampled entries (Ω) and for different values of the latent dimension d.

For each (Ω, d)-pair, the regularization parameter λ in both HMF and MMMF are tuned

from the candidate set {10
i
16},∀i ∈ {4, 5, . . . , 40}. We repeat the selection process

(train/ test set) three times for every (Ω, d)-pair and calculate the average FRE. The

result is reported in Figure 3.16. It can be seen from Figure 3.16 that there is an increase

52

Figure 3.14: Running time on MovieLens dataset

Figure 3.15: Running time on EachMovie dataset

in the performance of HMF as the observed entries percentage is increasing and for

observed entries ≥ 40%, HMF is performing better than MMMF.

53

(a) MMMF

(b) HMF

Figure 3.16: Recovery of original rating matrix by MMMF and HMF

54

3.7 Conclusions

There have been large number of publications on MMMF but these profess the prin-

ciple of embedded technique. The present chapter for the first time investigates matrix

factorization of ordinal matrix in a combinational technique that uses multiple bi-level

matrix factorization. We show several advantages of this approach. Our experimental

results show that NMAE for our framework is better than any of these approaches in-

cluding probabilistic approaches, except in the case of GP-LVM (MovieLens 1M) for

strong generalization protocol. The proposed method exhibits better trade-off of gen-

eralization vs. empirical errors and it yields latent factors of lower rank. In the era of

big data, when the data is voluminous the proposed method can easily be ported to a

parallel or a distributed environment. In a multiprocessor system, the factorization for

each q can be accomplished in parallel.

55

CHAPTER 4

Proximal Maximum Margin Matrix

Factorization for Collaborative

Filtering

In the previous chapter, we discussed the underlying principle of maximum margin

matrix factorization (MMMF) and the motivation for finding an alternative solution.

This led us to a new formulation of matrix factorization, namely, hierarchical matrix

factorization which was discussed in the subsequent parts of Chapter 3. In the present

chapter, we propose another alternative for matrix factorization techniques based on

maximum margin and propose a novel method called proximal maximum margin matrix

factorization (PMMMF). The background information for this chapter is the same as

discussed in Section 3.3.

4.1 Introduction

In MMMF [100], as shown in Section 3.2, the smooth hinge loss function is defined

to ensure that the embedding of points and hyperplanes maintain specific margin to

minimize generalization error. In the context of support vector machines (SVM) there

have been proposals of alternative formulations different from margin maximization.

There are proposals where the hyperplanes are non-parallel for different classes as pro-

posed in twin SVM [50]. Similarly, proximal SVM [31] attempts to classify based on

56

proximity of the data points to the decision hyperplane. Taking the que from such al-

ternative formulation of SVMs this chapter explores the possibility of proximal as an

alternative criterion instead of margin maximization criterion. In this sense, the idea is

to look for embedding of row of U and row of V such that if an item j is rated as r by

user i then the objective of the embedding is to ensure that the point Vj is closest to the

rth parallel hyperplane of Ui. This criteria necessitates redefining the loss function. A

new loss function is derived in this chapter and it is observed in this process that the

threshold values can be computed in closed form avoiding any optimization process.

The proposed loss function ensures that the embedded point is in the proximity of the

desired hyperplanes and maintain a distance from other hyperplanes. In order to have

the parallel hyperplanes corresponding to different ratings uniformally spaced, we have

used a hinge loss function. Thus, our loss function is a combination of proximal loss

and hinge loss function. There has not been any attempt to find alternative matrix fac-

torization based on maximum margin for ordinal ratings. The present formulation is

one of the first alternative formulation to MMMF.

The rest of the chapter is organized as follows. We introduce our proposed method,

termed as Proximal Maximum Margin Matrix Factorization (PMMMF), in Section 4.2.

Experimental analysis of the proposed method is reported in Section 4.3. We conclude

the chapter with a discussion on future directions in Section 4.4.

4.2 PMMMF- The Proposed Method

In this section, a novel method of matrix factorization for discrete valued ratings is

proposed. Given a partially observed rating matrix Y with R ratings and with Ω as the

observed set, the aim is to determine two factor matrices U and V and a threshold set θ

such that the predicted value xij = UiV
T
j is related to rating yij by proximity of xij to

the corresponding threshold θyij . We use, similar to MMMF, R number of thresholds

for each user. But, unlike MMMF, the thresholds are computed in closed form and not

considered as variables during the optimization step. Thus, the objective is to minimize

J =
R∑
r=1

∑
(i,j)∈Ω∧(yij=r)

(UiV
T
j − θi,r)2 +

λ

2
(‖U‖2

F + ‖V ‖2
F). (4.1)

57

At the minimizing point we have ∂J
∂θi,r

= 0 which implies that

θ∗i,r =

∑
(i,j)∈Ω∧(yij=r)

UiV
T
j

|Ω(i, r)|

where Ω(i, r) is the index set of items rated as r by user i.

We shall use the above expression to determine the threshold values for fixed U

and V . When Ω(i, r) is empty, we take the corresponding threshold θ∗i,r as undefined.

This assumption is reasonable because, in the absence of any training example of rank

r by i, the corresponding threshold cannot be learned. Without loss of generality, we

assume that Ω(i, r) is never empty and there is at least one item of rank r by user i. Our

optimization iteration alternates between two steps . In one step, the factor matrices

U and V are updated and then using the updated U and V the optimal value of θ∗ is

computed. We use the newly computed θ∗ in the next iteration.

There can be several possible Us and V s minimizing the objective function in Eq

(4.1). In order to ensure that the hyperplanes are widely placed, a hinge loss component

is added and the new objective is to minimize

J =
R∑
r=1

∑
(i,j)∈Ω∧(yij=r)

(Dijr)
2 +

R∑
r=1

∑
(i,j)∈Ω∧(yij 6=r)

h(T rij(Dijr)) +
λ

2
(‖U‖2

F + ‖V ‖2
F)

(4.2)

where h(z) is the same as defined in Eq (3.6) , Dijr = (UiV
T
j − θ∗i,r) and T rij is defined

as

T rij =

+1 if r < Yij;

−1 if r > Yij .
(4.3)

The gradients are determined as follows.

∂J

∂Uip
= λUip +

R∑
r=1

∑
(i,j)∈Ω∧(yij=r)

2(Dijr)(Vjp − V̄ipr)

+
R∑
r=1

∑
(i,j)∈Ω∧(yij 6=r)

T rijh
′(T rij(Dijr))(Vjp − V̄ipr) (4.4)

58

∂J

∂Vjq
= λVjq +

R∑
r=1

∑
(i,j)∈Ω∧(yij=r)

2(Dijr)Uiq +
R∑
r=1

∑
(i,j)∈Ω∧(yij 6=r)

T rijh
′(T rijDijr))Uiq

−
R∑
r=1

∑
(i,j)∈Ω∧(yij=r)

∑
(i,t)∈Ω∧yit 6=r T

r
ith
′(T rit(Ditr))

|Ω(i, r)|
Uiq (4.5)

where V̄ipr is defined as

V̄ipr =

∑
(i,t)∈Ω(i,r) Vtp

|Ω(i, r)|
.

Finally, the latent factor matrices U and V are iteratively updated using the following

rule.

U t+1
ip = U t

ip − c
∂J

∂U t
ip

(4.6)

V t+1
jq = V t

jq − c
∂J

∂V t
jq

(4.7)

When predicting ordinal ratings, the introduced thresholds θ are very important

since they underpin the large-margin principle of maximum-margin matrix factoriza-

tion models. The matrix completion process is accomplished from the factor matrices

U and V by the following rule.

Ŷij =

r if (θ∗i,r +

ni,r
ni,r+ni,r+1

|θ∗i,r+1 − θ∗i,r| < UiV
T
j)∧

(0 ≤ r ≤ R) ∧ (i, j) /∈ Ω;

yij if (i, j) ∈ Ω,

where ni,r is the number of items rated as r by the ith user. For simplicity of notation

we assume θ∗i,0 = −∞, θ∗i,R+1 = +∞, ni,0 = 0 and ni,R+1 = 0.

The objective of PMMMF is to learn the embedding of items as points, users as hy-

perplanes and ratings as thresholds such that the embedding of points rated as r by user

i is in the proximity of the decision hyperplane defined by (Ui, θi,r). While embedding,

PMMMF ensure that the hyperplanes are widely placed so that a large margin is created

between two classes. In other words, the hyperplane defined by (Ui, θi,r) is no longer

a bounding plane as in MMMF, but can be seen as proximal plane, around which the

items rated similar are clustered and placed as far as possible from other hyperplanes.

We illustrate the concept of PMMMF by taking a synthetic data of size 5 × 1000 with

59

Figure 4.1: Classification by PMMMF for the ith user

10% of observed entries. The number of ordinal rating is 5 and d = 2. Figure 4.1 gives

the decision hyperplane for a user and embedding of points corresponding to items.

Since R = 5, there are 5 hyperplanes corresponding to 5 ratings. From Figure 4.1, it

is clear that the embedding is learnt perfectly and the points rated similar fall in the

proximity of the respective decsion hyperplane.

Complexity Analysis: We analyze the computational complexity of the proposed method.

In every iteration of gradient descent, PMMMF requires computation of θ∗, V̄ and UV T

with computation cost MN , MN and MNd, respectively. The computation cost re-

quired for calculation of gradients ∂J
∂U

and ∂J
∂V

are 2MNdR and 3MNdR, respectively.

Hence, the overall computation required in every gradient iteration is (5MNdR +

MNd+ 2MN), that is, O(MNdR).

The optimization problem of PMMMF requires updation of Nd + Md variables

unlike MMMF where the optimization problem requires updation ofNd+Md+N(R−

1) variables in every iteration of gradient descent method. But on the other hand the

updation step in PMMMF takes more time because of repeated computation of the

mean for obtaining θ∗. Though both the methods are of O(MNdR). The dominating

60

component in PMMMF and MMMF are 5MNdR and 2MNdR, respectively. In that

sense, the computation cost of PMMMF is higher than that of MMMF. Reducing the

computation cost of PMMMF is part of our future work.

4.3 Experiments

In the following sections, we describe the experimental setup including the data

sets, the evaluation metrics, the competing algorithms and following this, we discuss

the experimental results.

4.3.1 Data Sets

We carried out experiments on real and synthetic data sets. We use MovieLens

100K as the benchmark data set which is standard in the matrix factorization commu-

nity. The detailed characteristics of MovieLens-100K is given in Subsection 3.6.1. The

MovieLens-100K data set consists of 100, 000 ratings (1 − 5) given by 943 users for

1682 movies. Out of 943 users, 693 users have used all possible ratings to express their

preferences. We generated the synthetic dataset of size 1000 × 1000 with ratings in

the range 1 − 5. Detailed procedure related to generating the synthetic data is given in

Subsection 3.6.1.

4.3.2 Evaluation Metrics

In order to evaluate the performance of the proposed method, we used two popular

evaluation metrices: Mean Absolute Error (MAE) [88] and Root Mean Square Error

(RMSE) [80]. Given Y a N ×M partially observed user-item rating matrix, Ω be the

observed entries set and Ŷ be a recovered matrix, the MAE and RMSE are defined as

follows.

MAE =

∑
(i,j)∈Ω |yij − ŷij|

|Ω|
RMSE =

√∑
(i,j)∈Ω (yij − ŷij)2

|Ω|

61

4.3.3 Comparing Algorithms

We consider the following two well-known state-of-the-art algorithms for compari-

son:

• ALS [65]: In regularized least squares based matrix factorization (RMF), the
goal is to minimize the squared sum distance between the observed entry and
the corresponding prediction while overfitting is avoided through a regularized
model. One of the several approaches to solve the RMF problem is the alternating
minimization algorithms (ALS) where the latent factor matrices are updated in
alternate steps.

• MMMF [100]: The hinge loss function defined for bi-level is extended to multi-
level for collaborative filtering with ordinal rating matrix when user-preferences
are not in the form of like/ dislike but are values in a discrete range.

All methods are implemented in MATLAB with single computational thread on 4-core

3.40GHz Intel i7 CPU with 4GB RAM. As reported in [100], factor numbers higher than

50 yield similar performances. Hence, they choose d = 100 as a compromise between

model capacity and computational complexity. Therefore, we also set the latent factor

d to be 100 for all methods to attain fair evaluation. In our experiments, we randomly

selected 80% of the observed ratings for training and used the remaining 20% as the

test set. We report the average of the three prediction accuracies.

4.3.4 Experimental Results

Generalization Analysis: The concept of maximum margin was introduced with an

objective of achieving good generalization error in contrast to empirical error. In our

first experiment, we analysed the trade-off between generalization-error and empirical-

error on the synthetic dataset by varying the number of observed entries. We vary the

regularization parameter λ in the range {10
i
16},∀i ∈ {1, 5, . . . , 25}, for all the methods

so that the MAE on training set decreases. Thereafter, we plot the generalization-error

against the empirical-error. In all the graphs of Figure 4.2, the curve corresponding to

PMMMF is lower than that of the other methods and the sufficient gap indicates that the

rate of increase in empirical-error vs generalization-error is slower. In other words, our

proposed approach, PMMMF, exhibits better trade-off than that of MMMF and ALS.

62

(a) Observed entries 5% (b) Observed entries 10%

(c) Observed entries 15% (d) Observed entries 20%

(e) Observed entries 25% (f) Observed entries 30%

Figure 4.2: Figure (a), (b), (c), (d), (e) and (f) shows the trade-off between
Generalization-error Vs. Empirical-error on synthetic dataset of size 1000×
1000 with 5%, 10%, 15%, 20%, 25% and 30% observed entries respectively.

Comparative Analysis: In the second set of experiments, we compare the accuracy

of the proposed PMMMF against MMMF and ALS on MovieLens 100K datasets. We

63

tune the regularization parameter λ in all the methods so that MAE on the training set is

in the range [0.07, 0.09]. From the results reported in Table 4.1, it can be seen that our

proposed method, PMMMF, exhibits better accuracy than that of MMMF and ALS.

Table 4.1: Average and standard deviation of MAE and RMSE of different models

Algorithms MAE RMSE
MMMF 0.7355 ± 0.0070 1.0426 ± 0.0093

ALS 0.7899 ± 0.0039 1.0838 ± 0.0055

PMMMF 0.7138 ± 0.0045 1.0178 ± 0.0041

4.4 Conclusions and Discussion

This chapter introduced a novel concept of matrix factorization for multi-level ordi-

nal rating matrix. Other than MMMF [100], there has not been any attempt for factor-

izing such matrices. In MMMF, the factorization is achieved by the latent factors which

separate different ratings in terms of margins. Recently, proximal SVMs are proposed

as an alternative to margin-based classifiers. Proximal SVMs are shown to be superior

to traditional SVMs on many counts. Taking the cue from here, we make an attempt in

this chapter to introduce proximity criterion in place of margin maximization criterion

in the context of matrix factorization. The process is non-trivial and novel. Such im-

provisation yields superior performance. We hope that this will open up new vistas of

research in collaborative filtering and matrix completion.

Like MMMF, PMMMF also assumes that the entries of the rating matrix are or-

dered. One can think of a more general problem of matrix factorization for matrices

having discrete entries which are not ordered. We realize that there are important appli-

cations in computer vision and social networking of completion of such matrices. We

propose to explore this problem in the future.

64

CHAPTER 5

Multi-label Classification Using

Hierarchical Embedding

In the previous chapters, we discussed about matrix factorization techniques for

collaborative filtering. Essentially four techniques where examined therein, namely;

(1) Binary rating matrix completion using bi-level matrix factorization; (2) Discrete

ordinal rating matrix completion using maximum margin matrix factorization; (3) Hi-

erarchical bi-level matrix factorization to handle matrix completion of discrete ordinal

rating matrix and; (4) Proximal matrix factorization for rating matrix completion. In all

the four methods one common concept that is discussed is the matrix factorization of

the rating matrix. The underlying hypothesis is that, matrix factorization is a process

of separation of the characteristics of users and items as factor matrices. In a general

setting, one can view matrix factorization as a principle of separating or extracting the

component latent factors. Another way of visualizing matrix factorization is as a kind

of low-dimensional embedding of the data. This is practically relevant when a matrix

is viewed as a transformation of data from one space to the other. Matrix factorization

is essentially a composition of two transformations, out of which one is for embedding.

Hence, matrix factorization can be used in several scenarios where we seek to capture

the underlying low-dimensional structure of the data [145, 154, 21, 144]. In this chap-

ter, we explore the application of matrix factorization for yet another important problem

of machine learning namely multi-label classification.

65

5.1 Introduction

In a traditional classification problem, data objects (instances) are represented in

the form of feature vectors wherein each object is associated with a unique class label

from a set of disjoint class labels L, |L| > 1. Depending on the total number of dis-

joint classes in L, a learning task is categorized as binary classification (when |L| = 2)

or multi-class classification (when |L| > 2) [108]. An example of binary classifica-

tion problem is the email spam filtering problem where the goal is to classify an email

into spam or non-spam whereas the classification of email into one of the predefined

classes such as primary, social, promotions, updates, forum etc., falls into the category

of multi-class classification. However, in many real-world classification tasks, the data

object can simultaneously belong to one or more classes in L. For example, in text cat-

egorization, an article can belong to several predefined classes such as politics, sport,

software, business, entertainment; In protein function prediction, a protein can be as-

sociated with a set of functional roles such as metabolism, energy, cell fate, storage

protein, localization; In web mining, a web page can be classified as news, academic,

e-commerce, blog, forum etc.; Similarly, in image classification, an image can be anno-

tated with several classes such as sea, sky, tree, mountain, valley, and so on.

Multi-label learning is concerned with the classification of data with multiple class

labels. The objective of multi-label classification is to build a classifier that can auto-

matically tag an example with the most relevant subset of labels. This problem can be

seen as a generalization of single label classification where an instance is associated

with a unique class label from a set of disjoint labels L. The majority of the methods

for supervised machine learning proceeds from a formal setting in which data objects

(instances) are represented in the form of feature vectors. Thus, an instance x is repre-

sented as D dimensional real-valued feature vector (x1, . . . , xD) ∈ RD. In multi-label

classification, each training example xi, 1 ≤ j ≤ N is associated with a label vector

yi ∈ {−1, 1}L. The +1 entry at the jth coordinate of vector yi indicates the presence of

label j in data point xi. Given the pair, a feature matrix X ∈ RN×D and a label matrix

Y ∈ {−1, 1}N×L, the task of multi-label classification is to learn a parameterization

h : RD → {−1, 1}L that maps each instance (or, a feature vector) to a set of labels (a

label vector). The multi-label classification problem can be formally defined as follows:

66

Definition 4 (Multi-label Classification). Given N training examples in the form of a

pair of feature matrix X and label matrix Y where each example xi ∈ RD, 1 ≤ i ≤ N ,

is a row of X and its associated labels yi ∈ {−1, 1}L is the corresponding row of

Y . The +1 entry at the jth coordinate of vector yi indicates the presence of label j

in data point xi. The task of multi-label classification is to learn a parametrization

h : RD → {−1, 1}L that maps each instance (or, a feature vector) to a set of labels (a

label vector).

Multi-label classification has applications in many areas, such as machine learn-

ing [98, 150], computer vision [12, 9], and data mining [118, 106]. Existing meth-

ods of multi-label classification can be broadly divided into two categories [108, 152]

- methods based on problem transformation and methods based on algorithm adap-

tation. Former approach transforms the multi-label classification problem into single

label classification problems so that existing single-label classification algorithms can

be applied. During the last decade, a number of problem transformation techniques are

proposed in the literature such as Binary Relevance (BR) [9], Calibrated Label Rank-

ing [32], Classifier Chains [98], Random k-labelsets [118] to name a few. On the other

hand, methods based on algorithm adaption extend or adapt the learning techniques to

deal with multi-label data directly. Representative algorithms include AdaBoost.MH

and AdaBoost.MR [106] which are two simple extensions of AdaBoost, ML-DT [18]

adapting decision tree techniques, lazy learning techniques such as ML-kNN [151] and

BR-kNN [109] to name a few.

In case of multi-label classification, one of the major scalability issues arises when

we have extremely large feature space and label space. Most of the conventional algo-

rithms of multi-label classification fail in such situations. To cope with the challenge

of exponential-sized output space, modeling inter-label correlations has been the major

thrust of research in the area of multi-label classification in recent years [75, 46, 7] and

for this, use of parametrization and embedding have been the prime focus [75, 46, 12,

139, 43]. There are two strategies of embedding for exploiting inter-label correlation:

(1) Feature Space Embedding (FE); and (2) Label Space Embedding (LE). The first is

to learn a projection function which can transform the data from original feature-space

to an embedded space. In [43, 44], a direct transformation from original feature-space

to label-space is suggested with the assumption that each class label is associated with a

67

sparse label specific feature. In [139, 12], the inter-label correlation is modelled implic-

itly using low-rank constraint on the transformation matrix. The debate is going on as

to whether it is the low-rank embedding or the label-specific sparse transformation that

models the label correlation accurately. The LE approach transforms the label vectors

to an embedded space, followed by the association between feature vectors and em-

bedded label space for classification purpose. With proper decoding process that maps

the projected data back to the original label space, the task of multi-label prediction is

achieved [139, 112, 79]. It can be seen that both the approaches are essentially a process

of parametrization to overcome the complexity of multi-label classification and most of-

ten it is proposed to adopt linear parametrization. Some researchers [61, 76] suggest a

natural extension of their proposal of linear parametrization to nonlinear cases but no

detailed study is undertaken in this direction. Moreover, all these approaches do not

yield results beyond a particular level of accuracy for problems with large data and

large number of labels.

Experimental and theoretical study of the recent approaches for multi-label classifi-

cation reveals many important aspects of the problem. It is clear that a single linear em-

bedding h may not take us very far in finding accurate multi-label classification. There

are several reasons for this: the diversity of the training set, the correlation among labels,

the feature-label relationship, and most importantly, the learning algorithm to determine

the mapping h. Normally, h is determined by a process of nonlinear optimization. A

research question that naturally arises is whether there can be a parametrization which

is piecewise-linear.

In this chapter, we investigate this aspect and propose a novel method that generates

optimal embeddings for subsets of training examples. The proposed method is novel

in the sense that it judiciously selects a subset of training examples for training and

then it assigns a suitable subset of the training set to an embedding. Using multiple

embeddings and their assigned training sets, a new instance is classified and we show

that the proposed method outperforms all major algorithms on all major benchmark

datasets.

The rest of the chapter is organized as follows. In Section 5.2, we briefly review

the earlier research on multi-label learning. Section 5.3 discuss about embedding ap-

proach for multi-label classification. The outline of the proposed method is described in

68

Section 5.4. We introduce our proposed method, termed as MLC-HMF in Section 5.5.

Experimental analysis of the proposed method is reported in Section 5.6. Finally, Sec-

tion 5.7 concludes and indicates several issues for future work.

5.2 Multi-label Classification Approaches

During the past decade, the problem of multi-label classification has been widely

dealt with and different methods have been proposed which can be broadly classified

into two categories [116] - methods based on problem transformation and method based

on algorithm adaptation. In this section, we present a brief literature review about these

two approaches for multi-label classification.

5.2.1 Problem Transformation Approach

A common approach to multi-label classification problem is to decompose the prob-

lem into one or more single-label (binary or multi-class) problems. There are several

problem transformation techniques proposed in the literature which includes Binary

Relevance [9], Calibrated Label ranking [32] and Classifier Chains [98]. Here we re-

view these fundamental methods.

Binary Relevance (BR) [9]: BR is a popular problem transformation approach that

decomposes the multi-label classification with L labels into L independent binary class

classification problem. The BR approach learns L independent binary classifiers hl :

RD → {±1}, 1 ≤ l ≤ L, where each binary classifier corresponds to a label in L.

For each binary classifier hl, the binary training-set Dl is obtained by transforming the

original data set D using the following rule.

Dl = {(xi, ϕ(yi, l))|1 ≤ i ≤ N} (5.1)

where

ϕ(yi, l) =

+1, if lth label is in yi

−1, otherwise
(5.2)

Once these data sets are ready, some binary classification algorithm is utilized to train

69

the binary classifier hl corresponding to the prediction of binary association of the lth

label. For any unseen instance xnew ∈ RD, the label vector ynew is predicted by com-

bining the output of the L classifiers i.e., the union of labels predicted positively by L

binary classifiers.

Table 5.1: Multi-label data set.

#
Features Labels

a1 a2 a3 a4 l1 l2 l3
x1 -0.71 -0.33 0.40 0.80 1 -1 -1
x2 0.01 -0.57 -0.34 0.91 -1 1 1
x3 -0.08 -0.33 0.11 -0.31 1 1 1
x4 0.10 -0.20 0.33 0.92 1 -1 1
x5 0.08 0.09 - 0.41 0.60 -1 1 -1

X Y

Let us consider the multi-label data set in Table 5.1 with five instances x1, . . . , x5

and three target labels denoted as l1, l2 and l3. Each instance is represented by a set

of features a1, . . . , a4. We will refer the feature vector of the kth instance by xk in the

subsequent discussion.

The BR method transforms the original multi-label training-set in Table 5.1 into three

binary training-sets, one for each label. The transformed data set Dl for each classifier

hl is shown in Table 5.2. After that, some binary classification algorithm is utilized to

train the binary classifier hl on data set Dl.

Table 5.2: Training-set Dl for each classifier hl.

l1
x1 1
x2 -1
x3 1
x4 1
x5 -1
D1

l2
x1 -1
x2 1
x3 1
x4 -1
x5 1
D2

l3
x1 -1
x2 1
x3 1
x4 1
x5 -1
D3

The unseen instance xnew is then fed into all the binary classifiers and the corresponding

label vector prediction ynew is obtained by aggregating the output of the individual

classifier. Table 5.3 illustrates the classification process using BR approach on unseen

instance xnew.

Finally, the prediction of each binary classifier h1, h2 and h3 is combined to obtain the

label vector prediction ynew = {+1,−1,−1}.

70

Table 5.3: Binary Relevance example.

Classifiers Prediction
h1 : xnew → {l1,¬l1} → {+1,−1} +1
h2 : xnew → {l2,¬l2} → {+1,−1} +1
h3 : xnew → {l3,¬l3} → {+1,−1} −1

Calibrated Label ranking (CLR) [32]: The CLR method transforms the original data

sets into L(L−1)
2

binary label data set, one for each label pair (j, k), 1 ≤ j < k ≤ L.

Each transformed data set Djk retains instances which are associated with only one

label from the label pair (j, k). The data set Djk is obtained using the following rule.

Djk = {(xi, ϕ(yi, j, k))|ϕ(yi, j) 6= ϕ(yi, k), 1 ≤ i ≤ N} (5.3)

where

ϕ(yi, j, k) =

+1, if ϕ(yi, j) = +1 and ϕ(yi, k) = −1

−1, if ϕ(yi, j) = −1 and ϕ(yi, k) = +1

(5.4)

A binary classifier hjk : RD → {±1} is then trained on each data set Djk. Given an

unseen instance xnew, firstly all L(L−1)
2

binary classifiers are invoked and the ranking of

labels is obtained by counting the votes xnew receives for each label. Finally, the label

vector ynew is then obtained from the ranked label list using some thresholding function.

For example in Table 5.1, the CLR approach transforms the original multi-label data

set into 3(3−1)
2

i.e., 3 binary label data sets, one for each label pair. The transformed data

sets Djk, 1 ≤ j < k ≤ 3 for each label pair is shown in Table 5.4.

Table 5.4: Training-set Djk for each classifier hjk.

l12

x1 1
x2 -1
x4 1
x5 -1
D12

l13

x1 1
x2 -1
D13

l23

x4 1
x5 -1
D23

After that, a binary classifier hjk is learnt on the transformed data Djk, 1 ≤ j < k ≤ 3.

Given an unseen instance xnew, let it be the case that the classifiers l12, l13 and l23 has

predicted l1, l2 and l2, respectively. After counting the votes xnew receives from each

classifier, hjk for each label, the inferred label ranking is l2 > l1 > l3.

Classifier Chains (CC) [98]: The BR approach trains L independent binary classifiers,

71

one for each label. However, its performance can be poor when strong inter-label cor-

relations exist i.e., information of one label is helpful in inferring the information about

related label. The CC approach model the inter-label correlations by transforming the

multi-label classification problem into a chain of binary classification problems. Each

binary classifier in the chain pass the label information to the subsequent classifiers in

the chain. The chain involves same number of binary classifiers as in BR but extends

the feature space of each binary classifier with all prior binary relevance predictions in

the chain. Given L labels {1, 2, . . . , L}, let π : {1, 2, . . . , L} → {1, 2, . . . , L} be the

permutation function which specifies the ordering of binary classifier in the chain. Each

classifier hπ(j) is responsible for training and prediction of the binary association for jth

label in the ordered chain. The binary training-set Dπ(1) for the first binary classifier

hπ(1) in the chain is obtained using Eq. (5.1). For subsequent classifiers hπ(j) in the

chain, the original training-set gets appended using the following rule.

Dj = {([xi, pre(hπ(1)), . . . , pre(hπ(j−1))], ϕ(yi, π(j)))|1 ≤ i ≤ N} (5.5)

where pre(hπ(l)) is the prediction of lth binary classifier for xi and [xi, pre(hπ(1)), . . . ,

pre(hπ(j−1))] concatenates vector xi with prior binary predictions pre(hπ(1)), . . . ,

pre(hπ(j−1)). For any unseen instance xnew ∈ RD, the classification process begins

at hπ(1) and propagates along the chain hπ(2), . . . , hπ(L). The label vector ynew is pre-

dicted by combining the output of each classifier hπ(l) in the chain.

Table 5.5: Training-set Dπ(l) for each classifier hπ(l).

#
pred(h1)

[x]

x1 1
x2 -1
x3 -1
x4 1
x5 -1

D1

#
pred(h2)

[x, pred(h1)]

x1 1 -1
x2 -1 1
x3 -1 1
x4 1 1
x5 -1 -1

D2

#
pred(h3)

[x, pred(h1), pred(h2)]

x1 1 -1 -1
x2 -1 1 1
x3 -1 1 1
x4 1 1 1
x5 -1 -1 1

D3

For the example in Table 5.1, let the training order of the classifier obtained by

permutation function π is h1 → h2 → h3. The CC approach first trains a binary

classifier h1 for label 1; For label 2, the feature-space of binary classifier h2 is extended

by the prediction of classifier h1; Similarly, for label 3, the feature-space of the binary

classifier h3 is extended by including the predictions of classifiers h1 and h2 (Table 5.5).

72

The new instance xnew (let, xnew = [−0.05,−0.1, 0.3, 0.5]) is then fed into all classifiers

from h1 to h3 and the prediction is obtained by aggregating the output of the individual

classifier. Table 5.6 illustrates the classification process of CC approach on unseen

instance xnew.

Table 5.6: Classifier Chain example.

Classifiers Prediction
h1 : [−0.05,−0.1, 0.3, 0.5] → {l1,¬l1} → {+1,−1} +1
h2 : [−0.05,−0.1, 0.3, 0.5, 1] → {l2,¬l2} → {+1,−1} −1
h3 : [−0.05,−0.1, 0.3, 0.5, 1, -1]→ {l3,¬l3} → {+1,−1} −1

Finally, the prediction of each binary classifier h1, h2 and h3 is combined to obtain the

label vector prediction ynew = {+1,−1,−1}.

Random k-Labelsets (RAkEL) [118]: The RAkEL approach is based on the label

powerset (LP) method which cast the multi-label classification problem into multi-class

classification problem. In LP approach, the multi-label data is first transformed into a

multi-class data by considering each unique subset of labels that exist in the data set

as one class. The transformation is achieved using some injective function mapping

σ : 2y → N from the power set of labels to a natural number. Once the multi-class data

set is ready, some multi-class classification algorithm is utilized to train the classifier

h : x ∈ RD → Γ, where Γ is the set of distinct classes in the transformed data. The

major drawbacks with LP approach are: a) Computational complexity incurred due to

the large number of unique labelsets. Multi-label classification problem with L labels

will have (min(N, 2L)) possible unique label powerset; b) Class imbalance problem, as

a large number of labelsets would be associated with very few training instances; and

c) Confined to predict labelsets observed in the training-set.

RAkEL extends the concept of LP by constructing an ensemble of LP classifiers [117,

118]. Each LP classifier is trained using a small randomly selected k-labelsets from the

original labels which result in computationally inexpensive, predictive complete and

more balanced multi-class training-set. For example, if we break a data set with 101

labels into 3-labelset with the assumption that two labelset will not overlap, then in the

worst case scenario 23 binary classifiers need to be trained for each 3-labelset and 23×27

binary classifiers for overall data set whereas for full LP requires 2101 binary classifiers.

Given the labelset size k, let Lk denote the collection of all distinct k-labelsets in L.

73

The pth k-labelsets is denoted as Lk(p) ⊆ L where |Lk(p)| = k and 1 ≤ p ≤
(
L
k

)
. For

each k-labelsets Lk(p), a multi-class training-set is constructed as

DLk(p) = {xi, σ : (yi ∩ Lk(p))→ N|1 ≤ i ≤ m}. (5.6)

After that, some multi-class classification algorithm is utilized to train the classifier

hLk(p) : x ∈ DLk(p) → Γ, where Γ is the set of distinct classes in DLk(p). Given the size

of labelset k and the number of LP classifiers n, RAkEL creates an ensemble of n LP

classifiers. For each LP classifier k-labelsets Lk(pr), 1 ≤ r ≤ n, is randomly selected

and for each, a multi-class classifier hLk(pr) is then trained. The unseen instance xnew

is then fed into all the LP classifiers. After that, RAkEL calculates the average vote

received for each label and the final output label vector ynew is predicted by setting a

threshold τ on the average vote. For the example in Table 5.2, the classification process

of RAkEL with k = 2, n = 3 and τ = 0.5 is shown in Table 5.7.

Table 5.7: RAkEL example.

Classifiers
Prediction

l1 l2 l3
hLP1,2 −1 +1 -
hLP1,3 −1 - +1
hLP2,3 - +1 −1
Average vote 0/2 2/2 1/2
ynew −1 +1 +1

5.2.2 Algorithm Adaption Approach

This category of algorithms modifies the well-known learning algorithms to tackle

multi-label classification problem directly. There are several algorithm adaption tech-

niques proposed in the literature such as AdaBoost.MH and AdaBoost.MR [106], Multi-

Label Decision Tree [18] and Multi-Label k-Nearest Neighbor [151]. Here we review

these fundamental methods.

Multi-Label k-Nearest Neighbor (ML-kNN) [151]: It is a multi-label lazy learning

approach derived from the traditional k-Nearest Neighbor (kNN) algorithm. For each

unseen instance xnew, ML-kNN first identifies its k nearest neighbors N(xnew) in the

training set. For every label j, ML-kNN then computes the count C(j) which records

74

the number of xnew neighbors with label j. The membership counting vector for xnew

can be defined as follows.

C(j) =
∑

xa∈N(xnew)

ya(j) == 1, j ∈ {1, 2, . . . , L} (5.7)

where ya(j) takes the value of 1 if instance xa is associated with label j and 0 otherwise.

The following maximum a posteriori (MAP) principle is then utilized to determine the

label set ynew for the unseen instance xnew.

ynew(j) = arg max
b∈{−1,+1}

P (Hj
b |E

j
C(j)), j ∈ {1, 2, . . . , L} (5.8)

where Hj
+1 be the event that xnew is associated with label j and Hj

−1 be the event that

xnew is not associated with label j. Ej
C(j) is the event that exactly C(j) number of xnew

neighbors has label j. Using the Bayes theorem, the same can be re-written as follows.

ynew(j) = arg max
b∈{−1,+1}

P (Hj
b |)P (Ej

C(j)|H
j
b), j ∈ {1, 2, . . . , L} (5.9)

Multi-Label Decision Tree (ML-DT) [18]: ML-DT extend the decision tree algorithm

designed for multi-class classification to the multi-label setting. In ML-DT, the decision

tree is constructed recursively in the top down manner. At every node of the tree a

feature (F) is chosen which best classifies the remaining training examples. The best

feature (F) is decided by considering the following information gain (IG) measure.

IG(X ′, Y ′, F) = entropy(X ′, Y ′)−
∑
v∈F

|X ′v|
|X ′|

∗ entropy(X ′v, Y
′
v) (5.10)

where F is the feature under consideration, (X ′, Y ′) is the set of training examples

present at the current node, (X ′v, Y
′
v) is the subset of examples with value v for feature

F and entropy(X ′, Y ′) is defined as follows.

entropy(X ′, Y ′) = −
L∑
j

P (j) logP (j) + (1− P (j)) log(1− P (j)) (5.11)

where P (j) is the proportion of examples (X ′, Y ′) associated with label j. After the

learning process is over, each leaf node will be associated with a set of class labels. For

any unseen instance xnew, the tree is traversed from root to the leaf along the path until

75

reaching a leaf node. The label associated with the leaf node is predicted as a label set

for xnew.

Tree Based Boosting [106]: AdaBoost.MH and AdaBoost.MR are the multi-label ver-

sion of the popular ensemble method AdaBoost which creates a strong classifier by

combining many base or weak classifiers. AdaBoost.MH tries to minimize the ham-

ming loss and AdaBoost.MR is designed to find hypotheses based on label ranks. In

AdaBoost.MH, each training example (xi, yi) is presented as L binary examples of the

form {([xi, j], ϕ(yi, j))|1 ≤ j ≤ L}. AdaBoost.MH maintains a distribution over ex-

amples and labels (X × Y) and re-weights the examples at each boosting round t. The

example-label pairs that were misclassified in the previous round have higher weight.

Unlike the Adaboost.MH which tries to minimize the hamming loss, Adaboost.MR tries

to find hypothesis that ranks the labels of any instance in such as a way that correct la-

bels place at the top of the ranking.

5.3 Embedding based Approach

Most of the conventional algorithms for multi-label classification perform well on

relatively small sized data but have difficulty in dealing with data where feature and la-

bel space are sufficiently large. For example, simple methods such as Binary Relevance

(BR), that treat each label as a separate binary classification problem fail miserably. In

many real-world applications of multi-label classification, often feature and label space

are assumed to be extremely large. Under such conditions, the scalability of learning

algorithms is of major concern, calling for an effective data management and the use of

appropriate data structures for time- and space-efficient implementations. To cope with

the challenge of exponential-sized output space, modelling feature- and label-space cor-

relation has been the major thrust of research in the recent years [75, 46, 7]. Various

approaches have been proposed to exploit the intrinsic information in feature- and label-

space. The CC [98] discussed in Section 5.2 captures the label correlation by extending

the feature space of each binary classifier with all prior binary relevance predictions in

the chain. In [158], a maximum entropy method for multi-label classification is pro-

posed in which mutual correlations among data are explicitly considered in the model.

In [33], the dependencies between an individual feature and labels are modelled using

76

the conditional random field. Zhang et al. [149] model the joint distribution of the la-

bel space conditioned on the feature space using Bayesian Networks. In [45], multiple

boosted learners are trained simultaneously, one for each label with the assumption that

the hypothesis generated for one label can be helpful for the other; each hypothesis not

only looks into its own single-label task but also reuses the trained hypotheses from

other labels. These methods of exploiting correlation information can be quite effective

in multi-label learning, but they are computationally expensive over the exponentially

large feature- and label-space.

In recent years much attention on multi-label classification have been devoted to

embedding based approach where the prime focus is to reduce the effective number of

features and labels [41, 139, 5, 53]. The embedding based approach assumes that there

exists a low-dimensional space onto which the given set of feature vectors and/ or label

vectors can be embedded. The intrinsic relationship among feature- and label-space is

invariant when constraining embedded dimension to be significantly lower than origi-

nal space [140, 112, 139]. The embedding strategies can be grouped into two categories

namely; (1) Feature space embedding; and (2) Label space embedding. Feature space

embedding aims to design a projection function which can map the instance in original

feature space to label space. Feature space embedding can be further divided into two

categories - the first is to learn a projection function which directly maps instances from

feature space to label space and simultaneously preserve intrinsic relationship in the

original space through regularization [43, 44]. The second approach models inter-label

correlation implicitly using low-rank constraints on embedding [139, 12]. The aim here

is to design a projection function which can map the instance in original feature space

to a reduced dimensional space and at the same time preserve the intrinsic informa-

tion in the original feature space. A mapping is then learnt from reduced dimensional

space to label space. On the other hand, the label space embedding approach trans-

form the label vectors to an embedded space via linear or local non-linear embeddings,

followed by the association between feature vectors and embedded label space for clas-

sification purpose. With proper decoding process that maps the projected data back

to the original label space, the task of multi-label prediction is achieved [41, 97, 112].

Some researchers suggest a simultaneous embedding of feature and label space onto

the same space. Embedding of both features and labels to a single low-rank space is no

way obvious and cannot be a routine extension of feature-only embedding or label-only

77

embedding. It is necessary to retain the intrinsic relationship while mapping feature

and label vectors to a single space. In the following subsections, we present the brief

literature review of feature- and label-space embedding.

5.3.1 Feature Space Embedding (FE)

GivenN training examples in the form of a pair of feature matrixX and label matrix

Y , the goal of FE is to transform eachD-dimensional feature vector (a row of matrixX)

from original feature space to a L-dimensional label vector (corresponding row in Y)

by an embedding function F : X → Y . There are two strategies of FE. As illustrated in

Figure 5.1: Feature space embedding

Figure 5.1, the first approach is to learn a mapping which directly transforms instance

from feature space to label space. Usually, the mapping is achieved by a transformation

matrix W = [w.1, w.2, . . . , w.L] ∈ RD×L which directly maps instances from feature

space to label space. The vector w.l ∈ RD, i.e., the lth column of a W can be seen

as a transformation vector for the lth label. Most of the approaches falling into this

category assume that the two strongly correlated labels share more features with each

other than two uncorrelated labels and hence their corresponding columns in W will

be similar [43, 44]. The second approach illustrated in Figure 5.2 assume that the label

Figure 5.2: Feature space embedding

matrix Y is low-rank due to the presence of similar labels and thus model the inter-label

correlation implicitly using low-rank constraints on the transformation matrix W . The

algorithms falling into this category first embed each D-dimensional feature vector x

to a d-dimensional (d � D) vector e ∈ E ⊆ Rd in a latent space by an embedding

78

function ψ : X → E. Then, the algorithm train a predictive model ϕ : E → Y . For an

unseen instance xnew, a low-dimensional embeding enew = ψ(xnew) is firstly obtained

and then the label vector ynew is predicted by the decoding function ϕ(enew). We briefly

review the major approaches of FE.

As discussed previously, the goal of FE is to learn a transformation matrix W and a

common formulation is the following optimization problem.

min
W

`(Y,XW) + λR(W) (5.12)

where W ∈ RD×L, `(·) is a loss function that measures how well XW approximates

Y , R(·) is a regularization function that promotes various desired properties in W (low-

rank, sparsity, group-sparsity, etc.) and the constant λ ≥ 0 is the regularization parame-

ter which controls the extent of regularization. Huang et al. [43] assume that each label

is associated with a subset of features from the original feature set and two strongly cor-

related labels share more features with each other. The label specific features (a subset

of original feature space) learning problem is modelled by linear regression framework

with sparsity constraints on the regression parameter W . The problem can be formu-

lated as follows.

min
W

`(Y,XW) +
α

2
φ(W) + λ‖W‖1 (5.13)

where ‖ · ‖1 is `1 norm, the second term in Eq. (5.13) models inter-label correlation

with the constant α ≥ 0 to control the extent of correlation.

The above approaches requireD×L parameters to model the classification problem,

which will be expensive when D and L are large [139]. To reduce the training cost,

a generic empirical risk minimization (ERM) framework with low-rank constraint on

linear parametrization W = UV , where U ∈ RD×d and V ∈ Rd×L are of rank d � D

is proposed in Yu et al. [139]. The ith row of matrix E = XU can be seen as a latent

space representation of ith training instance whereas the lth cloumn of matrix V can

be visualized as a latent representation of label l. The basic assumption here is that

although the original space is sufficiently large, the intrinsic relationship in original

space can be captured by representing the instances and labels using a small number of

79

latent factors. The problem can be formulated as

min
U,V

`(Y,XUV) +
λ

2
(‖U‖2

F + ‖V ‖2
F) (5.14)

where ‖ · ‖F is Frobenius norm, `(·) is a loss function that measures how well XUV

approximates Y , and the constant λ ≥ 0 is the regularization parameter which controls

the extent of regularization. A semi-supervised joint learning framework in which di-

mensionality reduction and multi-label classification are performed simultaneously is

proposed in [140]. To guide the multi-label learning process, it uses local invariance

properties that if two instances are similar in original space then their low-dimensional

representation will also be similar. The problem is formulated as

min
U,V

L∑
l=1

N∑
i=1

h(yil(xiUV.l)) +
α

2

N∑
i,j=1

ei,j‖xiU − xjU‖2
F +

λ

2
‖V ‖2

F (5.15)

where V.l is the lth column of V , h(·), λ, α and ‖·‖F are same as defined previously and

ei,j is the similarity between instance xi and xj in original space. The second term in

Eq. (5.15) makes the transformation matrix U neighborhood aware i.e., if two instances

xi and xj are close in the original space, then their low-dimensional representation are

required to be close.

5.3.2 Label Space Embedding (LE)

GivenN training examples in the form of a pair of feature matrixX and label matrix

Y , the goal of LE is to transform each L-dimensional label vector (a row of matrix Y)

from original label space to a d-dimensional embedded vector e ∈ E ⊆ Rd by an

embedding function Φ : Y → E. Then, a predictive model ψ : X → E is trained from

original feature space to embedded space. With proper decoding process ϕ : E → Y

that maps the projected data back to the original label space, the task of multi-label

prediction is achieved [6, 32, 41]. Figure 5.3 illustrate the basic principle of LE. We

briefly review the major approaches of LE.

The approach of Hsu et al. [41] projects the label vectors to a random low-dimensional

space, fits a regression model in this space, then projects these predictions back to the

original label space. In [112], principal component analysis (PCA) is employed on the

80

Figure 5.3: Label space embedding

label covariance matrix to extract a low-dimensional latent space. In [3], a sparsity-

regularized least square reconstruction objective is used to select a small set of labels

that can predict the remaining labels. Recently, Yu et al. [139] and Jing et al. [53] pro-

posed to use trace norm regularization to identify a low-dimensional representation of

the original large label space. Mineiro et al. [55] use randomized dimensionality reduc-

tion to learn a low-dimensional embedding that explicitly captures correlations between

the instance features and their labels. Some methods work with label or feature similar-

ity matrices, and seek to preserve the local structure of the data in the low-dimensional

latent space. Prabhu et al. [95] propose a method to train a classification tree by min-

imizing the Normalized Discounted Cumulative Gain. Rai et al. [97] assume that the

label vectors are generated by sampling from a weighted combination of label topics,

where the mixture coefficients are determined by the instance features. Based on the

assumption that all the output labels can be recovered by a small subset, multi-label

classification via column subset selection approach (CSSP) is proposed in [6]. Given

a matrix Y , CSSP seeks to find a column index set C ⊂ {1, . . . , L} with cardinality

d (d � L) so that the columns with indices in C can approximately span Y . The

subset of columns is selected using a randomized sampling procedure. The problem is

formulated as follows.

min
C
‖Y − YCY †CY ‖F (5.16)

where ‖ · ‖F is Frobenius norm, YC denotes the submatrix consisting of columns of

Y with indices in C and YCY
†
C is the projection matrix onto the d-dimensional space

spanned by columns of YC . Alternatively, there have been emerging interests in re-

cent multi-label methods that take the correlation information as prior knowledge while

modeling the embedding (encoding). These methods can be efficient when the mapped

label space has significantly lower dimensionality than the original label space [41].

In recent years, matrix factorization (MF) based approach is frequently used to

achieve the LE which aims at determining two matrices U ∈ RN×d and V ∈ Rd×L.

81

The matrix U can be viewed as the basis matrix, while the matrix V can be treated as

the coefficient matrix and a common formulation is the following optimization problem.

min
U,V

`(Y, U, V) + λR(U, V) (5.17)

where `(·) is a loss function that measures how well UV approximates Y , R(·) is a

regularization function that promotes various desired properties in U and V (sparsity,

group-sparsity, etc.) and the constant λ ≥ 0 is the regularization parameter which

controls the extent of regularization. In [79], a MF based approach is used to learn

the label encoding and decoding matrix simultaneously. The problem is formulated as

follows.

min
U,V
‖Y − UV ‖2

F + αΨ(X,U) (5.18)

where U ∈ RN×d is the code matrix, V ∈ Rd×L is the decoding matrix, Ψ(X,U) is

used to make U feature-aware by considering correlations between X and U as side

information and the constant α ≥ 0 is the trade-off parameter. In order to reduce

the noisy information in the label space, the method proposed in [52] decompose the

original space to a low-dimensional space. Instead of globally projecting onto a linear

low-rank subspace, the method proposed in [5] learns embeddings which non-linearly

capture label correlations by preserving the pairwise distances between only the closest

(rather than all) label vectors.

5.4 Outline of the Proposed Approach

In this section, we introduce the underlying principle of our proposed method,

termed as MLC-HMF (Multi-label classification using hierarchical embedding). As

discussed in Section 5.1, the proposed method draws motivation from embedding based

approach of multi-label classification. The embedding approach aims at modelling the

intrinsic information existing in the original space such as label correlation, instance

correlation etc., to assist the learning process. The basic assumption underlying the

embedding based approach is that the label matrix is low-rank and inter-label correla-

tion can be modelled implicitly by embedding the feature/ label vectors to a reduced

low-dimensional latent space. There are two major approaches for embedding namely

feature space embedding and label space embedding. A detailed discussion of these

82

approaches is given in Section 5.3. A common characteristic of both the approaches

is that they try to transform the data from original space to a more manageable (low-

dimensional) space such that the learning process can be tackled efficiently without

significant loss of prediction performance. One encouraging property of this low-

dimensional space is that most of the structures in the original output label space can be

explained and recovered. The latent low-dimensional space can be achieved via a linear

or non-linear transformation and most often it is proposed to use linear transformation

due to its attractive computational properties and high interpretability [76, 6, 112, 41].

However, some researchers [61, 76] suggest a natural extension of their proposal of lin-

ear embedding to nonlinear cases but no detailed study is undertaken in this direction.

In many real-word applications, the low-rank assumption made by embedding meth-

ods is violated due to several reasons such as the diversity of the training set, the correla-

tion among labels, the feature-label relationship, the learning algorithm to determine the

mapping h and most importantly, the presence of tail labels, i.e., the infrequent labels

associated with only few training examples [134, 5]. Hence, embedding with a global

projection (a common transformation for all feature/ label vectors) can be complicated

and may not well model the optimal mapping. However, on the other hand, we observe

through experimental analysis, that it is possible to have efficient embedding for subsets

of training samples. Our research is based on the fact that a single linear embedding

h may not take us very far in finding accurate multi-label classification. We hypothe-

size that feature vectors which conform to similar embedding are similar in some sense.

Thus, unlike the traditional embedding approach found in the literature, we propose a

piecewise-linear embedding of feature-space that generates optimal embeddings for a

subset of training examples. Our method is novel in the sense that it judiciously selects

a subset of training examples for training and then it assigns a suitable subset of the

training set to an embedding. Finally, an unseen instance is classified using the mul-

tiple embeddings and their assigned training sets. In this section, we outline the basic

principle of the proposed MLC-HMF, an approach based on feature-space embedding.

We start with the formulation given in Eq. (5.14). For exploiting correlations in the

labels, one way is to factor the matrix W = UV where U ∈ RD×d can be interpreted as

an embedding of the features X into a d dimensional latent space and the lth column of

V ∈ Rd×L is a linear classifier corresponding to label l on this space. Regularization is

provided by constraining the dimensionality of the latent space. The minimization in U

83

and V is unfortunately non-convex, and Fazel et al. [28] discovered the nuclear norm

(sum of singular values) heuristic for matrix rank minimization, which is the convex

relaxation of the rank minimization problem. Since XUV yields continuous values and

Y is discrete, a natural choice is to use the well-known principle of maximum margin

matrix factorization (MMMF) [100, 68]. For a subset of training examples, the process

of determining the embedding using principle of MMMF is described below.

Computing U, V : Let S ⊆ {1, 2, . . . , n} be the indices of current set XS of training

examples and the corresponding label vectors is submatrix Y S of Y . We use smooth

hinge loss function to determine US and V S for a given training set (XS, Y S). For sake

of simplicity, we drop the suffix S. The problem can be formulated as the following

minimization problem.

min
U,V

J(U, V) =
L∑
l=1

∑
i∈S

h(yil(xiUV.l)) +
λ

2
(‖U‖2

F + ‖V ‖2
F) (5.19)

where V.l is lth column of V , ‖ · ‖, λ are same as defined previously and h(·) is smooth

hinge loss function defined as

h(z) =

0 if z ≥ 1;

1
2
(1− z)2 if 0 < z < 1;

1
2
− z otherwise.

(5.20)

The detailed discussion about smooth hinge loss is given in Section 3.2. The gradient

of the variables to be optimized is determined as follows.

∂J

∂Upq
= λUpq +

L∑
l=1

n∑
i=1

yilh
′(yil(xiUV.l))xiqVlp (5.21)

∂J

∂Vrs
= λVrs +

n∑
i=1

yirh
′(yir(xiUV.r))xiU.s (5.22)

where U.s is the sth column of U . Gradient descent algorithm and its variants such as

conjugate gradient descent and stochastic gradient descent start with random U and V

and these are iteratively updated using the equations given in (5.23) and (5.24). Suffixes

84

t and t+ 1 are used to indicate current values and updated values, respectively.

U t+1
pq = U t

pq − c
∂J

∂U t
pq

(5.23)

V t+1
rs = V t

rs − c
∂J

∂V t
rs

(5.24)

where c is the step length parameter. It is seen that conjugate gradient descent technique

exhibits faster rate of convergence and we follow this technique in the present study.

Geometrical Interpretation: As discussed in Section 3.3, application of maximum

margin factorization has an interesting geometrical interpretation in the present context.

The matrix U maps eachD-dimensional feature vector to d-dimensional space and each

row of V defines a decision hyperplane associated with the respective label. An accu-

rate embedding implies that each of the decision hyperplanes in d-dimension classifies

the embedded feature points conforming to the respective rows of the label-matrix Y .

Prompted by the above observations, we propose a novel algorithm MLC-HMF which

is discussed in the following section.

5.5 MLC-HMF: The Proposed Method

In this section, a novel method for multi-label classification is proposed which is

essentially a hierarchical matrix factorization method. Our algorithm initially sepa-

rates out training examples into two disjoint components (the process of grouping is

discussed later in the section). Then for each component, U and V are learnt. The U

and V so computed are used to test the training vectors in the respective components

so that instances which are not classified correctly would be further processed for the

next round of recursion. The MLC-HMF returns subsets of the training set and the as-

sociated (U, V). It also generates residue of training examples which are not used for

further classification. In a sense, our algorithm hierarchically selects training set with

different degree of suitability for multi-label classification. The depth of the hierarchy

determines the finer level of residue.

Identification of Subsets of Training Instances: The instance group are not given

explicitly and it is necessary to learn from the feature matrix X . Thus, before the appli-

cation of MMMF, we use k-means clustering [48] with Euclidean metric to cluster the

85

training set into two clusters and each of the clusters are used separately to determine

the corresponding embedding. We do not claim that the above process is the best possi-

ble practice to embed the subsets of training samples which are similar in some sense.

Actually, the grouping can be implemented in different ways based on the clustering

algorithm, the number of clusters, or even more sophisticated distance measure other

than the Euclidean metric. Nevertheless, our simple construction process of grouping

yield competitive performance as shown in Section 5.6.

Guiding Embedding Process Through Classification Error: As discussed previ-

ously, U and V are determined through an optimization process and application of

any of the gradient-based algorithms may end up in a local minimizing point. As a

result, the resultant embedding may not yield accurate classification even for the train-

ing instances that are used for optimization. We consider the classification error during

the learning process to associated the matrices U and V with a subset of instances. In

the proposed method, we assign the training examples that are classified to an accept-

able accuracy to the current embedding and separate out wrongly classified example for

further processing recursively.

Algorithm 5 outlines the main flow of the proposed method. For each node in

the tree, a joint learning framework given in Eq. (5.19) with low-rank constraint on

the parametrization (embedding) and multi-label classification is performed simulta-

neously. At every node, we maintain the mapping U and the label feature matrix V

along with the training examples whose hamming loss is less than the threshold T . The

remaining training instances are divided into two parts according to the k-means clus-

tering. This process is repeated recursively until either the number of instances in the

node is too small or the depth of the tree exceeds a given threshold.

Classification: The outcome of the learning process described in MLC-HMF has a tree

structure. At each non-leaf node of the tree, there is a disjoint subset of training samples

along with embedding U and label feature matrix V . For any unseen instance xnew ∈

RD, the label vector is predicted by first finding the U ′s and V ′s associated with the k-

nearest neighbor instances present at non-leaf node of tree. Let (U i, V i), 1 ≤ i ≤ K, be

the ith embedding pair. A label vector is predicted with the help of every (U i, V i)-pair

using the rule sign(xnewU
iV i). Finally, majority voting rule for the fusion is applied

on the labels obtained in the previous step to obtain the final label vector.

86

Algorithm 5: MLC-HMF (X , Y , d, T , h)
input : Data Matrix: X , Label Matrix: Y , Size of Reduced Dimension Space: d,

Threshold: T , Depth of the Hierarchy: h
output: Tree with Mapping U and Label Feature Matrix V at Each Node

Divide X into X1 and X2 using kmeans clustering;
for i ∈ {1,2} do

if |X i| is small or depth is exceed h then
Let its corresponding node as leaf node;
return

end
Learn the mapping U and label feature matrix V for X i using Eq. (5.19);
Let X̄ ⊆ X i is the set of instances whose hamming loss is less than the
threshold T and Ȳ is their corresponding label matrix;
Maintain U , V and X̄ at the current node;
MLC-HMF (X i \ X̄ , Y i \ Ȳ , k, T , h)

end

Complexity Analysis: We analyze the computational and spatial complexity of the

proposed method. The time complexity of MLC-HMF mainly comprises of two com-

ponents: clustering and optimization of the problem as given in Eq. (4) at every node of

the hierarchy. For simplicity of representation, we are ignoring the correctly classified

instances at the present node and assume that the set of instances are divided equally

between its child. Hence, the average number of instances present in a node at level l

is N/2l−1. In every iteration of conjugate gradient, the computation cost required for

calculation of gradients ∂J
∂U

and ∂J
∂V

is 2N
2l−1D

2d2L. Let t1 and t2 be the maximum number

of iterations required for gradient update and k-means clustering, respectively. Then the

overall computation cost required at every node at level l is (2N
2l−1D

2d2Lt1 + 2N
2l−1Dt2).

Hence, the overall computation required at level l is 2l(2N
2l−1D

2d2Lt1 + 2N
2l−1Dt2). The

overall computation cost required by MLC-HMF is 2l(h+ 1)(2N
2l−1D

2d2Lt1 + 2N
2l−1Dt2),

that is, O(nD2d2Lt1h). The space complexity of MLC-HMF mainly comprises of

maintaining the mapping U , label feature matrix V and the set of instances whose ham-

ming loss is less than the threshold T at every node. The overall space required by

MLC-HMF is (2h+1 − 1)(Dd+ Ld) +ND, that is, O(2h+1(Dd+ Ld)).

5.6 Experimental Analysis

In this section we analyze the performance of MLC-HMF by taking into account

factors such as accuracy and efficiency. This section discusses the experimental setup

87

including the data sets and relevant statistics, the experimental protocols, the competing

algorithms, the evaluation metrics as well as the parameter settings. Following this, we

discuss the experimental results.

5.6.1 Data Sets

We use twelve multi-label benchmark datasets for experiments, and the detailed

characteristics of these datasets are summarized in Table 5.8. All of these datasets can

be downloaded from labic1, meka2 and mulan3.

Table 5.8: Description of the experimental datasets

Data set #instance #Feature #Label Domain LC
CAL500 502 68 174 music 26.044
emotions 593 72 6 music 1.869
genbase 662 1185 27 biology 1.252
plant 948 440 12 biology 1.080
medical 978 1449 45 text 1.245
language log 1459 1004 75 text 1.180
human 3108 440 12 biology 1.190
education 5000 550 33 text(web) 1.461
science 5000 743 40 text(web) 1.451
rcv1(subset 2) 6000 944 101 text 2.634
rcv1(subset 5) 6000 944 101 text 2.642
ohsumed 13929 1002 23 text 1.663

5.6.2 Evaluation Metrics

To measure the performance of the different algorithms, we employed six evaluation

metrics popularly used in multi-label classification, i.e. hamming loss, accuracy, exact-

match, example based f1 measure, macro f1 and micro f1 [152, 108]. Given a test data

setD = {xi, yi | 1 ≤ i ≤ N}, where yi ∈ {−1, 1}L is the ground truth labels associated

with the ith test example, and let ŷi be its predicted set of labels.

1 http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
2 http://meka.sourceforge.net
3 http://mulan.sourceforge.net/datasets-mlc.html

88

http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
http://meka.sourceforge.net
http://mulan.sourceforge.net/datasets-mlc.html

Hamming loss measures how many times on average, an irrelevant pair (instance, label)

is predicted, i.e. a correct label is missed or an incorrect label is predicted.

Hamming loss =
1

NL

N∑
i=1

|yi 6= ŷi|

Accuracy for an instance evaluates the proportion of correctly predicted labels to the to-

tal number of active(actual and predicted) labels for that instance. The overall accuracy

for a data set is the average across all instances.

Accuracy =
1

N

N∑
i=1

|yi ∧ ŷi|
|yi ∨ ŷi|

Subset Accuracy is an extension of accuracy used in single label case to multi-label

prediction. For an instance, the prediction is considered to be correct if all the predicted

labels are the same as the ground truth labels for that instance. The overall subset-

accuracy for a data set is the average across all instances.

Subset Accuracy =
1

N

m∑
i=1

I(yi = ŷi)

where, I is the indicator function.

Example based F1 Measure is the harmonic mean of precision and recall for each

example.

F1 =
1

N

N∑
i=1

2piri
pi + ri

where pi and ri are precision and recall for the ith example.

Macro F1 is the harmonic mean of precision and recall for each label.

MacroF1 =
1

L

L∑
i=1

2piri
pi + ri

where pi and ri are precision and recall for the ith label.

Micro F1 treats every entry of the label vector as an individual instance regardless of

89

label distinction.

Micro F1 =
2
∑L

i=1 TPi

2
∑L

i=1 TPi +
∑L

i=1 FPi +
∑L

i=1 FNi

where TPi, FPi and FNi are true positive, false positive and false negative for the ith

label, respectively.

5.6.3 Comparing Algorithms

We conducted ten-fold cross validation on each data set and the mean value and

standard deviation of each evaluation criterion was recorded. The following six well-

known state-of-the-art algorithms were considered for comparison:

• BSVM [9]: This is one of the representative algorithm of problem transformation
methods, which treat each label as a separate binary classification problem. For
every label, an independent binary classifier is trained by considering the exam-
ples with the given class label as positive and others as negative.

• BP-MLL [150]: In this method, a modified loss function and back-propagation
are used to account for multi-label data. The number of hidden neurons is set to
be 20% of the input dimensionality and the maximum number of training epochs
is set to be 100 for all datasets [150, 148].

• ML-kNN [151]: It is a multi-label lazy learning approach derived from the tradi-
tional k-Nearest Neighbor (kNN) algorithm. For each unseen instance, ML-kNN
first identifies its k nearest neighbors in the training set. Based on statistical in-
formation gained from the label sets of these neighboring instances, maximum
a posteriori (MAP) principle is utilized to determine the label set for the unseen
instance. The number of nearest neighbors considered is set to be 10 for all
datasets [151, 148].

• LIFT [148]: LIFT constructs features specific to each label by conducting clus-
tering analysis on its positive and negative instances. After that, for every label, a
binary classifier is trained with label specific feature. The ratio parameter r is set
to be 0.1 for all datasets [148, 43].

• SSJDR-MLL [140]: This method aims to learn a linear transformation which
can reduce the dimension of the original instance and at the same time preserve
the inherent property. The reduced dimension is fixed to 100, and the balanced
parameter γ is set to be 1.0 for all datasets [140].

• LLSF [43]: This method addresses the inconsistency problem in multi-label clas-
sification by learning label specific features for the discrimination of each class
label. The hyper-parameters α, β, γ and the threshold T are set to be 0.1, 0.1,
0.01, and 0.5 respectively for all datasets [43].

90

LIBSVM [15] is employed as the binary learner for classifier induction to instantiate

BSVM, LIFT and SSJDR-MLL [43, 148].

5.6.4 Parameter Setting

Most of the MLC-HMF hyper-parameters were fixed. The number of neighbors K

considered during the prediction stage were fixed to 5, the number of reduced latent

dimension space k were fixed to d0.5Le. The termination conditions required to repeat

the recursive process such as the depth of the hierarchy and the minimum number of

instances in the node were set to 5. The remaining two hyper-parameters are tuned by

conducting ten-fold cross validation. The regularization parameter λ for each data set

is tuned from the candidate set {10
i
10}, ∀i ∈ {1, 5, . . . , 20} and the threshold T is tuned

in the range [0, 0.1] with step size 0.02.

Figure 5.4: Hamming loss for different values of λ on emotions data set with varying
training size percentage

In MLC-HMF, there is a need to select the regularization parameter λ at every node

of the hierarchy as the size of training instances varies at every node of the hierarchy.

We conducted experiments to analyze the effect of λ in Eq. (5.19) by varying the size

of training data. For this experiment, we first randomly held out 10% of instances from

91

the overall data set which is later used to evaluate the performance. From the remaining

instances we selected different percentage of instances to train the model. We repeated

the selection process (train/ validation set) 3 times for every candidate λ and calculated

the hamming loss on the held out set. Figure 5.4 depicts the variation in hamming loss

for different values of λ. It can be seen from Figure 5.4 that the data size is not playing

any crucial role in the selection of the best λ. Based on our preliminary experiments,

the value of λ is fixed for every node in the hierarchy.

Table 5.9: Experimental results of comparison of algorithms (mean±std rank) in terms of Hamming Loss, Accuracy, and Subset
Accuracy

Data set
Hamming Loss ↓

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.137±0.006 1.5 0.140±0.008 6 0.139±0.006 5 0.138±0.005 3.5 0.138±0.006 3.5 0.146±0.007 7 0.137±0.005 1.5
emotions 0.197±0.029 5 0.209±0.019 7 0.193±0.019 3 0.184±0.015 2 0.195±0.023 4 0.207±0.025 6 0.182±0.026 1
genbase 0.002±0.001 2 0.008±0.002 7 0.006±0.003 6 0.005±0.002 5 0.003±0.001 4 0.002±0.001 2 0.002±0.001 2
plant 0.090±0.002 5 0.092±0.005 6 0.088±0.003 4 0.085±0.004 2.5 0.084±0.004 1 0.123±0.006 7 0.085±0.005 2.5
medical 0.011±0.001 1.5 0.018±0.001 6 0.016±0.002 5 0.012±0.002 3 0.015±0.002 4 0.019±0.002 7 0.011±0.001 1.5
language log 0.016±0.001 3 0.020±0.001 6 0.016±0.001 3 0.016±0.001 3 0.016±0.001 3 0.047±0.004 7 0.016±0.001 3
human 0.083±0.002 4 0.085±0.002 5.5 0.082±0.002 3 0.078±0.002 1.5 0.078±0.002 1.5 0.086±0.003 6 0.085±0.004 5.5
education 0.037±0.001 1 0.053±0.002 7 0.039±0.002 5 0.038±0.002 3 0.040±0.001 6 0.038±0.001 3 0.038±0.002 3
science 0.030±0.002 1 0.043±0.002 7 0.033±0.001 5 0.031±0.001 2 0.034±0.001 6 0.032±0.001 3.5 0.032±0.002 3.5
rcv1(subset2) 0.023±0.001 3 0.026±0.001 7 0.024±0.001 6 0.023±0.001 3 0.023±0.001 3 0.023±0.001 3 0.023±0.001 3
rcv1(subset5) 0.023±0.001 3 0.025±0.001 7 0.024±0.001 6 0.023±0.001 3 0.023±0.001 3 0.023±0.001 3 0.023±0.001 3
ohsumed 0.058±0.002 3.5 0.078±0.001 7 0.071±0.001 6 0.056±0.001 2 0.067±0.001 5 0.055±0.001 1 0.058±0.001 3.5

Data set
Accuracy ↑

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.197±0.010 5 0.216±0.015 3 0.196±0.014 6 0.198±0.008 4 0.192±0.010 7 0.228±0.013 1 0.217±0.009 2
emotions 0.495±0.061 7 0.548±0.032 2.5 0.538±0.043 4 0.548±0.043 2.5 0.512±0.058 5 0.511±0.049 6 0.550±0.060 1
genbase 0.973±0.013 3 0.905±0.019 7 0.923±0.029 6 0.929±0.021 5 0.953±0.018 4 0.981±0.007 1 0.978±0.006 2
plant 0.037±0.014 6 0.012±0.031 7 0.079±0.021 5 0.150±0.028 4 0.163±0.033 3 0.206±0.023 1 0.173±0.033 2
medical 0.732±0.014 1 0.629±0.027 5 0.570±0.051 7 0.659±0.036 3 0.620±0.042 6 0.657±0.043 4 0.702±0.031 2
language log 0.062±0.018 5 0.161±0.024 1 0.017±0.009 7 0.109±0.024 3 0.030±0.014 6 0.095±0.024 4 0.121±0.025 2
human 0.076±0.011 6 0.000±0.001 7 0.094±0.013 5 0.201±0.012 3 0.210±0.016 1 0.193±0.020 4 0.207±0.016 2
education 0.270±0.019 4 0.327±0.017 1 0.225±0.015 6 0.255±0.016 5 0.158±0.011 7 0.293±0.017 3 0.294±0.021 2
science 0.280±0.018 3 0.311±0.020 1 0.198±0.013 6 0.280±0.010 3 0.136±0.013 7 0.264±0.015 5 0.280±0.018 3
rcv1(subset2) 0.325±0.017 2 0.324±0.011 3 0.188±0.015 7 0.272±0.014 5 0.205±0.016 6 0.281±0.013 4 0.343±0.014 1
rcv1(subset5) 0.324±0.013 2 0.321±0.014 3 0.192±0.017 7 0.285±0.015 4 0.219±0.013 6 0.275±0.013 5 0.352±0.012 1
ohsumed 0.293±0.014 5 0.417±0.005 1 0.053±0.011 7 0.337±0.013 4 0.131±0.007 6 0.356±0.013 2 0.344±0.011 3

Data set
Subset Accuracy ↑

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.000±0.000 4 0.000±0.000 4 0.000±0.000 4 0.000±0.000 4 0.000±0.000 4 0.000±0.000 4 0.000±0.000 4
emotions 0.271±0.074 5 0.259±0.056 7 0.292±0.054 3 0.319±0.053 1 0.290±0.068 4 0.265±0.050 6 0.305±0.077 2
genbase 0.961±0.015 3 0.837±0.021 7 0.891±0.043 6 0.897±0.031 5 0.936±0.024 4 0.967±0.019 1 0.962±0.012 2
plant 0.036±0.014 6 0.012±0.031 7 0.077±0.019 5 0.143±0.025 3 0.150±0.028 2 0.141±0.021 4 0.162±0.034 1
medical 0.653±0.027 1 0.464±0.032 7 0.499±0.055 5 0.586±0.044 3 0.528±0.064 4 0.498±0.052 6 0.630±0.043 2
language log 0.193±0.028 4 0.232±0.032 2 0.159±0.026 7 0.230±0.037 3 0.167±0.020 6 0.168±0.026 5 0.233±0.030 1
human 0.069±0.012 6 0.000±0.001 7 0.085±0.015 5 0.181±0.011 2 0.190±0.015 1 0.154±0.020 4 0.166±0.018 3
education 0.226±0.018 3 0.165±0.013 6 0.189±0.015 5 0.212±0.014 4 0.131±0.009 7 0.240±0.015 1.5 0.240±0.020 1.5
science 0.237±0.018 1 0.189±0.020 5 0.170±0.013 6 0.233±0.014 2 0.115±0.015 7 0.219±0.015 4 0.226±0.022 3
rcv1(subset2) 0.207±0.015 1 0.088±0.012 7 0.146±0.015 5 0.166±0.010 3 0.140±0.011 6 0.165±0.014 4 0.200±0.015 2
rcv1(subset5) 0.201±0.011 1 0.082±0.009 7 0.144±0.013 5 0.174±0.012 4 0.135±0.011 6 0.152±0.012 3 0.194±0.009 2
ohsumed 0.189±0.011 4 0.132±0.008 5 0.033±0.009 7 0.215±0.009 2 0.084±0.009 6 0.222±.011 1 0.209±0.011 3

5.6.5 Results and Discussion

Table 5.9 and 5.10 gives the comparative analysis of the proposed method MLC-

HMF against state-of-the-art algorithms on twelve datasets. Each result is composed of

mean, std and rank. For any data set and given evaluation metric where two or more

92

Table 5.10: Experimental results of comparison of algorithms (mean±std rank) in terms of Example Based F1, Macro F1, and
Micro F1

Data set
Example based F1 ↑

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.325±0.014 5 0.350±0.020 2.5 0.323±0.020 6 0.326±0.011 4 0.316±0.013 7 0.362±0.018 1 0.350±0.013 2.5
emotions 0.565±0.059 7 0.647±0.026 1 0.620±0.041 4 0.624±0.043 3 0.583±0.058 6 0.591±0.052 5 0.629±0.057 2
genbase 0.976±0.013 3 0.924±0.021 7 0.933±0.025 6 0.938±0.018 5 0.958±0.017 4 0.985±0.005 1 0.983±0.006 2
plant 0.038±0.014 6 0.012±0.031 7 0.080±0.022 5 0.153±0.029 4 0.167±0.034 3 0.230±0.026 1 0.180±0.032 2
medical 0.759±0.012 1 0.686±0.028 4 0.595±0.051 7 0.684±0.036 5 0.653±0.037 6 0.715±0.041 3 0.728±0.028 2
language log 0.067±0.018 5 0.188±0.025 1 0.018±0.009 7 0.118±0.025 4 0.033±0.0140 6 0.132±0.026 3 0.133±0.026 2
human 0.079±0.011 6 0.001±0.001 7 0.097±0.013 5 0.214±0.013 3 0.217±0.016 2 0.206±0.021 4 0.221±0.015 1
education 0.286±0.019 4 0.384±0.019 1 0.238±0.015 6 0.271±0.018 5 0.167±0.012 7 0.312±0.017 3 0.314±0.022 2
science 0.295±0.019 4 0.357±0.021 1 0.207±0.013 6 0.298±0.012 3 0.143±0.013 7 0.279±0.016 5 0.300±0.017 2
rcv1(subset2) 0.370±0.019 3 0.430±0.014 1 0.204±0.015 7 0.313±0.016 5 0.230±0.018 6 0.326±0.012 4 0.400±0.015 2
rcv1(subset5) 0.374±0.014 3 0.427±0.016 1 0.210±0.019 7 0.331±0.017 4 0.254±0.013 6 0.326±0.014 5 0.415±0.014 2
ohsumed 0.331±0.015 5 0.521±0.006 1 0.060±0.013 7 0.382±0.015 4 0.149±0.007 6 0.404±.014 2 0.393±0.013 3

Data set
Macro F1 ↑

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.046±0.003 6 0.053±0.008 3.5 0.053±0.007 3.5 0.049±0.003 7 0.041±0.004 5 0.107±0.010 1 0.079±0.006 2
emotions 0.584±0.059 7 0.626±0.029 3 0.622±0.033 5 0.652±0.035 1 0.623±0.046 4 0.617±0.048 6 0.649±0.057 2
genbase 0.649±0.062 2.5 0.534±0.047 6 0.520±0.026 7 0.584±0.052 5 0.631±0.061 4 0.666±0.076 1 0.649±0.053 2.5
plant 0.042±0.019 6 0.011±0.022 7 0.055±0.016 5 0.086±0.023 4 0.124±0.034 3 0.164±0.031 1 0.126±0.027 2
medical 0.320±0.030 2 0.245±0.020 5 0.206±0.026 7 0.267±0.032 4 0.223±0.022 6 0.329±0.039 1 0.285±0.025 3
language log 0.031±0.007 5 0.051±0.006 2 0.007±0.004 7 0.047±0.015 3.5 0.026±0.007 6 0.074±0.014 1 0.047±0.01 3.5
human 0.041±0.008 6 0.000±0.000 7 0.065±0.016 5 0.119±0.010 3 0.140±0.010 1 0.106±0.008 4 0.122±0.012 2
education 0.140±0.016 1 0.094±0.006 6 0.110±0.017 5 0.136±0.021 2 0.084±0.013 7 0.116±0.014 3 0.112±0.009 4
science 0.167±0.022 2 0.111±0.012 6 0.12±0.018 5 0.182±0.019 1 0.067±0.013 7 0.132±0.014 4 0.134±0.011 3
rcv1(subset2) 0.198±0.014 1 0.083±0.003 5 0.082±0.010 6 0.128±0.013 3 0.074±0.006 7 0.117±0.012 4 0.172±0.009 2
rcv1(subset5) 0.186±0.015 2 0.073±0.003 6.5 0.085±0.010 5 0.129±0.020 3 0.073±0.006 6.5 0.098±0.009 4 0.188±0.016 1
ohsumed 0.238±0.010 5 0.436±0.012 1 0.041±0.007 7 0.275±0.012 4 0.082±0.005 6 0.332±0.01 2 0.279±0.010 3

Data set
Micro F1 ↑

BSVM BP-MLL ML-kNN LIFT SSJDR-MLL LLSF MLC-HMF
cal500 0.321±0.015 5 0.347±0.019 3 0.320±0.020 6 0.323±0.011 4 0.311±0.012 7 0.367±0.018 1 0.348±0.012 2
emotions 0.636±0.055 7 0.670±0.028 3 0.667±0.043 4 0.679±0.033 2 0.655±0.046 5 0.639±0.049 6 0.682±0.051 1
genbase 0.981±0.009 2 0.917±0.016 7 0.930±0.031 6 0.947±0.018 5 0.966±0.013 4 0.984±0.007 1 0.978±0.009 3
plant 0.067±0.024 6 0.000±0.000 7 0.133±0.033 5 0.234±0.043 4 0.258±0.051 3 0.279±0.023 1 0.267±0.042 2
medical 0.804±0.020 1 0.706±0.022 5 0.676±0.040 7 0.758±0.029 3 0.713±0.029 4 0.701±0.028 6 0.775±0.025 2
language log 0.122±0.025 5 0.264±0.029 1 0.000±0.000 7 0.199±0.041 3 0.063±0.024 6 0.157±0.022 4 0.215±0.031 2
human 0.126±0.016 6 0.000±0.001 7 0.152±0.018 5 0.299±0.017 2 0.298±0.018 3 0.283±0.023 4 0.302±0.024 1
education 0.377±0.024 4 0.400±0.019 1.5 0.330±0.022 6 0.362±0.022 5 0.260±0.018 7 0.397±0.023 3 0.400±0.026 1.5
science 0.376±0.022 2 0.368±0.021 4 0.286±0.022 6 0.377±0.016 1 0.199± 0.019 7 0.357±0.017 5 0.370±0.020 3
rcv1(subset2) 0.403±0.021 3 0.419±0.011 2 0.242±0.019 7 0.347±0.016 5 0.268±0.020 6 0.361±0.013 4 0.421±0.013 1
rcv1(subset5) 0.413±0.012 3 0.430±0.012 2 0.253±0.023 7 0.375±0.016 4 0.298±0.016 6 0.366±0.014 5 0.436±0.012 1
ohsumed 0.407±0.014 5 0.539±0.007 1 0.088±0.017 7 0.456±0.012 4 0.204±0.009 6 0.484±.012 2 0.463±0.011 3

algorithms obtain the same performance, the rank of these algorithms are assigned with

the average result of them. For each evaluation criterion, ↑ (↓) indicates the larger

(smaller) the value, the better the performance. Furthermore, the best results among all

comparing algorithms are highlighted in boldface.

Table 5.11: Summary of the Friedman statistics FF (K = 7,N = 12) and the critical
value in terms of each evaluation metric(K: # Comparing Algorithms; N :
Data Sets).

Metric FF Critical Value (α = 0.05)

Hamming Loss 5.730

2.239

Accuracy 4.910
Subset Accuracy 5.584
Example Base F1 5.338
Macro F1 2.767
Micro F1 4.958

93

To conduct statistical performance analysis among the algorithms being compared,

we employed Friedman test which is a favorable statistical test for comparisons of

more than two algorithms over multiple datasets [24]. Table 5.11 provides the Fried-

man statistics FF and the corresponding critical value in terms of each evaluation met-

ric. As shown in Table 5.11 at significance level α = 0.05, Friedman test rejects the

null hypothesis of equal performance for each evaluation metrics. This leads to the

use of post-hoc tests for pairwise comparisons. The Nemenyi test [24] is employed

to test whether our proposed method MLC-HMF achieves a competitive performance

against the comparing algorithms. The performance of two classifiers is significantly

different if the corresponding average ranks differ by at least the critical difference

CD = qα

√
K(K+1)

6N . At significance level α = 0.05, the value of qα = 2.949, for

Nemenyi test with K = 7 [24], and thus CD = 2.601. Figure 5.5 gives the CD di-

agrams [24] for each evaluation criterion, where the average rank of each comparing

algorithm is marked along the axis (lower ranks to the left). It can be seen from the

Figure 5.5 that the proposed method MLC-HMF achieve better performance than other

comparing algorithms in terms of each evaluation metric.

5.7 Conclusions and Discussion

This chapter presented a new multi-label classification method, called MLC-HMF,

which learns piecewise-linear embedding with a low-rank constraint on parametrization

to capture nonlinear intrinsic relationships that exist in the original feature and label

space. Extensive comparative studies validate the effectiveness of MLC-HMF against

the state-of-the-art multi-label learning approaches.

In multi-label classification problem, infrequently occurring (tail) labels are asso-

ciated with few training data and are harder to predict than frequently occurring ones

but might also be more informative and rewarding. Due to the presence of tail labels

the low-rank label matrix assumption fails to hold in embedding methods in real-world

applications. We feel that our proposal of hierarchical embedding may pave way to

overcome this difficulty and can handle tail labels more efficiently. MLC-HMF is the

first ever attempt for piece-wise linear embedding in the context of multi-label learning.

It is worthwhile to carryout an in depth investigation of different ways of embedding

94

(a) Hamming loss (b) Accuracy

(c) Subset Accuracy (d) Example based F1

(e) Macro F1 (f) Micro F1

Figure 5.5: CD diagrams of the comparing algorithms under each evaluation criterion.

such as quasi-linear embeddings and their advantages over linear and non-linear embed-

ding. We plan to carryout this line of investigation in future. Our experimental analysis

provides evidence that hierarchical embedding is able to yield more accurate results for

multi-label classification. This motivates a new line of future research in which compu-

tational complexity of the proposed algorithm can be investigated. The core part of the

algorithm is a search based on gradient descent. It is worthwhile to investigate different

algorithmic strategies of gradient descent to improve the computational efficiency.

95

CHAPTER 6

Group Preserving Label Embedding

for Multi-Label Classification

In the previous chapter, we discussed a joint learning framework called MLC-HMF

in which the feature space embedding and multi-label classification are performed si-

multaneously. The MLC-HMF approach is motivated by the fact that the low-rank

assumption made by the embedding methods is violated in most of the real-world ap-

plications due to several reasons. Reasons such as the diversity of the training set, the

correlation among labels, the feature-label relationship, the mapping to be determined

by the learning algorithm and most importantly, the presence of tail labels to mention a

few. However, on the other hand, it is possible to have a fraction of training instances

share the same subset of label correlations. The underlying principle of MLC-HMF is to

learn a piecewise-linear embedding of feature-space that generates optimal embeddings

for a subset of training instances. As discussed in Chapter 5, there are two different

approach of embedding namely, feature space embedding and label space embedding.

In this chapter, we propose a novel label embedding based approach for multi-label

classification.

6.1 Introduction

In this chapter, we discuss a novel label embedding approach for multi-label classi-

fication inspired by the extensive applications of data mining algorithms, where features

96

or data items are inherently organized into groups. In the context of multi-label classi-

fication, there are few proposals which model group information but no detailed study

in this direction has so far been undertaken. To exploit label-correlations in the data

locally, it is assumed in [46] that the training data are in groups with instances in the

same group sharing the same label correlations. In [111], highly correlated labels are

grouped together using the information from label and instance spaces and for every

group, sparse meta-label-specific features are learnt.

The present research starts with the assumption that there exists a low-rank space

onto which the given set of feature vectors and label vectors can be embedded. Feature

vectors can be embedded as points and label vectors correspond to linear predictors,

as decision hyperplanes, in this embedded space. There are similarities among labels

belonging to the same group such that their low-rank representations share the same

sparsity pattern. For example, the set of labels in corel5k data set can be grouped into

landscape-nature, humans, food etc. [26]. The features such as eye and leg are specific

to the humans whereas the feature like ridge is specific to the group landscape-nature.

Given the label matrix Y , it is necessary to find points in a space of reduced dimension

and to determine decision hyperplanes such that the classification thereof is compatible

with Y . While doing so, it is desirable that the process must retain group information

of labels. We achieve this by a matrix factorization based framework in which the label

matrix Y is approximated using the product of two matrices U ∈ RN×d and V ∈ Rd×L.

In a sense the row of matrix U can be viewed as point in a reduced dimension and

the column of V defines a set of decision hyperplanes. If there are any dependency

properties in labels of Y (column of Y), this is retained in dependencies in decision

hyperplanes (column of V) and not in embedded points. We use the `2,1 norm regular-

ization on V to exploit the shared sparsity pattern among the label groups. The second

sub-objective is to learn a linear mapping that maps the feature vectors onto the same

set of points which are obtained as a result of factorization of label matrix. We achieve

this by a separate optimization problem. We make use of correlation coefficients to

capture the similarity relation and `1 norm for regularization. We use FISTA [4] type of

method to learn the label embedding and subsequently mapping from feature space to

the embedded label space. Thus, in this chapter, we develop a novel multi-label classi-

fication method. To the best of our knowledge, there has not been any earlier attempt in

this direction. We feel that this approach will eventually provide a robust classification

97

technique as demonstrated by our experimental results which looks very promising.

The rest of the chapter is organized as follows. We introduce our proposed method,

termed as GroPLE (Group Preserving Label Embedding for Multi-Label Classification)

in Section 6.2. Experimental analysis of the proposed method is reported in Section 6.3.

Finally, we conclude with Section 6.4 and indicates several issues for future work.

6.2 GroPLE: The Proposed Method

In this section, a novel method of multi-label classification is proposed. The pro-

posed method GroPLE has three major stages namely (1) Identification of groups of

labels; (2) Embedding of label vectors to a low rank-space so that the sparsity charac-

teristic of individual groups remains invariant; and (3) Determining a linear mapping

that embeds the feature vectors onto the same set of points, as in stage 2, in the low-rank

space.

Identification of Groups of Labels: The label groups are not given explicitly and it is

necessary to learn from the label matrix Y . One approach is to cluster the columns

of Y . There are several clustering algorithms proposed in the literature such as k-

means [48, 47], hierarchical clustering [54] and spectral clustering [142, 92, 123]. We

adopt spectral clustering. We do not claim that spectral clustering is the best option.

We first construct a graphG =< V , E > in the label space, where V denotes the vertex/

label set, and E is the edge set containing edges between each label pair. We adopt heat

kernel weight with self-tuning technique (for parameter σ) as edge weight if two labels

are connected Ai,j = exp(
(−‖Y.i−Y.j‖2)

σ
) where Y.i and Y.j are the ith and jth column of

matrix Y [142]. Labels can be grouped into K clusters by performing k-means with K

largest eigenvectors as seeds of the normalized affinity matrix L = D−
1
2AD−

1
2 , where

D is a diagonal matrix with Di,i =
∑

j Ai,j .

Label Space Embedding: Given a label matrix Y , each column corresponds to a la-

bel and our assumption is that related labels form groups. Let the columns of Y ∈

{−1, 1}N×L be divided into K groups as Y = (Y 1, . . . , Y K), where Y k ∈ {−1, 1}N×Lk

and
∑K

k Lk = L. Matrix factorization based approach of label embedding as discussed

in Section 5.3 aims to find latent factor matrices U ∈ RN×d and V ∈ Rd×L to approx-

imate Y . In the present case, where labels are divided into groups, we approximate

98

Y k using U and V k ∈ Rd×Lk . Ideally, there should be a subset of columns of U as-

sociated with any group and hence, the corresponding vector in V k of a label should

have nonzero values only for the entries which correspond to the subset of columns of

U associated with the group. More concretely, we expect that for deciding any label

groupss all the features are not important and each label in that group can be decided

by linear combination of fewer group features. To achieve this, we add a `2,1-norm reg-

ularization on V k that encourages row sparsity of V k. Then the sub-objective to learn

the embedding from original label space is given by

min
U,V 1,...,V K

f(U, V 1, . . . , V K) =
K∑
k=1

‖Y k − UV k‖2
F + λ1‖U‖2

F + λ2

K∑
k=1

‖V k‖2,1 (6.1)

where for a given matrix A ∈ Rn×m, ‖A‖2
F =

∑n
i=1

∑m
j=1A

2
ij and ‖A‖2,1 =∑n

i=1

√∑m
j=1 A

2
ij .

We can solve Eq. (6.1) by alternating minimization scheme that iteratively opti-

mizes each of the factor matrices keeping the other fixed. For simplicity of notation,

the matrix formed by arranging the columns of V k, 1 ≤ k ≤ K, according to indices of

columns in Y will be referred to as V in subsequent discussions. f(U, V) is written as

fV (U) when V is held constant and fU(V) when U is held constant. For given V , the

factor matrix U can be obtained by solving the following subproblem.

min
U

fV (U) = ‖Y − UV ‖2
F + λ1‖U‖2

F + c (6.2)

where c ≥ 0 is a constant. The subproblem given in Eq. (6.2) has a closed form solution.

Taking the derivative of fV (U) w.r.t U , and setting the derivative (in matrix notation) to

zero, we have

∇fV (U) = 2((Y − UV)(−V T) + λ1U) = 0

⇒ U = Y V T (V V T + λ1I)
−1

(6.3)

For fixed U , the matrix V k, k ∈ {1, . . . , K}, can be obtained by solving the following

subproblem

min
V k

fU(V k) = ‖Y k − UV k‖2
F + λ2‖V k‖2,1 + c (6.4)

The above objective function is a composite convex function involving the sum of a

99

smooth and a non-smooth function of the form

min
V k

fU(V k) = g(V k) + h(V k) (6.5)

where g(V k) = ‖Y k − UV k‖2
F is convex and differentiable and h(V k) = λ2‖V k‖2,1 is

closed, convex but non-differentiable.

We further show that for any two matrices V ′
k
, V ′′

k ∈ Rd×Lk , the function g(V k) is

Lipschitz continuous. The gradient of g(V k) (in matrix notation) is given by

∇g(V k) = 2(UTUV k − UTY)

For any two matrices V ′
k

and V ′′
k
, we have

‖∇g(V
′k

)−∇g(V
′′k

)‖2
F = ‖2(UTUV

′k − UTY)− 2(UTUV
′′k − UTY)‖2

F

= ‖2UTU(V
′k − V ′′k)‖2

F

≤ ‖2UTU‖2
F ‖V

′k − V ′′k‖2
F

Therefore, the Lipschitz constant is

Lg =
√
‖2UTU‖2

F (6.6)

We employ Accelerated Proximal Gradient search [115] which is specifically tai-

lored to minimize the optimization problem given in Eq. (6.5). Such an optimization

strategy is suitable in the present situation as the computation of the proximal opera-

tion is inexpensive. The optimization step of Accelerated Proximal Gradient iterates as

follows.

Gt = V k(t)
+
bt−1 − 1

bt
(V k(t) − V k(t−1)

) (6.7)

V k(t)
= proxh(Gt −

1

Lg
∇g(Gt)) (6.8)

It is shown in [115] that setting bt satisfying b2
t−bt ≤ b2

t−1 can improve convergence

rate to O(1
t2

). V k(t) is the result of tth iteration. Proximal mapping of a convex function

100

h is given by

proxh(V
k) = argmin

W

(
h(W) +

1

2
‖W − V k‖2

2

)
(6.9)

In the present situation, where h(V k) = λ2‖V k‖2,1, proxh(V k) is the shrinkage

function S[·] and is given by

S λ2
Lg

[V k] =

[
vki
‖vki ‖2

(‖vki ‖2 − λ2/Lg)+

]i=d
i=1

(6.10)

where (z)+ = max(z, 0) and vki is the ith row of V k. Algorithm 6 outlines the main

flow of the optimization steps to solve Eq. (6.1).

Algorithm 6: Label-Embedding (Y , d, K, λ1, λ2)
input : Label Matrix: Y , Size of Latent Dimension Space: d, Number of

Groups: K, Regularization Parameters: λ1 and λ2

output: Basis Matrix: U , Coefficient Matrix: V

initialize : U
Form label groups Y 1, Y 2, . . . , Y K

repeat
for k ∈ {1,. . . , K} do

V k ← APG(U , Y k, λ2)
end
V ← Combine(V 1, V 2, . . . , V k)

U ← Y V T (V V T + λ1I)
−1

until stop criterion reached;

Algorithm 7: APG (U , Y k, λ2)
input : Basic Matrix: U , Label Matrix: Y k and Regularization Parameters: λ2

output: Coefficient Matrix: V k

initialize :
b0, b1 ← 1, V k

0 , V k
1 ← (UTU + γI)

−1
UTY k

repeat
Gt ← V k(t)

+ bt−1−1
bt

(V k(t) − V k(t−1)
)

V k(t)
= S λ2

Lg

[Gt − 1
Lg
∇g(Gt)]

bt ←
1+
√

1+4b2t
2

t← t+ 1
until stop criterion reached;
V k ← V k

t

Feature Space Embedding: The U matrix computed above as a result of the learning

process described in Algorithm 6 represents a set of points and it is desired that these

101

points, in some sense, represent the training objects. We assume that there exists a linear

embedding Z ∈ RD×d that maps the feature matrix X to U . Thus, we justify our hy-

pothesis that there exists a low-rank space where both X and Y are embedded and this

embedding retains the intrinsic feature-label relation as well as the group information.

In order to achieve the embedding of feature vectors, we try to capture the correla-

tion among the embedded representation of Y and formulate the objective function as

follows.

min
Z
‖XZ − U‖2

F + α

d∑
j=1

RijZ
T
i Zj + β‖Z‖1 (6.11)

where Zi is the ith column of matrix Z and Rij = 1 − Cij , where Cij represent the

correlation coefficient between ith and jth column of matrix U . The above objective

function is of the form defined in Eq. (6.5) where g(Z) = ‖XZ −U‖2
F +αTr(RZTZ)

is convex and Lipschitz continuous and h(Z) = β‖Z‖1 is closed, convex but non-

differentiable. The Accelerated Proximal Gradient technique described previously is

used to solve Eq. (6.11). The optimization step of Accelerated Proximal Gradient ini-

tializes Z0 = Z1 = (XTX + γI)
−1

and iterates as follows.

Gt = Z(t) +
bt−1 − 1

bt
(Z(t) − Z(t−1)) (6.12)

Z(t) = proxh(Gt −
1

Lg
∇g(Gt)) (6.13)

where Z(t) is the result of tth iteration, the Lipschitz constant Lg and proxh(Z) is given

below. The gradient of g(Z) (in matrix notation) is given by

∇g(Z) = 2XT (XZ − U) + αZR

For any two matrices Z ′ , Z ′′ ∈ RD×d, we have

‖∇g(Z
′
)−∇g(Z

′′
)‖2
F = ‖2(XTXZ

′ −XTU) + αZ
′
R− 2(XTXZ

′′ −XTU)− αZ ′′R‖2
F

= ‖2XTX(Z
′ − Z ′′) + α(Z

′ − Z ′′)R‖2
F

≤ ‖2XTX‖2
F ‖Z

′ − Z ′′‖2
F + ‖αR‖2

F ‖Z
′ − Z ′′‖2

F

= ‖2XTX + αR‖2
F ‖Z

′ − Z ′′‖2
F

102

Therefore, the Lipschitz constant is

Lg =
√
‖2XTX + αR‖2

F (6.14)

The proximal mapping of h(Z) = β‖Z‖1 is a shrinkage function S[·] and is given by

proxh(z) = S β
Lg

[Z] =

Zij − β/Lg, Zij > β/Lg

0, −β/Lg ≤ Zij ≤ β/Lg

Zij + β/Lg, Zij < β/Lg

(6.15)

where, 1 ≤ i ≤ d and 1 ≤ j ≤ k.

Complexity Analysis: We analyze the computational complexity of the proposed method.

The time complexity of GroPLE mainly comprises of three components: formation of

label groups and the optimization of the problem given in Eq. (6.1) and (6.11). The for-

mation of label groups has two parts: construction of neighbourhood graph and spectral

decomposition of a graph Laplacian. This part takes O(NL2 + L3). For each iteration

in Algorithm 6, updating U requires O(NLd + d3 + Nd2). For simplicity of represen-

tation, we are ignoring the number of groups K and using the total number of labels L.

Hence, the updation of V takes O(NLd + d3 + Nd2 + Ld2). Let t1 be the maximum

number of iterations required for gradient update, then overall computation required in

LE process isO(NL2+L3)+O(t1(NLd+d3+Nd2))+O(t1(NLd+d3+Nd2+Ld2)),

that is, O(t1(NLd+ d3 +Nd2 +Ld2)). Similarly, the complexity of feature space em-

bedding is O(ND2 + D3) + O(2NDd + Dd2), that is, O(t2(2NDd + Dd2)), where

t2 is the number of iteration. Hence the overall computation required by GroPLE is

O(t1(NLd+ d3 +Nd2 + Ld2) + t2(2NDd+Dd2)).

6.3 Experimental Analysis

To validate the proposed GroPLE, we perform experiments on twelve commonly

used multi-label benchmark data sets. The detailed characteristics of these data sets are

summarized in Table 6.1. All the data sets are publicly available and can be downloaded

103

from meka1 and mulan2.

Table 6.1: Description of the experimental datasets.

Data set #instance #Feature #Label Domain LC
genbase 662 1185 27 biology 1.252
medical 978 1449 45 text 1.245
CAL500 502 68 174 music 26.044
corel5k 5000 499 374 image 3.522
rcv1 (subset 1) 6000 944 101 text 2.880
rcv1 (subset 2) 6000 944 101 text 2.634
rcv1 (subset 3) 6000 944 101 text 2.614
bibtex 7395 1836 159 text 2.402
corle16k001 13766 500 153 image 2.859
delicious 16105 500 983 text(web) 19.020
mediamill 43907 120 101 video 4.376
bookmarks 87856 2150 208 text 2.028

6.3.1 Evaluation Metrics

To measure the performance of different algorithms, we have employed four evalu-

ation metrics popularly used in multi-label classification, i.e. accuracy, example based

f1 measure, macro f1 and micro f1 [152, 108]. Given a test data set D = {xi, yi | 1 ≤

i ≤ N}, where yi ∈ {−1, 1}L is the ground truth labels associated with the ith test ex-

ample, and ŷi be its predicted set of labels. The detailed discussion of these evaluation

metrics is given in Section 5.6.

6.3.2 Baseline Methods

For performance comparison, we consider seven well-known state-of-the-art algo-

rithms and these are the following.

• BSVM [9]: This is one of the representative algorithms of problem transforma-
tion methods, which treat each label as a separate binary classification problem.
For every label, an independent binary classifier is trained by considering the ex-
amples with the given class label as positive and others as negative. LIBSVM [15]
is employed as the binary learner for classifier induction to instantiate BSVM.

1 http://meka.sourceforge.net
2 http://mulan.sourceforge.net/datasets-mlc.html

104

http://meka.sourceforge.net
http://mulan.sourceforge.net/datasets-mlc.html

• PLST [112]: Principal label space transformation (PLST) uses singular value
decomposition (SVD) to project the original label space into a low dimensional
label space.

• CPLST [16]: CPLST is a feature-aware conditional principal label space trans-
formation which utilizes the feature information during label embedding.

• CSSP [6]: Using randomized sampling procedure, CSSP sample a small subset
of class labels that can approximately span the original label space. Once this
subset of labels are selected, a binary classifier is trained for each of them.

• FAiE [79]: FAiE encodes the original label space to a low-dimensional latent
space via feature-aware implicit label space encoding. It directly learns a feature-
aware code matrix and a linear decoding matrix via jointly maximizing recover-
ability of the original label space.

• LEML [139]: In this method a framework is developed to model multi-label
classification as generic empirical risk minimization (ERM) problem with low-
rank constraint on linear transformation. It can also be seen as a joint learning
framework in which dimensionality reduction and multi-label classification are
performed simultaneously.

• MLSF [111]: Based on the assumption that meta-labels with specific features
exist in the scenario of multi-label classification, MLSF embed label correla-
tions into meta-labels in such a way that the member labels in a meta-label share
strong dependency with each other but have weak dependency with the other
non-member labels.

A linear ridge regression model is used in PLST, CPLST, CSSP and FAiE to learn

the association between feature space and reduced label space. For PLST, CPLST,

CSSP, FAiE and LEML the number of reduced dimensions d is searched in {d0.1Le,

d0.2Le, . . . , d0.8Le}. The regularization parameter in ridge regression, the parameter α

in FAiE and the parameter λ in LEML are searched in the range {10−4, 10−3, . . . , 104}.

For MLSF, the number of meta-labelsK is searched in {dL/5e, dL/10e, dL/15e, dL/20e}

and the parameters γ and ρ are tuned from the candidate set {10−4, 10−3, . . . , 104}. The

remaining hyper-parameters were kept fixed across all datasets as was done in [111].

Implementations of PLST, CPLST, CSSP, FAiE, LEML, MLSF were provided by the

authors.

6.3.3 Results and Discussion

We first demonstrate the effect of group sparsity regularization on the recovered

matrix V on Medical data set. The regularization parameter λ1 and λ2 in Eq. (6.1) are

105

selected using Cross-validation. The label matrix Y is divided into five groups using

the method described in Section 6.2. The recovered feature matrix V k for each group is

Figure 6.1: Latent factor matrix V k recovered with five label groups.

depicted in Figure 6.1. The shaded color represents the non-zero rows in the recovered

matrix V k and a separation line is artificially drawn to distinguish between the latent

factor matrix of the different groups. It is evident from Figure 6.1 that the feature matrix

recovered for different groups exhibits a sparsity pattern and the labels corresponding

to objects in the same group have similar sparsity.

To study the sensitivity of GroPLE with respect to the regularization parameters

λ1 and λ2, we conducted experiments on Medical and Genbase data sets. We per-

form five-fold cross validation on each data set and the mean value of accuracy is

recorded. In this experiment, the latent dimension space d is fixed to 100, the num-

ber of groups K is fixed to 5 and the regularization parameters λ1 and λ2 are searched

in {10−3, 10−2, . . . , 102}. For each (λ1, λ2) -pair, the regularization parameters α, β are

searched in {10−4, 10−3, . . . , 104}. Figure 6.2 report the influence of parameters λ1 and

λ2 on Medical and Genbase data set. It can be seen that in most cases: (a) GroPLE

perform worse when the value of λ1 is large; (b) The performance of GroPLE is stable

with the different value of group sparsity regularization λ2, but the larger value such as

λ2 ≥ 1 is often harmful. Therefore, we fixed the regularization parameter λ1 and λ2 to

0.001 and 1, respectively, for the subsequent experiments.

We have also analyzed the performance of GroPLE with respect to the latent di-

mension d and the number of groups K on rcv1 (subset 1) data set. We have conducted

106

(a) Medical dataset

(b) Genbase dataset

Figure 6.2: Influence of regularization parameters λ1 and λ2.

five-fold cross validation and the mean value of accuracy is recorded. The latent di-

mension d is varied from [20, 100] with step size 20 and the number of groups K is

selected from {1, 10, 20, 30, 40}. The regularization parameters α and β are tuned in

the range given previously. The plots of Figure 6.3 shows the classification performance

of GroPLE in terms of accuracy and Macro F1. It can be seen from Figure 6.3 that the

107

(a) Accuracy

(b) Macro F1

Figure 6.3: Performance of GroPLE on rcv1 (subset 1) data set with different group
size.

classification performance of GroPLE is nearly constant for different group size when

the latent dimension d is small which is also obvious as there are less number of fea-

tures to differentiate between one group from others. The classification performance

improved as we increased the number of groups K for sufficiently large d. It can also

be seen that the performance in terms of Macro F1 degrade for sufficiently large group

108

size K. Hence, by considering the balance between latent dimension d and number of

groups K, we fixed the value of K and d to 10 and 100, respectively, for subsequent

experiments.

Table 6.2: Experimental results of each comparing algorithm (mean±std rank) in terms of Accuracy, Example Based F1, Macro
F1, and Micro F1. Method that cannot be run with available resources are denoted as “-".

Data set
Accuracy

GroPLE PLST CPLST CSSP FAiE LEML MLSF BSVM
genbase 0.972 ± 0.014 0.968 ± 0.013 0.971 ± 0.013 0.931 ± 0.042 0.965 ± 0.014 0.971 ± 0.014 0.974 ± 0.011 0.973 ± 0.010
medical 0.769 ± 0.031 0.762 ± 0.034 0.763 ± 0.033 0.735 ± 0.041 0.765 ± 0.035 0.690 ± 0.025 0.779 ± 0.029 0.753 ± 0.034
CAL500 0.234 ± 0.006 0.224 ± 0.007 0.224 ± 0.007 0.224 ± 0.006 0.235 ± 0.007 0.222 ± 0.006 0.177 ± 0.010 0.202 ± 0.007
corel5k 0.151 ± 0.002 0.054 ± 0.002 0.054 ± 0.002 0.052 ± 0.004 0.089 ± 0.003 0.053 ± 0.002 0.088 ± 0.008 0.081 ± 0.002
rcv1 (subset 1) 0.335 ± 0.003 0.231 ± 0.009 0.232 ± 0.008 0.218 ± 0.004 0.265 ± 0.008 0.223 ± 0.006 0.322 ± 0.071 0.288 ± 0.010
rcv1 (subset 2) 0.371 ± 0.011 0.299 ± 0.014 0.299 ± 0.013 0.297 ± 0.013 0.328 ± 0.011 0.286 ± 0.013 0.365 ± 0.010 0.348 ± 0.012
rcv1 (subset 3) 0.375 ± 0.016 0.289 ± 0.014 0.289 ± 0.014 0.276 ± 0.017 0.319 ± 0.018 0.280 ± 0.014 0.373 ± 0.009 0.347 ± 0.009
bibtex 0.329 ± 0.004 0.284 ± 0.009 0.288 ± 0.007 0.266 ± 0.010 0.310 ± 0.004 0.288 ± 0.007 0.328 ± 0.005 0.326 ± 0.008
corel16k001 0.158 ± 0.006 0.039 ± 0.001 0.038 ± 0.001 0.035 ± 0.003 0.080 ± 0.002 0.039 ± 0.002 0.034 ± 0.006 0.025 ± 0.002
delicious 0.185 ± 0.001 0.109 ± 0.002 0.109 ± 0.002 0.107 ± 0.002 0.134 ± 0.001 0.093 ± 0.001 0.118 ± 0.006 0.130 ± 0.001
mediamill 0.434 ± 0.004 0.414 ± 0.003 0.414 ± 0.003 0.406 ± 0.016 0.425 ± 0.004 0.411 ± 0.003 0.395 ± 0.012 0.393 ± 0.003
bookmarks 0.283 ± 0.002 0.174 ± 0.002 0.169 ± 0.007 - 0.175 ± 0.002 0.163 ± 0.004 -

Data set
Example based F1

GroPLE PLST CPLST CSSP FAiE LEML MLSF BSVM
genbase 0.978 ± 0.013 0.975 ± 0.012 0.977 ± 0.013 0.939 ± 0.043 0.973 ± 0.012 0.977 ± 0.013 0.978 ± 0.015 0.980 ± 0.010
medical 0.800 ± 0.031 0.793 ± 0.030 0.794 ± 0.033 0.766 ± 0.039 0.796 ± 0.034 0.738 ± 0.027 0.807 ± 0.026 0.783 ± 0.032
CAL500 0.370 ± 0.008 0.357 ± 0.009 0.358 ± 0.009 0.358 ± 0.007 0.369 ± 0.009 0.355 ± 0.008 0.296 ± 0.014 0.330 ± 0.010
corel5k 0.230 ± 0.003 0.078 ± 0.002 0.078 ± 0.002 0.075 ± 0.005 0.127 ± 0.004 0.076 ± 0.003 0.126 ± 0.005 0.114 ± 0.004
rcv1 (subset 1) 0.447 ± 0.002 0.298 ± 0.009 0.299 ± 0.009 0.283 ± 0.006 0.339 ± 0.009 0.288 ± 0.006 0.399 ± 0.006 0.379 ± 0.012
rcv1 (subset 2) 0.466 ± 0.011 0.346 ± 0.015 0.346 ± 0.014 0.343 ± 0.014 0.380 ± 0.011 0.331 ± 0.014 0.429 ± 0.011 0.423 ± 0.013
rcv1 (subset 3) 0.471 ± 0.016 0.335 ± 0.015 0.336 ± 0.015 0.321 ± 0.019 0.372 ± 0.019 0.325 ± 0.014 0.434 ± 0.015 0.422 ± 0.008
bibtex 0.415 ± 0.004 0.335 ± 0.009 0.339 ± 0.008 0.314 ± 0.010 0.367 ± 0.004 0.338 ± 0.008 0.399 ± 0.009 0.383 ± 0.008
corel16k001 0.227 ± 0.006 0.053 ± 0.002 0.053 ± 0.002 0.047 ± 0.005 0.111 ± 0.002 0.053 ± 0.002 0.035 ± 0.011 0.034 ± 0.002
delicious 0.293 ± 0.001 0.169 ± 0.002 0.169 ± 0.002 0.167 ± 0.003 0.209 ± 0.001 0.142 ± 0.002 0.181 ± 0.010 0.201 ± 0.002
mediamill 0.552 ± 0.004 0.533 ± 0.004 0.533 ± 0.004 0.524 ± 0.018 0.544 ± 0.004 0.530 ± 0.003 0.507 ± 0.019 0.515 ± 0.003
bookmarks 0.324 ± 0.006 0.179 ± 0.002 - 0.173 ± 0.007 - 0.180 ± 0.002 0.166 ± 0.005 -

Data set
Macro F1

GroPLE PLST CPLST CSSP FAiE LEML MLSF BSVM
genbase 0.711 ± 0.086 0.709 ± 0.068 0.711 ± 0.075 0.673 ± 0.069 0.682 ± 0.066 0.705 ± 0.078 0.736 ± 0.084 0.737 ± 0.082
medical 0.374 ± 0.034 0.373 ± 0.025 0.378 ± 0.030 0.360 ± 0.026 0.383 ± 0.025 0.342 ± 0.025 0.385± 0.036 0.383 ± 0.037
CAL500 0.129 ± 0.007 0.110 ± 0.006 0.104 ± 0.005 0.107 ± 0.005 0.118 ± 0.004 0.110 ± 0.005 0.034 ± 0.011 0.057 ± 0.001
corel5k 0.049 ± 0.002 0.016 ± 0.002 0.016 ± 0.001 0.015 ± 0.002 0.026 ± 0.001 0.016 ± 0.002 0.046 ± 0.002 0.044 ± 0.002
rcv1 (subset 1) 0.263 ± 0.006 0.126 ± 0.006 0.125 ± 0.005 0.119 ± 0.006 0.163 ± 0.009 0.125 ± 0.005 0.257 ± 0.014 0.257 ± 0.005
rcv1 (subset 2) 0.247 ± 0.003 0.111 ± 0.006 0.112 ± 0.006 0.109 ± 0.006 0.148 ± 0.004 0.111 ± 0.006 0.241 ± 0.006 0.240 ± 0.007
rcv1 (subset 3) 0.244 ± 0.004 0.109 ± 0.003 0.109 ± 0.003 0.101 ± 0.005 0.144 ± 0.007 0.108 ± 0.004 0.235 ± 0.013 0.231 ± 0.012
bibtex 0.304 ± 0.014 0.197 ± 0.005 0.208 ± 0.008 0.178 ± 0.007 0.236 ± 0.007 0.208 ± 0.008 0.326 ± 0.006 0.327 ± 0.004
corel16k001 0.088 ± 0.004 0.015 ± 0.001 0.015 ± 0.002 0.014 ± 0.002 0.023 ± 0.002 0.015 ± 0.002 0.040 ± 0.002 0.036 ± 0.006
delicious 0.089 ± 0.000 0.048 ± 0.001 0.048 ± 0.002 0.046 ± 0.002 0.059 ± 0.002 0.048 ± 0.002 0.102 ± 0.001 0.100 ± 0.003
mediamill 0.087 ± 0.001 0.045 ± 0.001 0.045 ± 0.001 0.043 ± 0.002 0.055 ± 0.001 0.043 ± 0.001 0.041 ± 0.001 0.032 ± 0.001
bookmarks 0.140 ± 0.003 0.057 ± 0.001 - 0.053 ± 0.004 - 0.059 ± 0.001 0.040 ± 0.001 -

Data set
Micro F1

GroPLE PLST CPLST CSSP FAiE LEML MLSF BSVM
genbase 0.967 ± 0.031 0.969 ± 0.012 0.972 ± 0.013 0.951 ± 0.022 0.967 ± 0.013 0.973 ± 0.013 0.978 ± 0.012 0.979 ± 0.008
medical 0.821 ± 0.028 0.821 ± 0.030 0.822 ± 0.029 0.806 ± 0.029 0.823 ± 0.030 0.739 ± 0.019 0.822 ± 0.033 0.812 ± 0.027
CAL500 0.375 ± 0.007 0.360 ± 0.008 0.361 ± 0.009 0.361 ± 0.006 0.374 ± 0.008 0.359 ± 0.007 0.290 ± 0.038 0.327 ± 0.009
corel5k 0.242 ± 0.003 0.105 ± 0.003 0.105 ± 0.002 0.101 ± 0.006 0.162 ± 0.004 0.103 ± 0.003 0.154 ± 0.007 0.143 ± 0.005
rcv1 (subset 1) 0.463 ± 0.005 0.350 ± 0.010 0.351 ± 0.010 0.336 ± 0.005 0.384 ± 0.009 0.344 ± 0.008 0.405 ± 0.006 0.394 ± 0.009
rcv1 (subset 2) 0.455 ± 0.009 0.373 ± 0.016 0.373 ± 0.015 0.372 ± 0.015 0.403 ± 0.012 0.362 ± 0.015 0.413 ± 0.012 0.411 ± 0.009
rcv1 (subset 3) 0.460 ± 0.010 0.366 ± 0.009 0.366 ± 0.009 0.353 ± 0.012 0.396 ± 0.013 0.360 ± 0.010 0.415 ± 0.011 0.409 ± 0.008
bibtex 0.417 ± 0.015 0.390 ± 0.006 0.396 ± 0.007 0.371 ± 0.007 0.420 ± 0.004 0.396 ± 0.007 0.424 ± 0.007 0.424 ± 0.002
corel16k001 0.256 ± 0.007 0.071 ± 0.003 0.070 ± 0.003 0.063 ± 0.008 0.137 ± 0.004 0.071 ± 0.004 0.050 ± 0.013 0.049 ± 0.003
delicious 0.231 ± 0.004 0.194 ± 0.003 0.194 ± 0.003 0.191 ± 0.003 0.241 ± 0.002 0.172 ± 0.002 0.208 ± 0.011 0.226 ± 0.003
mediamill 0.581 ± 0.003 0.547 ± 0.003 0.547 ± 0.003 0.539 ± 0.012 0.562 ± 0.003 0.543 ± 0.002 0.524 ± 0.012 0.520 ± 0.002
bookmarks 0.278 ± 0.008 0.201 ± 0.003 - 0.192 ± 0.012 - 0.202 ± 0.002 0.180 ± 0.004 -

Table 6.2 gives the comparative analysis of the proposed method GroPLE against

state-of-the-art algorithms on eleven data sets. We have conducted five-fold cross val-

idation and the mean and std is recorded. The best results among all the algorithms

109

being compared are highlighted in boldface. For each data set, the number of latent

dimension space d is fixed to 100 and the number of groups K is set to 10. The regular-

ization parameter λ1 and λ2 are fixed to 0.001 and 1, respectively, and the parameters α

and β are searched in the range given previously.

Table 6.3: Summary of the Friedman statistics FF (K = 8,N = 11) and the critical
value in terms of each evaluation metric(K: # Comparing Algorithms; N : #
Data Sets).

Metric FF Critical Value (α = 0.05)

Accuracy 11.692

2.143
Example Base F1 12.353
Macro F1 12.686
Micro F1 7.470

To conduct statistical performance analysis among the algorithms being compared,

we employed Friedman test3 which is a favorable statistical test for comparing more

than two algorithms over multiple data sets [24]. Table 6.3 provides the Friedman

statistics FF and the corresponding critical value in terms of each evaluation metric. As

shown in Table 6.3 at significance level α = 0.05, Friedman test rejects the null hypoth-

esis of equal performance for each evaluation metric. This leads to the use of post-hoc

tests for pairwise comparisons. The Nemenyi test [24] is employed to test whether our

proposed method GroPLE achieves a competitive performance against the algorithms

being compared. The performance of two classifiers is significantly different if the cor-

responding average ranks differ by at least the critical difference CD = qα

√
K(K+1)

6N . At

significance level α = 0.05, the value of qα = 3.031, for Nemenyi test withK = 8 [24],

and thus CD = 3.166. Figure 6.4 gives the CD diagrams [24] for each evaluation cri-

terion, where the average rank of each comparing algorithm is marked along the axis

(lower ranks to the left). It can be seen from the Figure 6.4 that the proposed method

GroPLE achieve better performance as compared to the other algorithms in terms of

each evaluation metric.
3Results of bookmarks data set is not included for this test.

110

(a) Accuracy (b) Example based F1

(c) Macro F1 (d) Micro F1

Figure 6.4: CD diagrams of the comparing algorithms under each evaluation criterion.

6.4 Conclusions

This chapter presented a new multi-label classification method, called GroPLE,

which embeds the original label vectors to a low-rank space by retaining the group

dependencies. We ensure that the labels belonging to the same group share the same

sparsity pattern in their low-rank representations. In order to achieve the embedding of

feature vectors, a linear mapping is then learnt that maps the feature vectors onto the

same set of points which are obtained as a result of label embedding phase. We achieve

this by a separate optimization problem. Extensive comparative studies validate the

effectiveness of GroPLE against the state-of-the-art multi-label learning approaches.

In the future, it is interesting to see whether GroPLE can be further improved by

considering side information from feature space while label embedding. Furthermore,

designing other ways to fulfill the strategy of group formation and modeling group-

specific label embedding is a direction worth studying.

111

CHAPTER 7

Conclusions and Future Work

In this thesis, we focused on the development of novel techniques for collaborative

filtering and multi-label classification, which are two important research areas in the

domain of recommender systems and machine learning. We show that the problem of

collaborative filtering (CF) and multi-label classification (MLC) can be visualized as a

matrix factorization (MF) problem. In Chapter 3 and Chapter 4, we discussed two novel

approaches for CF namely, HMF (Hierarchical Matrix Factorization) and PMMMF

(Proximal Maximum Margin Matrix Factorization), respectively. The basic factoriza-

tion technique used in Chapters 3 and 4 is that of MMMF (Maximum Margin Matrix

Factorization) wherein a multi-class extension of the hinge loss function is proposed to

handle the factorization of discrete ordinal rating matrix. Assuming MMMF to be ma-

trix analog of ordinal regression under hinge loss, in Chapter 3, we examined whether

a set of bi-level maximum margin matrix factorizations can be used to solve matrix

completion problem for multi-level ordinal rating matrix in more efficient and effective

manner. We proposed a novel method termed as HMF for constructing a hierarchical

two-class structure of binary matrix factorization to handle matrix completion of ordi-

nal rating matrix. Our experimental results demonstrate the advantages of the proposed

method over other matrix factorization based collaborative filtering techniques.

It is more than a decade since MMMF has been proposed and till date, to the best

of our knowledge, no other alternative criterion has been investigated for matrix factor-

ization other than the maximum margin criterion. In Chapter 4, we proposed a different

criterion, namely proximity, motivated by the advent of Proximal SVMs (PSVMs) for

binary classification, where two parallel planes are generated one for each class, un-

112

like the standard SVMs. We conducted experiments on real and synthetic datasets to

validate the effectiveness of PMMMF.

In the later part of the thesis we extended the concept of matrix factorization for

multi-label classification and proposed two novel techniques namely, MLC-HMF (Multi-

label Classification Using Hierarchical Embedding) and GroPLE (Group Preserving

Label Embedding for Multi-Label Classification) in Chapters 5 and 6, respectively. In

Chapter 5, we developed a matrix factorization based feature space embedding method

termed as MLC-HMF for multi-label classification. MLC-HMF is an embedding based

approach which learns piecewise-linear embedding with a low-rank constraint on

parametrization to capture nonlinear intrinsic relationships that exists in the original

feature and label space. We conducted extensive comparative studies which validate

the effectiveness of the proposed method MLC-HMF. In Chapter 6, we assume that the

input data form groups and as a result, the label matrix exhibits a sparsity pattern and

hence the labels corresponding to objects in the same group have similar sparsity. We

study the embedding of labels together with the group information with an objective to

build an efficient multi-label classification. Extensive comparative studies validate the

effectiveness of GroPLE against the state-of-the-art multi-label learning approaches.

There are many interesting directions in which the research work depicted in this

thesis can be carried out in the future. As discussed earlier, HMF and PMMMF are

novel matrix factorization techniques developed for collaborative filtering with ordinal

preferences. HMF is a stage-wise matrix completion technique that makes use of sev-

eral bi-level MMMFs in a hierarchical fashion. Investigating different ways in which a

hierarchy can be built is one important direction that can be pursued. The core part of

HMF is a binary loss function and studying the impact of different binary loss functions

can be another direction to pursue future research. As discussed in Chapter 4, in every

iteration of the gradient descent method PMMMF requires less number of variables to

be updated as compared to that of MMMF. But on the other hand, the updation step

in PMMMF takes more time because of the repeated computation of the mean for ob-

taining the thresholds for every user. To reduce the computation cost, one can think

of a better approximation of the mean and the thresholds or even think of designing

novel optimization techniques that best suit the optimization problem of PMMMF. We

realize that there are more general problems of matrix factorization for matrices having

discrete entries which are not ordered. Extending the concept of HMF and PMMMF

113

for such matrices is another line of investigation that can be carried out in the future.

In Chapter 5 and Chapter 6, we proposed two different embedding approach for

multi-label classification namely, MLC-HMF and GroPLE, respectively. MLC-HMF is

based on the embedding of feature space whereas GroPLE is a label space embedding

approach. We developed novel matrix factorization techniques to achieve the embed-

ding of feature and label space. It is worthwhile to carryout an in depth investigation of

different ways of embedding such as quasilinear embeddings and their advantages over

linear and non-linear embedding. One can plan to carryout this line of investigation

in the future. Reducing the computational complexity of MLC-HMF by investigating

the different ways of building an hierarchy or formation of group instances is another

direction to pursue. In the future, it is interesting to see whether GroPLE can be further

improved by considering the side information from the feature space while label em-

bedding. Furthermore, designing other ways to fulfill the strategy of group formation

and modeling group-specific label embedding is a direction worth studying.

114

REFERENCES

[1] Rohit Babbar and Bernhard Schölkopf. Dismec: distributed sparse machines
for extreme multi-label classification. In Proceedings of the Tenth ACM Inter-
national Conference on Web Search and Data Mining, pages 721–729. ACM,
2017.

[2] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. Online handwriting
recognition with support vector machines-a kernel approach. In Frontiers in
handwriting recognition, 2002. proceedings. eighth international workshop on,
pages 49–54. IEEE, 2002.

[3] Krishnakumar Balasubramanian and Guy Lebanon. The landmark selection
method for multiple output prediction. arXiv preprint arXiv:1206.6479, 2012.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202,
2009.

[5] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.
Sparse local embeddings for extreme multi-label classification. In Advances in
Neural Information Processing Systems, pages 730–738, 2015.

[6] Wei Bi and James Kwok. Efficient multi-label classification with many labels.
In International Conference on Machine Learning, pages 405–413, 2013.

[7] Wei Bi and James T Kwok. Multilabel classification with label correlations and
missing labels. In AAAI, pages 1680–1686, 2014.

[8] Mathieu Blondel, Kazuhiro Seki, and Kuniaki Uehara. Block coordinate descent
algorithms for large-scale sparse multiclass classification. Machine learning,
93(1):31–52, 2013.

[9] Matthew R Boutell, Jiebo Luo, Xipeng Shen, and Christopher M Brown. Learn-
ing multi-label scene classification. Pattern recognition, 37(9):1757–1771, 2004.

[10] Christopher JC Burges. A tutorial on support vector machines for pattern recog-
nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[11] Hyeran Byun and Seong-Whan Lee. Applications of support vector machines
for pattern recognition: A survey. In Pattern recognition with support vector
machines, pages 213–236. Springer, 2002.

[12] Ricardo S Cabral, Fernando Torre, João P Costeira, and Alexandre Bernardino.
Matrix completion for multi-label image classification. In Advances in Neural
Information Processing Systems, pages 190–198, 2011.

115

[13] Xiangyong Cao, Yang Chen, Qian Zhao, Deyu Meng, Yao Wang, Dong Wang,
and Zongben Xu. Low-rank matrix factorization under general mixture noise
distributions. In Proceedings of the IEEE International Conference on Computer
Vision, pages 1493–1501, 2015.

[14] Xiangyong Cao, Qian Zhao, Deyu Meng, Yang Chen, and Zongben Xu. Robust
low-rank matrix factorization under general mixture noise distributions. IEEE
Transactions on Image Processing, 25(10):4677–4690, 2016.

[15] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–
27:27, 2011.

[16] Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension reduc-
tion for multi-label classification. In Advances in Neural Information Processing
Systems, pages 1529–1537, 2012.

[17] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. CsiszarâĂŹs diver-
gences for non-negative matrix factorization: Family of new algorithms. In Inter-
national Conference on Independent Component Analysis and Signal Separation,
pages 32–39. Springer, 2006.

[18] Amanda Clare and Ross D King. Knowledge discovery in multi-label phenotype
data. In European Conference on Principles of Data Mining and Knowledge
Discovery, pages 42–53. Springer, 2001.

[19] Jose A Costa, Neal Patwari, and Alfred O Hero III. Distributed weighted-
multidimensional scaling for node localization in sensor networks. ACM Trans-
actions on Sensor Networks (TOSN), 2(1):39–64, 2006.

[20] Koby Crammer and Yoram Singer. On the algorithmic implementation of mul-
ticlass kernel-based vector machines. Journal of machine learning research,
2(Dec):265–292, 2001.

[21] Fernando De la Torre. A least-squares framework for component analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(6):1041–1055,
2012.

[22] Rameswar Debnath, N Takahide, and Haruhisa Takahashi. A decision based one-
against-one method for multi-class support vector machine. Pattern Analysis and
Applications, 7(2):164–175, 2004.

[23] Dennis DeCoste. Collaborative prediction using ensembles of maximum margin
matrix factorizations. In Proceedings of the 23rd international conference on
Machine learning, pages 249–256. ACM, 2006.

[24] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-
nal of Machine learning research, 7(Jan):1–30, 2006.

[25] Brian Eriksson, Laura Balzano, and Robert Nowak. High-rank matrix comple-
tion. In Artificial Intelligence and Statistics, pages 373–381, 2012.

[26] Ali Fakhari and Amir Masoud Eftekhari Moghadam. Combination of classifi-
cation and regression in decision tree for multi-labeling image annotation and
retrieval. Applied Soft Computing, 13(2):1292–1302, 2013.

116

[27] Maryam Fazel. Matrix rank minimization with applications. PhD thesis, PhD
thesis, Stanford University, 2002.

[28] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A rank minimization
heuristic with application to minimum order system approximation. In American
Control Conference, 2001. Proceedings of the 2001, volume 6, pages 4734–4739.
IEEE, 2001.

[29] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative matrix fac-
torization with the itakura-saito divergence: With application to music analysis.
Neural computation, 21(3):793–830, 2009.

[30] Cédric Févotte and Nicolas Dobigeon. Nonlinear hyperspectral unmixing with
robust nonnegative matrix factorization. IEEE Transactions on Image Process-
ing, 24(12):4810–4819, 2015.

[31] Glenn Fung and Olvi L. Mangasarian. Proximal support vector machine classi-
fiers. In Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’01, pages 77–86, 2001.

[32] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Mencía, and Klaus
Brinker. Multilabel classification via calibrated label ranking. Machine learning,
73(2):133–153, 2008.

[33] Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification.
In Proceedings of the 14th ACM international conference on Information and
knowledge management, pages 195–200. ACM, 2005.

[34] Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by
feature deletion. In Proceedings of the 23rd international conference on Machine
learning, pages 353–360. ACM, 2006.

[35] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear
norm minimization with application to image denoising. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2862–
2869, 2014.

[36] Christine Guillemot and Olivier Le Meur. Image inpainting: Overview and recent
advances. IEEE signal processing magazine, 31(1):127–144, 2014.

[37] Benjamin Haeffele, Eric Young, and Rene Vidal. Structured low-rank matrix
factorization: Optimality, algorithm, and applications to image processing. In
International Conference on Machine Learning, pages 2007–2015, 2014.

[38] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Transactions on Information Systems (TOIS), 22(1):89–115, 2004.

[39] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints.
Journal of machine learning research, 5(Nov):1457–1469, 2004.

[40] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass sup-
port vector machines. IEEE transactions on Neural Networks, 13(2):415–425,
2002.

117

[41] Daniel J Hsu, Sham Kakade, John Langford, and Tong Zhang. Multi-label pre-
diction via compressed sensing. In NIPS, volume 22, pages 772–780, 2009.

[42] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 263–272. IEEE, 2008.

[43] Jun Huang, Guorong Li, Qingming Huang, and Xindong Wu. Learning label
specific features for multi-label classification. In Data Mining (ICDM), 2015
IEEE International Conference on, pages 181–190. IEEE, 2015.

[44] Jun Huang, Guorong Li, Qingming Huang, and Xindong Wu. Learning label-
specific features and class-dependent labels for multi-label classification. IEEE
Transactions on Knowledge and Data Engineering, 28(12):3309–3323, 2016.

[45] Sheng-Jun Huang, Yang Yu, and Zhi-Hua Zhou. Multi-label hypothesis reuse. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 525–533. ACM, 2012.

[46] Sheng-Jun Huang, Zhi-Hua Zhou, and ZH Zhou. Multi-label learning by ex-
ploiting label correlations locally. In Twenty-Sixth AAAI Conference on Artificial
Intelligence, pages 949–955, 2012.

[47] Anil K Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666, 2010.

[48] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.
ACM computing surveys (CSUR), 31(3):264–323, 1999.

[49] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix com-
pletion using alternating minimization. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 665–674. ACM, 2013.

[50] Jayadeva, Reshma Khemchandani, and Suresh Chandra. Twin support vector
machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell.,
29(5):905–910, 2007.

[51] Shuiwang Ji and Jieping Ye. Linear dimensionality reduction for multi-label
classification. In IJCAI, volume 9, pages 1077–1082, 2009.

[52] Ling Jian, Jundong Li, Kai Shu, and Huan Liu. Multi-label informed feature
selection. In 25th International Joint Conference on Artificial Intelligence, pages
1627–1633, 2016.

[53] Liping Jing, Liu Yang, Jian Yu, and Michael K Ng. Semi-supervised low-rank
mapping learning for multi-label classification. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1483–1491, 2015.

[54] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–
254, 1967.

[55] Nikos Karampatziakis and Paul Mineiro. Scalable multilabel prediction via ran-
domized methods. arXiv preprint arXiv:1502.02710, 2015.

118

[56] Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. Fast newton-type methods for
the least squares nonnegative matrix approximation problem. In Proceedings of
the 2007 SIAM international conference on data mining, pages 343–354. SIAM,
2007.

[57] Hannah Kim, Jaegul Choo, Jingu Kim, Chandan K Reddy, and Haesun Park.
Simultaneous discovery of common and discriminative topics via joint nonnega-
tive matrix factorization. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 567–576. ACM,
2015.

[58] Jingu Kim, Renato DC Monteiro, and Haesun Park. Group sparsity in non-
negative matrix factorization. In Proceedings of the 2012 SIAM International
Conference on Data Mining, pages 851–862. SIAM, 2012.

[59] Jingu Kim and Haesun Park. Toward faster nonnegative matrix factorization: A
new algorithm and comparisons. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 353–362. IEEE, 2008.

[60] Jingu Kim and Haesun Park. Fast nonnegative matrix factorization: An active-
set-like method and comparisons. SIAM Journal on Scientific Computing,
33(6):3261–3281, 2011.

[61] Keigo Kimura, Mineichi Kudo, and Lu Sun. Simultaneous nonlinear label-
instance embedding for multi-label classification. In S+SSPR, pages 15–25.
Springer, 2016.

[62] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collabo-
rative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 426–434. ACM,
2008.

[63] Yehuda Koren. Collaborative filtering with temporal dynamics. Communications
of the ACM, 53(4):89–97, 2010.

[64] Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recom-
mender systems handbook, pages 145–186. Springer, 2011.

[65] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8), 2009.

[66] Vikas Kumar, Arun K. Pujari, Vineet Padmanabhan, Sandeep Kumar Sahu, and
Venkateswara Rao Kagita. Multi-label classification using hierarchical embed-
ding. Expert Systems with Applications, 91:263 – 269, 2018.

[67] Vikas Kumar, Arun K. Pujari, Sandeep Kumar Sahu, Venkateswara Rao Kagita,
and Vineet Padmanabhan. Collaborative filtering using multiple binary maxi-
mum margin matrix factorizations. Information Sciences, 380:1 – 11, 2017.

[68] Vikas Kumar, Arun K Pujari, Sandeep Kumar Sahu, Venkateswara Rao Kagita,
and Vineet Padmanabhan. Collaborative filtering using multiple binary maxi-
mum margin matrix factorizations. Information Sciences, 380:1–11, 2017.

119

[69] Vikas Kumar, Arun K. Pujari, Sandeep Kumar Sahu, Venkateswara Rao Kagita,
and Vineet Padmanabhan. Proximal maximum margin matrix factorization for
collaborative filtering. Pattern Recognition Letters, 86:62 – 67, 2017.

[70] Neil D Lawrence and Raquel Urtasun. Non-linear matrix factorization with
Gaussian processes. In Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 601–608. ACM, 2009.

[71] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

[72] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factor-
ization. In Advances in neural information processing systems, pages 556–562,
2001.

[73] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factor-
ization. In Advances in neural information processing systems, pages 556–562,
2001.

[74] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vector ma-
chines: Theory and application to the classification of microarray data and satel-
lite radiance data. Journal of the American Statistical Association, 99(465):67–
81, 2004.

[75] Xi Li, Xueyi Zhao, Zhongfei Zhang, Fei Wu, Yueting Zhuang, Jingdong Wang,
and Xuelong Li. Joint multilabel classification with community-aware label
graph learning. IEEE Transactions on Image Processing, 25(1):484–493, 2016.

[76] Xin Li and Yuhong Guo. Multi-label classification with feature-aware non-linear
label space transformation. In IJCAI, pages 3635–3642, 2015.

[77] Ya Li, Xinmei Tian, Mingli Song, and Dacheng Tao. Multi-task proximal support
vector machine. Pattern Recognition, 48(10):3249–3257, 2015.

[78] Matthew M Lin, Bo Dong, and Moody T Chu. Integer matrix factorization and
its application. Tech. Rep., 2005.

[79] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. Multi-label classifi-
cation via feature-aware implicit label space encoding. In ICML, pages 325–333,
2014.

[80] Qing Ling, Yangyang Xu, Wotao Yin, and Zaiwen Wen. Decentralized low-rank
matrix completion. In Acoustics, Speech and Signal Processing (ICASSP), 2012
IEEE International Conference on, pages 2925–2928. IEEE, 2012.

[81] Jialu Liu, Chi Wang, Jing Gao, and Jiawei Han. Multi-view clustering via joint
nonnegative matrix factorization. In Proceedings of the 2013 SIAM International
Conference on Data Mining, pages 252–260. SIAM, 2013.

[82] Meng Liu, Yong Luo, Dacheng Tao, Chao Xu, and Yonggang Wen. Low-rank
multi-view learning in matrix completion for multi-label image classification. In
AAAI, pages 2778–2784, 2015.

120

[83] Yufeng Liu, Hao Helen Zhang, and Yichao Wu. Hard or soft classification?
large-margin unified machines. Journal of the American Statistical Association,
106(493):166–177, 2011.

[84] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang.
Recommender system application developments: a survey. Decision Support
Systems, 74:12–32, 2015.

[85] Si Lu, Xiaofeng Ren, and Feng Liu. Depth enhancement via low-rank matrix
completion. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3390–3397, 2014.

[86] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis R
Bach. Supervised dictionary learning. In Advances in neural information pro-
cessing systems, pages 1033–1040, 2009.

[87] Olvi L Mangasarian et al. Generalized support vector machines. Advances in
Neural Information Processing Systems, pages 135–146, 1999.

[88] Benjamin M Marlin. Modeling user rating profiles for collaborative filtering. In
Advances in neural information processing systems, page None, 2003.

[89] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In
Advances in neural information processing systems, pages 1257–1264, 2007.

[90] Jinseok Nam, Jungi Kim, Eneldo Loza Mencía, Iryna Gurevych, and Johannes
Fürnkranz. Large-scale multi-label text classificationâĂŤrevisiting neural net-
works. In Joint european conference on machine learning and knowledge dis-
covery in databases, pages 437–452. Springer, 2014.

[91] Nathan Srebro Nati and Tommi Jaakkola. Weighted low-rank approximations. In
In 20th International Conference on Machine Learning, pages 720–727. AAAI
Press, 2003.

[92] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Anal-
ysis and an algorithm. In Advances in neural information processing systems,
pages 849–856, 2002.

[93] Pentti Paatero. Least squares formulation of robust non-negative factor analysis.
Chemometrics and intelligent laboratory systems, 37(1):23–35, 1997.

[94] Arkadiusz Paterek. Improving regularized singular value decomposition for col-
laborative filtering. In Proceedings of KDD cup and workshop, volume 2007,
pages 5–8, 2007.

[95] Yashoteja Prabhu and Manik Varma. Fastxml: A fast, accurate and stable tree-
classifier for extreme multi-label learning. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 263–272. ACM, 2014.

[96] Buyue Qian and Ian Davidson. Semi-supervised dimension reduction for multi-
label classification. In AAAI, volume 10, pages 569–574, 2010.

121

[97] Piyush Rai, Changwei Hu, Ricardo Henao, and Lawrence Carin. Large-scale
bayesian multi-label learning via topic-based label embeddings. In Advances in
Neural Information Processing Systems, pages 3222–3230, 2015.

[98] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier
chains for multi-label classification. Machine Learning and Knowledge Discov-
ery in Databases, pages 254–269, 2009.

[99] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
pages 452–461. AUAI Press, 2009.

[100] Jason DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of the 22nd international conference
on Machine learning, pages 713–719. ACM, 2005.

[101] Jason DM Rennie and Nathan Srebro. Loss functions for preference levels: Re-
gression with discrete ordered labels. In Proceedings of the IJCAI multidisci-
plinary workshop on advances in preference handling, pages 180–186. Kluwer
Norwell, MA, 2005.

[102] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Jour-
nal of machine learning research, 5(Jan):101–141, 2004.

[103] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factoriza-
tion using markov chain monte carlo. In Proceedings of the 25th international
conference on Machine learning, pages 880–887. ACM, 2008.

[104] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann
machines for collaborative filtering. In Proceedings of the 24th international
conference on Machine learning, pages 791–798. ACM, 2007.

[105] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Incremental
singular value decomposition algorithms for highly scalable recommender sys-
tems. In Fifth International Conference on Computer and Information Science,
pages 27–28. Citeseer, 2002.

[106] Robert E Schapire and Yoram Singer. Boostexter: A boosting-based system for
text categorization. Machine learning, 39(2-3):135–168, 2000.

[107] Ajit P Singh and Geoffrey J Gordon. A unified view of matrix factorization
models. In Machine Learning and Knowledge Discovery in Databases, pages
358–373. Springer, 2008.

[108] Mohammad S Sorower. A literature survey on algorithms for multi-label learn-
ing. Oregon State University, Corvallis, 2010.

[109] Eleftherios Spyromitros, Grigorios Tsoumakas, and Ioannis Vlahavas. An em-
pirical study of lazy multilabel classification algorithms. In Hellenic conference
on Artificial Intelligence, pages 401–406. Springer, 2008.

[110] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin ma-
trix factorization. In Advances in neural information processing systems, pages
1329–1336, 2004.

122

[111] Lu Sun, Mineichi Kudo, and Keigo Kimura. Multi-label classification with meta-
label-specific features. In Pattern Recognition (ICPR), 2016 23rd International
Conference on, pages 1612–1617. IEEE, 2016.

[112] Farbound Tai and Hsuan-Tien Lin. Multilabel classification with principal label
space transformation. Neural Computation, 24(9):2508–2542, 2012.

[113] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Major
components of the gravity recommendation system. ACM SIGKDD Explorations
Newsletter, 9(2):80–83, 2007.

[114] Jun Tang, Ke Wang, and Ling Shao. Supervised matrix factorization hashing
for cross-modal retrieval. IEEE Transactions on Image Processing, 25(7):3157–
3166, 2016.

[115] Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gradient algorithm
for nuclear norm regularized linear least squares problems. Pacific Journal of
optimization, 6(615-640):15, 2010.

[116] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining, 3(3), 2006.

[117] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-
labelsets for multilabel classification. IEEE Transactions on Knowledge and
Data Engineering, 23(7):1079–1089, 2011.

[118] Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensem-
ble method for multilabel classification. In European Conference on Machine
Learning, pages 406–417. Springer, 2007.

[119] Satoru Tsuge, Masami Shishibori, Shingo Kuroiwa, and Kenji Kita. Dimension-
ality reduction using non-negative matrix factorization for information retrieval.
In Systems, Man, and Cybernetics, 2001 IEEE International Conference on, vol-
ume 2, pages 960–965. IEEE, 2001.

[120] Mark H Van Benthem and Michael R Keenan. Fast algorithm for the solution of
large-scale non-negativity-constrained least squares problems. Journal of chemo-
metrics, 18(10):441–450, 2004.

[121] Vladimir Vapnik. The nature of statistical learning theory. Springer Science &
Business Media, 2013.

[122] Maksims Volkovs and Guang Wei Yu. Effective latent models for binary feed-
back in recommender systems. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’15, pages 313–322, 2015.

[123] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[124] Thanh T Vu, Benjamin Bigot, and Eng Siong Chng. Combining non-negative
matrix factorization and deep neural networks for speech enhancement and auto-
matic speech recognition. In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 499–503. IEEE, 2016.

123

[125] Fei Wang, Tao Li, and Changshui Zhang. Semi-supervised clustering via matrix
factorization. In Proceedings of the 2008 SIAM International Conference on
Data Mining, pages 1–12. SIAM, 2008.

[126] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu.
Cnn-rnn: A unified framework for multi-label image classification. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
2285–2294, 2016.

[127] Shiping Wang, Witold Pedrycz, Qingxin Zhu, and William Zhu. Subspace learn-
ing for unsupervised feature selection via matrix factorization. Pattern Recogni-
tion, 48(1):10–19, 2015.

[128] Zi Wang and Fei Sha. Discriminative non-negative matrix factorization for
single-channel speech separation. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 3749–3753. IEEE,
2014.

[129] Markus Weimer, Alexandros Karatzoglou, and Alexander J. Smola. Improving
maximum margin matrix factorization. Machine Learning, 72(3):263–276, 2008.

[130] Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image
manifolds by semidefinite programming. International journal of computer vi-
sion, 70(1):77–90, 2006.

[131] Jason Weston and Chris Watkins. Multi-class support vector machines. Techni-
cal report, Technical Report CSD-TR-98-04, Department of Computer Science,
Royal Holloway, University of London, May, 1998.

[132] Jason Weston, Chris Watkins, et al. Support vector machines for multi-class
pattern recognition. In ESANN, volume 99, pages 219–224, 1999.

[133] Jörg Wicker, Bernhard Pfahringer, and Stefan Kramer. Multi-label classification
using boolean matrix decomposition. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 179–186. ACM, 2012.

[134] Chang Xu, Dacheng Tao, and Chao Xu. Robust extreme multi-label learning.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Francisco, CA, USA August, pages 13–17,
2016.

[135] Minjie Xu, Jun Zhu, and Bo Zhang. Nonparametric max-margin matrix factoriza-
tion for collaborative prediction. In Advances in Neural Information Processing
Systems, pages 64–72, 2012.

[136] Minjie Xu, Jun Zhu, and Bo Zhang. Fast max-margin matrix factorization with
data augmentation. In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), pages 978–986, 2013.

[137] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 267–
273. ACM, 2003.

124

[138] Ian En-Hsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, and Inderjit
Dhillon. Pd-sparse: A primal and dual sparse approach to extreme multiclass
and multilabel classification. In International Conference on Machine Learning,
pages 3069–3077, 2016.

[139] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit Dhillon. Large-scale
multi-label learning with missing labels. In International Conference on Machine
Learning, pages 593–601, 2014.

[140] Tingzhao Yu and Wensheng Zhang. Semisupervised multilabel learning with
joint dimensionality reduction. IEEE Signal Processing Letters, 23(6):795–799,
2016.

[141] Yang Yu and Viktor K Prasanna. Energy-balanced task allocation for collabora-
tive processing in wireless sensor networks. Mobile Networks and Applications,
10(1-2):115–131, 2005.

[142] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In NIPS,
volume 17, page 16, 2004.

[143] Chong Zhang and Yufeng Liu. Multicategory large-margin unified machines.
The Journal of Machine Learning Research, 14(1):1349–1386, 2013.

[144] Lefei Zhang, Liangpei Zhang, Dacheng Tao, Xin Huang, and Bo Du. Compres-
sion of hyperspectral remote sensing images by tensor approach. Neurocomput-
ing, 147:358–363, 2015.

[145] Lefei Zhang, Qian Zhang, Bo Du, Dacheng Tao, and Jane You. Robust manifold
matrix factorization for joint clustering and feature extraction. In AAAI, pages
1662–1668, 2017.

[146] Lefei Zhang, Qian Zhang, Liangpei Zhang, Dacheng Tao, Xin Huang, and
Bo Du. Ensemble manifold regularized sparse low-rank approximation for mul-
tiview feature embedding. Pattern Recognition, 48(10):3102–3112, 2015.

[147] Min-Ling Zhang. Lift: Multi-label learning with label-specific features. In IJ-
CAI, pages 1609–1614, 2011.

[148] Min-Ling Zhang and Lei Wu. Lift: Multi-label learning with label-specific
features. IEEE transactions on pattern analysis and machine intelligence,
37(1):107–120, 2015.

[149] Min-Ling Zhang and Kun Zhang. Multi-label learning by exploiting label de-
pendency. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 999–1008. ACM, 2010.

[150] Min-Ling Zhang and Zhi-Hua Zhou. Multilabel neural networks with appli-
cations to functional genomics and text categorization. IEEE transactions on
Knowledge and Data Engineering, 18(10):1338–1351, 2006.

[151] Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-
label learning. Pattern recognition, 40(7):2038–2048, 2007.

125

[152] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algo-
rithms. IEEE transactions on knowledge and data engineering, 26(8):1819–
1837, 2014.

[153] Tong Zhang and Frank J Oles. Text categorization based on regularized linear
classification methods. Information retrieval, 4(1):5–31, 2001.

[154] Zhenyue Zhang and Keke Zhao. Low-rank matrix approximation with manifold
regularization. IEEE transactions on pattern analysis and machine intelligence,
35(7):1717–1729, 2013.

[155] Erheng Zhong, Wei Fan, and Qiang Yang. Contextual collaborative filtering via
hierarchical matrix factorization. In SDM, pages 744–755. SIAM, 2012.

[156] Mingyuan Zhou, Chunping Wang, Minhua Chen, John Paisley, David Dunson,
and Lawrence Carin. Nonparametric bayesian matrix completion. Proc. IEEE
SAM, 2010.

[157] Yang Zhou and Ling Liu. Activity-edge centric multi-label classification for
mining heterogeneous information networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1276–1285. ACM, 2014.

[158] Shenghuo Zhu, Xiang Ji, Wei Xu, and Yihong Gong. Multi-labelled classification
using maximum entropy method. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval,
pages 274–281. ACM, 2005.

126

	DECLARATION
	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	1 Introduction
	1.1 Contributions of the Thesis
	1.2 Structure of the Thesis
	1.3 Publications of the Thesis

	2 Foundational Concepts
	2.1 Matrix Factorization
	2.2 Loss Function
	2.2.1 Binary Loss Function:
	2.2.2 Discrete Ordinal Loss Function
	2.2.3 Real-valued Loss Function

	2.3 Regularization
	2.4 Collaborative filtering with Matrix Factorization
	2.5 Multi-label Classification with Matrix Factorization

	3 Collaborative Filtering Using Hierarchical Matrix Factorizations
	3.1 Introduction
	3.2 Bi-level MMMF
	3.3 Multi-level MMMF
	3.4 HMF- The Proposed Method
	3.5 Parallelization of HMF
	3.6 Experimental Analysis
	3.6.1 Data Sets
	3.6.2 Experimental Protocols
	3.6.3 Comparing Algorithms
	3.6.4 Evaluation Metrics
	3.6.5 Parameter Setting
	3.6.6 Results and Discussion

	3.7 Conclusions

	4 Proximal Maximum Margin Matrix Factorization for Collaborative Filtering
	4.1 Introduction
	4.2 PMMMF- The Proposed Method
	4.3 Experiments
	4.3.1 Data Sets
	4.3.2 Evaluation Metrics
	4.3.3 Comparing Algorithms
	4.3.4 Experimental Results

	4.4 Conclusions and Discussion

	5 Multi-label Classification Using Hierarchical Embedding
	5.1 Introduction
	5.2 Multi-label Classification Approaches
	5.2.1 Problem Transformation Approach
	5.2.2 Algorithm Adaption Approach

	5.3 Embedding based Approach
	5.3.1 Feature Space Embedding (FE)
	5.3.2 Label Space Embedding (LE)

	5.4 Outline of the Proposed Approach
	5.5 MLC-HMF: The Proposed Method
	5.6 Experimental Analysis
	5.6.1 Data Sets
	5.6.2 Evaluation Metrics
	5.6.3 Comparing Algorithms
	5.6.4 Parameter Setting
	5.6.5 Results and Discussion

	5.7 Conclusions and Discussion

	6 Group Preserving Label Embedding for Multi-Label Classification
	6.1 Introduction
	6.2 GroPLE: The Proposed Method
	6.3 Experimental Analysis
	6.3.1 Evaluation Metrics
	6.3.2 Baseline Methods
	6.3.3 Results and Discussion

	6.4 Conclusions

	7 Conclusions and Future Work
	REFERENCES

